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"Cada ci~ncia ha mester los  vocables per los  

qu~s  mil ls  s ia  manifestada ; e c ~  a aquesta 

~ n c i a  demostrat~va s ien m e s t ~  vocabl~  escurs 

e que los  h~mens lecs  no han en ~s, e ca~ n~s 

fa~am aquest l l i b r e  als h~mens lecs  per a ~  breu- 

ment e a b  plans vocables parl~em d 'es ta  ci~ncia". 

Ramon Llul l  (~b re  de Gent i l ,  1273 ?) 

I - INTRODUCTION 

In the early usage, the word chaos referred to the darkness, the vacuum. 3ohn 

Mi l ton, paraphrasing the Old Testament Genesis, wrote in the Paradise Lost 

In the beginning how the heavens and earth 

Rose out of Chaos 
Since Mi l ton, the word chaos has al tered this meaning, to indicate confusion, mixing, 

complexi ty ,  disorder. One usually opposes chaos to order, or complex i ty  to s impl ic i ty  

and one can imagine d i f ferent  sorts of evolut ions or transit ions [DH-80] : order to order, 

chaos to chaos, order to chaos and chaos to order. The f i rst  two are not unexpected and 

easy to i l lustrate.  The th i rd f i ts wi th everyday experience and looks consistent wi th 

the Second Principle of Thermodynamics. But the last one is surprising and intr iguing. 

Most of the questions we wi l l  address ourselves in these lectures are of the type "How 

is the order di luted when going from order to chaos" and "What is the underlying order 

behind chaos". And the appropriate language, in most cases, w i l l  of course be the one of 

probabi l i ty  theory. In part icular,  i t  wi l l  emerge that  probabi l ist ic and determinist ic  points 

of v iew are not as i r reconci l iable as they may appear at f i rst  sight. Indeed, we wi l l  

go through systems governed by causal equations o5 motions although their  future mot ion 

does not depend on their  past, i.e. we wi l l  discuss memory- loosing or unpredictable systems. 

*Laboratoire associ~ au C.N.R.S. 



The kind of  systems we shall deal w i th  are of several  types : 

i)- Points d is t r ibu ted on the real  axis : ~(4j X~.~ X21J . . . .  • The axis may be the energy,  

the points corresponding to  the d iscrete energy levels of  a quantum system (an 

a tomic  nucleus, an a tom or a molecule)  ~ or the f requency axis, the points corres-  

ponding, for  instance, to  the normal  f requencies of  a v ib ra t ing  membrane ~ or the 

t ime  axis, the points corresponding to  successive epochs of  occurrence of a given 

event  ( t imes of a r r iva ls  on a te lephone l ine in queuing problems, for  instance). 

- Points d is t r ibu ted on a segment or on the c i rc le  ( for  instance, e igenvalues of un i ta ry  

matr ices) .  

- F o r  i l l us t ra t i ve  purposes, we shall also b r ie f l y  describe some number - t heo re t i c  func- 

t ions f(n) def ined on the pos i t ive integers 1,2,3,... 

i i ) -  Sequences of  points X24 ~ ~ ; . . . .  ; X~I~ . . . .  on an N-d imensional  space def ined, 

for  instance, through some t rans fo rmat ion  ~ n , 4  = T X ~  . For  instance, snaps- 

hots of  the classical t r a j ec to r y  o f  a point  pa r t i c le  of  cer ta in  dynamica l  systems, or 

sequences of  values of  some var iab les obta ined through a sequent ia l  a lgor i thm.  

For the f i rs t  kind of  systems (discussed in this Sect ion and in Sect ion II), before 

a study of  the f luc tua t ions  -one of  our main goals- can be a t t emp ted ,  one must make a 

c lean separat ion between the smooth (or average) behaviour  and a f l uc tua t ing  (or osc i l la t ing)  

par t .  In some cases this step w i l l  be obvious. For the second kinds of  systems ( t rea ted 

in Sect ion I l l) ,  the a t ten t i on  w i l l  be focused on the s t ruc ture  of  phase space, how i t  

is f i l l ed  by t ra jec to r ies  and special emphasis w i l l  be given to  the quest ion of  s tab i l i t y  

of orb i ts .  

In order to  get  some f lavour  about  general  ideas and concepts,  le t  us now g ive 

a few examples coming f rom very  d i f f e ren t  f ie lds.  

Pr ime  Numbers (Number  Theory) 

The theory  of numbers is a t  the same t ime  one of  the most  e lemen ta ry  branches 

of mathemat ics ,  because i t  deals w i th  the a r i t h m e t i c  proper t ies of  integers 1,2,3,.. 

and one of the most  d i f f i cu l t  branches insofar as i t  leads to  new d i f f i cu l t  problems 

and techniques. Which sort of  techniques ? Some t i t les  of monographs or specia l ized 

ar t i c les  reveal  i t  : "S ta t i s t i ca l  independence in p robab i l i t y ,  analysis and number theory"  

[Ka-59] ,  "On the densi ty  of  cer ta in  sequences of in tegers" ,  etc. .  The l is t  could be made 

very  long. Not ice  the presence of  words l ike probab i l i t y ,  densi ty.  

Le t  us now consider the sequence of  pr ime numbers 2,3,5,7,.. We want  to emphasize 

two  facts [Za-77]  : "The f i rs t  is tha t ,  despite the i r  s imple de f in i t ion  and role as the 

bui ld ing blocks of  the natura l  numbers, the pr ime numbers belong to the most a rb i t r a r y  



and ornery  objects studied by mathemat ic ians . . .  The second fac t  is even more astonishing, 

for i t  states just the opposi te : that  the pr ime numbers exh ib i t  stunning regu la r i t y ,  

that  there  are laws govern ing the i r  behaviour,  and tha t  they obey these laws w i t h  a lmost  

m i l i t a r y  p r e c i s i o n " .  

The f i r s t  aspect is i l lus t ra ted  on Table I - I .  In the i n te rva l  [1 - I00 ]  there  are 

25 pr imes, the largest  gap between two successive pr imes being 97-89=8. In the i n te rva l  

[ 1,100] 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67, 

71,73,79,83,89,97 

[107-100,107] 9999901, 07,29,31,37,43,71,73,91 

[107,107+100] 10 000 019, 079 

Table I-I : List of primes in three different intervals of length 100 

[107-100,1007] there are 9 primes, the largest gap being 28. In the interval [107,107+100] 

there are only two primes, which differ by 60. Despite this in appearance completely 

errat ic behaviour, are there systematic patterns ? The first important feature,  already 

known by Euclid (ca. 300 b.C.) is that the sequence of primes is infinite. But, obviously, 

there are much less primes than integers. For instance, the harmonic series ~ ' - ( l / n )  

summed over integers n is known to diverge. More precisely 

.n~X. ~ - -  .l~tX " - ~  = 0 . ~ 7 " /  .. . .  (Euler constant) (I-1) 

What about summing over primes p only, i.e. /~- ( l / p )  ? If one performs the "experi- 

ment", for instance by summing for ~ ~" 10 9 one finds 3.3, whereas summing up to 

p ~ 1018one would find ~ #. In fact, the exact asymptotic result is 

- -  = ( I - 2 )  

where C _~ 0.261497 and I~(X~--~ 0 when J~-a~ ~ ; thus, the series diverges. This example  

c lear ly  shows tha t  in some cases, the emp i r i ca l  (numer ica l )  observat ion is unable, not  

only to  produce, but even to  guess, the exac t  resul t .  But i t  is not  a lways l i ke  that .  

For instance, le t  us consider the number 7~ (X') of  pr imes which are less than or equal 

to ~ . The funct ion T [  ( x ~  is an in f i n i te  staircase, which increases by one each t ime  



one  " c ro s se s "  a p r i m e .  The  f i r s t  23 s t e p s  of  th i s  i r r egu l a r  s t a i r c a s e  a r e  shown  on Fig.I .1 .  

Has  th i s  s t a i r c a s e  I u n c t i o n  an  a v e r a g e  behav iou r  ? Gaus s  o b s e r v e d  as  e a r l y  as  1792 

that the density of prime numbers a X C ~ V d ×  appears on the average to be '{~'~ 

z'(x) 

I I  

Fig.I. l  - Plot of the function /"i,~,s¢') for 1 4 ~  • IO0 
11. 

He was thus led~ from "empirical observation" of primes9 to approximate 

integral logarithm Li(X ) 

] 
,.X 

[ xa~" = 4,04.1. ~ a÷ 
= Li ~2) + J~ & ~ & &-e 

~'~') by the 

0-3)  

Li(~) a d m i t s  t h e  fo l lowing  expans i on  

(i-~) 



The quality of the approximation /~(X) ~ Li( X ) is, for many purposes, very good. For 

instance, for X ~  10 7, the relative error I I t (X)  - i.i(~,~l/rtO,) is smaller than 5 x 10 -5. 

On Fig.I.2 is plotted, for X (  10 7, the difference i-i @') - - l I ( X )  . It can be seen that 

although this difference is small, it is not featureJess : for instance, for X ~ 10 7, it 

steadily increases. 

.300 
Li(x)-ll~ o ,1% ,/hA ~ I~/ 

, ,E ,~?~° . ,~  i\. dfb,,, .s ,,/~/v~? A%A 9_ ~/1. ° 
o 

-100 x "In rmtt~ns 

Fig.I.2 - Difference between Gauss (Riemann) approximation Li (X) ( R ( ' X } )  to T[( x ) 
and 71CX) for X ~  107 (taken from Ref.[Za-77]) 

What about rigorous) "non-empirical") results ? One of the main questions, in 

the middle of the 19 th century) was to prove the prime number theorem (PNT) namely 

T~ ~x'~ .v  x . ~  0-5) 
x . -o  a, (M,x 

Notice that Gauss approximation is consistent with the PNT. The f i rst  major result 

in the direction of the PNT was obtained by Chebyshev in 1850, who proved that 

O. ~I ~I x ~ R('x') < 4.44 ~ o-6) 
.&,x .&,x 

for suff iciently large X • Although the PNT is true, the approximation 

T ~ ' ~  ~ x 
,~M X (I-7) 

is much poorer than the approximation introduced by Gauss (see Fig.I.3). 

Riemann, in his famous memoir "Uber die Anzahl der Primzahlen unter einer 

gegebenen Gr6sse" introduced, based on empir ical  evidence and intuit ion) a better approxi- 

mation R. (×~ to ~ (×") 

O0 

R c~ _-'. R ( x ' ) =  Z /"("~ L.i (x'V'), (i-8> 



where ~ I A ~ ) i s  the M6bius function defined as fo l lows:  /~t('!) = 1 

f 0 if n is divisible by a prime square 
(~:~4"~ im 1 if n is a product of an even number of distinct primes (I-9) 

- 1 if n is a product of an odd number of distinct primes 

For instance, Jill.(2) =//X(3) = p t  (5) =/IA (7) = - 1 ; ~ ( 6 )  =/A(2,3)  = 1 ; /IA(g) = ],1(2 z) = 0. 

R(X ) is an entire function of ,e&x with the following expansion 

) 

where g is the Riemann zeta function of ~ ---- ~-I-I"~ ) which is defined by 

(I-lO) 

(I-11) 
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F i g . l . 3 - P l o t o f  7~ ( J ¢ ) a n d  X/ff-~X f o r X ~ / S x l 0 4  
(taken from Ref.[Za-77]) 

for ~"~1 and by analyt ic  cont inua- 

t ion for 0 " ~  1, $ ~ 1. Notice 

the connection between ~ ' ( ' $ )  

and the prime numbers p. For 

X = 106 one has ~ (106)= 

78498 and the first two terms of 
1 Li(103) = (I-8) give Li(106) - 

1 78628 - ~  x 178 = 78539 . 

On Fig.I.2 is shown the difference 

R(X') - - T I ~ ( X )  . As can be 

seen) no structure is anymore 

present. It seems now that  one 

can consider R(~X'~ to be the 

smooth behaviour of ~ ' [ ( X )  ; 

af ter  subtract ing R to ~ only f luctuat ions are le f t  out. In fact) Riemann) although 

unable to p r o v e  the PNT (*)) did something even more astonishing. He der ived an exact  

re lat ion for ~ )  : 
Ti'()¢~ = R ( X ) _  % R CX 1~) (I-12) p ) 

(*)The PNT was proved simultaneously and independently by Hadamard and de la Vall~e- 
Poussin in 1896. Hadamard was horn in 1865 and de /a Vall~e-Poussin in 1866 and they died 
in 1963 and 1962 respectively ! 



where the sum runs over the "non trivial" (~ -2,-%-6,...) roots ~ of _~S')  . The first 
I +~-~ (one assumes term in 0-12) gives the approximation discussed above. Putting p = 

the Riemann Hypothesis (RH) to be true ; see below)) performing the summation over ~'  
in order of size) pairing terms of the sum corresponding to p and p '~  (if ~ is a root of 
~ ' $ )  ,so is p~),  one can write 

/~-=t 

where 

"J~b. C ~ ' -  - E ~ E  XP&) 4- ~ C  XP~) 2 ~=1,2) . . . .  (i-l#) 

The t e rms  T k ~¢'~ are  osci l lat ing ones. The f i rs t  few are  shown on Fig.I.# and on Fig.I.5 

is reproduced the  resul t  obtained by adding 10 and 29 osci l la t ing t e rms  to R ~'J¢') [Za-77, 

Si-79]. As can be seen) by the  t ime  when ~ 30 t e rms  are added, one is obtaining an 

a lmost  exac t  r ep resen ta t ion  of ~(~¢'} in the  range 1 ~ ; (  ~ 100 (compare to Fig.I . l) .  

Some remarks  are  in order.  We have ment ioned t ha t  Li( X ) - - T [  ( ~ ) ~  0 for 

~ 107 (see Fig.I.2). How incredibly weak may the  position of the  physicist  be when 

looking for asympto t i c  results  is i l lus t ra ted  by the  following f ac t  : i t  has been shown 

(Litt lewood) t ha t  there  exis t  numbers  for which L J( x )-1"(.( X ) is negat ive  and Skewes 

proved t ha t  the re  is one smaller  than 

1034 
I0 I0 

a number  of which Hardy said t ha t  it was surely the  biggest  t ha t  had ever  served any 

def in i te  purpose in ma thema t i c s .  So, a l though one knows no number  for which / t ( X ) -  

CX ~) is negat ive ,  one knows tha t  this  d i f fe rence  cannot  increase  steadily) as suggested 

by the  enormous avai lable  "empir ical  data"  coming from all the  present ly  known primes. 

On the  opposite) we have also seen (at leas t  in the  hands of Gauss and Riemann ~) how 

ex t remely  powerful and far-reaching approximat ions  can be derived from empir ica l  obser-  

vat ion.  

In the  same vein) let  us i l lus t ra te  how empir ism and heur is t ic  a rguments  are 

used and d i f ferent ly  apprec ia ted  by pure ma thema t i c i ans .  We have already ment ioned  

the  Riemann Hypothesis  (RH), which is by universal  ag reemen t  the  out -s tanding  unsolved 

problem in ma thema t i c s .  It s t a t e s  tha t  all the  zeros ~ ) =  O'4-I" ~ of the  Riemann ze t a  

funct ion lie on the  cr i t ica l  line 0" .~  1/2, except  for the  " t r ivia l  zeros" lying on the  

real  axis at  the  values q" - - - -29-%-6 , . . .  It has been proved t h a t  the re  are  an inf ini te  

number  of zeros on the  cr i t ica l  line (Hardy) but not t ha t  all of them are  on it. It has 

also been proved t ha t  the  RH is equivalent  to  
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Fig .  1.4 - Plot of the first five oscillating terms 
of Eq.I-l# (taken from Ref.[Za-77]) 

for all (~ 7 0  (I-15) 

(I-16) 

the summation is over integers and 

(n) is the M6bius funct ion def i -  

ned above (I-9). People have 

tr ied) using heurist ic arguments 

having a probabi l is t ic  basis) to 

re inforce the bel ief  that  the RH 

is in fac t  true. We reproduce one 

of them for  its s imp l i c i t y [DH-80. )  

GC-68]. If we make a plot  of the 

M6bius funct ion ~I~ (4~.~ i t  looks 

random) in the sense that  i t  shows 

no discernible regular i ty)  except for  

the fac t  that  ~ is just as l ike ly  

to be equal I or - I .  Now) what 

is the chance for /~ (114.) ~ 0 ? 

This w i l l  happen i f  n is not a 

mul t ip le  of 4 or a mul t ip le  of 9) 

or a mul t ip le  of 25 or of any other 

square of a pr ime. The probabi l i ty  

that  a number chosen at random 

is not a mul t ip le  of # is 3/4) that  

i t  is not a mul t ip le  of 9 is 8/9) 

that  i t  is not a mul t ip le  of p2  

is ( T )  2 - I ) I ] )  . These condit ions 

being al l  independent we obtain) 

for  the probabi l i ty  that  ~(')~)~ 0 

(I-17) 

Therefore) the probabi l i ty  that  : 

i) /~ (~)~) = I is 3 / / l  ~ , i i )  j~(4v0= 

- I  is 311[ 2, i i i )  ~ ( ~ )  = 0 is 
I - 6/TL 2. Let  us now examine M0()  



Fig. l .5 - Value of  7~6¢'~ inc luding 10 and 29 osc i l la t ing  terms in Eq. l-13 ( taken f rom Ref.  
[Za-77]) 

and assume tha t  each te rm in the summat ion in (I-16) can be considered as an independent 

random var iab le  w i th  the probab i l i t ies  just der ived.  Hausdor f f 's  inequa l i t y  says then 
( I I 2 )+H  that ,  w i th  p robab i l i t y  I ,  M( X ) grows no fas ter  than a constant  t imes X 

exac t l y  what  is needed to  proof  RH ' However ,  we have made an unacceptable t r i ck .  

Instead of  adding the values of ~ for  the N values in the range I to  N = Int( • ), we 

have taken N integers at  random. We have done this because we feel  tha t  the tab le  

of  values of ~ is " random" or "unpred ic tab le"  a l though we know tha t  the M6bius funct ion 

is comp le te l y  de te rmin is t i c .  The author  of the au tho r i t a t i ve  work  on the ze ta  funct ion,  

H.M. Edwards led-74] ,  cal ls this type of  heur is t ic  reasoning "qu i te  absurd" and L i t tJewood 

wro te  : "I should also record my fee l ing  tha t  there  is no imaginab le  reason why the 

RH should be t rue" .  Nevertheless,  i~ one persists w i t h  the "absurd" reasoning~ one pro~cts 

tha t  the number of  zeros of  i~ I (~t~ between 1 and 33 x 106 is [GC=65] 33 x 106 x (1 -6 / ( [  2)= 

12 938405.6 whereas the ac tua l  number is 12 938/~07, an 8 place accuracy resul t  
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Zeros of the Riemann Zeta Funct ion  

Let  N(T) be the  number  o5 zeros p : 1/2 + 4" K of ~ ' ( . ~ )  with 

Then [Mo-76] 

o < r . 4  T. 

Nc-O-_  r -c , s c , ) , z  , o ( # )  

The maximum order o5 S(T) remains  unknown. Probably 

One knows the first 7 x 108 zeros ol ~ Cs') and stretches of I0 ~ successive zeros 

halve been computed around the 10 9 -th zero and around the loll-th zero [0d-82]. 

There is a con jec ture  tha t  the  dis t r ibut ion of zeros ol ~ ' ( N )  resembles  tha t  

ol the  eigenvalues o5 a random complex hermi t ian  or uni tary mat r ix  [Mo-73a,7#] (see 

Section I!). There are very strong numer ica l  indicat ions supporting this  conjec ture  [Od-82]. 

Vibrations of a membrane (the drum) 

A membrane  is a per fec t ly  I lexible and inf ini te ly  thin lamina of solid ma t t e r ,  of 

uniform mater ia l  and thickness  which is s t r e t ched  in all direct ions by a tension so grea t  

as to remain  unal tered  during its vibrat ions.  The principal subject  in this  field is the  

inves t igat ion of the  t r ansverse  vibra t ions  of membranes  of d i f l e ren t  shapes, whose 

boundaries  are fixed. One considers then (Fig.I.6) a membrane  s t reched  over the  area  . ~  

included within a fixed, closed plane boundary fn . Taking 

P the  plane of the  membrane  as t ha t  ol X - ~  , le t  ~ denote  

y the  small  d i sp lacement  perpendicular  to i ts original plane. 

It has been known Ior all over a cen tury  tha t  "t~ obeys the  

wave Iu'nction 

F ig.I.6 ~ "  
where C is a cons tan t  with dimensions o5 a velocity,  depending 

on the  physical proper t ies  o5 the  membrane  as well as on the tension under which the  

membrane  is held. Of special  in te res t ,  both to ma thema t i c i ans  and to musicians, are 

solutions o5 the form 

4~0~ (I-21) 
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for) being harmonic in t ime with frequency ¢O) they represent the pure tones the membrane 

is capable of producing. These special solutions are known as normal modes. To find 

the normal modes) one substitutes (I-21) in (I-20) and one finds that ~ must satisfy 

the eigenvalue equation 

with the condition that II~ vanishes on the boundary ~-r . In (I-22) ~ is a frequency) 

a wave number and IE an energy. Equation 0-22) possesses an infinite number of 

eigenvalues E n which are real and non-negative and have no accumulation point. One has 

therefore 

o , < E ,  . . . .  (i-23) 

We a r e  now i n t e r e s t e d  in p r o p e r t i e s  of  t h e  s e q u e n c e  of  e i g e n v a l u e s .  For  i n s t ance )  on w h a t  

characterist ics of the boundary depends the number of modes per unit energy (or unit 

frequency)) i.e. what is the density of eigenmodes. In these lectures the emphasis 
wi l l  be put on the 2-dimensional case, but the problem can also be considered in 3 

dimensions) or more general ly in N dimensions. In three dimensions, i t  corresponds 

to the study of the vibrat ions of an acoustical resonator or the vibrat ions of an elast ic 

body or the free electromagnet ic oscil lations in the in ter ior  of a cavi ty)  wi th adequate 

changes of the boundary conditions. In one dimension, the problem corresponds to the 

vibrat ions of a string) but in this case there is no room for the inf luence and regular i ty  

of the shape. In quantum physics) Eq.(l-22) represents the t ime-independent Schr6dinger 

equation for a free part ic le of mass m moving in the in ter ior  of a box with in f in i te  

walls, wi th ~ ~ -- 2 ~ ,  where E is the kinet ic energy. 

The asymptot ic number of modes per unit frequency was f i rst  established for 

the case of the rectangular parallepiped by Rayleigh (1905). Sommerfeld and H.A. Lorentz 

had drawn at tent ion to the ef fect  of the domain) or) fo l lowing Kac to put i t  in a pictures- 

que way, one may ask "Can one hear the shape of a drum ?" [Ka-66]. 3ohanna Reudler) 

a student of Lorentz,  in a Leiden dissertation, ver i f ied that  the asymptot ic number 

of modes depends only on the volume for the special cases parallepiped) sphere and 

cyl inder. The history of how the f i rst  important  result in this f ie ld was obtained is 

worth to be br ie f ly  remembered [Ka-66]. Lorentz was invi ted to G6tt ingen in 1910 

to del iver the WolfskehI lectures (Wolfskehl awarded a prize for proving or disproving 

Fermat 's last theorem (*) and in case the prize would not be awarded~ stipulated that the 

( )In 1637 Fermat  stated that the diophantine equation ~" + ~/ ~. ~ wi th integral  
n '~ 2 has no solutions in posit ive integers ~ I  ~ ) ~  . Fermat  asserted to have a 
" t ru ly  marvelous proof" of his statement) but tbday i t  is general ly bel ieved that  his 
argument) which was apparent ly never revealed) must have been incomplete. 
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proceeds from the principal should be used to invite eminent scientists to lecture in 

G6ttingen). Lorentz gave some lectures under the general t i t le  "Al te und neue Fragen 

der Physik". At the end of one of them he asked '"'In an enclosure wi th a perfect ly 

ref lect ing surface there can form standing electromagnetic waves... The mathematical 

problem is to prove that the number of suff iciently high overtones which l ie between 

and 1~4" ~ Y is independent of the shape of the enclosure and is simply propor- 

t ional to its volume ". If one believes an apocryphal report Hi lbert  predicted that the 

theorem would not be proved during his l i fe. Less than two years later Hermann Weyl, 

who was present at the Lorentz's lecture, using the theory of integral equations which 

his teacher Hi lbert  developed only a few years before, proved the theorem, long before 

his death. 

Let us now go back to the in i t ia l  two-dimensional problem. Progress has been 

made since the pioneering work by Weyl. We are interested in extract ing a smoothed 

eigenvalue distr ibut ionK/~l- '~ i .e,  the smoothed function giving the number of eigenvalues 

less than or equal to E in order to study the fluctuations or oscillations of the exact 

distr ibution around the averaged value N~E). In the context of the eigenvaJue previous 

example on prime numbers, we are searching the function IM~l~E)which has a similar 

relationship to N('l~'~as R(X ) to ~CX~ . Reference [BH-76] gives a complete account 

of the results obtained so far in this f ield. The function I~(E) can be wr i t ten 

# / [  41r 

where 0 ~ I~ ~ I. In (I-24) 0" is. the surface of the area ~ (Weyl's term) and £ 

is the perimeter of the boundary r~(_)K is a constant term containing complex information 

on the geometrical and topological properties of the domain. The geometrical features 

contributing to the constant term are : i) Curvature contribution 

where I ~ )  denotes the local curvature ; for instance, the curvature contribution 

for the circle is I /6. ii) Corners contribution ; for a square (or a rectangle), i t  is 

4 x (I/45). The topological features concern the connectivi ty of the surface ; for a 

mult ip ly connected drum containing r holes, the contribution to the constant term is 

( l - r )  x (I16). 

On Fig.l.7 are compared the exact function N(E) and the smoothed function 

Na(E) given by Eq.(I-24) for two dif ferent shapes, namely a quarter of a circle 

and a stadium (see Section Ill). I t  can be seen that N(E) indeed reproduces perfectly 
A v  

the average behaviour of N(E), not only asymptotical ly but start ing from the bottom 

of the spectrum. 
(*) If one uses Neumann instead of Dir ichlet boundary conditions, (I-24) is st i l l  valid except 
for the sign of the perimeter term 
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Fig.l.7 - Cumulative density of eigenvalues N(E) of Eq.(l-22) and its average N~, v (I~'~ 
given by Eq.(l-2~) for two dif ferent shapes of the boundary : (a) a quarter of a circle z 
of radius unity ; (b) a stadium with straight line and radius of curvature equal to one 
(See Section IV)(taken from [Sc-8#)BGS-g#b]). 

How to character ize  f luctuat ions 

The examples treated so far should have convinced the reader that i t  is possible 

in many cases, for a sequence of discrete points on the real line) to separate the 

staircase function N(~ ) i n  a smooth part /N/~tv(5) and a f luctuating part N~I ( ~ ' )  

Before studying fluctuations one wants to get rid of ~ /~V( .~ ' ) in order to compare 

the f luctuation patterns of di f ferent systems whose corresponding average behaviours 

/~/O.V ( ~ ) are not the same. For that purpose, one "unfolds" the original spectrum 

~ .  through the following mapping ~ :  "~ X 

X~ = P~¢ ( ~ ' 4 )  ,l'_-q~2! . . . .  0-27) 

Consider now the sequence ~ X4 ~ and its corresponding smooth behaviour 
A 

N~v ( X )  . The effect of (I-27) is that N~tv ( x ) =• , i.e., the sequence.~X4] 
has on the average a constant mean spacing (or a constant density) equal to unity) 

as can be seen from 

N a ,  ( ~ ) ~ -  p * * V ( S ' ) ~  " , ' -  " - X  ~- % 1 1 ( ' ~ )  ) (I-28) 
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where P~v ( ~ )  is the  average  density of , { ~ '  ] . For instance,  consider the  

( f luc tua t ion-f ree)  sequence ~ _  ~1 .  ( /~ _- 1,2,...) ; then /~/~lvff~)----- ~ - -  

and XII.-- /~. , a sequence of equally spaced points or p icket  fence. In summary, 

a f te r  unfolding, we shall study quant i t ies re lated to 

considering f luc tuat ion propert ies of sequences ~ X,I" } we shall come When 

across d i f fe rent  si tuat ions : i) cases in which the system is known to be, f rom a stat is-  

t i ca l  point of v iew, translational invar iant  or stat ionary,  i.e., the f luctuat ion propert ies 

are the same irrespective of which region of the spectrum (of the sequence) one is 

considering ~ i i)  cases in which the system is not stat ionary but one is interested in 

asymptot ic  propert ies of the spectrum. 

The question now is to discover the stochast ic laws governing sequences having 

very d i f fe rent  origins, as i l lus t ra ted on Fig.I.8, which is inspired f rom a s imi lar  f igure 

of Ref . [BFF-g l ] .  There are displayed six spectra, each containing 50 levels!*)Column 

(a) corresponds to a Poisson system : Take a random var iable s whose probabi l i ty  density 

~ ( X ~  is e -x.  Construct  a sequence JlX~ 3 

X 4 = 0 , g 4 +  a - X~" 4 - S , I '  i = 1 , 2 , 3 . .  I ( I -30)  

where S t" are outcomes  of independent  t r ia ls  of the  var iable  s. The resul t ing spect rum 

is what  is called a Poisson spect rum,  which is obviously s ta t ionary .  For ins tance,  if 

one studies the  counting ra te  of a decaying source, the  successive t imes  of decay 

X~" ~will form a Poisson spect rum,  the  t ime  being measured  in units of the  mean 

life of the  source. Column (b) shows an example  of a segment  of prime numbers  in 

the  in terval  [7791097-7791877] Ref.[Si-79] ; column (c) the  resonance  energies  3 ~ =1/2 + 

of the  compound nucleus observed in the  reac t ion  n + 166Er (see Section II) ; column 

(d) the  eigenvalues (associated to e igenfunct ions  with a given symmetry)  corresponding 

to the  t ransverse  vibra t ions  of a membrane  whose boundary is the  Sinai 's  billiard (see 

Section IV) ; column (e) the  posit ive imaginary par t  of the  1551-th to the  1600-th 

zero of the  Riemann ze ta  funct ion [HM-63] ; column (f) an equally spaced sequence 

of levels (picket fence).  Columns (a) and (i) represen t  two l imit ing cases,  maximum 

randomness  and no randomness  a t  all respect ively .  

Can one deduce some fea tures  just  by inspect ing Fig.I.8 ? Arrows indicate  

spacings $4"- -X¢~I-X. t '  which are smaller  than 1/4. The Poisson spect rum shows 12 

arrows out of ~9 spacings, the  pr ime number  "spec t rum" shows 9 arrows, the  E r spec t rum 

only 2 arrows, the  f requencies  of the  membrane  3 arrows, the  zeros of ~ ( ' $ )  no 

arrow and, of course,  the  picket  fence no arrow. One the re fo re  sees a s t a t i s t i ca l  

(*) The spec t ra  have been rescaled to the  same spect rum span [0,49], thereby introducing 
an ar t i f ic ia l  rigidity (see below). 
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Fig.I.8 - Segments of "spectra"~ each containing 50 
levels. The "arrowheads" mark the occurrence of pairs 
of levels with spacings smaller than 1/4. See tex t  for 
fur ther  explanation. 

simi lar i ty  between (a) and 

(b) : large probabil i ty of small 

spacings and occurrence of 

some large spacings. On the 

contrary9 (c) (d) and (e)show 

small probabi l i ty of small and 

large spacings~ the small 

probabi l i ty of small spacings 

being usual ly re fe r red  to 

in the l i terature as the pheno- 

menon of level repulsion. The 

spectrum (c), (d) and (e) deviate 

from (f) less strongly than 

(a) and (b). The picket fence 

(f) is a spectrum that.  we may 

qua l i fy  as absolutely rigid9 

in the sense that  there  is 

no departure  at  all from 

uniformity.  Once the position of 

one level X~" is known, the 

position ~f any other  level is de- 

termined, no matter  how far i t  is from X~" . For this system the correlations between 

spacings are maximum and i t  shows perfect short and lonl~ range order. At  the opposite 

extrem% the Poisson spectrum contains no correlations between spacings • the knowledge 

of a stretch of the spectrum puts no restr ict ion on the behaviour of the spectrum 

beyond the interval considered (this is of course true irrespective of the form of the 

function ~ ( ~ )  chosen in Eq.(I-30)). In intermediate situations between Poisson and 

the picket fence the degree of the spectral r ig id i ty  wi l l  depend on the nature and 

stCength of the correlations between spacings. 

Although this topic wi l l  be treated in greater detai l  in the next Section~ let  

us already give some examples of characterizat ion of f luctuat ion properties. We have 

mentioned before the spacinl~ distr ibution ]~C~ ¢)  between adjacent levels, Let  us 

reproduce a simple heuristic argument due to Wigner [Wi-56] that i l lustrates the 

presence or absence of level repulsion. Consider the probabi l i ty p(x)dx that~ given 

a level at Xo, the next level is in the small interval dl : [ ~#~)¢ ~ X64- X 4-C[~ ] (see Fig. 

1.9). I t  can be represented as the product of two factors 

p(x)dx : Pr (one level in d I / n o  level in I )~Pr (no level in I) , 0-31) 

where Pr means probability and Pr(a/b) is the conditional probability of having a if b 
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is true, One has 
x o x X+dX I" QO 

Pr (no level in I) = / ~ ( X ¢ )  dX" / 
Fig.I.9 J x  

and Pr (one level in dI/no level in l) = B ( × ~  ~ . Therefore 

t,(~ =/~ Cx') j'~p(x') d× ~, 
which can be solved to give -- ]/"~)tl { ; ) d ) ¢ '  

p(x) = C /,,c~) e 

Now, for a Poisson sequence 

- ,V 
p(x)= e 

/,¢×) 

0-32) 

(I-33) 

(I-34) 

is independent of )¢ and one obtains ( f l ) ( M )  
3 ,  

x>o 

A linear level repulsion can be introduced by assuming 

_~.B.. X 2 
4 

.2 x~,O . 

0-35) 

/U (X) ~-/~ X and one obtains 

0-36) 

The result (I-36) for the spacing distr ibution is known in the l i terature o random 

matrices (*) as the Wigner surmise and i t  shows expl ic i t ly  the level repulsion or tendency 

to avoid clustering of levels. Indeed, pCx,)o') ~- O in £onstrast to the Poisson case, 

for which the corresponding spacing distr ibution 0-35) is maximum at the origin. 

The spacing distr ibution P(X ) contains no information about spacing correlations. 

A simple measure of spacing correlations is the correlat ion coeff ic ient C between, for 

instance, two adjacent spacings. Let ~ ¢ 4 ~  be the sequence of levels and S4 the 

spacings ~4 = )¢4~1 - )¢~" ; C is given by 

c : Z-. (s ,- ,3(s<, ,-~ / Z &;-t)  2 
,~ ,¢ ) 

(I-37) 

(*}I-36) is a standard distribution in statist ics,  called a "Rayleigh distribution" : Consider 
on the plane a point of cartesian coordinates ( ) ~ t )  and take X and ~ as independent 
random variables normally distributed with zero mean and with the same variance 

(3-2= .2/K . The probability density of the radius vector r - - ~  is (I-36). 
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where we assume the mean spacing equal to unity. For a Poisson spectrum, C = 0. 

A convenient variable which is often used is ~ 3(L) [DM-63]. It measures, 

~ v e n  an interval [O( , ~  +L] of length L, the least square deviation of the staircase 

N(N ) from the best straight line fit t ing it (see Fig.I.10) : 

r ~ ¢ L  

¢% 
Notice that we are dealing with spectra for which the average part N~ttr ( X )  

of ~ ( N )  is a straight line t~--- tX . However, when considering a given interval 

[ a ,  O( -I. L. ], the best straight line fit t ing ~ ( X )  will not just be ~f-- X but 

another (presumably close lying) straight line A ) t  +B which is determined by (I-38) 

The value of t~3(L) for L ~#tl for a picket fence spectrum is 1/12 whereas the average 

4 ~  3(L)> of A 3( ~ ;L) (take many non overlapping adjacent segments of length L 

of the spectrum, compute the value of ~ 3  for each segment and perform the average (~)) 

for a Poisson spectrum is L/15. The departure of the average value o f . ~  3(L) from 

the linear increase with L characterist ic  of the Poisson spectrum will give, in intermedia-  

te situations between Poisson and picket fence, information on the correla- 

tions between spacings and on the spectral rigidity or spectral stiffness. 

In Ref.[BG-75] a convenient way to compute }'y N (x) ," / 
\ ,  " 

r."- x 

I IIII II LIII II IIIsp ct.u  
0 (~'+L 

Fig.I.f0- The ~3 - s t a t i s t i c  of Dyson- 
Mehta 

/ '~3 (L) has been given, once the ordered seque- 

ce of points ~IIX.~)  . . . .  ) IM I~ in the interval 

[ ~ ,  O( +L] is known. Take as origin the center  of 

the interval, i.e., take ~" = X,I" - (~' 4" ~ )~ ~(L.~ 

can then be obtained from 

' Zx j 

(i-39) 

Another useful variable to be discussed is the "number statistic n(L)"(~): 

given an interval [ (~, O( +L] of length L, it counts the number of levels contained 

in the interval. It is a discrete variable which can take the values 0 (no level in the 

interval), l (one level in the interval), 2,3,... The average value of n(L) is L, if the 

mean spacing is unity. We will consider higher moments or cumulants of n(L) (variance 

~'Z(L), skewness ~ (L), excess ~ _  (L)). Qualitatively we expect that if the 

(~) when the spectrum is stationary, the average 4L~ 3(L) ~ does not depend on O( . 
(~) For the sake of simplicity and when no confusion is possible, we shall omit in the nota- 
tion the S-dependence 
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spectrum is s t i ff ,  the variance of n(L) will be small (in most cases the actual number 

of levels found in an interval of length L will differ only slightly from L) whereas 

for a non-rigid or compressible spectrum like Poisson the variance of n(L) will be 

comparat ively large. For a Poisson spectrum one has , ~  2(L) = L which tells nothing 

but the familiar result that  iI one takes an interval of length L one expects  to find 

L 4- ~]~ levels in the interval.  At the opposite ext reme,  for the picket fence,  one will 

have L 4- 0. Again we will be in teres ted  in what happens in in te rmedia te  situations. 
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For  some genera l  ideas and re f l ec t i ons  on m a t h e m a t i c a l  p r a c t i c e  we recommend  

re f . [DH-g0 ] ,  a beau t i f u l  book addressed to  the  Layman 

- On pr ime numbers : r e f . [Za -77 ] ,  addressed to  non m a t h e m a t i c i a n s  

- On the R iemann Ze ta  Func t ion  : ref . [Ed-7~]~ a c lassic 

- On p roper t ies  o f  v i b ra t i ng  membranes  : r e f s . [Ka -66 ,BH-76 ]  
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II - RANDOM MATRIX THEORIES 

The random mat r ix  theories we shall describe have their  origin in the fol lowing 

physical problem. In the low energy region of the exc i ta t ion spectrum of a nucleus, 

the level density ~ (E) is small and one expects to describe most of the states in a 

detai led way using nuclear models. However, due to the rapid increase of the level 

density with the exc i ta t ion energy E 

p ( E )  _ 

where c~ ~ and a are for a given nucleus constants, by the t ime one reaches the region, 

for instance, of the neutron threshold (E e.p 6 MeV), the number of levels is so high that  

one must give up a description of microscopic detail, a description d the individual levels. 

The aim of nuclear models at  this and higher exci ta t ion energies  is ra ther  to describe 

special s ta tes ,  like giant resonances,  analogue s ta tes ,  e t c . ,  which have a peculiar 

s t ructure .  But the detai led description of the sea of background s ta tes  around the 

the col lect ive ones must and should be abandoned. Twenty years ago, Dyson made an elo- 

quent resume of the situation EDy-62a] : 

"Recent  theore t ica l  analyses have had impressive success in interpret ing 

the detailed s t ructure  of the low-lying exci ted s ta tes  of complex nuclei. Still, there  

must be a point beyond which such analyses of individual levels cannot usefully go. 

For example,  observations of levels of heavy nuclei in the neut ron-capture  re~ion 

give precise information concerning a s t r e t ch  of levels from number N to number 

(N+n)~ where N is an integer of the order of 106 . It is improbable that  level assign- 

ments  based on shell s t ructure  and col lect ive or individual-particle quantum numbers 

can ever be pushed as far as the millionth level. It is there fore  reasonable to inquire 

whether  the highly exci ted s ta tes  may be understood from the diametr ical ly opposite 

point of view, assuming as working hypol~hesis tha t  all shell s t ruc ture  is washed out 

and that  no quantum numbers other  than spin and parity remain good. The results 

of such an inquiry will be a s ta t is t ical  theory of energy levels. The s ta t i s t ica l  theory 

will not predict  the detai led sequence of levels in any one nucleus, but it will describe 

the general appearance and the degree of irregulari ty of the level s t ruc ture  that  is 

expected  to occur in any nucleus which is too complicated to be understood in detail .  

'tin ordinary s ta t is t ica l  mechanics a comparable renunciation of exact  knowledge 

is made. By assuming all s ta tes  of a very large ensemble to be equally probable, one 

obtains useful information about the over-all  behaviour of a complex system when 

the observation of the s ta tes  in all its detail  is impossible. This type of s ta t i s t ica l  
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mechanics is clearly inadequate for the discussion of nuclear energy levels. We wish 

to make s t a t emen t s  about the fine detail  of the level s t ructure ,  and such s t a t emen t s  

cannot be made in te rms of an ensemble of s tates .  What is required is a new kind 

of s ta t is t ica l  mechanics~ in which we renounce exact  knowledge not of the s ta te  of 

a system but of the nature of the system itself.  We picture a complex nucleus as 

a "black box" in which a large number of part icles  are in teract ing according to unknown 

laws. The problem is then to define in a mathemat ical ly  precise way an ensemble 
"(-X- 

of systems in which all possible laws of interact ion are equally probable". ) 

At the end of these lectures  the reader will judge whether  this programme) 

ini t iated by Wigner) has been successfully accomplished. And it will appear that  partial 

just if icat ion of the theory may be found in concepts  e laborated only recently.  

The appropriate language to define an ensemble of systems is provided by 

random matrix theory.  One considers the Hamiltonian matrix H as an N X N s tochast ic  

m a t r i x  (its matrix e lements  are random variables) and the question is to specify t h e  

probability density ~(H)dH. In order to proceed one must answer the following.questions 

[Wi-67a)Dy-72]" i) what  are the admissible Hami l ton ians  and what  is the proper measure 

in the ensemble of these Hami l ton ians  ; i i )  given the ensemble of  Ham i l t on i ans )a re  

the proper t ies in which we are in teres ted common to  the vast m a j o r i t y  of  them.  Quest ion 

i) is answered on the basis of  general  s ymmet r y  pr inciples as we l l  as of  physical  plausibi-  

l i t y .  Quest ion i i) should be answered by the a f f i r m a t i v e  and one can then per fo rm 

ensemble averages which are equ iva len t  to  averages over  a gener ic  m a t r i x  of  the 

ensemble (ergodic proper ty) .  A proper ensemble of  random matr ices should also fu l f i l  

the requ i rement  tha t  the ma thema t i ca l  problems invo lved should be t rac tab le)  in order 

to avo id s i tuat ions in which one must exc lus ive ly  re ly  on results obta ined numer ica l l y  

(Monte Car lo) .  Of course, the f ina l  goal of  the theory  w i l l  be to successful ly pred ic t  

the empi r i ca l  observat ions.  
The systems we shall deal w i th  are charac ter ized by the i r  Hami l ton ians  which 

o 1 O j , ~ '  O 

O O j , ? r ,  

Fig.II.l  

can be represented by He rm i t i an  matr ices.  When 

there  are some exac t  quantum numbers corresponding 

to  exac t  in tegra ls  of  mot ion ,  l ike angular momentum 

and pa r i t y  (3 ~ )) and i f  the basis states are label led 

by these exac t  quantum numbers) the Hami l ton ian  

m a t r i x  w i l l  spl i t  in to  blocks (F ig. I f . l ) ,  and the ma t r i x  

e lements connect ing d i f f e ren t  blocks w i l l  vanish. 

We shall assume tha t  such a basis has a l ready been 

chosen and res t r i c t  our a t t en t i on  to  one of  the diagonal 

blocks, an N ~ N Hermitian matrix in which N is 

a large in teger ,  for the systems we want  to  describe 

conta in  many levels. The theore t i ca l  results are 

(*)The underlining is ours. 
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in most cases derived in the l imi t  of large N. If this asymptotic l imi t  is reached very 

fast (N ~ 1009 for instance), the dimensionality wi l l  introduce no uncertainty when 

comparing to data. 

II.l GAUSSIAN ENSEMBLES [Po-65a9Me-679Dy-62a,b] 

The underlying space-time symmetries obeyed by the system put important 

restrict ions on the admissible matr ix  ensembles. If the Hamiltonian is t ime-reversal 

invariant and invariant under rotations9 the Hamiltonian matrices can be chosen real 

symmetr ic.  If the Hamiltonian is not t ime-reversal invariant then~ irrespective of 

its behaviour under rotations, the Hamiltonian matrices are complex Hermit ian. Finally, 

i f  the system is t ime-reversal invariant but not invariant under rotations, and i f  i t  

has half-odd-integer tota l  angular momentum9 the matrices are "quaternion real". 

In this last case all energy levels are doubly degenerate (Kramer's degeneracy). 

Time Reversal Angular Rotatior Hamiltonian Canonical Number of 
Invariance Momentum Invariance Matrix Group ~ Independent 

Real param. 

I 
Integer 

1 
2 Odd-Integer Yes 

Real Symmetric Orthogonal 

Complex 
He rmit ian 

Yes 

]---Odd-Integer No Quaternion Real Symplectic 2 

No Unitary 

IN(N+I )  

4 N(2N-I) 

2 N 2 

Table II. 1 

Due to its importance in physical applications, we shall mainly concentrate 

in the case /~= I (see Table I I . l ) .  Notice that the real symmetry property is preserved 

under orthogonal transformations~ but not under a larger subgroup of the unitary transfor- 

mations. The case ~ = 4 is included in Table I I . l  for completeness, but no further 

mention wi l l  be made to i t .  

In order to introduce a proper measure dH in the space of matrices one can 

proceed as follows. A metr ic  is defined in the matr ix  space to which H belongs by 

expressing 

a/s 2 -_ T r  S $4 $ H 4 (ii-2) 

in terms of the independent variables X/~ of H~ as 
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/4 

d s  ~ (II-3) 

where M is the number o~ independent variables (matrix elements). The basic measure 

dH is then the measure induced by this metric,  namely 

/A~-I 

I:[ one considers (~b = 1) real symmetric  matrices H(=H*=H T) there are (1/2)N(N+I) 

independent variables and one has 

6152= ,d~ ( ~ H , , ) 2  -b 2. Z ( ~ , . j ) 2  (II-5) 

so t h a t  

n(N-,V4 
¢~ H -- ~. " /T  a H44 s r  d {-I1"j (II-6) 

F o r  the  case ( ~, =2) o l  H e r m i t i a n  m a t r i c e s  H(=H +) one has N 2 independent  var iab les .  

* H , T  H ,,T, Wr i t i ng  H = H' + i l l "  whe re  H'  = H' = H"  = H " *  = - one has 

so t h a t  

t 2 I 2. n 2 
(II-7) 

N ( ~ - ' ~ / ~  _ _  

H = 2  /I dH'. ;  TT • (1i-8) 

Any automorphism o£ the studied matrix space which leaves the metric (II-2) invariant 

will leave the associate measure dH invariant .  For instance, in the case o£ real symmetric 

matrices,  the invariance o£ (II-2) (1I-5) under a real orthogonal trans£ormation implies 

the invariance of (11-6). 

Let US now de£ine the Gaussian Orthogonal Ensemble (GOE) in the space 

0£ real symmetric matr ices by demanding two requirements • 
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I. The ensemble is invariant under every orthogonal transformation 

H ~ v,/r -" H ~ ; (II-9) 

where W is any real  or thogonal  matr ix ,  i.e., the  probabi l i ty  ~ (H)dH t h a t  a ma t r ix  

H will be in the  volume e lement  dH (Eq.(II-6)) is invar ian t  under or thogonal  t r ans for -  

mat ions  (*) 

2. The various e l ement s  Hi j ( i~  j) are  independent  random var iables  

We make the  f i rs t  r equ i rement  because we don ' t  want  t h a t  any given s t a t e  plays a 

par t icu lar  role : all basis s ta tes ,  and the re fo re  all states~ should behave  in the  same 

way. The second requ i rement  has no special  physical origin. It is put  for the  sake 

of s implic i ty  with the  hope of leading to a m a t hem a t i ca l l y  soluble problem. 

Similarly, the  Gaussian Uni tary  Ensemble (GUE) in the  space of Hermi t i an  

ma t r i ces  is defined by the  proper t ies  

1'. The ensemble  is invar ian t  under every uni tary  t r ans fo rma t ion  

H ~= U + N U  (,-tl) 
where'D" is any unitary matrix, i.e., the probability~O(H)dH that a matrix H wil l  be 

in the volume element dH (Eq.(II-8))is invariant under unitary transformations 

9 (H') H' = a H (II-12) 

2'. The various elements H!. (i ~ j), H~(i ~ j) are independent random variables, 
U 

i.e., ~ (H) is a product of N 2 functions. 

These two requirements (I. and 2. or I ' .  and 2') determine uniquely the ensembles. 

The function ~-a (H), which wi l l  also be invariant under the corresponding automorphism, 

can be wri t ten 

(II-13) 

(*) 
Notice tha t  from (II-lO) and from the  invar iance  of the  measure  dH, one has t h a t  

~'~(H) must  also be invar ian t  under or thogonal  t r ans fo rmat ions .  
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where K Nj ~ is a normalizat ion constant (N refers to the dimensionality of the matr ix  

and ~ = 1,2,4 labels the di f ferent cases, see Table I f . i ) .  In (II-13) 

T,- m =  F_ 2 7" (II-lq) 

and 

• ~.<.,'.¢,,, ., .<.," <~.<. 
( I I - l~ ')  

For the GOE one therefore has that each matr ix  element H.. is distributed normally q 
(or Gaussian distributed, from where the name Gaussian ensembles) wi th zero mean 

and variance 

H4j = O I" g;~ (II-15) 

We use the notation : for any quant i tyW,~ is its ensemble average. For GUE one 

also has normal distribution of the different variables with 

H<< = Hd, f = 0 I 4 (  "- "20"~ "(=~" (II-16) 

and 

H,,.::] H'j =0 ~ . . , q  = H <j 0 -2 -t'•j . (II-16') 

We have thus defined two ensembles -GOE and GUE- depending on two parameters:  

a t r iv ia l  scale factor IT 2 and the dimensionality N. Equation (II-13) clearly exhibits the 

stat ist ical  independence of the matr ix  elements. 

Balian [Ba-6g] has used a di f ferent and more general approach to derive 

(among others), the Gaussian Ensembles. He uses concepts borrowed from information 

theory, in part icular the amount of information ~ associated to the probabi l i ty ~°(H) 

(II-17) 
. J  

One looks for the function ~ (H) that  minimizes ~ , which is equivalent to assuming 

the least possible knowledge about ~ (H). Before minimizing one has to face the follo- 

wing problem : in the cases we are studying, the range of variation of the matrix 

(Hij,Hij)) elements Hij (or ' " is inf ini te. In order to confine the eigenvalues of H to a 

f in i te range, one has to impose a condition on its norm (Tr Hz) I/2. That is, one asks 
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that ~ ( H )  should minimize ~ subject to the constraints 

~ ~ ---- 0 4  (normalization) (II-lg) 

;~(~) Tr ( ~ " ) d + l  = c2 (II-18') 

This leads to the result  (II-13). When following this derivation of Gaussian Ensembles, 

the only input one needs is the invariant measure dH (plus the constraints) and the 

s ta t i s t ica l  independence of the matr ix  elements  follows as a result .  

Making use of the invariance propert ies,  the joint probabil i ty density of 

the eigenvaiues E i can be ex t rac ted  from (II-13) and one obtains : 

where 

1DN]$ CEil E2.I'"IEN3 -" % # - x ~ { - ~ l  I Z ~ ' l t  T[ I E 4 _ ~ ' ~ !  ~ )  (II-19) 

CN/~ is a normalization constant  determined by 

.,~ "PN~ ('------------------E~)Ez,~--.) ~m ) a'E,t a'Ez .. . .  alE" N = I I (II-19') 

/~ Np (Eu"Z/~-~ ' )  ~E4 .... ~{EN gives the probability, regardless of labelling 

( pNik is a symmetric function under the interchange ~ .  ~ ; g'd ), of having 

one eigenvalue at i=" I , another at ~'~ ..., another at E~I within each of the 

intervals [ ] ~  I ~ "  4- ~E~' ]. Equation (II-19) contains all the information concerning 

the eigenvalue distribution and the correlations among eigenvalues. By performing 

suitable integrations, one can in principle derive all the quantities related to eigenva- 

lues which are of interest. Notice the last factor on the r.h.s, of (II-19) : when Ey--~ '~ , 

~I~I~. (F'4)--- j  I E ' I ' ) " ' I ~ ' }  " " IEN~ becomes zero (there is level repulsion !). By integra- 

ting (II-19) over all the variables but one, one finds, in the l imit of large N for the three 

cases (~ = 1,2,4, the ensemble averaged eigenvalue density p (E) 

.~tt NO "2 

o . ~  IEl>/2~f"ff-~ 

(II-20) 

which, from (II-19'), is normalized to unity. If one takes 2(Ng. 2 )1/2 = 2(~r(H2)/N)l/2 as 

energy unit, ( /~ /2)  ~ is a semi-ci rc le  and (II-20) is the so called .Wigner semi-ci rc le  law 
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Ior the level density of a random matrix. Although it has been derived for large N, 

it is Iollowed rather closely even Ior low values ol N (N ~'~ 20). One should point out 

that  it can be obtained under more general conditions than the ones Iullil led by the 

Gaussian EnsembleS*. ) Let  us Iinally remark that  (II-20) does not reproduce the experimen- 

tal level density (II-1). Whether this is a serious weakness of the theory or not will 

be discussed later  in this Section. 

II.2 FLUCTUATION PROPERTIES 

Once the global behaviour of the eigenvalues has been established (the ensem- 

ble averaged eigenvalue density ~ (E)(**~we turn now our at tent ion to the level Iluc- 

tuations or departures of the spectrum from its average behaviour. For that  purpose 

one introduces the k-level correlat ion Iunctions "1~/i--I(F Ez ) . . .1~ ' /~)  delined as follows 

where PN is given by (II-19). It Iollows that ~4 (E , ' )  = N p  ( ¢ , ~  , where p ( f f , )  

is given by (II-20) and'R~ -- N.I_7> N with P~l given by (II-19). ~lt(F',~....,ff.k),~ 
d E  4 .... d t ~  is the probability ol Iinding one level, regardless of labelling, within 

each ol the intervals [ E j ' j  E~ ae d E ~  ]. Like in the previous Section, to get rid of 

(~"~ , one introduces a new set ol k-level  correlation Iunctions R/I ~X4 ... j X , )  and 

one considers the case ol interest  N ) ~  k ~/ 1 

(II-22) 

where X is obtained from the mapping E ~--~x defined by (see (I-28)) 

E 
~ X = ; ~ ,  ( E l ) d E  ! (II-22') 

The Iluctuation properties ol the levels are completely character ized by the set of 

Iunctions R/~ ( ~ j  . . . .  I ~'~ ) . From the definition (I1-22), one has R, (~ t )  = 1. 

This expresses the fact  that  the level density (or the average spacing) in the variable X 

(*) For real symmetr ic  matrices,  for instance, one only needs the s ta t is t ical  independence o1 
the matrix elements  plus (II-15,1Y) for almost all the matrix e lements .  

N F~(E) plays in the context  of matrix ensembles the role of ~ v  ~)  
(see (I-26,28) in the previous Section), 
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is unity everywhere. 

I t  is convenient to introduce the k-level cluster functions 

obtained from Rk by subtracting out the lower-order corretation terms 

)//~ which are 

ar j=~ 
Here G stands ~or any division of the indices [1,2,...,k] into subgroups [ ~r,/ ~ )  ...) (~, 

For instance 

_ _  / ~ = 4  n,='~ EC4) "j ,**a 
(II-2~) 

_ k = 2  m= ~ E 662) ' J  

__ k = ~  m :  'J 

~ : . 2 .  

m = 3  [ O) (2Y3~] =,,~ 

4- .2 1~, (k",) ~.,(~.z) '~,Cx~) • (II-2#") 

The inverse of (II-23) is 

(~Z(- )~ 'm " ~  ~/~3" C)¢(~ ~ ~ "~ -i'~ ~ ' ] ' )  . (II-25) ~ (~.,., ~) = 

,j~ 4 

Thus each set of functions R/~ and Yh is easily determined in terms of the other. 

The advantage of the cluster functions is that they have the property of vanishing 

when any one (or several) of the separations I;~4-X~ I becomes large. The function Yk 

describes the correlation properties of a single cluster of ~ levels, isolated from 

more trivial effects of lower-order correlations. 

It has been shown by Pandey [Pa-79] that the Gaussian Ensembles are statio- 

nary and ergodic in the limit of large N (this is obvious by construction for a Poisson 

ensemble). For instance, for one-point measures, the ensemble density /o (E~  is 
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equal to the spectral averaged density < ' ~ ) ~ E ) ~ $  . The mapping ~')--~X (Eq. 

(II-22')) (unfolding) is such that the ensemble-averaged local spacing I I ~ ( ' × )  is 

stationary (independent of X ) and equal to unity. And the k-level cluster functions 

YK ) functions of the variables X 0" ) are also stationary (they only depend on the 

relative coordinates X4j =,~4-X~ ). This means that the fluctuation properties 

of several segments of a spectrum located at different positions wi l l  be the same: 

from the point of view of fluctuations, the spectrum is translationally invariant. 

Furthermore) after unfolding, a spectral average is equal to an ensemble average. 

An alternative way to characterize fluctuations consists to deal with spacing 

distributions (*) and related quantities. In (II-21), instead of integrating from - O o  

to +oo without any restriction, one integrates some of the variables outside the interval 

[ ~ )  0¢ + L] whereas the others are integrated inside it. Assume that the unfolding 

(mapping F _ ":X ) has been performed. One defines ( N . ~  ~ 0) 

If the system is stationary) E (~  ;L) wi l l  be independent of o¢ . E(~, ;L) is the probabi= 

l i ty that in a sequence .~X~'~ of levels with mean spacing unity an interval of 

length L taken at random contains exactly ~ levels. One useful aspect of the functions 

l~ ( ~ ; L )  is that they are very directly connected to the spacing distributions 

[MdC-72] 

k 

In particular) for the nearest-neighbour spacing distribution :p (X)  

pC,O = pCo' x  : -  (oj ) . (II-27') 

The probability F( ~ ;L) that in a sequence ~)~" ] of levels with mean spacing unity) 

an interval [ )¢d I X~ + L] of length L which starts at a level Ya¢ contains exactly 

levels is also given in terms of the functions E(~ ;L) : 

(*)The distribution of nearest-neighbour spacings has been denoted, and wil l  continue 
to be when no confusion is possible, by ~ ( x ) ~  p(o~x') } "p( l~X) denotes the dis- 
tr ibution of spacings S --- Y44k+'l - X 4  between two levels X4 and X44k~,,j 
having l'~ levels in-between ( ~ = 0,1,2)...). 
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and, in particular 

(II-28) 

(II-28') 

From their meaning i t  is clear that 

(II-29) 

and i f  there are no degeneracies 

(II-30) 

When comparing a theoretical model with experiment, due to the l imited 

number of high quality data available, i t  is impossible to make a complete comparison 

between the set of k-level cluster functions Y/I (II-23) and the corresponding quantities 

extracted from experiment. It is convenient to work with integrated quantities like 

LI. I,L 
= . . .  

D 

(II-31 ) 

Consider, for instance, the random variable n(L) "number of levels contained in an 

interval of length L" or, in short, the number statistic (see end of previous Section). 

parameters (*) Its first two moments and shape are given by [Pa-78] 

(*)Let ~ be a random variable whose probabil ity density is f ( X  ). Its expectation 
value I ~  and central moments / ~ I  ( ' l i l ~2~  are defined by m~ -- : ~ ( ) ~  and 
M ill = ~¢6~( 'X-I~')  R ~l.X . The characteristic :[jJnction., (# (t) is the expectation va- 

lue of th~ random variables exp(it ~ ) : (~C~:),- [-F (~-) ~ x ,  ~(x . . Consider the 
function q,(~)=~ ~ J l ( ~ )  called the cumulanJ~ generating function, because its 

Mac Laurin expansion is given by ~ : )  = ~ ~ k / / ~ . l J  ( ~ : ) k  , where 
k=4 

~'k are the cumulants. They are related in a simple way to the centered moments 
M k of j~ : K1_-t~,) ~ =  MI~. (variance), K3= Mj I /Owl-- MI~ -3M~ ... 
The shape parameters ~'& (k ~ I) are defined by ~'~ = K~÷, / (K~G÷~/~) ! 

~ is called the excess and ~'2. the asymmetry of f(W). For a Gaussian distribu- 

tion f (~ )  = ( l l  {2TI M 2) exp .~ -- ( X -M,  )'I2M 2 ~ one has K4--~4 ,Ke--'~l~ 

and R w = O  for Y ~ 3  , i.e., ~l t  = O. 
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r.+(L) =-~(L)= 7" I~E-(t~;L) = ~1, (L) = L  (II-32) 
k=o 

Y_ (~- t )  E C~, L) =~, ( . )  - ~t~ (L) 
It= o 

(II-32') 

~i" (1") =~" (~-dE(k' I''I~.,. ' )jAzt~ Ivl ~I.) -. C~,(I.)-3~ a ('k) + ~j (l.~/~'~('l,.) (II-32") 

=(~,(L)-:t~, (L) . ~ r , ~ I , C ' ) - ~ + C L ) ) / M ] O .  ) . 

(II-32"') 

Thus, ~ 2  , ~4 and ~2 are given in terms of the functions E(I~ ;L) and all values 

of /~ appear. However, they are in fact (2)-, (2+3)- and (2+3+/$)- point measures 

respectively, as can be seen from the last equalities in (II-32). When dealing with 

the 2-1evel cluster function Y~(')C4,X~) one uses the notation Y~ (~¢) (*). Y~ is related 

to the spacing distributions by 

~1- ~'/Z (~¢') "" ~" ff (l~.iX ) (II-33) 

and ( I - Y . ~ ( x ) ) ~ K  gives the probability of observing a level in an infinitesimal 

interval dX at a distance X from a given level. An alternative ~orm of (II-32') 

is 

L 
S-~(L) = L - ~ (L-V') 7~ ( r ) ~ r  (II-34) 

Finally, consider the least-square statistic Z~3(L) introduced in the previous Section 

0-38). It can be shown that its ensemble average J ~  (L) can be obtained as follows 

[Pa-79] 

1,- /. 

( , .L , -0 c,-) (l,-,) 
"o 

Therefore, like )-2(L), i t  is also a 2-point measure (some particular integral of Y2. ) • 

(*)Take as coordinates the center of the interval ~'=0¢4-1-1¢Z~//~_ and the relative 
coordinate )¢= 3¢~-Xt . Then Y2 (Jc4)x() - ~ ( ~ / x )  but as Y:L does not 
depend on ~ , one simply writes ~ ( x )  
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Its var iance  

(II-36) 

is a (2+3+t¢)- point measure .  

Let  us now brief ly  describe the resul ts  obta ined from d i f fe ren t  theore t i ca l  

models. We shall mainly consider the  GOE and also, for the  sake of comparison and 

because it  cons t i tu tes  the  l imit ing case of maximum randomness  , the  Poisson ensemble  

(an ensemble  of sequences of points, not of e igenvalues  of matr ices) .  

Poisson Spectrum 

- Corre la t ion  coef f ic ien t  be tween  ad jacent  spacings (I-37) 

C--o 

- Funct ions  E)F and spacing dis t r ibut ions (II-26,27,28) 

EC/z)L). ~=(i~) L~ =pC~)L) = (L~lk!) e -L 
- k-level correlation functions (ll-22) 

- k - l eve l  c lus te r  func t ions  ( ] l -23) 

and the i r  i n tegra ls  (IT-31) 

th (')=" j ~ CL)=O ~2 

- Cumulants  t < ' y ( / _ )  

Kv (l.) = L 

In par t icu lar  (II-3~) 

Z 2 (L) = L 

- Shape pa rame te rs  ( l l -32)  

I 

which  means t h a t  f o r  la rge L 

- Average value of As(L) (II-35) [DM-63] 

E~ O.) = L I~s 

(II-37) 

~&--~ O , i.e., n(L) tends  to be normal ly  dis t r ibuted.  

(II-38) 
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and i ts  var iance  (11-36) [BHP-g3] 

Gaussian Or thogonal  Ensemble 

(II-39) 

The der ivat ion of the  d i f fe ren t  quant i t i es  of in te res t ,  mainly due to Mehta9 

Gaudin and Dyson, needs beaut i ful  classical  m a t h e m a t i c a l  techniques .  The principal 

ini t ial  diff icul ty  was encounte red  when t ry ing to perform integrals of the type (II-21)~ difficulty 

t ha t  was solved by the  method of in tegra t ion  over a l t e rna t e  var iables  invented  by 

Mehta  [Me-60]. One knows now, in closed ana ly t ica l  form, the  d i f fe ren t  c lus ter  funct ions.  

The funct ions re la ted  to the  spacing dis t r ibut ions are  only known (except  for the i r  

behaviour  for small  and large values of the  arguments)  in numerica l  form and are  

connec ted  to the  spheroidal funct ions.  For thei r  re lat ionship to the  k-level  cor re la t ion  

and c lus ter  funct ions,  see Ref.[MP-83].  

,(,) 

t \ W~.~- . . . .  

Fig.II.2 - The nea res t  neighbour-spacing 
dis t r ibut ion ( taken from [Ga-61]). 

close to 1. 

Let  us now give a br ief  account  of 

the  main results .  On Fig.II.2 is reproduced 

the  neares t -ne ighbour  spacing dis t r ibut ion 

~ (X~  (large N l imit)  and compared  to 

the  Wigner surmise ~ ( ~ )  (I-36) derived 

in the  previous Section.  They are  ex t r eme-  

ly close to each  other .  It is worth men- 

t ioning tha t  ~ / ( ~ )  is the  resul t  cor res -  

ponding to a GOE of N ~ N mat r ices  of 

dimension N=2. The slope at  the  origin 

of p ( ~ )  is "Fta/6 to be compared  

to "If /2 for : p~ / (~ )  . The two values 

d i f fer  by a fac to r  of W/3~ which is 

On Fig.II.3 are  reproduced the  funct ions  E(0;L) and F(0;L) (II-26,25'). Not ice  

1 2 L' 

Fig.II.3 - The funct ions E(0;L) and F(0;L) 
for GOE 

tha t  F ( 0 ; L ) - E ( 0 ; L ) >  0 for all L > 0. 

This means t ha t  the  probabil i ty  tha t  in an 

i n te rva l  of  length L which starts a t  a 

leve l  there is no leve l  is larger  than 

the p robab i l i t y  tha t  in an i n te rva l  of  the 

same length taken at  random there  

is no leve l .  This is ac tua l l y  what  leve l  

repulsion means. This less convent iona l  

de f in i t ion  of  leve l  repulsion is sensible 



not only for small  values of L, but for  any value of L. For a Poisson spectrum one has 

F(0;L)--E(0;L) : i t  is i r re levant  whether the in terva l  L starts or not at  a level.  

On Fig.II./¢ are reproduced the funct ions E ( ~  ;L) in the in terva l  0 ~ L ~" 5. 

They can be used, for  instance, to compute via (II-32) the values of ~ (L) and ~ (L) 

to be discussed la ter  (this is a more pract ica l  method than to use the general expres- 

sions of k- level  c luster functions). For adjacent spacings, the cor re la t ion coef f i c ien t  

w'~=o PoLssorL 

GOE 

12 

L 
o~ i i i i g - 

I \1 \1 \ /  \e,~k.~ .VVVV/ - 

Fig.II.4 - The functions E(~ ;L) (II-26) 
of a Poisson spectrum, a GOE and a 
picket fence (taken from [MdC-72]) 

y.., fx)  ~ Zs@)-E('×)/ 

(I-37) is C = -0.271, to be compared 

to 0 for  a Poisson spectrum. 

A closed expression has been given 

for  the k- level  c luster funct ions YI~ 

[Me-71,Dy-70] 

Y,6,') = 

i>/:L 

(II-40) 

where ~-  denotes a sum over the ( ~ - I ) !  

d is t inct  Pcyclic permutat ions of the indices 

(1,2 ..... li~ ), where X, j  =. X¢-  K j  , and where 

O" is a 2-dimensional mat r i x  given by 

(SC~ '  D-C(x" / 

~'(x) =. \'~"f&) $(X) ] (II-41) 

In (II-41) . ~ )  , ZD£'(x ) 
3"~;(K) are given by 

and 

(II-42) 

(II-42') 

K ! 

( %  x>o 
e(x-, = ~ o  x=o 

- -  ( _ 4 / =  x < 'o  

(II-02") 
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As a par t icu lar  case one has 

"z'~ Or) --. C ~cr~) ~ -  ~ o-') 3-~ O. ) 

with ¢'= X4-)¢~ . For small and large values of r one has 

r-~ o 

(II-43) 

(II-8#) 

~/2 0") ~ ~l/TtZr :t - ( 4 + ~ I r ~ 2 l X r ' ) / f ~ 4 r 4 + - - -  (II-45) 

The behaviour of Y~. (r') for small values of r (Y~. (0)=l) is responsible for the level 

repulsion, whereas the large-r behaviour (Y= ( r )  tends to zero as l/TtZr ,2 ) determi-  

nes the presence of long range order. On Fig.II.5 is displayed the function l-Y~ ( r )  in 

the range 0 ~ r x~ 2. 

1 -Yu(riPoisson ~ t0~---/--" . . . . . . .  " . . . . . . .  k . . . . . . .  

0"51//~ GO, i L i 

0 0.5 t0  1.5 r 

The value of ~v 2(L ) can be obtained by 

per forming the in tegra l  in (II-34) wi th Y2 

given by (II-tt3). One obtains [DM-63,BFF-81] 

= f Es:c n] 
-~ -  S ; ( ~ , O - ~ s ~ O  - c~'(anL) .2 

+ Tt~t L ~"! - (2./'/l:) S'f {[2./r L.~ ] ~ (ii_t~6) 

Fig.II.5 - Two-level cluster function for 

L~4 
: 2--- , ~ / . .  4 0 . 4 4  (II-46') 

7t~ 

In (II-86) ~f" is the Euler constant  and . ~  and C4 are the sine and cosine integrals. 

Note the effect  of the spectral rigidity : the value of ~2(L)  is only of the order 

of unity for L:100 and even for L Iv 106 the fluctuation is not more than a couple 

of levels. This should be compared to ~" 2(L) : L for the Poisson case. 

The ensemble average L~ 3 (L) of ~ $  (L) can be obtained by integrating 

numerically (II-35) [HPB-82]. For L ~¢~ 15 one may use the asymptotic (large L) result 

[DM-63] 

" - - A 3 ( L ~ ) t x ~  -~" L'~'~ C2a'tL) 4 " ~ ' - ~ - ~ -  S-" " [ 8  ~ . . i  --- R-- i '* ~ k - 0 .00~  (II-#7) 

with very good accuracy. Again, in comparison with the Poisson value L/15, the GOE 

spectrum is seen to exhibit long range order. 

The variance of ZX~ (L) has been obtained by Monte Carlo calculations 

[HPB-82]. For large L, it approaches the asymptotic (large L) value [DM-63] 
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[~ "1" ~ ]  -" O,~4& , (II-48) V~r ~s (t),~ ~ 44" 

a small  cons tan t  I By comparing to the  Poisson resul t  ( I I -39) ,once again i t  is seen 

t ha t  the  f luctuat ions  are small  for GOE. 

Although in what  follows we shall be in t e re s t ed  in the  GOE, le t  us br ief ly  

ment ion  t ha t  the  f luc tua t ion  proper t ies  of the  eigenvalues of Hermi t ian  ma t r i ces  

of the  Gaussian Uni tary  Ensemble (GUE, /$ = 2) are  also known (*). The level repulsion 

is s t ronger  for GUE than for GOE : in both cases the  spacing dis t r ibut ion ~ ( x  

vanishes a t  the  origin, but near  the  origin ~ C x ) ~  ( T ~ ' / ~ ) X  for GOE whereas  for GUE 

it is p ¢ ~ )  t v  ( ~ T a / 3 ) X  ~" . The expression of the  k-level  c lus ter  funct ions  reads 

as in (II-40) except  tha t  the  fac to r  ( l /2)Tr  should be dropped and 0"(X)  is given 

by .SC~¢) (II-42). The resul t ing two-level  c lus ter  funct ion Y~Ce)  conta ins  only 

the  f i rs t  t e rm of the  r.h.s, of (II-tt3). The var iance  ~'~" (L) of n(L) is, for L. ~ 1, 

half the  var iance  corresponding to the  GOE plus 1/8, i.e., a GUE spect rum is more 

rigid than a GOE spec t rum.  

We have ment ioned  in the previous Section the  con jec ture  tha t  the  f luc tua-  

t ions of the  imaginary par t  of the  zeros of the  Riemann Ze t a  funct ion are asymptot ica l ly  

(large imaginary part)  ident ical  to the  f luc tuat ions  of a GUE spec t rum.  Indeed, one 

can see tha t  the  spec t rum displayed in column (e) of Fig.I.8 shows a s t ronger  

level repulsion than the  spec t ra  of columns (c) and (d) which, as will be explained 

in the  res t  of this Section and in Section IV, are  well descr ibed by the  GOE. 

II.3 COMPARISON OF GOE PREDICTIONS WITH EXPERIMENT 

We shall concen t r a t e  on f luc tua t ion  proper t ies  of spec t ra  and shall leave 

comple te ly  untouched the  impor tan t  subject  of s t a t i s t i ca l  proper t ies  of e igenvec to rs  

and its consequences (s t rength  and width f luctuat ions)  [BFF-gI~ MW-79,We-g~]. In 

what  follows we summar ize  the  most  s ignif icant  comparisons per formed so far  be tween  

GOE predic t ions  and nuclear~ a tomic  and molecular  spec t ra .  

A large exper imenta l  e f fo r t  has been and is sti l l  cur ren t ly  devoted  to the  

measu remen t s  of positions and widths of resonances  of the  compound nucleus~ e f fo r t  

mo t iva t ed  to a large ex ten t  by technological  reasons. However,  only a very l imi ted 

par t  of the  exist ing data ,  on neutron cross sect ions  for ins tance ,  can be used for 

our purpose. What we want  here  is not a set  of resonance  energies  but r a the r  a 

~'*'And also of the eigenvalues of ma t r i ces  belonging to the  Symplect ic  Ensemble  
(see Table II.l~ ~ = 4). The s ta t i s t i ca l  proper t ies  of these  e igenvalues  are  ident ica l  
to those of an a l t e rna t e  series from the  GOE. 
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complete and pure sequence of resonance energies corresponding to states having 

the same quantum numbers 3 ~ (see Fig. l l . l ) )  in a given energy range. The very characte- 

r ist ic features of GOE fluctuations are rapidly lost i f  the sequence of levels is incom- 

plete (missing levels) and/or polluted by spurious levels due to erroneous spin=parity 

assignments. Obviously) in order to test long rangeorder effects) the pure series should 

contain many levels. 

In the atomic and molecular cases nothing comparable to the nuclear case 

has been achieved, although recent and promising progress is to be noticed. 

Nuclei 

The main source of experimental data is provided by neutron resonance 

spectroscopy [Ly-68]. When transmission measurements are performed by sending 

neutrons on a nuclear target A, the study of the cross section I~" T as a function of 

the neutron energy E n reveals the presence of sharp resonances) all over the periodic 

table) resonances that correspond to quasi-bound states of the compound nucleus 

(A+l) (see Fig.II.6 for an example). The mean spacings D and average widths /~ of the 

Fig.II.6 - Resonances for the reaction 
n+ 232Th (taken from the compilation 
Neutron cross sections (1964)) 

i f  the target has J~ = 0 + and E 
n 

resonances  near neut ron threshold (exci ta t ion 

energy of the  compound n u c l e u s ~  6-7 MeV) vary 

widely over the  full range of nuclei.  Very 

roughly D A/ 100 keV and r 1 ~ 10 keV for l ight  

nuclei) D ~ 1 keV and [= '~  100 eV for medium 

nuclei and D ~ 10 eV and ~ t v  1 eV for heavy 

nuclei.  Most of the resonances  observed in low- 

energy neut ron cross sect ions are exci ted by 

s-waves) because for all but s-wave neutrons 

the  pene t ra t ion  factor)  which depends on the cen-  

t r i fugal  barr ier  to be overcome by the  enter ing 

neutron) is very small  a t  low energies.  Thus) 

is very low) one populates only (1/2) + s ta tes  of 

the  compound nucleus) i.e.) one produces pure sequences.  The energy range tha t  can 

be explored is severely l imited for two reasons : i) by increasing En) the  p-wave cont r i -  

bution increases  and (1/2)- and (3/2)- s t a t e s  are  also populated) the  series becoming 

then polluted) ii) the  exper imenta l  resolut ion being proport ional  to E 3/2 i t  rapidly 
n ) 

becomes  coarser  than the  resonance spacing. In p rac t i ce  this method has been extensively 

used) mainly by the  group of Columbia Universi ty)  to produce presumably pure series 

for a large var ie ty  of nuclei,  each series  containing typically of the  order of 50-100 

levels [HWR-78]. 

High resolut ion proton sca t t e r ing  exper iments  on medium nuclei ( A ~  6~) performed 

in Duke Universi ty  provide addit ional  informat ion ,  In this  case one uses the  analogue 
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s t a t e  as an amplifying device : the  f ine s t r u c t u r e  s t a t e s  can be seen through the  

Coulomb force  mixing of the  analogue with the  background sea of T~ s ta tes .  The 

exper iments  are per formed with proton energies  of the  order of a few MeV and the  

energy resolut ion a t t a ined  is of the  order of 10 -4 [BLM-76]. 

We shall not  give a comple te  account  of comparisons be tween  GOE predic t ions  

and nuclear  data  (see [BFF-81,HPB-g2,BHP-83,BHP-g~/]) but  r a the r  present  a few typical  

examples .  The combined set  of nuclear  resonance-energy  da ta  ol d i f f e ren t  nuclei-  

in short ,  the  nuclear  data  ensemble  (NDE)- is t r e a t ed  as a sampling of e igenvalues  

of GOE matr ices .  The data  analyzed consist  of 1762 resonance  energies  corresponding 

to 36 sequences of 32 d i f fe ren t  nuclei.  In Fig.II.7 are shown the  spacing dis t r ibut ion 

/~(×')  and the  average  value of ~ t a s  a funct ion of L in the  range L ~ 2 5 .  In Fig.II.g 

are shown the  var iance  ~ 2 ,  a symmet ry  ~'1 and excess  ~'2 of the  dis t r ibut ion 

1 2 

F 
n i n I 5 10 15 20 L ~5 

~'2(L) [ ,LPo l s son  . ~  

~" 1 2 a 4 L 1 

(L) 

2£ 

I 
2.0 

~(L) 

1.0 

-1.0 

•/Polsson ,NDE (experiment) 

t i 
\ j P o i  . . . .  

N • NDE (exper'iment) 

I 2 s . . . . . .  z---r- 
. . . .  

Fig.II.7 (a) Neares t -ne ighbour  spacing his to-  
gram for NDE (exper iment)  ; (b) ~ a  as a 
funct ion of L ; dashed lines for GOL, to take  
into account  f ini te  sample size e f fec t s ,  
correspond to one s tandard  deviat ion from 
the  average  ( taken from [HPB-82,BHP-83]) 

Fig.II.8 - (a) ~ - 2  (b) L t~ ' l ( 'aken 
(c) ~ o  as functions of 
from ~[BHP-84]) 

of the number s ta t is t ic  n(L) in the range L ~ 5. The procedure for  calculat ions is 

to evaluate for  each of the 36 sequences the spectra l -averaged measure, say £ / ~ 3 ( L ) ~ $  

for  ~3 (L ) ,  and then take their  average, weighted according to the size of each sequence. 
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Remember  t ha t  ~ 2 and ~ 3  are derived from the  2-level c lus ter  fixation (see(II-34,35)), 

whereas  ~'1(~'2 ) derives from (2÷3)-((2+3+4)-) level c lus ter  funct ions respect ive ly  (see(II-32',32~')). 

However,  the  res t r i c t ions  imposed by ~ ( L )  on h igher-order  funct ions ~¢~(L) are  not  

well understood and the re fo re  it is not easy to know how much informat ion not  conta ined 

a l ready in ~ 2  is conta ined  in ~'1 and ~ 2 "  

Inspection of Figs.II.7 and II.g i l lus t ra tes  the  f ac t  t ha t  all the  f luc tua t ion-  

measures  considered so far ,  which include a thorough study of 2-point  measures  and 

to some ex ten t  more than 2-point measures  as well, are  fully cons is ten t  with the  

GOE predict ions.  

Atoms and Molecules 

There exists  a pioneering work by Rosenzweig and Por te r  [RP-60] in which 

a tomic  spec t ra  were studied.  They demons t r a t ed  t ha t  levels having the  same quantum 

numbers  do show level repulsion and t h a t  the  spacing dis t r ibut ion ~ X J  follows 

closely Wigner 's predict ion.  It is only recen t ly  t ha t  Camarda  and Georgopulos [CG-83] 

have t es ted  more sys temat ica l ly  energy- leve l - f luc tua t ion  predict ions of GOE with 

a tomic  spect ra .  These authors  have analyzed energy levels of neut ra l  and ionized 

a toms  in the r a r e - e a r t h  region. In con t ras t  with the  nuclear  levels studied so far,  

which correspond to unbound or quasi-bound s t a t e s  lying above par t ic le  threshold,  

the  a tomic  s t a t e s  are bound and can decay only by photon emission. Eight d i f fe rent  

s t r e t ches  of spec t ra  containing a l toge the r  269 a tomic  energy levels have been studied. 

The resul ts  are reproduced in Table II.2 and Fig.II.9. One can see t ha t  the  ag reemen t  

~ L) 

Nd Nd Nd + Nd + Nd + Sm + Sm + Tb 

37 4- 6- 712- 13/2- 15/2- 3/2- 9•2- 9/2- 

L 35 38 34 28 32 26 31 45 

, !  exp. 

GOE 

0,39 0,4.5 0,30 0,37 0,39 0,37 0,40 0,31 

0,35 0,36 0,35 0,33 0,34 0,32 0,34 0,38 

+0,11 -+0,11 -+0,11 +0,11 +0 , I1  +0,11 +0,11 +0,11 

Table II.2 - Values of ~ $  for a tomic  energy levels.  Each series is ident i f ied  by 
the  angular momentum and par i ty  (3 ~ ). For GOE the  value of ~ $  is followed 
by the  square root of Var A~I (II-qS) ( taken from [CG-83]). 

be tween  GOE predic t ions  and exper iment  is good. 

Finally le t  us ment ion  very r ecen t  studies on molecular  spec t ra .  Hailer 

e t  al. [HKC-83] have studied the  s t a t i s t i ca l  behaviour  of molecular  vibronic energy 
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Fig.II.9- Histogram of nearest- 
neighbour spacing distr ibution 
I>(X ~) of eight sets of atomic 

energy levels containing 261 spa- 
cings (taken from [CG-83]). 

40 -  

20" 

Fig.II.10 - Nearest-neighbour spacing 
histogram for energy levels of NO 2 
(taken from [HKC-g3]) 

levels. They have analyzed the interval 14900- 

19500 cm - I  above the ground state of the spectrum 

of the small polyatomic molecule NO 2. On Fig.II.10 

is reproduced the spacing distr ibution ~ ( ~ )  

corresponding to the 140 measured levels in this 

energy range. It  is qual i tat ively in agreement 

with the Wigner prediction. However, whereas 

140 levels are found, calculations predict 201 

levels of a given vibronic symmetry. In ref. 

[HKC-g3] i t  is suggested that there are def i-  

ciencies in the data and that the sub-interval 
- I  16600-17300 cm , which contains 46 levels, 

is most reliable. For this interval the value of 

~ 3  from the measured computed spectrum 

is 0.38 to be compared with the GOE predic- 

t ion (II-47,48) 0.38 -+ 0 . l l  and the value 

of the correlat ion coeff ic ient ( I -37)C(exp) is  

-0.32 to be compared to the GOE prediction 

-0.27 + 0.15. 

We mention also the work of Mukamel 

et al. [MSP-84] who have studied level f luctua- 

tions from recent experimental data on highly 

vibrationaIly excited acetylene. The number 

of lines in the experiment is 65. However, 

due to insuff icient spectral resolution, among 

other effects, one cannot at tempt a sharp 

comparison between GOE fluctuations and 

data. The theory can, wi th the present quali ty 

of the data, be used to est imate the fract ion 

of missing levels in the experiment .  But one can expect  that  this type of analysis 

will become more useful when the spectral  resolution will improve. 

II.4 DISCUSSION 

The conclusion that can be drawn from the previous subsection is that, when 

systematic and accurate data are available allowing a stringent comparison wi th 

the theory, the GOE describes level f luctuations remarkably well  (nuclei). For atoms 

the agreement is significant and for molecules the comparison is st i l l  at a pr imi t ive 

stage. On the other hand, we know that GOE gives for the level density a semi-circle 
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(II-20) in contrast wi th the observed increase of the level density wi th excitat ion 

energy (lI-1). In other words, local predictions (fluctuations) are in agreement with 

observation whereas global ones (average or smooth behaviour, see eq.(I-26)) are not. 

Is this a serious drawback of the theory ? The fol lowing statement provides a guideline • 

"In general, events distinguished by a great disparity in size have l i t t le  influence 

on one another, they do not communicate and so phenomena associated with each 

scale can be treated independently" [Wi-79]. In our context,  we have a density/f luctua- 

tion separation 0-26) ([BFF-8|)FK-82)Dy-72]) and GOE should be considered as a 

model for f luctuations (*). Remember that all quantities (Eqs.(II-22)26)) used to describe 

fluctuations have been rescaled through the mapping E ~'~-X (Eq.(H-22')), that we 

have been considering the behaviour of ~ points in the case N ~ / ~  ~ / /  , and that 

GOE-fluctuations have been proved to be stationary (translational invariant). We 

should also mention that methods have been proposed to construct ensembles of matrices 

wi th a prescribed eigenvalue density ~ (E) and the expectation is that local properties 

are independent of p (E) [Ba-68,Dy-72]. 

The question now is : are GOE-fluctuations specific o£ GOE or, on the contrary, 

are they really shared by other random matr ix  ensembles ? To answer this question, 

let  us br ief ly describe other ensembles of random matrices and f i rst  the Circular 

Ensembles introduced by Dyson [Dy-62a]. Dyson wanted to avoid the fol lowing unsatis- 

factory feature of the Gaussian Ensembles (see (II-13)) • a uniform probabi l i ty distr ibu- 

tion on an inf in i te range being impossible to define, some arbi t rary restr ict ion of 

the magnitudes of the matr ix  elements is inevitable (If-18'). But then all interactions 

in GOE are not equally probable. By a small formal change, he introduced the fol lowing 

idea. Instead of thinking in terms of the eigenvalues E~' of the Hamiltonian matr ix  H) 

think in terms of eigenvalues e ~ "  (0 ~ ~4 ~ ~ ) of a unitary matr ix  S con- 

nected to H~ say, by 

The in te res t  of this  approach is t ha t  i t  leads to ensembles  of uni tary mat r ices  

for which the  probabi l i ty  is uniform, For instance,  using Balian 's  informat ion  theory  

approach,  one proceeds as follows : Minimize (II-17) in the  space of symmet r i c  uni tary  

matrices with the constraint (I I-Ig). One then obtains that ~'~(~') is a constant. 

And instead of (II-19) one has (**) 

The ensemble averaged density of points ~ on the unit circle resulting from (II-50) is 
constant. 

(*)In a di f ferent context, is Eq.(I-13) not contradict ing the density/f luctuation separation ? 
In fact one needs of the order of X terms in (I-13) to "see" primes which are of 
the order of ~( . 

(**)For ~ = 2, the ensemble is defined in the space of unitary matrices ; for ~ =4) 
in the space of selfdual unitary quaternion matrices. 
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The f luctuation properties of the Circular Ensembles are stationary by construction 

and i t  has been shown that, as expected, in the l im i t  of large N they give the same 

f luctuation properties as the corresponding Gaussian Ensembles (orthogonal, unitary 

and symplectic) [Dy-70,Me-71]. 

In the preceding, Eq.(II-49) was suggested as one possible device to define 

a relation between S and H. In fact the precise connection between S and H needs 

not be specified. Assume only that S is a function of H so that the angles O j are 

functions of E~ . Over a small range of angles, the relation between 0~ and 

I ~  wi l l  be approximately linear and the basic stat ist ical hypothesis is that the 

f luctuation properties of /~ consecutive levels of H wi l l  be the same as the ones 

of /~ consecutive angles on the unit circle. 

There are other matr ix  ensembles having GOE-fluctuations. For instance 

the "random-sign ensemble", which is an ensemble of real symmetr ic matrices wi th 

matr ix  elements generated by coin tossing (H4]" = 4- l), whose eigenvalue distr ibution 

is the semi-circle level density. Or Dyson's ensembles ~ [Dy-71~ BFF-81] 

T 
j (II-SI) 

where the A~. are independent real asymmetric random matrices whose matr ix  elements 

are normally and independently distributed wi th zero mean and the same variance. 

A part icular case of H is an ensemble proposed by Wigner [Wi-72] 

t"] --_ ~ M÷M (II-52) ) 

where I~I is an asymmetric complex matrix~ the real and imaginary parts of the 

matr ix  elements being sampled normally and independently wi th zero mean and the 

same variance. 

Shell-model nuclear spectra, calculated by diagonalizing a realist ic (non- 

random) Hamiltonian in some f ini te subspace generated by putt ing % nucleons in 

single-particle orbits, do also show GOE fluctuations [BFF-8[].  In this case the 

average eigenvalue density is not a semi-circle but a Gaussian distribution. Af ter  

adequately unfolding the spectrum, one can study the fluctuations and two examples 

of spacing distributions are given on F ig . I I . l l .  In one case (F ig . l l . l la )  only levels 

the same angular momentum and pari ty have been included and ~ C ~  is having 

in agreement wi th the GOE-spacing law. When all levels (having di f ferent angular momen- 

ta) are included (Fig.II. l lb)~ the spacing correlations are destroyed and the spacing 

distr ibution follows a Poisson law as expected(*)). Does this mean that the GOE correct ly  

(*)Consider the fol lowing example : on the interval [0, I ]  take ~I. points X¢(~'r.~s... ~ ,~) 
at random uniformely distributed and construct an inf ini te spectrum by attaching to each 
point X~ a picket fence of unit spacing. The resulting spectrum, in the l im i t  of large ~I. , 
is a Poisson spectrum. So, by superposing most ordered spectra, one ends up wi th a Poisson 
spectrum. 
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models a shell model mat r ix  ? This is cer ta in ly  not  t rue  for in GOE~ except  for the  

symmet r i c  na ture  ol the  mat r ices ,  all the  mat r ix  e lements  are independent  random 

var iables ,  whereas  in the  shell model, the  Hamil tonian being a 2-body operator ,  the  

Fig . I I . l l  - Spacing his togram from two shell model 
spec t ra  ca lcu la ted  with rea l i s t ic  in te rac t ions  Ior 
2Z~Mg [5Z-72] and 63Cu [Wo-70] ; (a) all s t a t e s  in- 
cluded have the  same quantum numbers  3 ~r = 2 +  
(b) all s t a t e s  from a given spect rum span have 
been included ; i t  contains  s t a t e s  with 3 ~ = 1/2-, 
3/2- , . . . ,19/2- .  (Taken from reI.[BFF-81]). 

[FW-70,BF-71] and general ized by French and col laborators  ("Embedded Gaussian 

Orthogonal  Ensemble" (EGOE) [MF-75,BFF-S1]). Consider a ~ -body Hamil tonian ac t ing 

in an , ~  -par t ic le  space ( ~ V  ), the  ~ ident ical  Iermions being dis t r ibuted over 

J '~  d is t inct  s ingle-par t ic le  s t a t e s  ( ~ 4~ ). The ensemble  of ~ -body Hamil tonians 

is defined by 

mat r ix  e l emen t s  of H be tween  

"1~ -pa r t i c l e - s t a t e s  ( ~ 2) 

a re  l i n e a r  c o m b i n a t i o n s  of 

2 - b o d y  m a t r i x  e l e m e n t s .  

To Iollow closely the  shell 

model, the  microscopic model 

"par excel lence"  in nuclear  phy- 

sics, and to render mat r ix  ensem-  

bles physically more plausible, 

a s t a t i s t i ca l  extension of the  

shell model has been proposed : 

the  "Two-Body Random Ensemble" 

(TBRE) in t roduced in refs. 

+ 0>53) H = Z. ~ .~  A~ (v) Ap (v) j 
,¢gp , 

+ ~y~ is the operator  c rea t ing  ~' par t ic les  in s ingle-par t ic le  s t a tes  labelled where A 

by o(4s ~ 1 . . .  I0¢'~ 

A~ (y) C+ a ¢  . .  C + (II-54) 
= d~ , ( ,"  a¢'~ I 

and Ap (-~) is the  Hermi t ian  conjugate  of A ~ ( y )  . The }~ -body mat r ix  e lements  

W ~ / ~  are taken as s ta t i s t i ca l ly  independent  random variables  normally dis t r ibuted 

with zero mean and var iances  

 .eo  II,,, e uce  o O w   amat     meos oo  U )  
> y , the dimensionality of the ~ particle space is ~ /  and the matrix elements 

~ I H I ~vt-~r> are l inear  combinat ions  of the  V -body mat r ix  e l ement s  ~¢[~/b 
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where 

4",,  : 1H I -,, > = F ' c .  ' (ii-56) 

and ~ ,  ~ t  label the different  ~ -par t ic le  states.  The "realist ic" case corresponds 

to . O _ ~ ' ~ b ~  y ~ 2 . It has been shown, using techniques which do not require the 

derivation of the joint probability density of eigenvalues P(E,~ j . - .  ) Eta)  , which is not 

known for EGOE, that ,  in the limit of a "dilute system" - ~ - ~  v l ~  Y ~ 4 , the ei-  

genvalue density p ( E  ~) is Gaussian [MF-75,Ge-72], For ~ ' ~  V= "7 the fluctuations 

are of Poisson-type but for V ~ 2 .  the methods used to derive F ( ~ ' )  fail in deriving 

fluctuation properties. However, there is strong numerical evidence coming from 

Monte-Carlo calculations that  the fluctuation properties for V ~ ~- are identical 
(* 

to GOE-fluctuations ), Very recently Verbaarschot and Zirnbauer) using the method 

of replicated variables combined with f ie ld- theoret ic  tools, have obtained the first 

analytical  evidence that EGOE spectra show long-range order [VZ-Stt], 

One can get some insight on the general i ty of GOE-fluctuations by the 

following argument, Consider a (non-random) Hamiitonian matrix H ° corresponding) 

for instanc% to a realistic nuclear Hamiltonian containing all sorts of non-stat is t ical  

features (large pairing and quadrupole components, etc.) and perturb it with GOE 

matr ices  

14 = /4o + ~ Vc~o e (II-~8) 

I t  has been shown [Pa -81a ] tha t  there is a rapid t rans i t ion  f rom H - f l u c t u a t i o n s  to  
o 

GOE- f luc tua t ions  when ~ increases. In te rmed ia te  f l uc tua t ion  pat terns  are to  be 

expected only  when the random-ma t r i x  e lements  are of the order of the loca l  average 

spacing of  the given (non-random) ma t r i x  H ° (see also [ZVW-83]). 

In summary) we have seen on the one hand tha t  the spectra of very  d i f f e ren t  

systems (nuc le i - l igh t  or heavy-)  some atoms, maybe some molecules),  when proper ly  

scaled) show ident ica l  f l uc tua t ion  pat terns.  The scale (average spacing) covers f ive  

or six orders of  magni tud% when going f rom a medium nucleus to  a comp lex  a tom 

or molecule.  Not ice  that  one is consider ing ex t r eme l y  d i f f e ren t  systems) some of 

them governed by strong short  range in te rac t ions  and others by the Cou lomb long 

range force.  On the other  hand, these charac te r i s t i c  f l uc tua t ion  patterns~ a l though 

(*) I f  one deals w i th  bosons instead of  w i th  fermions,  there  is numer ica l  ev idence 
tha t  one also has GOE- f luc tuat ions  [Ma-83]  
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not specif ic of, are wel l  reproduced-by GOE. Presumably they are shared by broad 

classes of models. Thus) a simple picture emerges : there exists a universal i ty of 

level f luctuat ion laws, as well  from the exper imental  than from the theoret ica l  point 

of v iew. Not ice also that  GOE is in some respects a disappointing model : although 

i t  predicts beaut i fu l ly  the observed level f luctuations, i t  does not provide a hint 

on the origin of its success. I t  rather looks l ike a mathemat ica l  device that  mimics 

per fect ly  the observed level f luctuations. Wigner says : "The assumption is that the 

Hamil tonian which governs the behaviour of a compl icated system is a random symmetr ic  

matr ix ,  wi th no part icular  properties except for its symmetr ic  nature" [Wi-67b]. But 

what is, then, a compl icated system ? And are the laws that  we have been discussing 

of purely quantal nature or do they have a classical counterpart  ? With the hope 

of f inding some clues on the origin of the success of the theory as wel l  as on its 

domain of va l i d i t y ,  le t  us do in the next section a long excursion in the '  realm of 

classical Hamil tonian systems, the emphasis being put on the concepts of simple 

and complicated) or of regular and i r regular systems. 

BIBLIOGRAPHY 

- A good general review can be found in [Wi-67a] 

- In [Po-65] are reprinted al l  the impor tant  papers on random matr ix  theory published 

before 1965. The volume is preceded by a good and rather detai led introduct ion 

by C.E. Porter 

- [Me-67] is the classical tex t  on the subject. The emphasis is on mathemat ica l  techni- 

ques and der ivat ion of exact  results 

- [BFF-81 ]  is a recent and complete review art ic le,  containing mainly developments 

since [Po-65] and [Me-67], wi th emphasis on both theory and applications 

- A  review ar t ic le (Bohigas, Haq and Pandey) on the comparison wi th experiment 

of random mat r i x  predictions for level f luctuat ions is in preparation. 
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III - AN INTRODUCTION TO CLASSICAL CHAOTIC MOTION 

The aim of this section is to introduce the concept o£ chaos in classical mecha- 

nics of conservat ive systems. 

Giving a rigorous presentation of the mater ia l  would require a highly technical 

language, and elaborate mathemat ica l  tools. Our purpose is rather to present an elemen- 

tary  in tu i t i ve  approach to the subject, in order to get a physical insight into the main 

ideas. The mater ia l  of this section is far f rom being exhaustive9 and many fundamental  

questions have been omi t ted  (such as perturbat ion theory,  bi furcat ing orbits, mechanism 

of destruct ion of tor i ,  dissipative systems, etc.). 

In what fol lows, we l im i t  ourselves to the study of classical Hami l tonian systems 

which are conservat ive and t ime-reversal  invar iant  ; moreover, we consider only in i t ia l  

conditions for which the motion can take place only in a bounded region of the phase 

space. 

III.1 FROM REGULAR TO CHAOTIC MOTION 

Al l  conservat ive Hamil tonian systems with N degrees of freedom have in common 

three essential properties : 

i) for a given set of in i t ia l  conditions, tl~e dimensional i ty  of the accessible surface 

in phase space is less or equal to (2N-I)  ; since the system is conservative, the energy 

is constant along this "energy surface". 

i i) From Liouvi l le 's  theorem, we know that  the volume element in phase space is 

conserved. In other words, the Hamil tonian f low, which preserves the measure in phase 

space, is incompressible. 

i i i )  Trajector ies in phase space cannot cross. 

Apart  from these features which are shared by al l  systems, the mot ion in phase 

space can exhibi t  a great var ie ty  of behaviours. For instance, one may ask how does 

a given volume element evolve with t ime : does i t  tend to cover the whole energy 

surfaceS E as t ime goes to in f in i ty  or does i t  remain in a restr icted part of S E ? Does i t  

conserve approx imate ly  its in i t ia l  shape, or does i t  display more or less dramat ic deforma- 

tions wi th t ime ? According to the answers to such questions, one can define a hierarchy 

of regular i ty  for dynamical  systems. As we shall see now, the most regular systems, 

lying at the bottom of this classif ication, can be used as clocks, whereas, at the opposite 

side~ the most chaot ic systems (*) can be used as random number generators. 

(*)We speak here of dynamical systems in the enlarged sense of area-preserving mappings 

(see Sect.l l l .2). 
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Rel~ular systems 

Roughly speaking, a regular  dynamica l  system is such that  i t  can be in tegra ted  

by quadratures.  Le t  us be more precise, and def ine what  are the condi t ions and the 

consequences of "ex t reme regu la r i t y " .  For a more r igorous account of  the subject, 

see Refs. [Ar-76,  AA-67] .  

We consider a t ime- independent  Hami l ton ian  system w i th  N degrees of  f reedom • 

H = H C"1 ,£ )  

The equations of motion~ wri t ten in Hamiltonian form~ are : 

_ x-Tq H 

Definition 

A t ime-independent  Hamiltonian system with N degrees of freedom is said to be 

"integrable" if there exis t  N constants  of motion F.if,F) (one of them being H itself)  

which are analytic functions of ~ and ~ , single-valued, functionally independent,  and 

in invo lu t ion  (~or the Poisson bracket )  : ~ & ) e M ]  = 0 ~ I I / 1 ~ = ~  I ... .  I N  . 

Theorem (Liouville-Arnold) 

If a system is integrable,  then 

i) there  exist a canonical t ransformat ion to act ion-angle variables : 

( ¢ ,  .... .,q~ ; ~ 4 ,  . . . .  , ~ . . )  ~ (e~ , . . - , e ,  ; z , ,  .... ) z ~ ' )  

such that  the Hamiltonian, expressed in the new variables, depends only on the actions : 

~" . .  z , . )  = ,-"~ ( ~ ) .  

The ac t ion  var iables are constants of mot ion  • 

- -  ) 
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and the evo lu t ion  of  the angle var iab les is g iven by : 

al 
- -  ( I l l - l )  

ii) For each set of initial conditions, the accessible surface in phase space is a compact 

manifold (we consider only bounded trajectories) having the topology of an N-dimensional 

torus T N (~). These tori are called "invariant tori", because a trajectory starting on one 

of them remains on i t  for  ever.  

Accord ing to  this theorem,  the mot ion  of  an in tegrab le  system is res t r i c ted  

to  an N-d imensional  surface, instead of  a (2N- l ) -d imens iona l  energy surface for  a gener ic  

system having no o ther  constant  o f  mot ion  than the energy.  Le t  us no t ice  tha t  a l l  

conserva t ive  systems w i th  one degree of  f reedom are in tegrab le  (provided they sat is fy  

the smoothness condi t ions on H) : the accessible phase space is of  d imension one ( to r i  

are reduced to circles). For in tegrab le  systems w i th  two degrees of  f reedom,  the ex is tence 

of a second in tegra l  o f  mot ion  reduces the dimension of  accessible phase space f rom 

three to  two.  

Each value of  I def ines the torus T N, whereas the vec to r  0 ( t )  gives the posi t ion 

of the t r a j ec to r y  on the torus at  each t ime  t .  I f  the f requencies (O~" are mu tua l l y  commen-  

surable i .e. i f  there ex is t  (N- I )  independent re la t ions 

~~;" .... "~ 

Fig . I I I . l  - An invar ian t  torus of  an in tegrab le  
system w i th  two  degrees of  f reedom ; the ac- 
t ions 14 and I z are the radi i  of  the two  c i r -  
cles def in ing the torus T 2) and the angles e 4 
and 0z def ine a point  on T 2. 

. ~ - -  0 ~ (III-2) 

where the v e c t o r l ~ h a s  in teger  (po- 

s i t i ve  or negat ive)  components and 

I ~ 0  9 then the t r a j e c t o r y  is closed 

on the torus ; in this case) the mot ion  

in phase space takes place on a one- 

d imensional  region) and the mot ion  

is per iodic.  Systems having this pro-  

pe r ty  exh ib i t  t he re fo re  the strongest 

degree of  regu la r i t y ,  as an " ideal  

c lock"  would do. 

(*) An N-d imensional  torus T N is a d i rec t  product  of n c i rc les.  A point  on T N can be 
def ined by N angular coord inates (~4 ) . . . ,  0N) , [  see F ig . I l l . l ] .  The torus is o f ten  represen- 
ted as an N-d imensional  hypercube def ined b Y i (  04 ..... ~H) :  O ~  ~d  ~ ~,' lr ] . 
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At the opposite, if no relation of the type (III-2) holds, the orbit  never closes, but densely 

covers the torus a f te r  infinite t ime : such a spiralling orbit is "ergodic" on the torus 
(~*) 

(see footnote  p/~7) -called "irrational", or "non-resonant" torus-,  and exhibits a strong regu- 

larity. In termedia te  cases where p independent relations ( O ~  p~ 'N-I )  like (III=2) hold can 

also occur ; orbits then lie on (N-p)-dimensional manifolds of T N. 

It should be noticed that  in the generic integrable case (see below the harmonic 

oscil lator and the Kepler motion as exceptions),  the frequencies depend on the actions 

(which define the invariant tori)) i.e. on the set  of initial conditions fixing the values of 

the N f irs t  integrals of the motion. Consequently for a generic integrable system, there  

exist  simultaneously -corresponding to d i f ferent  sets  of initial conditions- non-resonant  

tori,  covered by ergodic t r a j ec to r i e s  and resonant tori ; measure theore t ic  arguments  

show tha t  for such systems,  the irrational tori form a set  which is almost everywhere 

dense [Ar-76]. In other  words, almost all the tori of a generic integrable system are irra- 

t ional , in the same way as almost all real numbers are irrational.  

Examples of regular systems 

i) for N=I) we already saw that  all conservat ive systems are regular ( therefore  periodic) 

ii) for N=3, all systems submit ted to a central  field force V(r) are regular -~2  and 

L z (orbital moment) are conserved, toge ther  with H. 

Two particular systems of thLs kind are of special in teres t  : 

- for the Kepler motion (V(r) = - ~ "  ) : 

The Hami l ton ian  is wel l  known to  wr i t e ,  in terms of the ac t i on  var iab le s  

(each integral is over the period corresponding to the q~" ) as : 

(:tr 

- for the isotropic harmonic oscil lator (V(r) = ~ _ .  r~ ), the Hamiltonian takes the form 

In both cases, for all values of the actions, i.e. for all initial conditions, the three  frequen- 

cies coincide; the orbits are closed, with period ~ - - ~ -  . This means tha t  for 

these two particular systems,  all tori are rational (no orbit covering densely a torus). 

To understand why such a situation is an exception,  one has to remember  Bertrand's  

theorem [Be-1873] : Consider the motion of a point-mass under the action of a spherically 
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symmetric potential V(r), supposed td be a C 3 function of IP . Then a necessary and suff i- 

cient condition for all the bounded trajectories to be closed is that V(r) behaves like 
A I/" 2 or (-- -~- ). As is well known, the origin of this part icular behaviour of spherical 

harmonic osci l lator and Kepler motion is the existence of a further f i rst  integral ("dynami- 

cal invariance"), due to the part icular shape of the potential,  whereas the other three 

independent f i rst  integrals are merely consequences of rotat ional invariance. For this 

reason, these systems are called "overintegrable" systems. ]=or Kepler motion9 the extra 

integral is the Runge-Lenz vector, which is carried by the focal axis. Another peculia- 

r i ty  of Kepler motion and harmonic oscil lator lies in the fact  that they are "separable" 

in orthogonal coordinate systems. Most of the integrable systems we are used to consider 

possess this property ; however, separabil ity is a very special case of integrabi l i ty.  

In fact, no general method is available to know whether a system is integrable or not. 

Moreover, even i f  one system is known to be integrable, finding action-angle variable is 

not guaranted 

- The system of a part ic le in a parallelepipedic box of sides a,b,c is also a regular 

system ; the energy writes 

i i i) The N-dimensional (anisotropic or isotropic) osci l lator of frequencies 00~' ( ' I "  I t .- .  !I~I) 

is also a separable regular system : 

iv) There are some other systems which are known to be regular (see below regular 

billiards) : these  are all the systems which are solved by quadratures in textbooks or 

art icles. . ,  but they are not so numerous : 

Regular systems had, up to one or two years ago, a so strong monopole in textbooks,  

that  one might believe their propert ies  as being generic of any classical systems [Fo -83].  

The fact  is that  regular systems are an except ion among dynamical systems,  and that ,  

for other kinds of systems9 many difl icult  questions remain open. 

Ergodic systems 

The most popular defini t ion of ergodicity is the equali ty of t ime averages and 

phase space averages. In more abstract language, one often defines an ergodic system 

as a dynamical system whose phase space is metr ical ly  indecomposable under the Hamiltonian 

f low. Let us get in some more detai l  into these two equivalent definit ions of ergodicity, 
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and quote some impor tant  consequences. 

Let  us consider a conservat ive dynamical system, o£ phase space X • Le t  ~ (4 : )  = 

[q,( ' t~ ' )  . . . .  , (~N('~:) ,~,~('~) . . . . .  : p N [ 6 } ]  be any point  of X . The evolut ion  of ~ wi th  

t i m e  can be desc r ibed  by an o p e r a t o r  T : 

T~ 
X ~ - X  : 

The t r a n s f o r m a t i o n s  T~. have t r iv ia l ly  t he  p rope r t y  of  f o rmi ng  a cont inuous  group T 

depending  on one  p a r a m e t e r  ~ . This group is o f t e n  ca l led  the  "dynamica l  group" or 

t he  "Hami l ton ian  f low".  

The Liouvil le  measu re  of a subse t  V o i ~  (which is t he  volume of  V) : 

/w.(v) = ]'v d¢...,~q~, dp~...dpN 

is, a cco rd ing  to Liouvi l le ' s  t h e o r e m ,  invar ian t  under  t he  Hami l ton ian  f low : 

For a conservat ive system, one can define a surface element o£ the energy surface 

S E as 

N 

and get from (III-3) the invariance of the induced measure Q" under the group T. In the 

fol lowing, the measure ~ wi l l  be normal ized to one (i.e. O'(S E) = l). 

The system is said to be ergodic, or met r ica l l y  t rans i t ive (or indecomposable) 

i f  i t  is indecomposable into non t r i v ia l  subsets which are invar iant  under T, i.e, : 

,~" A c ~ (o-(A),% o-(A)=~ Q such that T ~ A = A  (.l-4~ 

The fact  that  the only subset of S E of non-zero measure which is invar iant  under T 

is the whole energy surface S E (or any subset of S E having the same area as S E i tself)  

in tu i t i ve ly  suggests that  a typ ica l  t ra jec to ry  cannot be confined in a rest r ic ted region of 
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phase space, but, on the contrary,  explores the whole energy surface (except  Ior a 

set  ol zero measure) (*). In Iact ,  an even stronger  property holds for ergodic s y s t e m s :  

one can show that  almost every orbit explores almost every point ol the energy sur lace  

S E (densely covers SE) , spending in any part  A a t ime proportional to the area ol A. 

Indeed, let ~ S E and 1~ ( ~ , A , ~ )  be the t ime that  ~. spends in ~ f ' S  E between 

instants  0 and ~: . According to the ergodic theorem (Birkhoff-von Neumann), the 

limit 

does exist Ior almost all ~l's, and is equal to the area oIA : 

il the system is ergodic. 

The equality of phase averages and t ime averages const i tu tes  an a l ternat ive  del i -  

nition of ergodicity (i.e. is equivalent to metr ica l  t ransit ivi ty)  ; it can be formulated as 

Iollows • a system is ergodic iIf, Ior any integrable Iunction f ( ~  ) ( ~ X  ,(I.~.(z)IdlT%/~)j 
3 "  

(III-5) 

for almost all ~ S E. Eq.(llI-5) is of ten refer red  to as a version of the law of large num- 

bers, the lef t  hand side representing the inlinitely many trials approaching the probabi- 

lity in the right hand side. 

Equilibrium Stat is t ical  Mechanics is built o n  the ergodic hypothesis. But ergodici ty 

is not suff icient  for a system to reach an equilibrium s ta te  : one additional property 

-cal led mixing- is needed, which concerns the way any volume e lement  evolves with t ime.  

(*) I t  is c lear  tha t  no t r a j ec to r y  can exp lore  the whole energy surface (i.e. e rgod ic i t y  in the 

sense of B o l tzmann can never hold). Indeed, a t r a j e c t o r y  which would pass through any point  

of  S E should in tersect  w i th  i tse l f ,  which is impossible. What we cal l  e rgod ic i t y  here is o f ten  

referred to  as the quasi -ergodic hypothesis in S ta t is t i ca l  Mechanics. 
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Mixing systems 

The concept of mixing was f i rst  introduced by Gibbs. Qual i ta t ive ly ,  the underlying 

idea of mixing is the property,  for any part /~ of the energy surface ( ~ ' ( ~  ) # O ), 

of get t ing spread uni formly over the energy surface as ~ a~ . To get an "exper imental  

feel ing" of this feature, le t  us imagine a shaker in which one puts 80 % of orange 

juice, and 20 96 of vodka ; then, one continuously stirs the shaker. If the system is mixing, 

one wi l l  f ind, as t ime tends to in f in i ty ,  20 % of Vodka in any volume of the l iquid, 

i.e. the vodka wi l l  be uni formly mixed with the orange juice in any part of the cocktai l .  

Of course, such a property implies for the in i t ia l  volume of vodka (or of any part 

of the energy surface) being strongly deformed as t ime runs, i.e. t ransforming wi th 

t ime in a thinner and thinner f i lament  which u l t imate ly  wi l l  be present in any volume of 

the l iquid (or wi l l  densely cover the energy surface). 

This in tu i t i ve  description of mixing makes now the mathemat ica l  def ini t ion 

very easy to understand : 

ii 
Fig.III.2 - S c h e m a t i c  r e p r e s e n t a t i o n  of  t he  mixing p rope r t y  : B is any f ixed a rea  of  
t h e  su r f ac e  energy ,  and A is a su r f ace  e l e m e n t  cons ide red  a t  ini t ia l  t i m e  {;o , whose  
evolu t ion  is drawn for  succes s ive  t i m e s  ~a~/~-.~. ~ / ~ - j  . As t i m e  is running,  t he  
Hami l ton ian  f low Tt; t ends  to  di lu te  the  in i t ia l  su r f ace  A un i fo rmly  in t he  whole  ene rgy  
s u r f a c e .  As t i m e  t ends  to  inf in i ty ,  t he  f r a c t i on  of  the  t e s t  a r e a  B occup ied  by T e ~ is 
equal  to  the  f r a c t i on  of  t h e  ene rgy  su r f ace  S E ini t ia l ly  occup ied  by A • 

A sys t em is said to  be mixing if 

- .  

e-.  . ,  0" ( ) 
(III-6) 

Le t  us look at  t he  r ight  hand side of  Eq.(III-6). One  can w r i t e  it  as : 

 (A3- o (T, 
o - ( S . )  

s ince  0~(T~.#t ) = 0 " ( # l )  f rom Liouvi l le ' s  t h e o r e m ,  and 0"(S E) = 1. So the  r .h .s ,  of Eq.(III-6) 
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represents the fract ion of the energy surface occupied by T~A  , while the l.h.s, repre- 

sents the fract ion of B occupied by T~A . According to the uniform spreading of 

A over SE, these two terms should be equal. 

Some important consequences of mixing should be noticed. First, one can show 

that mixing implies ergodicity. Indeed, suppose that the mixing property holds ; take 

for A an invariant set of SF, and choose B-- -~ . Then (B /~ T I : A  ) is simply ~ , 

and Eq.(Ill-6) implies that ~ ( A )  is zero or one, i.e. there does not exist any non-tr iv ial  

subset A of S E which is invariant by T~ . This is exactly the indecomposabil i ty property 

characterizing ergodic systems (see (Ill-#). 

Notice that the converse is not true, i.e. ergodicity does not imply mixing ; 

indeed, one can imagine systems for which any surface elements explores the whole 

energy surface without being deformed with t ime (see Fig.l] l .3 and example I I I -3-b- l )  ; 

~A 

Fig.l l l .3 - Schematic representation of an ergodic system which does not have the mixing 
property. The surface element ~ tends to explore the whole energy surface as t ime is 
running, spending equal t imes in equal areas (ergodic property), but its shape remains 
unchanged, so that Eq.(ll l-5) (mixing property) cannot hold. 

in such systems, the distance between two points of S E remains of the same order 

of magnitude as t ime is running. On the contrary, in a mixing system, the spreading 

property allows two points which are in i t ia l ly  close to each other to get as far from 

each other, in the l im i t  ~-~ ~ ,  as is permit ted by the constrain of staying on the energy 

surface. Thus, mixing implies instabi l i ty wi th respect to in i t ia l  conditions, or, in other 

words, loss of information wi th t ime, since a small error in measurement of ~ ( ~ =O ) 

can propagate with t ime and eventually induce so large errors on ~t. ( ~ ) that long t ime 

predictions for the system are prohibited. 

Finally, let us mention an important characterist ic (i.e. which could be used 

as a definit ion) property of mixing, which is the decay of correlations between two 

functions : in mixing systems, any two square integrable function (for the measure O" ) 

asymptot ical ly become stat ist ical ly independent, i.e. 

2. 
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As a particular case,  let  us take f o r ~  a non-equilibrium normalized distribution ~ (~t.) : 

which means that ,  in average,  the distribution p (~t. tends to a uniform equilibrium 

probability density. 

We shall not discuss the subtle relations of mixing with irreversibil i ty.  Let us 

only emphasize in this respect  that  the equations of motion allow to recover any point 

"/~ ( 1~ = O ) knowing ~ . ( ~ ¢ ~ O )  ; however,  all memory of the initial s ta te  is lost as t ime 

tends to infinity, and it is only in this l imit that  one can speak of irreversibil i ty.  

K -systems 

Without no fur ther  assumption than mixing, one cannot give any quant i ta t ive 

information about the separation of orbits with t ime.  

The so-called K-sys t ems  are mixing systems which possess so strong instability 

tha t  most orbits s tar t ing from close points separate ,  in the average,  exponentially with 

t ime.  For such systems,  the knowledge o f ~  ( ~ 4  ) for all d iscrete  t imes .~ ~4" 

4-oo  . . . .  does  no provide  any useful  in format ion  on the  behaviour  of  

,'he system for t imes all::) ~o . Such a strange fea ture  means that ,  though the sys- 

tem is completely determinis t ic  -i.e. is governed by causal equations of motion-,  the 

evolution of a generic point in phase space is very irregular, and exhibits some kind of 

random behaviour ; this is why one associa tes  with K- sys t ems ,  for which the motion 

does not depend on their  distant  past history, the idea of unpredictabili ty.  

The mathemat ica l  definition of a K -system would go beyond the scope of our 

"qualitative" introduction to chaotic phenomena (see for instance Refs.[AA-67,Sh-73,Or-7#] 

for a rigorous approach). Let us only give the main ideas of charac ter iza t ion  of K -  

systems,  and try to understand roughly in which sense one can say that  the past does not 

de termine  the future.  All the concepts  used are borrowed from information theory 

[SW-49,Bi-78,ME-gl]. First ,  one introduces any f ini te  ordered part i t ion P of the 

energy surface S E into cei ls  (atoms), in order to define a measurement  • the result  

of the measurement  of the system associated with P at t ime ~o is the n ° of the cell 

of P which is crossed by the orbit  at  t ime ~ ; then, an exper iment  associated with 

P is a sequence of measurements  for equally spaced t imes going from 1~ 6 to oo 

Now, one can define the entropy ~ (T,P) of the hamiltonian flow T relat ive to the part i-  

tion P, which represents  t he  mean rate  (averaged over the whole sequence of measurements  
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of the experiment) of in format ion (*) generated by the t ime running for the exper iment  

associated with P. Consider, for instance, a very regular system~ whose mot ion is periodic 

in phase space : for such a system, the knowledge of a f in i te  set of sequential measure- 

ments is suf f ic ient  to determine the outcomes of al l  fur ther measurements, i.e. the 

in format ion produced by al l  but a f in i te  set of measurements is zero, and therefore 

the average of in format ion generated for a given exper iment is zero. For strongly 

i r regular systems, even the knowledge of an in f in i te  set of sequential measurements 

is not suff ic ient to know, with probabi l i ty  one, the outcomes of la ter  measurements, 

which means that  the average of in format ion -or entropy-  is posit ive. 

K-sys tems are now defined as systems for which the entropy re lat ive to any 

f in i te  par t i t ion P is posit ive : 

(T P) >o  -V-P. 
These are there fore  systems whose motion looks irregular and unpredictable whatever  

may be the exper iments  one can imagine. A quanti ty of in teres t  to measure the degree 

of irregularity is the so-called met r ic  entropy, or Kolmo~orov-Sinai (K-S) entropy : 

it is defined as the maximum value of ~1 (T,P) , taken over all the possible finite par t i -  

tions P : 

ST) = k(Tj ) (i. 7) 

I t  is clear from their  def in i t ion that K-systems have posit ive K-S entropy. Let  us 

emphasize that  this entropy does not depend on any dynamical state under consideration, 

cont rar i ly  to the entropy commonly used in Stat ist ical  Mechanics9 but is an intr insic 

quant i ty  associated to the dynamical system considered as a whole at a given energy F. 

This K-S entropy provides a measure of the strength of mixing of the system, and is 

related to the mean rate of exponential  separation of t ra jector ies.  

Bernouilli sys tems 

These are, among the K-systems, the most unpredictable ones. Indeed, they 

have the property that  there exist a par t i t ion PO such that  the sequence of measurements 

of the associated exper iment are complete ly uncorrelated, as would be the outcomes 

of games with a roulet te wheel ! This par t i t ion P~ must also satisfy another condit ion 

(*) Not ice that  the amount of in format ion gained by making a measurement is equal 
to the lack of in format ion (i.e. to the uncertainty)  before making the measurement, 
which is also called the entropy associated wi th the exper iment.  
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(whose statement would require enter ing in abstract mathemat ica l  considerations : 

see for instance [Sh-73] or [Pa-g l ] )  in order for the system to be Bernouil l i .  

For a Bernoui l l i  system~ the K-S entropy is simply equal to the entropy of the 

part icu lar  par t i t ion P6 ~ i.e. 

where ~44 is the measure of the i th atom of Po (i.e. the area of the i th cell of P)(~ SE), 

and the sum runs over al l  the atoms of Po • 

The d i f ferent  types of systems we have just introduced i l lustrate the transit ion 

from regular i ty  to chaos) i.e. randomness produced by causal equation of motion. Several 

remarks should be made at this stage : 

i) Part  of the vocabulary introduced above ("ergodicity") "mixing") sounds famil iar)  

and might evoque Stat ist ical  Mechanics. We emphasize) however) that al l  the considera- 

tions made in the preceding are not restr icted to systems wi th a great number of degrees 

of freedom) but real ly  can apply to very simple systems) eventual ly  having only two 

degrees of freedom (see example in the fol lowing).  

ii) For physical systems which are suspected to belong to a given member of the 

hierarchy just presented (except for certain integrable systems), i t  is in general ex t remely  

d i f f i cu l t  to prove that indeed they are ergodic) or mixing, etc., The main rigorous 

results avai lable so far concern bil l iards) and we shall devote a part icular at tent ion 

to this kind of systems. Also are known interest ing results for "abstract" dynamical 

systems) many of them being very "educat ive".  Several examples wi l l  be presented in 

Sect.l i l .3) as i l lustrat ions of the rather abstract ideas introduced up to now. 

i i i )  One question of interest is the fo l lowing : can "most" of the dynamical systems 

be classified according to the preceding scheme, i.e. are physical systems) in their  major i -  

ty) e i ther integrable, or ergodic ? There is at least a very peculiar (*) kind of systems 

for which the answer to this question is t r i v ia l l y  "no n : these are conservative systems 

having a number ~ of independent f i rst  integrals) wi th 4vl '~ I) but ~I~I~/ ~ for such 

systems) the motion in phase space is restr ic ted to a ( 2 N - - ~ I .  )-dimensional surface. 

Thus they are non-integrable systems which are not ergodic on the whole energy surface S E. 

We can therefore re formulate the question as : "are conservat ive systems having no 

other constant of motion than the energy E ergodic ? Much at tent ion has been paid to 

this problem during the f i rst  half  of the century) and we recal l  in a few words the 

rexolut ion produced in the 1960's by the so-called Kolmogorov-Arnold-Moser theorem. 

(*) Here) the word peculiar refers to the rar i ty  of such systems among the fami ly  of al l  
dynamical  systems ~ however) these are generic systems for the physicist : (isolated phy- 
sical system possess other constants of motion than the energy). 
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Quasi-integrable systems 

Conserva t ive  quas i - in tegrable  systems a re , rough ly  speaking, obta ined by inducing 

a s l ight  per tu rba t ion  preserving the  energy conserva t ion  on an in tegrab le  system.  In 

1892, Poincar~ showed tha t ,  Ior such systems,  apar t  Irom except ional  kinds ol pe r tu rba -  

t ions,  all the  cons tan t s  of motions o ther  than the  energy are  destroyed.  It was probably 

this theorem which encouraged people to t ry  to demons t r a t e  -or a t  leas t  to convince  

themse lves -  t ha t  most  ol the  in tegrable  sys tems can be made ergodic by small  pe r tu rba -  

t ions.  (For ins tance  Fermi  [1923] and BirkhofI [1927] a t t e m p t e d  to develop a rguments  

in Iavour  ol this assumption : see Ref.[Mo- 73b]). In view ol  this, the  resul t  ol Kolmogorov, 

Arnold, and Moser, now known as the  KAM theorem,  was a major  turning point in the  

his tory ol dynamical  systems.  Indeed, the  main in lormat ion  ol this  theorem is tha t ,  

under ra ther  general  conditions,  "most"  of the  i r ra t iona l  tori  pers is t  ( though sl ightly 

delormed)  under a small  per turba t ion .  

From this fundamenta l  result ,  one can easily imagine tha t ,  for a "generic"  dynamical  

sys tem,  the  s t ruc tu re  ol phase space is very compl ica ted ,  showing both regular  and 

chao t ic  regimes ( there  is an enormous gap be tween  in tegrab i l i ty  and ergodic i ty  :). 

In this  respect ,  the  above c lass i l ica t ion,  according to increasing degree of chaos, is 

i r r e levan t  Ior most  systems,  and may appear  somewhat  "academic" .  However,  to study 

open problems such as the  cha rac t e r i za t i on  ol quantum chaos, i t  seems na tura l  to begin 

with systems whose classical  analogues are  reasonably well understood -Ior  ins tance  

K- sys t ems - ,  even though they are known to be rare  among the  whole family ot chao t ic  

dynamical  systems.  

111.2 - MEASURE-PRESERVING MAPPINGS 

III.2.a) Sur laces  ol sect ion 

For the  sake ol simplici ty,  let  us r e s t r i c t  Ior a momen t  to physical  conserva t ive  

sys tems with two degrees  of I reedom. As a l ready ment ioned,  it is far  from being easy, 

even Ior these  "simplest"  systems,  to study analy t ica l ly  the i r  degree  ol i r regular i ty .  

However,  one can get  Ior them quite uselul  in format ions  from very simple numer ica l  

exper iments ,  as we shall see now. 

For the  sys tems considered here,  the  access ible  portion ol phase space a t  a 

given energy E - the  sur lace  energy S E- is a th ree-d imens iona l  bounded sur lace .  The 

method ol Poincar~ sur faces  ol sect ion consis ts  in choosing an "appropr ia te"  two-dimens i -  

onal surface  ~-" in the  phase space) and look a t  the  figure gene ra t ed  by successive 

crossings of one given orbi t  with ~" I by "appropr ia te" ,  we mean tha t  

i) the  t r a j ec to ry  should cross the  sur lace  ~'- an in l in i te  number  of t imes) as t ime  
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goes from zero to in f in i ty  

i i) the area bounded by any closed curve on Z should be conserved with t ime (see Eq. 

(III-9)). 
Let us i l lustrate the interest of the method by considering a particular surface ~_~ , 

defined in the fol lowing way. Let us suppose that the surface ~ ~C.= 0]intersects with 

the energy surface H ( ~ l ~ i p x l p ~  ) = E ; we call this intersection ~ , which is a 

two-dimensional surface. A point on ~ I  can be defined by the coordinates ( ~ ,  ~ ). 

The integral of motion 11"[ = E defines p.~ as a function of ( ~ ) ~  ~ ) ; therefore, one 

can attach to a point o n ~ a  set of coordinates (~lil~=D) ~)  ~Ip~l)~/), with the sign ~'----I'I 

of ~ depending on the sense with which a given trajectory crosses ~ ' ~  . To get 

this sign unambiguous, we choose a given side of ~ , and look at the successive 

intersections Q~  of a given trajectory wi th ~ which~ for instance~ go out of the 

chosen side of ~ / :  

P~[ /"-'Q° 
/ 7 Q~,a 

o ,,~/ 

IIL 

(a) (b) 

Fig.l l l .4 - Poincar~(a) A trajectOrYmap onCr°ssing~ the surface of section , ~  ; (b) Points of the 

. w  

Now, the knowledge of the coordinates of Q~  on ~ completely specifies the whole 

set of coordinates of QI~ in phase space, i.e. the knowledge of one pair of conjugate 

variables on 2 . ~  completely determines the dynamical state. What has been lost by 

reducing the ini t ia l  three-dimensional problern to a two-dimensional one is the"story" 

of the orbit between two successive crossings with ~'~I ' but this is not essential for ou r  

purpose. 

The repeated crossings with ~ I /  define a mapping I~I : 
. J  

Given an initial condition --~'o ~--( ~o----O~ ~ o l  N o  ) P~ 'o  ) for a point on ~ " u '  
3 the study of the dynamical system is now reduced to the study of the set of points 
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Zs 

M(~) r 

The p r o p e r t y  i i )  s t a ted  

above means that  the mapping 

is area (or measure)-pre- 

serving) i.e. that ,  given any 

curve ~" on -~ '~  ) closed 

the  a rea  bounded by the  image 

curve / ~ ( ~ f )  of ~" by the  

mapping M should be equal  to 

the  a rea  bounded by the  curve 

r '  

Fig.III.5 - I l lus t ra t ion of the  proper ty  (III-9) : ~W is 
a surface  of sect ion , ~ a closed curve o n ( ~ ,  
and N ( ~ f )  the  image of ~ on ~-I¢ under th~ 
Hamil tonian flow. The areas  bounded 'by  ~ and F4 ( ~ )  
are equal.  

~. p ~  .~ ~M(¥)p, (~ " ( I I I - 9 )  

This can be easily shown from the Hamiltonian character of the motion (see e.g. Ref.[AA-67, 

Appendix 31]). 

Now, let us look at the pattern generated on ~ by the points r'1'W.~'o~ ) 

()~ -- Op l) ~) . . . .  ~ ), and see which kind of information we can learn from it. First, 

let us consider a system which has, besides the energy, another constant of motion 

F in involution with H (i.e. an integrable system) 

From (I I I - I0)  one can e l iminate  two  of the canonical variables) say "~ and ~ , which 

yields 

P~ = PS C=j ~ )  • (l.-ll) 

Since ~--  0 on ~ 5  ) Eq.(m-ll), "projected" on to ~ - ~  is the equation of a curve P 
which is invar ian t  under the  mapping ~ , and which is simply the  in te r sec t ion  of the  

2-dimensional  invar ian t  torus T 2 with ~=~ . Therefore)  the  successive crossings of 

the orbi t  with ~ all lie on a unique smooth curve ( P l ( g )  ~ r ~ ), for any set  of ini-  

t ial  conditions,  which is a s ignature  ol in tegrabi l i ty .  Two possibi l i t ies  can occur in such 

a c a s e  : 

i) the  invar ian t  torus T 2 is resonant (or ra t ional  ). Then, the  motion is per iodic  

on the  torus,  i.e. the  orbi t  is dosed)  and has only a f in i te  number  k of crossings w i t h ~  "= 

which are all fixed points for M ,  since ~ / ~ o  - -  = ( see Fig.Ill.B). 
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ii) if~ on the contrary~ the invar iant  torus T 2 is irrat ional~ the orb i t  densely covers 

the torus (is ergodic on the torus)~ and the points generated by successive i terat ions of  

the mapping w i l l  u l t ima te ly  densely cover the invar iant  curve r ~ (see Fig.III.7). 

P, 

• • 

O 

Fig.III.6 - Typ ica l  pattern of  a P o i n c a r ~  
m a p  of t w o - d i m e n s i o n a l  i n t e g r a b l e  sy s -  
t e m  for  in i t ia l  c o n d i t i o n s  de f i n i ng  a r a -  
t i ona l  t o r u s  

Fig.III.7 - S a m e  as  Fig.III .6,  bu t  for  an  
i r r a t i o n a l  i n v a r i a n t  t o r u s  

Jl l  I ~ ' ; , ,  

Fig.III.8 - Idea l i zed  p a t t e r n  of  a 
P o i n c a r 6  m a p  of  an  e rgod ic  s y s t e m  

Let  us next consider a dynamical  system 

which is ergodic (on the energy surface). 

Then~ almost al l  t ra jec tor ies  densely cover 

a three-dimensional  region of phase spac% 

and thei r  intersect ions w i th  ~ ' 4  f i l l  densely 
, J  

some area (see Fig.III .8). 

We should not ice that  they may exist "non- 

typ ica l "  t ra jec tor ies  for  ergodic systems such 

as~ for  instanc% per iodic t ra jec tor ies  (see 

e x a m p l e s  for  c h a o t i c  b i l l ia rds  in Sect . I I I .#) ;  

bu t  t h e s e  fo rm  a s e t  of  z e ro  m e a s u r e .  

Between integrable and ergodic systems, there is a great  var ie ty  of systems 

for  which chaot ic  and regular regions coexist  in phase space ; for such systems9 the 

pat tern  of the Poincar~ map shows both invar iant  curves and sparse points, as can 

be seen on the example of Fig.I l l .12. (It is usual to represent on the same Poincar~ 

map impacts of several t ra jec tor ies  corresponding to d i f fe rent  in i t ia l  condit ions). 

C o m m e n t s  

i) The  m e t h o d  of  s u r f a c e s  of  s e c t i o n  is h igh ly  e f f i c i e n t ,  and  p rov ides  va luab le  i n fo r -  

m a t i o n s  on t h e  s t r u c t u r e  of  p h a s e  s p a c e .  (The e x a m p l e  of  t h e  Toda  l a t t i c e  p r e s e n t e d  be low 
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n ice ly  i l lus t ra tes  the success of  the method.  Many o ther  examples can be found in 

Ref . [He-83]) .  However~ i t  should, in any case~ remain  no more than a guide for  fu r the r  

theore t i ca l  studies~ and can never be used as a proof9 ne i ther  of in tegrab i l i ty~ nor 

of e rgod ic i ty .  

i i) Of course r the pa t te rn  gets more and more i n f o rma t i ve  as the number of  i te ra t ions  

increases. But the number of  i te ra t ions  necessary to  get  a reasonable image of the s t ruc tu-  

re of phase space highly depends of the nature of  the system~ and of  the choice of  

i n i t i a l  condi t ions.  This is pa r t i cu la r l y  t rue  for s t rongly chaot ic  systems, for  which a 

t r a j ec to r y  may happen to  be t rapped in a given region of  phase space~ and to  escape 

only a f te r  a long t ime  I there fore ,  the t rue  pa t te rn  appears only  a f te r  a great  number 

of  i te ra t ions.  In this respect~ an "abusive" use of  Poincar~ maps for  such systems migh t  

suggest tha t  the system is not ergodic~ since a typ ica l  t r a j e c t o r y  for  an ergodic system 

must have spent equal t imes in equal areas a f te r  an in f i n i te  t ime  ~ however ,  i f  a t ra jec -  

to ry  happens to  be conf ined for  a long t ime  in a res t r i c ted  region of  the energy surface 

SE~ i t  w i l l  v is i t  again this region much less f requent l y  than o ther  regions of  SE~ in 

order to  preserve the ergodic p roper ty  in the l i m i t  ~---~ o , .  

i i i )  Among the l im i ta t i ons  of  the method,  one should quote i ts i ne f f i c iency  to  de tec t  

any kind of  i ns tab i l i t y  of  the system I for instance~ the method is comp le te l y  inadequate 

to  dist inguish simple e rgod ic i t y  f rom mix ing  or K -p roper t y .  These proper t ies  are indeed 

very  de l i ca te  to  study~ even by numer ica l  means. 

iv) More "exo t i c "  possibi l i t ies than those presented before for  the pattern of  Poincar~ 

maps are open for d iss ipat ive systems and wi l l  not be discussed here. For instance~ 

the points may be res t r i c ted  to  l ie on " f r ac ta l "  sets of  the surface of  sect ion (as can 

happen in strange a t t rac to rs ) .  

v) We presented the method only for  systems w i th  N = 2. degrees of  f reedom.  I t  

can~ in fact~ be genera l ized to  any number N of  degrees of  f reedom ; in this case, 

the surface of  sect ion is (2N-2)-d imensional ,  which makes the study more d i f f i cu l t .  

III.2.b) Abstract dynamical systems 

An abst rac t  dynamica l  system ( ~ j  ~ l j  T ) is usual ly def ined given a s p a c e X  , 

a measure ~I~ , and a mapping T~ in the fo l low ing  way.  X is a measurable space w i th  

respect to  the measure ] ~  ~ moreover ,  ~ -  is a p robab i l i t y  measure, i .e. ~ C)~ 3 = I .  

• r i s  a mapping ~,T_~ X ' which is s u r j e c t i v e ,  and which preserves the measure/IA-, i .e. 

(T"A') = r^) : 

Moreover ,  the mapp ing ' l "  is o f ten  supposed to  def ine a one paramete r  group of  t rans fo r -  

mat ions " r~  ( f h e  pa ramete r  may take cont inuous or d iscrete valuesl. In this case~ 
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T is one-to-one, and the measure-preserving property can also be expressed as 

( - r A )  = • 

The most  na tura l  a b s t r a c t  dynamical  system associa ted  with a physical Hamil tonian 

system is such t h a t  X re fe r s  to the  energy shell SE, ~.L to the  measure  induced on 

S E by the  Liouville measure ,  and T is what  we cal led the  dynamical  group, or Hamil tonian 

flow (see Sect.IIIA) ; the  proper ty  t ha t  t l  is an invar ian t  measure  Ior T is simply the  

Liouvil le 's  conservat ion  of surface  on S E. In this case  the  group Y depends on a continuous 

p a r a m e t e r  ~ , and the  t r ans fo rma t ion  Tt :  is a diffeomorphism on ,X (i.e. is a C ~ 

au tomorph i sm on X ). Another  way of defining an abs t r ac t  dynamical  system given 

a physical Hamil tonian system is to take  for ~ a surface  of sec t ion  . 7  , for ~ . .  the  

normal ized  measure  on it, and for ' 1 - t h e  mapping genera t ing  the  successive crossings 

of an orbi t  with £ . This t ime,  the  mapping is d iscre te ,  and its measure-preserv ing  

proper ty  is associa ted  with the  conservat ion  of the  area  ~I~ Plr~g 

The d i sc re te  mapping associa ted with a Poincar~ surface  of sect ion is in f ac t  

induced by the continuous dynamical  flow, i.e. can be obtained by solving the  d i f fe ren t ia l  

equat ions of motion.  But really a b s t r a c t  d i sc re te  mappings are defined by a "discre te  

t ime"  t r ans format ion ,  which is simply a de te rmin i s t i c  a lgor i thm ; among them,  the  

d i sc re te  a r ea -p r e se rv i ng  mappings of the  plane are  o f ten  considered.  These are defined 

as follows : consider a compac t  surface  X in the  plane ( ' 1 ~ ,  ~ ) with the  measure 

• ~,1 ~ I~ 'X ~ , and an appl icat ion T :  

T 
X ~ x  

The mapping T ' i s  a rea-preserv ing  if 

Examples of such mappings will be presented  in the  next  sect ion.  

These notions of dynamical  measurable  space and measure-preserv ing  t rans format ion  

have been used as key points in Sect.III . l  to in t roduce the h ierarchy of i r regular i ty  for 

physical Hamil tonian systems.  It should be c lear  now t h a t  the  def in i t ionsgiven above of 

ergodici ty ,  mixing, K-proper ty  and B-property (Bernouilli) t r ivia l ly  ex tend  to abs t r ac t  

dynamical  systems.  
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III.3 EXAMPLES 

Let  us now i l lus t ra te the concepts just introduced by concrete examples. 

l l l .3.a) Physical Hami l tonian systems 

There are now numerous Poincar~ maps of physical systems avai lable.  Among 

them, the Toda la t t i ce  and the H~non-Heiles systems are probably the most st r ik ing 

i l lust rat ions of the interest  of surfaces of section. 

The Toda la t t i ce  [To-67,To-70] is the system of three par t ic les moving on a ring 

wi th exponent ia l  repulsive forces between them : 

-c~,-~) -ca~-~,~ - (~ j -~  
H = ± ( # +  P~'~P~" ) * e 4-e 4 e _ 3 .  

4 

Fig. l l l .9 - The three-par t ic le  
Toda la t t i ce  f rom three to two (*) . A f te r  some manipulat ion,  i t  

is possible to e l iminate one i r re levant  dynamical  var iable,  

and express the Hami l ton ian in terms of two coordinates and the i r  canonical momenta : 

This system possesses~ besides the energy~ another 

constant of mot ion : 

._.o= p,, + p . ~ + p ~  = Ct" 

associated wi th the invar iance of H under a r ig id rotat ion.  

Its true number of degrees of f reedom is thus reduced 

Now, the accessible phase space at a given energy "H = E is located on the energy 

shell SE, which is three-dimensional .  To invest igate the structure of the motion on 

(*) In the given example,  the existence of the ext ra-constant  P reduces the dimension of 
the accessible phase space from f ive to three (i.e. the Toda la t t i ce  is t ru ly  a conser- 
va t ive  system wi th two degrees of freedom). This is because the to ta l  momentum P can 
be considered -by means of an appropr iate canonical t ransformat ion-  as the conjugate 
momentum of an ignorable (or cyc l ic ,  or kinosthenic) var iable,  i.e. a coordinate which 
does not appear in the Hami l tonian funct ion (see for instance Refs.[La-70~Go-51] for 
the general procedure of e l iminat ion of cyc l ic  variables~ and Ref . [LL-83]  for  the reduct ion 
of numbers of degrees of freedom of the Toda la t t ice) .  
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SE, Ford e t  al. [FST-73] s tudied  t h e  p a t t e r n  of t he  mo t ion  on the  Po incar~  su r f ace  

of section Z s__ (~lj ~ ) ' 

4.4. 

f 

k 

E = 1 E = 256 

Fig.III.10 - Po incar~  maps  of  t he  Toda l a t t i c e ,  a t  e n e r g i e s E  = 1 and 
E -- 256 ( taken  f rom Ref . [FST-73]  ) 

At  any ene rgy  they  s tud ied ,  t hey  got  po in t s  of  t he  Po incar~  map  lying on smooth  curves ,  

as if t h e  s y s t e m  had, bes ides  t he  ene rgy ,  a f u r t h e r  f i r s t  i n t eg ra l .  And indeed,  ano t he r  

c o n s t a n t  of  mot ion  was d i s cove red  by H~non (He-74) and i ndependen t l y  by Makanov 

[Ma-Ttt], whose  exp l ic i t  f o rm is : 

F = 8p,, ( p , t _ 3 b ' )  + ( p , , . , ~ b )  ~ ~ - * ~ * "  - ~ 

Thus t h e  Toda l a t t i c e  is an i n t e g r a b l e  sy s t em for  any s e t  of  in i t ia l  condi t ions .  

One can no t i c e  t h a t  in t h e  l imi t  ("~l ~ ) - - ~ C O  I O~ , t he  Hami l t on i an  (Ill-13) r educes  to a 

t w o - d i m e n s i o n a l  i so t rop ic  ha rmon ic  osc i l l a to r  Hami l ton ian  : 

(III-1#) 
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and the second integral of motion becomes simply proport ional  to the orb i ta l  momentum : 

t: I x  ( 5 p ,  _ × 
co,6) 
(o,o) 

Now, let  us look at the HEnon-Heiles Hami l tonian [HH-6tt], which can be viewed 

as deduced f rom (Ill-13) by t runcat ion af ter  third order terms : 

2. 3 
(III-15) 

This system is often considered as a model in several physical problems : v ibrat ing 

three-atomic molecul% e f fec t ive  mean f ie ld (produced by other stars) description of the 

motion of a star in the galaxy. Cont rar i ly  to the Toda lat t ice, the H~non-Heil~s system 

has not a bounded energy surface S E for al l  values of the energy E, but only for F ~ .  

Fig.(III.1) shows the  Poincar~ map for the  surface  of sect ion ~ . ~  ( ~ ) p ~ ) a t  E i 
O 

- 12 
(several  t r a j ec to r i e s  are reproduced on the  same map). 

0.4 

0.3 

0.2 

O.1 

0 

-0.1 

-0 .2  

-0 .3  

-0 .4  

I I I I I I I I I I 

- 0 . 4 - 0 3 - 0 . 2 - 0 . 1  0.1 02  0,3 O.4 0.5 0.6 ~ 

Fig.III.l I - Poincar~ mia p of the  H~non-Heiles 
system at  energy E = ~2 (taken from Ref.[HH-6tt]) 

For some ini t ial  conditions,  the  successive 

points again lie on a smooth curve ; but 

the re  are also points d is t r ibuted  e r ra t i -  

cally (which all correspond to the  same 

se t  of init ial  conditions).  Thus, a chaot ic  

region of the  energy surface  has appeared 

For each t ra jec tory ,  the emerging 

pat tern seems to be an invar iant  

curv% and one may be tempted to 

conclude that  the system is in te-  

g r a b l e .  T h e r e f o r e ,  Fig.( I I I .  12) 
1 

[obtained a t  E = ~] is a s u r p r i s e ;  

0.3 

0.2 

-0.1 , 

-0 .3  

-O.4 

-0. ~ 0 . 3 - 0 . 2 - 0 . 1  0 0.1 O.2 O.3 O.4 O.5 O.6 ~ 

Fig.III.12 - Same as Fig.I I I . l l ,  for 
E = I ( taken from Ref.[HH-64]) 

8 

! I by increasing the energy from i-2 to -~ : the t runcat ion of the Toda la t t ice  Hami l tonian 
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[ (F ig.HI. f3) ,  one sees that  the chaot ic  has destroyed i n teg rab i l i t y  ' Look ing next  a t  I~ = -~ 

region occupies now most of  the area of the energy surface, and invar ian t  curves are 

reduced to  smal l  islands. 

D 
, J  l ~ i I ' ' ' l l i l ~ i l 

05  = - -  

04  

0 .3  

0 .2  

°i 
- 0 1  

O.2 

0 3  

0.4 

-0 .5  

05  04  03  02  O !  0 0 l  02  03  04  05  06  07  0 .8  09  

The H~non-Hei les system is a very  

simple example  showing n ice ly  the 

c o m p l i c a t e d  s t r u c t u r e  of  the 

phase space, and the sudden changes 

of  this s t ruc ture  by increasing 

the energy (More comments  can be 

found in Ref . [He-g3]) .  Many other  

examples have been considered, in 

pa r t i cu la r  those i l lus t ra t ing  the me- 

chan i sm of dest ruct ion of  the 

invar ian t  torJ of  a per turbed in tegra-  

ble system ; but these not ions 

require more technica l  background 

than proposed here. We would 
1 Fig. l l l .13 - Same as F i g . I l l . l l ,  for  E -- -~ ( taken 

f rom Ref . [HH-64] )  
just l ike to  make the fo l low ing  com- 

ment  about  Fig.( l l l .12).  One may in te rp re t  the invar ian t  curves as t races of d is tor ted 

inva r ian t  to r i  which remain present a f te r  per turb ing the in tegrab le  l im i t  (I l l .14) of 

(III.15) ; however ,  the persistance of such to r i  cannot  be pred ic ted by KAM theorem,  

which requires (only as a su f f i c ien t  condi t ion)  the f requency ra t io  of  the unperturbed 

osc i l la to r  to  be "su f f i c i en t l y  i r ra t iona l " ,  which of  course is not t rue for  the H~non-Hei les 

system ( t4) l=  t&)~l = 4 ). 

l l l .3.b)  Number - theo re t i c  abst rac t  dynamica l  systems 

I )  Ro ta t ions  o f  the Circ le  

Consider a uni t  c i rc le  C (c i rcumference length = I), take some point  on C as 

or ig in  O, and choose a sense to def ine the arc jo in ing any point  A of C w i th  O (i.e. 

to  measure the abscissa of A). Def ine  now the mapping of  C on i tse l f  by the ro ta t ion  

I C ~ C 

where ' ~  is the abscissa of  any given point  of  C, and where (~) is any real  number.  
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X 

Fig. I l l .14 - Rota t ions  of  
the c i rc le  

This t rans fo rmat ion  can also be v iewed as the mapping 

 %IE 
( I l l -16) x :  rac +o J j 

where "Frac"  denotes the f rac t iona l  par t  of  a number.  The 

t rans fo rmat ion  T c lear ly  preserves the Lebesgue measure 

~ I ~  = ( ~  on X. Without  loss of  genera l i t y ,  one can 

assume tha t  0 ~ t . ~  ~" 1. 

Suppose f i rs t  tha t  OO is a ra t iona l  number,  which can be w r i t t e n  as the i r reduc ib le  

f rac t ion  CO------~-(p and q are pr ime to  each other) .  One can easi ly  see tha t  the mapping 
f J  

generates exac t l y  q d i f f e ren t  points -wh ich  the re fo re  are f ixed points-  T ~ j T 2 " ~  j . . . .  

. . . } ' r q ~  = ~  , i .e. the in i t i a l  point  ~ is recovered for  the f i rs t  t ime  at  the qth i t e ra t i on  

every  o rb i t  is per iodic,  and the system is not er~odic.  

Take next  O0 i r ra t i ona l  ; now~ T a i ' ~  ( )~ = 1,2,...) takes i n f i n i t e l y  many d i f f e ren t  

values. I t  can be shown that ,  this t ime,  the mapping is ergodic for  the Lebesgue measure 

(see for  instance [AA-67] ) .  I t  is c lear,  however ,  tha t  T is not mix ing,  since two  points 

i n i t i a l l y  close to each other  remain so for ever  : the shape of  any vo lume in X -o r  

length in this case- remains s t r i c t l y  unchanged by the successive i te ra t ions .  This mapping 

is there fo re  an example  of a dynamica l  system which is ergodic~ but not chaot ic  in 

the sense tha t  i t  is pe r fec t l y  stable w i th  respect  to in i t i a l  condi t ions ( i t  is i n t u i t i v e l y  

ev ident  that  the en t ropy  of  this system is zero).  
• (*) 

The preceding considerat ions can be ex tended w i thou t  d i f f i cu l t y  to the t rans la t ions 

of  the N-d imensional  torus T N. The problem is re fo rmu la ted  by replac ing ~ and ¢~O 

by vectors  Or- and __~, the space X N is now the N-d i rec t  product  [0,1[ ;( [0~I[)~ ... X[0~I [ ,  

and the measure is the Lebesgue measure ( ~  . . . . .  (~ ' ) (N  on X N. One gets read i ly  the 

genera l i za t ion  of  the preceding resul t  : i f  the torus T N is i r ra t i ona l  (see Sect. I I I . l )~ 

the mapping is ergodic on T N. Not ice  tha t  this mapping can be v iewed as the d iscrete 

t ime  evo lu t ion  of  a in tegrab le  Hami l ton ian  system on an i r ra t iona l  torus accord ing to  

Eq. ( l l I - l ) .  Indeed, T ~  = ~1104- ~ ( ~la = 1,2,...)7 which is exac t l y  equ iva len t  to  Eq . ( l l I - l )  

taken at  ~ = 1,2, .... In some sense, the system is an "ergodic c lock"  (**)  

(*) I t  seems tha t  the te rm " t rans la t ions"  is p re fe r red  in the l i~:erature for  the torus TN~ 
whereas " ro ta t ions"  is more f requent l y  used for  the circle~ i .e. for  the torus T l 

( * * )As a l ready emphasized9 the concept  of  e rgod ic i t y  is re la t i ve  to  a given space X. 
Here~ we ment ion  the e rgod ic i t y  of  a class of  in tegrab le  physical  systems on i ts N- 
d imensional  i nva r ian t  torus. But i t  is c lear  tha t  the physical  system i tse l f  is not ergodic 
on the energy shell~ except  for  N = I .  
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Let us f inally mention a nice application of the preceding results, proposed 

in [AA-67]. Consider the numbers 0 (~=  ~ . ~  ( ~  = 1,2,...) and ask what is the probability 

distribution ~k. of ~ ( ~ = 1,2,...,9) for the first decimal of i~(~ ; the answer 

is p k ~ ( l  + ~ ). What is remarkable in this example is that theresul t  can bederived 

in a very simple way, using only the ergodicity of (Ill-16) (see the proof in [AA-67]). 

2) Continued fraction expansion 

Let us define the one-dimensional automorphism T : 

otherwise 

This transformation is related to the continued fraction expansion of the starting point 

4 
4 

a~  ( ~  + .... 

( ~4 ("lr.~ ('I'= 1,2,...) are positive integers) by : 

Tn-I~. 

where "Int" denotes the integer part of a number. 

The mapping T does not preserve the Lebesgue measure, but preserves the Gauss 

~ "  The dynamical system ( X  , ~ ,T) is a K-system~ measure ~ F "  ~ 2 .  I - I . ~  " 
and even a Bernouill i system~ whose Kolmogorov-Sinai entropy has been calculated 

by Rohlin [Ro-61] : 

7 2  
kl~_!i (T') - -  

Various measure-theoretic results are known for continued fraction expansions. Most 

of them are due to Khinchin (see [Kh-6#] for a very clear account), and also to L~vy [Le-54], 

who were very successful in proving highly non-tr ivial results, using old-fashioned methods. 

Many of their results can now be obtained as straightforward consequences of ergodicity. 

For instance, let us quote the following properties, whose simple derivation can be 

found in Ref.[Bi-78]. 
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• The asymptotic relative frequency P~ of ~. among the partial quotients 

~ . { ' ~  ..... ~ ('at.) ...... is known to be 

for almost all ~I~ • 

("a.e." stands for "almost everywhere") 

~('=), 

(Ill-17) 

~ t . ~ ,  

where 
-~ ) :  

is the nt:h-order convergent of '~. (or rational approximation to 

*I 

~ , E * )  4 . . . . . .  

4 4" - -  

( ~It ( ' ~  and ~ ( ~ )  are prime to each other) 

• * a ~  *__ & cl" C~) - - .  Tr~ ~ .  e .  

Notice that all the properties derived from ergodicity hold on X = [0,I[, except 

for a set of numbers o£ zero measure. In particular, rational numbers are t r iv ia l ly  

excluded from X for the applicabil i ty of these results, since they have only a f in i te 

number of non-zero partial quotients a M . Also excluded are quadratic irrat ional 

numbers (i.e. irrat ional roots o£ a quadratic equation with integer coefficients), whose 

sequence of partial quotients ~ ~ l l :  ~"a~)~ becomes periodic for suff ic ient ly large 

values of /~. : for any quadratic irrational, there exist two integers ~ o  and ~ such 

that, for every ~ ~o  , ~ O,./14{ ~ . (Evidently, Eq.(IIl-17) cannot hold for such 

numbers). 
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3) Pseudo-random number generator 

The fo l low ing  mapping is o f ten  quoted as a one of  the nicest  examples of  comple te  

randomness generated by a de te rm in is t i c  a lgor i thm.  Def ine  T as 

~ X = ['OI I ] T ~, FO) q E (III-18) 
x ~ x  ~ _', TTe = v--rat ( r x )  ) 

where ~ is any pos i t ive in teger .  

One should f i r s t  note tha t  this app l ica t ion  is not  one- to-one.  Indeed, i f  we choose 

= 2, we see tha t  the inverse image of a point  ~ 4 - I  is not uniquely def ined, since 
I ~ 1 . ,  4" 4 ~ _ ~ and ~ , ~ =  _ . are both possible solut ions of  T~M-_  "X~I.II. 

a. 2- , 
Anyway ,  this " t ime  reversal  invar iance breaking'  is not essent ia l .  

The t rans fo rmat ion  T -ca l led the r -adic  t r ans fo rma t i on -  is known to  leave the 

Lebesgue measure inva r ian t  (*). Le t  us f i rs t  g ive a very  s imple i n te rp re ta t i on  of T ; 

fo r  i l lus t ra t ion ,  le t  us f i x  P = I0.  We wr i t e  '~  as : 

7( = O. ~l o 6t~ . . . . . .  ~ . .  . . . . .  ) ( I I I - 1 9 )  

w h e r e  ,~ Ct~/614 = 0,1,2 ..... 9 ]" is the  s e q u e n c e  of d ig i ts  of t h e  r e p r e s e n t a t i o n  of X in dec i -  

ma l  basis .  C lea r ly ,  t he  e f f e c t  of T on X. is s imply  to  sh i f t  t he  d e c i m a l s  one  posi t ion 

to  the  l e f t  : 

T"'4¢. -- o .  ¢1,,.. ~ + , ~  . . . .  0.-20) 

The same resul t  (III-20) holds in the general  case where Eq.(I l l -19) represents the number 

, w r i t t e n  in base-r (now, ~I.~' = O,l,...,r-l), as can be seen f rom the general  expres- 

sion) ~= ~ ~ 
~ = 0  f ~ I  

Now, le t  us ask for  the degree of i r r egu la r i t y  of  this dynamica l  system ; simple 

in tu i t i on  suggests tha t  i t  should be s t rongly  chaot ic ,  indeed, le t  us consider two  in i t i a l  

points ~ and 7(./ which are close to each other  in the sense that  the i r  f i r s t  ~. digi ts 

are the same, and look at  the distance between "Z~ - ~-~I~i(. and - ~  .. T'%x I 
as 41~ increases f rom one to i n f i n i t y .  For  ~I~ less than ~ , the f i r s t  ( / ~41~)  digi ts 

(*)To "v isual ize"  this p roper ty ,  take for  instance A : [0, ½ ]. 

Then, for  r - - 2 )  T'-4A .= E D I t ]  U [ ' ~ ) ' ~ ' ]  , So ~ . { ~ = p ( - l " ~ ) = £  
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| I 
~ J  does increase of  g~.~ and "~ ~ remain the same~ i.e. the distance ~:~ ( ~ 9  not 

in an "uncont ro lab le"  way.  But as soon as 4~I~ ~ ~ the two  points ~ and ~2~ / have 

comp le te l y  fo rgo t ten  the i r  or ig ina l  re lat ionship,  so tha t  the distance ~ (~£~ I ~/~ ' /  ) may  

now evo lve  in a comp le te l y  e r ra t i c  manner  as 44. increases (The knowledge of the 

f i rs t  p digi ts of  a number ~ te l ls  nothing about  the fo l low ing  digi ts of ~ ). Therefore,  

this dynamica l  system seems to  exh ib i t  the strongest  possible sens i t i v i t y  to  a per tu rba t ion  

of initial condit ions.  

This i n tu i t i on  is indeed cor robora ted  by the ma thema t i ca l  p roper ty  of  the dynamica l  

system to be a Bernou i l l i  f low,  i .e. to be at  the top of  the i r r egu la r i t y  scale def ined 

in I I I . l .  Moreover ,  one can show in this case tha t  the successive numbers of  the sequence 

d i g i t s l ~ o ) ~ 4  ) . . 7 ~ I  . . . ~  for a t yp ica l  i n i t i a l  condi t ion ~ .  (by " t yp ica l "  of  r-based 

we mean for a lmost  a l l  ~ of  the i n t e r v a l  X) are comp le te l y  uncor re la ted  ; this can 

be expla ined in the fo l low ing  way.  As ment ioned in Sec t . I l l . l ,  a necessary condi t ion 

for  a system to be Bernoui l l i  is that  there  ex is t  a pa r t i t i on  of the dynamica l  space 

having the p roper ty  that  the outcomes of successive measurements of the system are 

comp le te l y  uncor re la ted.  In this case, this means tha t  one can f ind a pa r t i t i on  Po of 

the in te rva l  [0,1] in such a way tha t  the successive numbers ~ , N - - T %  fa l l  in to the d i f -  

fe ren t  atoms of  the pa r t i t i on  Po comp le te l y  at  random ; and this pa r t i t i on  Po happens to  
r ̂  1 2 r - I  be precisely  the set of  r segments LU,r,r,... , r , I ] ,  so tha t  the p roper ty  of the successive 

measurements to  be uncor re la ted simply,  means tha t  the sequence - ~ I o l ~ l ~  J " ' 3  ~IM)---.~ is 

comp le te ly  random, i.e. the successive appl icat ions of  the mapping T can be v iewed as 

a sequence of  games w i th  a rou le t te  wheel  having r equiprobable outcomes. 

Apply ing the fo rmu la  (Il l-S), we get for  the Ko lmogorov-S ina i  en t ropy  of T ( * ) :  

- 

,--  I F"  ~ -  - -  (III-21) 

Not ice  that  this value of  ~ I~-S is exac t l y  the classical resul t  in i n fo rma t i on  theory  for  

the ent ropy  of a system of  Bernou i l l i  t r ia ls  w i th  r equiprobable possibi l i t ies.  This entropy, 

or a pr ior i  lack of  i n fo rmat ion  on the system, is c lear ly  an increasing funct ion of  

r, since the degree of uncer ta in ty  increases w i th  the number of  possib i l i t ies (a p layer  

who would have the choice of r ~ I for  a given f ixed,  r - independent  gain, would ev iden t l y  

choose r = 2, the coin toss : ) . This p roper ty  is re f lec ted  in (III-21). 

Le t  us now inves t iga te  how the mapping T can be used as a pseudo-random number 

genera tor  (*~) and, for  this purpose, f i rs t  look at  the consequences of  e rgod ic i t y .  Consider 

(*)Here~ we admi t  tha t  the pa r t i t i on  Pa sat isf ies another  necessary cond i t ion  ( that  we did not  
ment ion)  for  the system to be Bernoui l l i .  

( ** )  The process T, appl ied to  a given X having an i n f i n i t e  number of  digi ts,  is a t ru l y  ran- 
dom number generator .  The te rm  "pseudo" refers to  the f in i tness of the number of d igi ts 
w i th  which the compute r  works in pract ice.  
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the characterist ic property of ergodicity (Iil-3), translated for our discrete t ime process as : 

t l - I  

L ~  gn-22) 2._ -f CT ) = 

where f ( ? l )  is integrable on [0, I ]  for the Lebesgue measure ~ . Choose now f to be 

the indicator ]~.O_ (or characterist ic function) of any subset ~ of [0,1] (of non-zero 

measure) : 

where ~.(.~)is the length (the Lebesgue measure) o f . ~ .  This equation simply tells us that 

the proportion of numbers generated by successive applications of T which belong to any 

interval -~-C [0,1[ asymptot ical ly tends to the length L ( . ~ ) o f  . ~  . Notice that this 

property is shared by all dynamical systems which are ergodic on [0,J] for the Lebesgue 

measure, and in part icular holds for the example 1) (rotations of the circle) -" al l  these 

systems are such that the numbers generated by ~ T ~ : ~1 = 1,2,... ] [asymptot ica l ly  

have a uniform distr ibution on [0,1]. However, all these systems cannot be used as 

random number generators. Consider for example the rotations of the circl% which, 

as we have seen, produce points in an inexorable regular pattern : clearly, in this 

case, the successive points obtained by the mechanism T have the strongest correlations 

that can be imagined . On the contrary, the algorithm (III-18) produces completely 

uncorrelated points, or, in other words, the successive tr ials associated wi th successive 

applications of T are, in this cas% completely independent. 

Several consequences of the property just discussed are worth to be mentioned. 

k k+l 
i) consider the case where the subset ~ is any of the segments " ~ / l  = [ r ' - - r -  ] 

( /~ = 0,1,2 ..... r - l ) .  Then,~d~. (TP, '~ . )  is equal to one i f  the ~ th digi t  of ~ is / ~ ,  and 

zero otherwise. Thus, the repeated experiments ~ T[~,~. ( ~  = 01,..n-l) in or out of 
! 

--~Jt~ can be viewed as independent tr ials for a random variable which takes the value 
J I 

( ~ =0,.. . ,r- l)  wi th probabi l i ty ~-. One can therefore interpret  Eq.(lll-23) as follows. 

The l.h.s, represents the relat ive frequency of the value /~ , and the r.h.s, the probabi- 
I l i ty  r for gett ing ~ . According to Eq.(lll-23), the probabi l i ty that the l.h.s, is equal 

to the r.h.s, is one, i.e. the relat ive frequency is almost surely equal to the probabil i ty, 

which is the strong law of large numbers (i.e. except for a set of start ing points 

of zero measure). 

ii) Another i l lustrat ion of the strong law of large numbers is due to Borel, and can 

be recovered very nicely direct ly from the ergodic theorem. A number • ~ [0,1[ is 

said to be normal to base r i f  each digi t  of its expansion in this basis has the relat ive 
] 

frequency r" A number is said to be normal i f  i t  is normal to every basis r. As a consequence 
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of  e rgod ic i t y  of  T, one can show tha t  a lmost  a l l  numbers are normal .  To prove this 

s ta tement )  i t  is su f f ic ien t  to  show tha t  a lmost  a l l  numbers are normal  to  base r) for  

each ' f ixed r. Indeed) this ensures tha t  a l l  the numbers are normal  to  base r, except  

for  a set A r of  zero measure ; the re fo re ,  the union of a l l  numbers being normal  to  

any base remains of measure one (the measure of U A is zero). Le t  us i l l us t ra te  this 
f r 

p roper ty  for  r=2. We def ine 

0 for ~ ~' 

A t for ~ ~ 

Then, the ergodic p roper ty  ( I I I - 2 2 ) f o r d ( l ( )  gives 

• 7_ ~ . ( ~ .  (III-2#) 

To in t e rp re t  the  l.h.s, of Eq.(III-2#)) let  us wri te  the  expl ici t  expression of 

basis : 

) 
n : b  .~_n41 

in binary 

then 

We see tha t  ~.+ TP~t. ~/ ~1 - ~  ~ . ~ . p =  ~ whereas 

4 4 ~  = 4 

Therefore)  

4:CTp<)_ - Io 
4 ~'3 t ~ R+p - -  "I ) 

and the  l.h.s, of Eq.(III-24) is simply the  re la t ive  f requency of the  digit  one in the  
1 

binary expansion of "~ ) which does converge) for a lmost  all ~t. ) to i ts  probabi l i ty  ~, 
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III.3.c) Two-dimensional abstract  dynamical systems 

1) Translat ions on t h e  torus T z 

This mapping has been studied in III.3.c). We noticed that it is ergodic, but 

not mixing, if the two parameters  of the translation are rationally independent. 

2) Arnold 's  ca t  

The Arnold's cat  mapping T is the linear automorphism of the two-dimensional 

torus T2 : t ( ' ~ , ~ )  mod 1 ~ for the measure ~ A ~ l d e f i n e d  as 

(III-25) 

One can also consider T as a mapping of the unit square or to i tself  : 

x= ro j , r  x t'o, r Eo, r Eo, F. 
To construct  a geometr ical  realization of this automorphism, one first maps the unit 

( !  I ~ and then brings back square X into the rhombus P(X , where P ~ [ = _ l  2 - /  ' any 

point ~ lying outside the square into the square by subtracting unity as many t ime as ne- 

cessary (one or two times) to each coordinate of 

0 4 ~ ~ X 

Fig. I I I . l~  - The Arnold's cat mapping : ~ is the star t ing ~igure, T~:~ represents the f i rst  
i te ra t ion  (taken ~rom ReL[AA-67] )  
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The automorphism T is known to be a K-system ([AA-67]), and the  example 

is nice because this proper ty  can nearly be seen (if one does not care  about  ma themat i c s )  

4 

O 4 

"with the  eyes". Fig.(iII.[6) r epresen t s  the  second i t e ra t ion  

of T. The cat is a l ready comple te ly  unrecognizable ,  

which conf i rms the f i rs t  impression of Fig.(III.15) t ha t  

T undergoes dras t ic  deformat ions  of shapes. It is easy 

to imagine t ha t  the ca t  will asymptot ica l ly  be "diluted" 

into the  whole square, which is the  mixing property .  Now, 

consider the eigenvalues ~1  andl-'~2 : 

Fig.III,16 - The Arnold 's  ca t  
mapping : second i t e ra t ion  

One sees t ha t  the  d i rec t ion D 1 defined by the e igenvec tor  

associa ted with h l is expanding under the ac t ion of T, whereas  the  di rect ion D 2 associa-  

ted  to the  o ther  e igenvec tor  is con t rac t ing  : a t  each step of the  process~ a r e c t a n g l e  

whose sides are paral lel  to D 1 and D 2 is s t r e t ched  along D I by a f a c t o r ~  , and compres-  

sed along D 2 by the  same fac to r  ~ . This mechanism is responsible for exponent ia l  

separa t ion  of trajectories~ indicat ing the  K-property .  Af te r  ~[~ steps~ the expanding 

fac to r  is simply ~ P =  exp ( ~ t ~ ' ) ,  which suggests t ha t  the  K-S-entropy of the  system 

is simply (this resul t  can be derived rigorously) 

Finally, let  us not ice  tha t  the  origin 0 is an invar ian t  point of T~ and t ha t  the  

orbi ts  of all points ( ~ )  ~ = ) are periodic ; one can also show the  exis-  

t ence  of two invar iant  curves  which a b h dense in the  square (see again [AA-67]). 

3) Baker ' s  t r ans fo rma t ion  

Consider again the  unit  square, and define the  t r ans fo rma t ion  T as 

f 
' x ' -  [ ' o / t [  x Foj E 

T 

& 

The name of the  t r ans fo rma t ion  is i l lus t ra ted  in Fig.(III.17), in which the  unit  square 

t r ans fo rmed  under T looks like a piece of dough worked by a baker.  



O,5 

76 

0 ~L X 4 

L 0,8 

2. X 0 

Fig.Il l.17 - The Baker's transformation : ~ is the start ing figure, and T I ~  repre- 
sents the f i rst  i terat ion (taken from Ref.[AA-67] ). 

The area-preservation of T can be seen on the figure. Also is clear the fact that each 

i terat ion of T doubles the number of horizontal "slices" in which the cat is more and 

more "compressed" and this property suggests the mapping to be mixing. In fact9 the 

dynamical system is much more chaotic than simple mixing, since i t  is a Bernouill i 

system. We can easily imagine this strong irregular i ty by noting that the image of 

the abscissa ~ of any point of X is, in any case 

which is the dyadic transformation of Eq.(III-18). The results obtained for the one- 

dimensional mapping Eq.(III-18) ensure that i f  we consider the part i t ion P of the square 
A 4 into the two atoms O ~ ' X  ~ ~ and --,~ ~ ~ ~ , then the sequence of measure- 

men ts  of ~ ~ ~ : ~  = 0,, .... ~ with respect to the partition P. will be completely 

random, i.e. completely equivalent to a sequence of coin tosses.  

Up to now, we have seen some examples of Bernouilli flows, all being abs t rac t  

dynamical system. Another famous example of Bernouilli mapping is generated by geodesics 

on surfaces of negative curvature.  We shall now investigate a class of physical systems, 

some of them having also the Bernouilli propert)~ 
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llI.t~ EXAMPLES AGAIN : BILLIARDS 

A b i l l ia rd  is a dynamica l  system produced by the f ree mot ion  of a point  pa r t i c le  

in a domain D o f  the plane /~2.  bounded by a closed curve r I -or,  more genera l ly ,  by 

a set of  closed curves ~I 4 -, w i th  e last ic  re f lec t ions  at  the boundary /~ of  D (i.e. the 

tangent ia l  component  of  any t r a j ec to r y  remains constant  a t  ~ , whereas i ts normal  

component  changes sign) (*). The boundary 1~ may conta in  singular points (ver t ices)  where 

the tangent  is not def ined ; we disregard a l l  t ra jec to r ies  coming at  some t ime  to  a 

ve r tex  of  ~ , which fo rm a set of zero measure. A b i l l ia rd  is the re fo re  a two  degrees 
I of f reedom system, w i th  at  least one constant  of mot ion ,  the energy E = ~ l ~ V  ~l . 

Not ice  tha t  the behaviour  of  any o rb i t  in phase space depends ne i ther  on the mass IYl 

of  the point  par t i c le  nor on i ts ve loc i t y  V (this pecul iar  fea tu re  of  b i l l ia rds is due 

to  the fac t  the mot ion  is s imply governed by the laws of geomet r i ca l  optics ) ; t he re fo re  

the proper t ies  of this kind of dynamica l  systems do not depend on the energy E, a l l  

the energy surfaces having exac t l y  the same st ructure.  

An orb i t  in con f igura t ion  space is an in f i n i te  sequence of  segments, each one 

corresponding to a constant  ve loc i t y  vec to r  ~ . There fore ,  i t  is na tura l  to search for  a 

Poincar~ surface of sect ion ~ such tha t  the successive crossings w i th  ~ correspond 

to  the successive bounces on the "wa l l "  

bounce Qn i ts curv i l inear  abscissa ~r t  a long [n 

been def ined on r • ), and ~:)n = $|~.og~ 

• To do this, le t  us take as coord inates of  any 

(once an or ig in  O and a sense have 

, where ~ is the angle of  the t r a j ec to r y  

leaving Qn w i th  the normal  to  r I a t  

O,,, Q n '  p o i n t i n g  towards  the  in te r io r  

s., of D. It is easy to show that the mapping 

M defined by 

" ~ is area-preserv ing,  i .e. tha t  (see Ref.  

[Be-81 a] for more detai ls)  

ae - J - *t . 

Fig.III.18 - Sur face  oI sec t ion  coord ina tes  for 
a bil l iard 

(*) The domain D may also be a non-compact  par t  of ~ 3. : see be low the example  
of  the Sinai 's b i l l ia rd .  
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The study of billiards is of in teres t  in many respects  : 

i) they are, among the physical Hamiltonian systems,  the most studied from a mathema-  

tical point of view, and some important  analytical propert ies  are known 

ii) billiards are very rich in their behaviours : there  exist  systems lying at the top, 

as well as at the bottom of the hierarchy of regularity described in Sect.III. l ,  and also 

systems which cannot be classified according to this hierarchy, i.e. for which the phase 

space contains both regular and chaotic regions 

iii) the o-~gy surface of billiards is of dimension two, which is the smallest  one needed 

to observe chaot ic  motion 

iv) for our purpose -trying to find signatures of chaos in quantum systems whose classical 

analogues are chaot ic  by s tat is t ical  studies of the spect rum-,  drums (quantum billiards) 

are the most convenient  systems : they have an infinite d iscre te  spectrum, and ef f ic ient  

numerical  methods are available to compute  long series of adjacent  levels. 

Regular billiards 

The rectangle) the circle., and the ell ipse are regular bi l l iards,  i.e. dynamical  

systems whose energy surface is a torus. The two  independent constants of mot ion are 

i) for the rectangle : the two project ions [ V~ l and ] V~ I of the moduli  of the 

ve loc i ty  on two axes paral le l  to the sides of the rectangle 

i i)  for the c i rc le  : the energy) and the angular momentum L~ = I ~ )  [ w i th  respect 

to the center of the b i l l ia rd  

i i i )  for  the el l ipse , the energy, and the product L I L  2 of the angular momenta w i th  

respect to the two loc i  

Fig. I l l .19 - Tra jector ies in regular b i l l iards.  Caustics can be seen for  the c i rcular  b i l l ia rd  
(the caustics are circles of same center as the b i l l iard)  and for  the e l l i p t i c  b i l l ia rd  (the 
caustics are ell ipses and hyperbolae confocal  w i th  the el l ipse def ining the boundary of 
the b i l l iard)  

For the c i rc le  and the ell ipse, the in tegrab i l i t y  manifests i tse l f  by the existence of 

fami l ies  of caustics, which reveal the existence of tor i  (see again Ref.  [Be-81 a], and 

also Ref.[Be-83]). 



7g 

Chaot ic  billiards 

As a f i rst  example, le t  us consider the Sinai's bi l l iard : the point mass moves in 

the plane ~ 7 .  and bounces on ref lect ing disks, al l  of the same radius, forming a periodic 

C) 
I" " l  

la t t ice  as shown in Fig.III.20. By 

t r i v ia l  symmetry arguments, one 

can reduce the study of this sys- 

tem to the study of the motion of 

a par t ic le  in a square, with 

a circular obstacle around the 

center. Simple in tu i t ion suggests 

that  the dynamical system associa- 

ted wi th the Sinai's b i l l iard is 

s t rong ly  chao t i c .  Indeed, as 

i l lustrated in Fig.III.20, a bundle 

of nearby t ra jector ies ref lect ing 

on convex obstacles is drast ical ly 

defocused, and spreads in a 

large part  of the conf igurat ion 

space af ter  a small number 

) of bounces. The ef fect  of this insta- 

b i l i t y  wi th  respect to in i t ia l  

condi t ions can be est imated : Fig.III.20- The Sinai 's  bil l iard 

suppose, for instance, that  one wants to calculate on a computer an orbi t  for R---- 0.I ; 

then, one can show that  at each bounce, about one decimal d ig i t  is lost for the angle 

determining the direct ion of the orbi t .  This means that ,  typ ica l ly ,  one cannot compute 

the t ra jector ies in Sinai's b i l l iard for a number of bounces greater than I0-20, which 

i l lustrates the dramat ic instabi l i ty  of the system I (see Ref.[Be-7g] for more detai ls, 

and also for other i l lustrat ions of the degree of instabi l i ty ,  in terms of external  perturba- 

tions of the physical system). 

In fact,  i t  has been proved by Sinai [Si-70] that  this b i l l iard is a K-system ; i t  

has even been shown more recent ly  to be a B-system. The proof by Sinai -which is very long 

and very elaborate-  has in i t ia ted further works on other bi l l iards, conjectured to be 

also chaotic, and the K-proper ty  (and also the B-property) is now known to hold for 

several bil l iards, such as, for example the stadium (two hal f-c i rc les of radius R, joined 

by two segments paral le l  to the line passing through their  centers), and also the diamond 

(see Fig.III.21). For the diamond, the chaotic behaviour has the same origin as for the 

Sinai's bi l l iard,  which is the negative curvature of the obstacles. The or igin of the instabi l i -  

ty  of the stadium is somewhat less in tu i t ive.  A small bundle of t ra jector ies contracts 

a f ter  ref lect ing on a circular -focusing- part  of the boundary, but subsequently expands 
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(a) 

(b) 

Fig.III.21- (a) the stadium 
(b) the diamond 

in such a way that  the synchronization ol successive 

contract ions is made impossible : expansions prevail over 

contract ions,  producing the s tochast ic  propert ies  ol  

the billiard. 

Notice that  in the limits R = 0 (Sinai's billiard : 

see Fig.III.20) or a = 0 (Stadium : see Fig.III.21-a), the 

Sinai's billiard and the stadium become integrable systems 

(a square and a circle respectively).  However, it should be 

emphasized that  the K-property (and the B-property) 

holds for any value of R ~ 0 (Sinai's billiard) or of 

a ~ 0 (stadium). This means that  a regular billiard may 

be t rans lormed i n t o ' a  strongly chaotic billiard by an 

infinitely slight perturbat ion of its boundary ; evidently,  

the KAM theorem -which would predict  the persis tance 

of tori under a small per turbat ion ol the int~grable 

sys tem- does not apply here. This is because the smoothness conditions required Ior 

the KAM theorem to be applicable are not sat isf ied by billiards. So Iar there  exists 

no equivalent to KAM theorem Ior billiards. Some results in this direction are known 

but their  Iield of applicability is still very peculiar ; for instance,  Lazutkin [La-73] 

proved the exis tence of tori for convex billiards having a very smooth bol "dary ("very 

smooth" means that  the radius of curvature as a function of the arc length is at least a 

C 553 function.. ,  which is only a suff icient  condition Ior the tori to exist :). 

Finally, let us recall  that  the ergodicity ol these chaot ic  systems does not exclude 

the exis tence ol periodic t ra jec tor ies  ( these Iorm a set  ol zero measure of t ra jec tor ies  

which do not visit the neighbourhood of all the points of the energy surface). For instance,  

the t ra jec tory  in the stadium passing through the two centers  ol the circle is periodic;  

also are periodic the t ra jec tor ies  hitt ing the horizontal segments  ol the stadium at 

right angle, e tc . . .  These periodic orbits can Iorm a family or be isolated. We shall not 

discuss the questions re la ted to the periodic orbits,  though they play a crucial role in 

the quantization ol the classical systems (see [Be-81 b] and [Be-83]). 

P s e u d o - i n t e g r a b l e  b i l l iards  - P o l y g o n s  

The chaot ic bi l l iards presented above have in common the property that  at 

least one part o l  the boundary is not a st ra ight  l ine ; this is, in fact ,  an essential condit ion 

to produce the K-proper ty .  Indeed, i t  has be shown that  the K-S entropy of bi l l iards in 

polygons is zero, i.e. t ra jector ies in polygons never show exponent ia l  ins tab i l i t y  ; but 

can one say more about polygons ? 
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As a part icular kind of polygon, we have already mentioned the rectangle, which 

is inte~rable. Also integrable are three kinds of triangles : the equilateral one, and the 

two right triangles (90°,~°,45 °) and (90°,30°,60°). Putting apart the integrable systems, 

polygons can be divided into two famil ies : 

i) i rrat ional polygons (i.e. polygons whose angles are i rrat ional mult iples of ~ ). These 

bil l iards are conjectured to be eri~odic , and perhaps mixin~ systems (see Ref.[Ho-75]). 

i i) rat ional polygons (all angles are rational multiples of ~ ). For such systems, i t  

is clear that the angles of the segments defining any t ra jectory wi th a f ixed direction 

can take only a f in i te number of di f ferent values. Consequently, these systems are certainly 

not ergodic. In fact, one can show the existence of another f i rst  integral F which is 

independent of H and in involution wi th H only almost everywhere, i.e. except for a 

discrete set of singular points (see e.g. Rei.[ZK-75] ; such systems are called pseudo- 

intel~rable. Due to the existence of F, the allowed region in phase space is of dimension 

two, l ike for an integrable bi l l iard, but the singular points just mentioned prohibit the 

invariant surfaces from being tor i  ; these surfaces can be viewed as tor i  wi th more 

than one hole, i.e. two-dimensional manifolds of genus ~ ~ I. 

Integrable, chaotic and pseudo-integrable bil l iards wi l l  be discussed in Section IV 

from a quantal point of view. 

r,.,# I;T¢,M 

1 ~ o,,-~u / \ / , , 

1 

Fig.III.22 - Ergodic theo ry  • the  h ie ra rchy  of chaos  
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IV - Q U A N T U M  C H A O S  

As shown in the preceding section, classical chaotic motion is now reasonably 

understood, at least for the "pure" systems which enter in the classif ication of the 

ergodic theory as summarized in Fig.III.22. I t  is then natural to ask whether there 

are quantum-mechanical manifestations of classical chaotic motion. We shall use the 

term "quantum chaotic system" in the precise, and restr icted, sense of "quantum system 

whose classical analogue is chaotic". General discussions on quantum chaotic systems 

can be found in ref.[Ca-$4] ; i t  appears that there is a large variety, and even disparity, 

of opinions. 

I t  should be clear from the beginning that the notions which are of most 

relevance in the classical case may be obvious and useless in the quantum case. Consider 

for instance the quantum analogue of a classical chaotic bi l l iard, namely a free part ic le 

in a box. Remember that its spectrum, determined by the eigenvalue equation (I-22), 

contains.., an inf ini te number of discrete eigenvalues E n. The t ime evolution of a quantum 

state ~ ( ~ ,  {: ) is given by 

l& 

which is quasi-periodic. Therefore there wi l l  never be exponential separation of the 

difference of wave-functions of two close in i t ia l  states) in contrast to the classical 

orbits which do show the exponential divergence characterist ic of classical chaotic 

motion (K-systems). We thus expect that the "dict ionary" translating classical chaos~---> 

quantum chaos wi l l  not be simple. 

In what follows we shall restr ict  ourselves, in the search for manifestations 

of chaos, to properties of the spectrum and nothing wi l l  be said on properties related 

to wave functions, l ike structure of nodal lines, properties of the Wigner function, 

etc.. The tools to characterize f luctuation properties of spectra, described in Section ]I 

in connection wi th random matr ix  theories, wi l l  be thoroughly used. 

The f i rst  property which has been considered as a possible tool to discri- 

minate between integrable and chaotic systems is the behaviour of the nearest-neighbour 

spacing distr ibution for small spacings, i.e., p ( X ' )  as X - - ~  0. Berry and Tabor [BT-77], 

using torus quantization, predict level clustering for integrable systems ~b(.,~ A~ (2 -)¢ 

in the asymptotic high energy regime (*). This feature can be understood by examining 

(*)This prediction excludes harmonic oscil lators, for which the arguments of the proof are 
not applicable. I t  can be shown, in fact, that the distr ibution Ip(X') does not fol low 
the Poisson law for the two-dimensional harmonic osci l lator [BGP-$/~]. 
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the  occur rence  of degenerac ies  in a~paramete r  space (see [Be-g~]). It can also be viewed 

as the  resul t  of mixing independent  spec t ra  (~) . Let  us give a heuris t ic  a rgument  i l lus t ra-  

t ing this  idea. Consider the  circular  membrane ,  which is classically in tegrab le  (circular 

billiard)~ or be t t e r ,  to avoid degeneracies~ the  semi-c i rcu lar  drum. The e igenfrequencies  of 

with Dirichlet boundary conditions on the semi-circle are given by the zeros of the 

Bessel functions 3~/(X ~) (~)  = 1,2,3,...). Let ~'y~£ ( $ = 1,2,3,..) denote the s-th 

zero of 3y (X~ . The ~'yi£ 's ( $ =1,2,...) extent from ~ ~ to inf ini ty with a 

density 

"i 4 -  for ~ V (IV-3) 

and are pract ica l ly  f luc tua t ion- f ree .  Consider now an in terval  a t  high energy containing 

N levels ~ .  (n.  = 1,2,...,N) ordered with increasing value of ~lt  . The successive 

values of ~ , which are the  zeros ~ , correspond to of the  order of N d i f fe ren t  

(and unordered) values of V • The point now is tha t  zeros of 3~, and 3~,' , with V not  

too close to ~ ' ,  are likely to be uncorre la ted .  Consider,  for ins tance,  a s t r e t ch  of ten 

e igenfrequencies  near the  lg00th e igenl requency.  The labell ing ( I ~ ' , S  ) of successive 

e igenfrequencies  is as follows : (82,4), (70,7), (37,18), (45,15), (5,32), (32,20), (3,33), 

(1,34), (18, 26), (60,10). We are the re fo re  in a similar s i tuat ion as when randomly super- 

posing picket  fences,  which leads to a Poisson spect rum (**). 

It has been predic ted  tha t  a dras t ic  change in the  spacing dis t r ibut ion ~ ( ' X )  

takes  place when going from an in tegrable  case (Poisson) to a non- in tegrable  case.  

Berry [Be-g3,Be-g4] predicts -p(;~') ~ X ~ like in GOE, whereas Zaslavsky [Za-81] 

predicts I~('~) ,~/ X ~" where O- is related to the Kolmogorov entropy .~t~l; of the 
x-'Jo 

corresponding classical system. On the other hand, Richens and Berry [RB-81] predict 

that level repulsion wi l l  also be present for systems which classically are pseudo-inte- 

grable. In what follows we shall discuss some recent results concerning fluctuation- 

(*)In sect ion II we saw tha t  the  resul t  of superposing randomly highly cor re la ted  spec t ra  
- the  a rgument  works even for picket  fences-  is to produce a Poisson spec t rum.  We also 
saw tha t  the  e f f e c t  of superposing shell model spec t ra  corresponding to d i f fe ren t  values 
of 3 ~ , each one having level repulsion, is to destroy all kinds of correlations~ and 
in par t icular  level repulsion (see Fig.II.11). 

(**)The keypoint of this heuristic argument is the independence of the positions of 
successive levels in a given interval for large /~ (or E). Of course, this does not hold 
for the spectrum m +~'r t  ( II~j n = 12,3,,,4 o( i r rat ional)  of the two-dimensional 
harmonic oscillator, which leads to strongly correlated levels in any interval of the 
spectrum, 
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propert ies  of spect ra  of systems whose classical analogues are eilJaer integrable or chaotic .  

We shall not confine the discussion to the presence or absence of level repulsion but, 

for reasons that  should be clear to the reader from the discussion of Section II, take 

as re fe rence  pat terns  the ent i re  Poisson= and GOE- flucfuations.  

IV.I VIBRATIONS OF THE MEMBRANE (QUANTUM BILLIARDS) 

Towards the end of Section III, reasons were given for putting special 

emphasis in the study of billiards. And examples were shown of integrable,  chaotic 

and pseudo-integrable billiards. Let us now study some of their  proper t ies  in the quantum 

case,  specifically their  spectral  propert ies .  The cases to be discussed are shown on 

i 
t 

I 

• - ~ -  even-e~*n 

• - ~ - e v e n - ~ l d  

Fig.IV.l - Column (a) : shapes of d i f fe-  
rent  membranes,  whose spectra l  f luc- 
tuat ions are discussed. Column (b) : 
examples of the symmetry  charac te r  
of the eigenfunctions considered. For 
the  circle the symmetry  is given by 
Eq.IV-4 and the eigenvalues coincide 
with those of the quarter  of a circle.  
For S ina i ' s  billiard shape, the symme- 
try is given by Eq.IV-5 and the eigen- 
values are those of the desymmetr ized  
Sinai'billiard, as shown on column (c). 
For the stadium, the four possible sym- 
met ry  classes are indicated (see Eqs. 
IV-6). For the odd-odd symmetry ,  the 
eigenvalues are those of the quarter  of 
stadium, as indicated on column (c). 

Fig.IV. l  : c ircle (integrable)) Sinai's bi l l iard 

and stadium (both strongly chaotic) in 

fact Bernouill i systems). Mention should be 

made of the pioneering work in the direction 

we fol low : Refs.[MK-79,CVG-80] for the sta- 

dium and ref.[Be-81b] for Sinai's bi l l iard. To 

determine the eigenvalues of Eq.IV-2 wi th 

Dir ichlet  boundary conditions, an ef f ic ient  

method has been proposed by Berry [Be-81b]. 

I t  is inspired on the work in solid state physics) 

by Korringa) Kohn and Rostoker, to determine 

the high-energy bands at the centre of 

the Bril louin zone. Once a sequence of eigen- 

values is obtained, there is no ambiguity in 

separating the average part and the f luctuat ing 

part of the spectrum. Indeed) we know that for 

the systems we are considering the smooth 

part is given by Eq.(I-24) (see Fig.I.7). The 

procedure is therefore to f i rst  compute a 

sequence of eigenvalues ~ Ei~ and then to 

unfold the spectrum via Eq.(I-27), where N~v 
is given by Eq.(I-24). One f inal ly has a sequence 

of points ~1¢~'~ wi th mean spacing equal to 

unity, all over the spectrum. 

Let us now present some results. 

To i l lustrate how the analysis is performed) 

we consider f i rst  a " t r iv ia l "  case, the case 

of the circular membrane. To avoid two- 

fold degeneracies, we take a semi-circle or a 
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quar te r  of a circle.  Equivalently,  the  quar te r  of a c i rcular  membrane  corresponds 

to eigenvalues of the  full c i rc le  whose associa ted e igenfunct ions  have the  symmetry  

proper ty  i l lus t ra ted  on column (b) of Fig.IV.I, namely 

(IV-t) 

The eigenvalues are given by the squares of the roots ~ , $  of the Bessel functions 

Jv  (X ~) , wi th Y' = 2,%6,. .  and ~ = 1,2,3,... On Fig.I.Ta is shown the cumulative density 

N(E) for the f i rst  eigenvalues. On Fig.iV.2 are shown the results for the spacing distr ibu- 

tion ~ ( ' ~  and for the average value of Z~ 3 as a function o£ the length L. On 

p(x) 

0.5 

~3 

1.0 

0.5 

. . . .  i . . . .  i . . . .  T . . . .  T . . . .  , . . . .  1 ~ GOE 

/ ~',l \ ~Quar'ter" q 

I 2 

• Quarter , "~ ,'" 
• or d ~ . . .  

Pois s6~.n,~,~. 

J'~ /GOE 

Fig.IV.2 - Results of level f luctuations 
for the f i rst  675 eigenvalues of a c i r -  
cular membrane corresponding to eigen- 
functions wi th the symmetry indicated 
on column (b) of Fig.IV.l  : (a) Nearest- 
neighbour spacing histogram. (b) ~3  as 
a function of L ; dashed lines for 
Poisson and small bars for GOE indicate 
the ef fect  of the finiteness of the sample 
as predicted by the theory (one standard 
deviation). Curves corresponding to the 
Poisson case (stretch of uncorrelated 
levels) and to the random matr ix  theory 
predictions (GOE) are ~awn for comparison. 

Table IV.l  is given the value of 

the correlat ion coeff ic ient C between 

adjacent spacings. As can be seen, 

the computed values are far from GOE- 

values and rather close to, although 

not consistent with, the Poisson-values 

(except for C, which is consistent 

wi th the Poisson-value C=0). We interpret 

these results as follows. The spectra 

under study are not translational invariant 

or stationary. We expect that the charac- 

ter ist ic f luctuation patterns (GOE or 

Poisson) are valid in the asymptotic 

regime (high energy). The departures 

of the results presented for the circular 

membrane from Poisson indicate that 

the asymptotic regime has not yet 

been reached. Work is in progress to 

de te rm ine  the rate of convergence 

to the asympto t i c  regime (Poisson 

in the present case). 

Let us now consider chaotic 

systems. We treat  the desymmetrized 

Sinai's bi l l iard as shown on column 

(c) of Fig.IV.l ,  or, equivalently, the 

solutions of the Schr6dinger equation 

IV-2 wi th Sinai's bi l l iard as the boundary 

and with the symmetry 

= -'q(->'4t)= -q." = -  ( i v - 5 )  
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I Number 
~f levels 

C 

1/4 Circle Stadium 
(one symme-  

Stadium 
(mixed sym- 

Sinai 

try) 

810 

metries) 

GOE Poisson 

675 7#0 3200 

-0.04 +0.04 -0.30- + 0.04 -0.31-+ 0.0# -0.18-+0.02 -0.27 0 

Table IV.I 

Values of the correlat ion factor  C between adjacent  spacings (Eq.I-37) for different  
systems investigated, GOE- and Poisson-values are given for comparison. 

To improve the s tat is t ical  significance of the results, we consider four different  cases 

by changing the value of the parameter  R and perform a joint analysis of the results as 

0 0.5 10 15 2.0 x 2.5 

~3 (b) 'il 

o../J 
Y 0.1 o S i n a i ' s  b i l l i a r d  

o ~ lb ,~ 2'o 2s 

Fig.IV.3 - Results of energy level f luctua-  
tions for desymmetr ized Sinai's billiards 
as specified on the upper right corner of 
the figure. 740 levels have been included 
in the analysis, corresponding to the 51-th 
to 268-th level for R=0.1, 21-th to 241-th 
level for R=0.2, 16-th to 194-th level for 
R=0.3, l l - t h  to 132-th level for R=0.4. 
See caption of Fig.IV.2 for further expla- 
nation (taken from [BGS-83~BGS-84a]). 

explained in [BGS-83,BGS-84a]. The results 

are presented on Fig.IV.3 and Table 

IV.1. In contrast  to the case of the circular 

membrane,  for which the results are 

close to the Poisson spectrum, we see now 

that  the results are fully consistent 

with GOE-predictions for ~ ~ '~  (not 

only for small values of X ), for ~ 3  and 

for C. 

Let  us invest igate another system 

whose c l a s s i ca l  analogue is chaotic,  

namely one part icle in a two-dimensional 

box whose boundary is the stadium. 

The solutions of eq.(IV-2) can be classified 

according to four di f ferent symmetry 

classes : 

e V a - I t  - ~ / £ ~  

(iv-6) 

odd - ~ q ~  

~ - ~  

~ ( x / ~ ) = - q ; ~ - X / ~ ) =  q ' ( x ~  (IV-6"') 
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and the spectrum~ despite the symmetry  of the problem~ contains no degeneracies .  

Take now the eigenvalues corresponding to a defini te  symmetry-class~ for instance 

p(x) 

~5 

' ,  (a) f . -S ta  d ium 
i ',. (one symmei'ry) 

" " .  " t X ~ G O E  

1 2 

0.3 / ...... ~_-*_-~2~ 

0.2 / "~ 

0.1 ~ l l  • Stadium 
V (one symmetry) 

l I 

o s lb 2'o  s,3'o 

p(×) ,~ . . . . . . . . . . . . . . . . . . . . . . .  , . . . .  

t 
0 1 2 

Z3 i r i l y / ' l  s " z l  

(b) /"/S / 
• Stadium ,,~,,," 

/mixed ] ,',~. 
1 0 ~syrnmetrles).~/,,/ \Poissan 

/ z 
z / "  • 

zz, z • 

~ ~ ~ 2P5 5 1~3 15 20 L 

Fig.IV.# - Results of level f luctuations 
for the first  810 eigenvalues of a mem- 
brane whose boundary is a stadium. 
They correspond to eigenfunctions with 
odd-odd symmetry  (see Fig.IV.l). The 
ratio 2a/R of the s traight  line segment  
to the radius is I (see Fig.III.21a). See 
caption of Fig.IV.2 for fur ther  expla- 
nations (taken from [Sc:-8#,BGS-g#b]). 

Fig.IV.5 - Same as in Fig.IV.# but with 
the four d i f fe rent  symmetry  classes~ 
as specified in Fig.IV.l. The spectrum 
analyzed contains the first  3200 eigen- 
values. See caption of Fig.IV.2 for 
fur ther  explanations (taken from [Sc-8#~ 
BGS-g#b] ). 

the odd-odd case.  Results are presented on Fig.IV.# and Table IV.I. Again we have 

a remarkable agreement  with GOE-predictions. A similar ag reemen t  is obtained when 

analyzing the eigenvalues belonging to the other  three symmet ry  classes. Consider 

finally the spectrum which contains all levels corresponding to the four symmetr ies  

of the stadium (IV-6~6'~6"~6'"). The results change drastically. They are  shown on Figs.I.7b~ 

IV.5 and Table IV.1. The spectrum fluctuations are in te rmedia te  between GOE and 

Poisson. The results would be closer to Poisson-fluctuations if more than four d i f ferent  

families charac te r ized  by d i f ferent  quantum numbers would be present .  This is in exact  

analogy with what happens when superposing several d i f ferent  GOE spectra .  Or with 

compound nucleus resonances~ when no a t tent ion  is payed to quantum numbers and 

the spectrum results from mixing several  pure series.  
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IV.2 OTHER EXAMPLES 

The systems treated in the preceding subsection were classically either 

integrable or strongly chaotic (highly-unstable ergodic systems) and correspondingl3i 

we saw that the spectra show Poisson- or GOE- f luctuation patterns. What happens 

then for systems displaying a more complicated structure in phase-space ? We have 

seen in Section Il l  that there exist systems whose Poincar6 sections look as belonging 

to an integrable system at some part icular energies but that, by changing the energy, 

islands of chaot ic i ty appear and increase unti l  they cover the ful l  Poincar6 sections, 

showing that in fact the system is non-integrable and chaotic. Does this beJaaviour have 

some manifestation in the corresponding quantum systems ? And is there a transit ion 

parameter characterizing the relat ive importance of chaotic/non-chaotic regions which 

manifests in the spectral f luctuations ? The problem is very interesting but d i f f icu l t  

and, although several efforts in this direction are worth mentioning -the study of a 

two-dimensional harmonic osci l lator plus quartic terms in ref. [HYK-84], of a system 

of kinet ical ly coupled Morse oscil lators in ref.[MT-8Q], of the H6non-Heiles Hamiltonian 

(Eq.III-15) in ref.[PS-83]- i t  is st i l l  p r ema tu re  to draw general  conclusions from them.  

Mention should also be made of the  study of a one -pa rame te r  family of bil l iards which 

classical ly goes continuously from the in tegrab le  to the  chaot ic  regime ; in the  quantum 

case  the  spacing dis t r ibut ion ~ ( ~ ¢ )  seems to continuously go from a Poisson to a 

Wigner dis t r ibut ion [Ro-8a]. 

In this  direct ion,  a very recen t  work by Seligman, Verbaarschot  and Zirnbauer  

deserves  special ment ion  [SVZ-8q]. These authors  consider a two-dimensional  system 

consist ing of two in te rac t ing  par t ic les  moving in one-dimensional  po ten t ia l  wells. The 

Hamil tonian is 

2_ 

where V 4 , V~. and ~ t  have the same functional form 

(IV-7) 

In Eq.IV-S , and q are parameters.  With an adequate choice of the numeri- 

cal values of tax S , ~"  , /~1 and A~. , the  proper t ies  of the  system are studied 

as a funct ion of a single pa r ame te r  ~4~f -  . For ~,f~t-= 0 the  sys tem is separable  

and the re fo re  in tegrable .  The study of classical  t r a j ec to r i e s  and Poincar6 sect ions  

indica te  t ha t  the  system is probably, for large values of /~4a./- , c lassical ly chaot ic .  

By varying the  s t r eng th  of the  in te rac t ion  ~4~./- , the  f rac t ion  ~ of phase space 

fi l led by chaot ic  t r a jec to r ies ,  in the  energy region occupied by the  f i r s t  400 levels 

of each pari ty,  can be varied from 0 to ~ 1. Some resul ts  for level  f luc tua t ions  are 

reproduced on Fig.IV.6. Figs.IV.6(a) to (e) correspond to the  f rac t ion  of phase space 
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taking the estimated values tv 1.0, 0.7, 0.% 

1.0 (a) 

0.5 
/ 

0 i i 
1.0 

(b) Z~ 3 

0 . 5  ~ 

0 .5  

1. '~ ' , , 

zx3 ~ . o , _  
0 .5  

0 .5  - 

i , 

1.0 l- (a) 
PCS)/~% 

o: V 
1.0 ~ (b) 

P(S) I ~  o.2F 
1.0 I- (c) 

I 
1.O ~(d) 

1.0 ~ (e) 

~ 0  1 2 

0.I, and 0.0, respectively. (a) corresponds 

to the chaotic regime and (e) to the 

integrable case, As can be seen, (a) 

agrees beauti ful ly with GOE and (e) 

wi th Poisson. In situations characterized 

by I ~ f "~ 09 the f luctuation patterns 

are intermediate between GOE and 

Poisson. For the integrable or quasi= 

integrable case ((e) and (d)), there is 

a f lattening of ._~ (L) for L ~rJ 9 

which is not ful ly understood. 

FIB=IV.6 - Results  of level f luctuat ions  
( ~3 (L) and p(X~ ) for the 
Hamiltonian IV.7. Dots and histograms 
represent the results obtained from 
the 00-th to the 400-th level of each 
parity. The continuous lines corres- 
pond : in (a) and (e) to GOE and Poisson 
respectively ; in (b), (c) and (d) to a 
continuous interpolat ion between GOE 
and Poisson derived from a one-parame- 
ter random matr ix  model (taken from 
[SVZ-S~] ). 

IV.3 DISCUSSION 

We close this  Section with some remarks  and a shor t  discussion. A more 

general  one is postponed until  the  next  Section.  

Two main conclusions can be drawn from the resul ts  discussed : In tegrable  

systems show Poisson f luc tua t ion  pa t te rns  whereas  strongly chao t i c  systems show GOE 

f luctuat ions .  An example  has been given of a strongly chaot ic  system whose s t a t e s  

belong to four d i f fe ren t  symmet ry  classes and the  f luc tua t ions  are) separately)  of 

GOE type) in pe r f ec t  analogy with what  happens,  for instance)  in real physical sys tems 

like nuclei,  with pure sequences.  We have also seen a nice example of a continuous 
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transi t ion from integrable to chaotic regime with a corresponding transi t ion in the 

spectral f luctuat ions from Poisson to GOE. However, many questions remain open. 

We have already mentioned that  the spectral f luctuat ions of the systems discussed 

are not translat ional invar iant  and that the character ist ic f luctuat ion patterns are 

expected to be asymptot ic.  I t  is important  to determine the rate of convergence to 

the asymptot ic regime and, at a given energy I~/the range on which Poisson or GOE 

f luctuat ions are expected to be val id. Clear ly,  the range does not extend from zero 

to E and in this connection an important  role is played by the d i f ferent  sorts of classical 

closed orbits (see [Be-81b~g#]). Another question of current interest is to determine 

the parameter that  governs the spectral f luctuat ions when the regime is not fu l ly  chaotic. 

The authors of ref.[SVZ-8#] ten ta t i ve ly  propose an average of the f ract ion of phase 

space f i l led by chaotic t ra jector ies in the energy range considered. This seems very 

plausible but more experience is needed before a f inal  conclusion can be drawn. 

Let  us also mention some problems created when heavily relying on numerical 

results (see the int roductory Section for ext remist ic  views and warnings). Obviously, 

the longer the spectrum span studied, the more d i f f i cu l t  and t ime consuming is the work 

to be furnished. But in order to have a chance to guess asymptot ic  properties, i t  is 

of crucial  importance to test the approximate t ranslat ional  invariance of the results 

and one thus needs many levels. It may therefore be misleading to rely exclusively 

on results obtained from the f i rst  few dozens of lowest eigenvalues as is of ten done. 

Furthermore, i t  is also clear that  i f  one is compar ing, for  instance, two bi l l iards d i f fer ing 

only by small i r regular i t ies,  in order to see differences one needs small wavelengths, 

i . e ,  high energies.Also worth mentioning are some other types of numerical d i f f icul t ies.  

At  the end of Section IV some properties of rat ional  and i r ra t ional  polygon bi l l iards 

were mentioned. I t  is our understanding that,  wi thout  a solid theoret ica l  tool ,  i t  is 

hardly possible to invest igate on a computer questions where the ra t iona l i ty  or i r ra t iona l i t y  

plays an essential role. (In this respec% the study of the harmonic two-dimensional  

osci l lator is i l luminat ing [BGP-g#]). 

We have, for instance, studied a b i l l iard in a rat ional  polygon (i.e. a pseudo- 

integrable system) discussed in ref.[RB-81]. Richens and Berry predict level repulsion. 

We have computed several spectra containing each of the order of 300 levels but no 

sign of at ta in ing an asymptot ic  regime has been found, for instance for the average 

value of A ~ .  Presently we cannot draw conclusions from these numerical experiments. 
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V- SUMMARY, REMARKS, CONCLUSIONS 

Our main concern in theses lectures has been the study of f luctuat ion proper- 

ties of spectra. We have seen that as a prerequisite, one needs a clean ident i f icat ion 

of the smooth behaviour of the spectrum. What is le f t  out from the average behaviour 

are precisely the level f luctuations. Ensembles of random matrices have been introduced 

to describe the Hami l tonian and special emphasis has been put in the description of 

the Gaussian Orthogonal Ensemble (GOE), the prototype model val id for t ime-reversal  

and rotat ional  invar iant  systems. The der ivat ion of the GOE using in format ion theory 

is most enl ightening; i t  appears as the model obtained when the only ingredient of 

the theory is the real symmetr ic  nature of the Hamil tonian. It is impor tant  to remember 

that  GOE is a parameter- f ree theory. Reasons have been given to consider the fai lure 

of GOE in describing global properties (exper imental  level densities) as unimportant.  

Indeed, one expects that  global and local properties are disconnected. On the other 

hand, i t  has been shown that GOE-fluctuations are not specific of GOE. They are shared 

presumably by a large class of ensembles of random matrices. We have examined some 

of them. 

We have discussed how to character ize level f luctuat ions. In ful l  general i ty,  

one needs the set of k- level  cluster functions Y~. Some of the most relevant qual i ta t ive 

features of GOE f luctuat ions have been emphasized : level repulsion (small probabi l i ty  

of occurrence of small spacings) and spectral r ig id i ty  (for instance, logar i thmic increase 

with L of the variance of the number of levels to be found in an in terval  of length 

L). This is in contrast with what happens for a spectrum obtained by adding spacings 

coming from random independent tr ials distr ibuted l ike e -x, v iz.a Poisson spectrum. 

In this case there is by construction no level repulsion but level clustering (the variance 

of the number of levels increases l inear ly with L). The ef fect  of level repulsion is 

that  levels appear rather evenly distr ibuted, and when spectral r ig id i ty  is present 

the spectrum looks incompressible. I t  is impor tant  to notice that  the spacing distr ibut ion 

p(x) contains no in format ion about spacing correlat ions, one of the main characterist ics 

of GOE-f luctuat ion patterns. The role of exact symmetries is prominent and GOE-predic- 

tions apply to levels having the same set of exact quantum number (3 ~ ). 

The comparison between GOE-f luctuat ion predictions and exper imental  

data has been reviewed. Due mainly to a thorough e f fo r t  in high resolution measurements 

of compound nucleus resonances, a very str ingent comparison between theory and nuclear 

data can be performed. GOE-predictions are fu l ly  consistent with experiment,  not 

only for 2 -po in t  measures, where the comparison may become signif icant at as low 

as a few percent level,  but even for measures containing up to /~-point cluster functions. 
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The present  quality of a tomic data allow a comparison which, although quite signi£icant, 

is yet  far from what can be achieved for the nuclear case.  There are a few very recen t  

and promising a t t empt s  to compare GOE-fluctuations with molecular spectra .  An exten-  

sive exper imental  e f fo r t  in the atomic and molecular case is called for. It is worth 

mentioning that the close agreement between GOE-predictions and data in the nuclear 

case can be used to impose restr ict ions on mechanisms that  would change the f luctuat ions. 

In part icular  i f  t ime reversal invariance is not an exact  symmetry,  the appropr iate 

model would be the Gaussian Uni tary Ensemble (GUE, see Fig.II.7b). But even a small 

perturbat ion of a GOE-matr ix  by a GUE-matr ix  induces major changes in the f luctuat ion 

properties. This notion is being pursued to derive an upper bound on the t ime-reversal  

symmetry breaking part of the nuclear Hami l tonian [FK-82].  I t  is not yet clear whether 

wi th the amount of presently avai lable nuclear data such an upper bound may be competi- 

t ive wi th the ones derived by other means (sensit ivi t ies down to I0-3). In passing, we 

mention a conjecture supported by extensive numerical  data [Od-82] : the f luctuat ion 

propert ies of the imaginary part of the zeros of the Riemann zeta function are those 

of the eigenvalues of GUE matrices (or of uni tary matr ices belonging to the equivalent  

c ircular uni tary ensemble). 

In summary, we are facing a remarkable general i ty  of f luctuat ions which 

is two- fo ld,  exper imental  (nuclei, atoms, probably molecules, covering f ive or six orders 

of magnitude in scale, which is f ixed by the average level spacing) and theoret ica l  

( i t  is shared by a large var ie ty  of mat r i x  ensembles). I t  applies to very d i f ferent  systems, 

governed as wel l  by strong short range interact ions than by e lectromagnet ic  long range 

interact ions. What is then the origin of this universal i ty  of level f luctuat ion laws ? 

They apply to complex systems, but complex in which sense ? What is the origin of 

the randomness ? To get insight in these questions we turn our a t tent ion to classical 

conservat ive Hamil tonian systems, were the notions of simple and compl icated have 

been thoroughly invest igated, in the classical case, we fo l low the path that  leads from 

ext reme regular i ty  ( integrable systems) to strongly chaot ic mot ion. The most impor tant  

tools are short ly reviewed -structure of phase space, Poincar~ sections, how the phase 

space is f i l led when the system evolves, s tabi l i ty  of orbits, etc.-  and the hierarchy 

of i r regular systems is defined : ergodic, mixing, K-  and Bernoui l l i  systems. It is discussed 

in which sense a system governed by causal equations of mot ion may be unpredictable. 

Examples of very d i f ferent  nature are given, i l lust rat ing the d i f ferent  categories. In 

part icular,  the propert ies of several two-  dimensional systems are described using the 

tools introduced. I t  is seen that in general the structure of the Poincar~ sections depends 

on the energy and that  for some systems, by vary ing the energy, one undergoes a transi-  

t ion from almost regular motion to chaot ic motion. Special emphasis is put on bi l l iards,  

which have the simpl i fy ing feature that al l  their  energy surfaces have the same structure. 

I t  appears that  there is no need of many degrees of freedom (in fact ,  two are suff ic ient)  

in order to at ta in  strongly chaot ic motion and several two-dimensional  strongly defocusing 
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bi l l iards are discussed (Bernouil l i  systems). 

We then proceed to search for quantum-mechanical manifestat ions of classical 

chaot ic motion and restr ic t  ourselves to spectral properties. To s impl i fy the discussion 

and wi th the aim of f inding clean signatures of chaot ic i ty ,  we t reat  as pure as possible 

l imi t ing  systems, namely the Schr6dinger equation for one part ic le moving in a box 

in two dimensions (equivalent ly the transverse vibrat ions of a membrane) corresponding 

to integrable and to strongly chaotic bi l l iards (BernouiIJi systems). I t  appears that  

the spectrum-f luctuat ions are of the Poisson type for the integrable case and of GOE- 

type for the chaotic bi l l iards. We are thus led to make fhe fol lowing Conjecture l : 

The spectrum of the Laplacian wi th Di r ich let  (or Neumann) boundary conditions on 

an i r regular boundary has asymptot ica l ly  (high energy) GOE-f luctuations (*). By irregular 

we mean such that the corresponding classical b i l l iard is a Bernoui l l i  system (possibly 

that  ergodic is suff icient). These results, of course, apply also to transverse' vibrat ions 

of a membrane or, in three dimensions, to the electromagnet ic  oscil lations of a cavi ty.  

Porter has foreseen this possibi l i ty very clearly. He wrote : "That mat r i x  ensembles 

wi l l  most l ike ly be relevant to the fields of acoustics and e last ic i ty  is rather evident" 

[Po-BSa]. But experiments should be performed, for instance by observing the resonances 

of a microwave cav i ty  of i r regular shape [Dy-83]. Therefore, the fo l lowing picture 

emerges : At  a "macroscopic scale", we have universal i ty propert ies for these systems. 

The number of eigenvalues up to a given energy depends only on macroscopic features 

of the boundary, such as surface, per imeter .  At  the other extreme, at a "microscopic 

scale", f luctuations also show universal i ty  patterns : Poisson-pattern for integrable 

systems, GOE-pattern for strongly chaot ic systems. 

It is unfortunate that in the l i te ra ture one uses the terms "regular" and 

" i r regular"  spectra to indicate spectra or iginat ing from a regular and i r regular system 

respect ively.  With this denomination, a spectrum l ike the one shown in Fig.l.Sa would 

be "regular" whereas the ones shown in Fig.I.Sc,d would be " i rregular".  But, as we 

have seen, levels from an " i r regular"  spectrum are much more regular ly distr ibuted 

than from a "regular" spectrum. The interplay between the symmetry or regular i ty  

of the shape of a box or a potent ia l  and the regular i ty  of the associated eigenfrequencies 

or eigenvalues is an important  and fami l ia r  topic in acoustics and nuclear physics. 

In acoustics, for instance, one major pract ical  problem consists in designing auditor iums 

such that  the response is as uniform as possible and i t  is wel l  known from acousticians 

that  for that purpose i rregular walls are desirable, whereas when the room is more 

symmetr ica l  the response of the room is more i r regular [Mo-81]. In nuclear physics 

(*)One can imagine var iat ions to this Conjecture I.  To at tack the problem mathemat ica l ly ,  
i t  may be convenient, instead of putt ing the compl icat ion in the shape of the boundary, 
to put i t  in the metr ic  of the space and consider free mot ion wi thout  walls. We remind, 
for instance, that  the geodesic f low on a surface of negat ive curvature is a Bernoui l l i  
system [Or-7#]. 
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i t  is known that  there are many facts wel l  explained by the propert ies of the mean 

f ield. In part icular,  shell ef fects belong to everyday pract ice of nuclear physicists 

and are responsible for dramat ic  effects in a mul t i tude of phenomena l ike the abundances 

of elements, the occurrence of stable deformations, the heights of fission barriers, 

the existence of shape isomerism, etc..  And large shell ef fects are nothing but ext reme 

cases of the clustering or bunching of eigenva]ues that  we have been discussing. Would 

the mean f ie ld be complete ly i rregular,  shell ef fects would not exist.  

However, the origin of the success of GOE in describing the f luctuat ions 

of the compound nucleus resonances has not to be searched in propert ies of the mean 

f ie ld because we very well  know l hat a s:ing]e-par~ic]e theory is absolutely unable to 

cor rect ly  predict the positions and widths of these resonances. The origin of this success 

is to be found in more general propert ies which are not specif ic of shapes of boxes 

or potentials. Remember that  spectra of other systems (l ike atoms) show GOl-Z-f]uctuations. 

Remember also that  some part icu lar  systems, not necessarily billiards~ which have 

been studied, when they undergo a transi t ion from the integrable to the ergodiG strongly 

chaot ic regime in the classical case, the corresponding spectrum f luctuat ions in the 

quantum case undergo a transi t ion from Poisson-patterns to GOE-patterns. We thus 

make Conjecture 2, which is more genera] than Conjecture 1 • Spectrum f luctuat ions 

of quantal t ime-reversal  invar iant  systems whose classical analogues are strongly chaot ic 

have GOI c f luctuat ion patterns [BGS-$4a]. If the conjecture happens to be true, i t  

w i l l  then have been established the universal i ty  of the laws of level f luctuat ions in 

spectra already found in nuclei, to a lesser extent  in atoms and to a much lesser extent  

in molecules. They should be tested systemat ical ly  and should also be found in other 

systems~ such as hadrons, etc.. 

One of the main themes in these lectures has been the t ranslat ion of a 

scheme l ike the one shown in Fig. l l l .22 into the quantum case. We think that  although 

some signif icant steps have been performed, most remains to be done. For instance, 

one should look for formal  proofs of the equivalence of GOF- and spectral f luctuat ions 

of chaotic bi l l iards (we remember that  most of the arguments rely only on a numerical  

basis, although some at tempts to give formal  proofs should be not iced [Pe-83,Be-84]). 

One should discover "simple" systems showing spectrum f luctuat ions corresponding 

to the other canonical ensembles of random matrices, namely GUE and GSE. For instance, 

we expect that  chaot ic systems which are not t ime-reversa l  invar iant wi l l  show GUE 

f luctuat ions ~ work in this direct ion is in progress. 

To close these lectures let  us f ina l ly  remark that  we have been dealing 

with objects which are, at f i rst  sight, disconnected • quanta] objects l ike compound 

nucleus resonances, classical objects l ike eigenmodes of v ibrat ing membranes, frequencies 

in a cavi ty,  mathemat ica l  objects l ike eigenva]ues of random matrices, the structure 

in phase space of i r regular motions, the zeros of the Riemann zeta function, etc..  

The unifying ab i l i ty  is one o£ the great privi leges of theoret ica l  physics, which moves 
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between two dist inct worlds9 the world of physical phenomena and the world of mathema- 

tics. Wigner, the "physicist", who has been at the origin of the theory of level f luctua- 

tions in terms of random matrices~ says, in his ar t ic le suggestively ent i t led "The Unreaso- 

nable Effectiveness of Mathematics in the Natural  Sciences" • "The f i rst  point is that 

mathemat ica l  concepts turn up in ent i re ly  unexpected connections. Moreover, they 

often permi t  an unexpectedly close and accurate description of the phenomena in these 

connections. Secondly~ just because of this circumstance, and because we do not unders- 

tand the reasons of their  usefulness, we cannot know whether a theory formulated 

in terms of mathemat ica l  concepts is uniquely appropriate" [Wi-67b]. Whereas Poincar~, 

the "mathemat ic ian",  who has been at the origin of the study of the stabi l i ty  of dynamical 

systems9 says • "La Physique ne nous donne pas seulement l 'occasion de r~soudre des 

probl~mes..., el le nous fa i r  pressentir la solution"... Almost wi th perfect ref lexion ant i -  

symmetry 
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