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INTRODUCTION 

The problem of finding criteria to characterize quantum chaos 
has become of interest in recent years, once the essential features 
of classical chaotic motion have been rather well settled. As will 
probably appear in this Conference, the tentative definitions of 
quantum chaos are stillsparse and conjectural, reflecting our poor 
understanding of the question. Our purpose here is to propose sig­
natures of quantum chaos by means of statistical properties of the 
energy levels of the discrete spectrum. In what follows, we shall 
consider dynamical systems which are conservative and time-reversal 
invariant, and their classical analogue strongly chaotic (K-systems). 

From different numerical experiments and theoretical studies 
of such systems performed so far, the main feature that seems to 
emerge is the presence of the phenomenon of repulsion of levels, 
i.e. the vanishing of the distribution of the nearest-level spacings 
p(x) as x goes to zero. This property is well known to occur in the 
spectra of resonances of the compound nucleus and was first mentio­
ned by Berry and Taborl as being possibly a general feature of le­
vels of irregular spectra, in contrast with the clustering of levels 
(Poisson distribution p(x)=e-x) found by these authors for integra­
ble systems. The first numerical indication (see Fig.Ia) of level 
repulsion for chaotic systems with few degrees of freedom was obtai­
ned by McDon~ld and Kaufman2 (and confirmed by Casati'4valz-Gris 
and Guarneri ) for the stadium. A calculation by Berry for the 
Sinai's billiard led to the same conclusion (Fig.lb). Concerning 
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Fig. I. Distribution of the nearest-neighbour spacings for: a) 
desymmetrized stadium (histogram taken from Ref.2) 
b) desymmetrized Sinai's billiard (histogram taken from 
Ref.4). The curve corresponds to the prediction of the 
Gaussian Orthogonal Ensemble of random matrices, as explai­
ned in the text. 

theoretical predictions, Zaslavsky guessed5 that for classical chao­
tic systems the behaviour of p(x) for small values of x is xY, where 
y depends on the rate of exponential separation of trajectories. 
However, this conjecture is contradicted by Berry, whose arguments 
lead to a linear vanishing of p(x) as x+o for a class of systems 
("generic systems") which also include non chaotic systems (see refs. 
6,7 and these proceedings). Therefore, it seems that the knowledge 
of p(x) as x+ 0 does not provide an unambiguous identification of 
quantum chaos. On the other hand, it should be noticed that the in­
formation carried by p(x=o), although interesting, is quite limited. 
Many other quantities which are useful in studying level fluctuations 
have been extensively investigated in the context of Random Matrix 
Theory (RMT), as for instance, the degree of rigidity of the spectrum, 
which, in contrast with the level repulsion, does contain information 
on the correlations between spacings. In Section 2 we give a brief 
review of the idea~ ~nvolved in the study of fluctuation properties 
of quantal spectra - and of the success of RMT when applied to 
real physical systemsIO,II. The material presented in Section 2 will 
be used in Section 3 to study the spectral properties of a classi­
cally chaotic system. 

2. FLUCTUATION PROPERTIES OF SPECTRA AND RANDOM MATRIX THEORY 

a) Parameters Characterizing Fluctuations 

In the statistical study of a quantum discrete spectrum, one 
has to distinguish two kinds of properties : i) global properties, 
such as the smoothed level density peE), and ii) local properties, 
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i.e. fluctuationsof levels around p(E). These two types of properties 
are very different in nature and completely disconnected. To study 
the chaotic behaviour of spectra the average density of states is 
uninteresting and in what follows we shall concentrate on measures 
of fluctuations. We first recall that, to get rid of spurious effects 
on the local properties due to variations of the density, one has to 
work at constant density on the average. For this purpose it is 
essential to have a good method providing the smoothed cumulative 
density N(E) 

N(E) = S:P(E1)dE 1 (1) 

One can then "unfold" the original spectrum, i.e. map the spectrum 
of eigenvalues {E.} onto the spectrum {E.} through 

1 1 

£. =N(E.) 
1 1 

(2) 

We will take as energy unit the average spacing x between two adja­
cent levels of the unfolded spectrum 

x=s. =(£'+l-E.) 1 1 1 (3) 

The spacing distribution p(x) satisfies then 

Jp(X)dX= jXP(X)dX= I (4) 

It should be emphasized that, when studying local properties, we 
are only interested in results which are translational invariant 
over the spectrum, i.e. the results in the interval [£,£+L] should 
be independent of £. This may be hard to check when performing nume­
rical studies, especially for systems which reach their asymptotic 
fluctuation properties at very high excitation energies. 

Let us now come to the characterization of fluctuation proper­
ties. The first interesting (and most popular) quantity is the 

spacing distribution p(x) already mentioned and which carries 
information on the correlation between two adjacent levels. But p(x) 
tells nothing about the correlations between two adjacent spacings 
s. and s'+I' as can be easily realized by constructing a spectrum 
"level b~ level" with the prescription that £'+1 has the probability 
p(x)dx of lying in an interval dx at a distanc~ x of £i ; in this 
way, one gets a spectrum with no correlations between spacings (by 
taking p(x)=e-x one obtains the Poisson case). The most obvious 
parameter that can be introduced is the correlation factor C 
between s. and s. I' More interesting is the statistic ~3 of Dyson 
and Mehta112: 1+ 

I £+L 2 ~3(L;x)=-Min [n(£)-Ae:-B] dE, 
LAB , x 

(5) 
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which measures the least-square jeviation of the staircaise represen­
ting the cumulative density neE) from the best straight line fitting 
it in any interval [x,x+L]. If the spectrum is translational inva­
riant, averages of 63 will be independent of the position x of the 
interval [x,x+L] • 63 describes the so-called "degree of rigidity" 
of the spectrum : the most perfectly rigid spectrum is the picket 
fence with all spacings equal (for instance, the one-dimensional 
harmonic oscillator spectrum), therefore maximally correlated, for 
which 63(L) = 1/12, whereas, at the opposite, the Poisson spectrum 
(p(x) = e-x and no correlations between spacings) has a very large 
average value of 63 (K3(L) = L/ IS), reflecting strong fluctuations 
around the mean level density. Notice that by studying, for instance, 
the average value of 63 as a function of L, one can choose the range 
L (in units of the mean spacing) over which fluctuations are inves­
tigated. A detailed insight on the information contained in 63 'can 
be found in Refs. 8-10 ; for other fluctuation measures, see e.g. 
the contribution of S.S.M. Wong to this Conference. 

b) Random Matrix Theory : the Gaussian Orthogonal Ensemble (GOE) 

and its Applications 

The idea of representing the Hamiltonian of a complex quantum 
system by a rannom matrix was initiated by Wigner, and developed 
by several Huthors 8,9; the physical purpose of such a theory 
was to find an appropriate frame to describe the fluctuation pro­
perties of slow neutron resonances in heavy nuclei. The ensemble of 
random matrices which has been the most extensively used in the study 
of nuclear (and atomic) spectra is the Gaussian Orthogonal Ensemble 
(GOE). The GOE of NxN real symmetric matrices can be defined in 
several equivalent ways. Let us remind the main assumptions made in 
its derivation : the system is time-reversal and rotational invariant 
(physically justified assumptions), and all matrix elements H .. 
(i<;j) are independent random variables (for reasons of mathe&atical 
tractability but physically unjustified). In the limiting case when 
N+oo, it is possible to get analytical results for several proper­
ties. In particular, for the quantities considered in 2.a) one has 
i) p(x) 1S very accurately approximated by the so-called Wigner 
surmise : 

7f 7f 2 
p(x)~ - x exp (-- x ) 

2 4 
(6) 

ii) the correlation factor C between adjacent spacings has the ave­
rage value 

C = -0.271 (7) 

iii) the average value of ~3 bahaves asymptotically (large L) as 
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Fig. 2. Fluctuation properties of nuclear levels (taken from Ref. 10). 
1762 resonance energies have been included in the analysis; 
a) nearest-neighbour spacing histogram, b) average value of 
63 as a function of L. The curves corresponding to the Poisson 
(uncorrelated) and GOE cases are plotted for comparison. 
Dashed lines close to the GOE values of X3 correspond to one 
standard deviation when finite sampling effects, provided by 
GOE, are taken into account. 

1 
K3(L) ~- £nL-0.007 (8) 

1[2 

One can obtain the exact value lO of K3(L) by a numerical integration, 
using the known expression of the two point correlation function l3 • 
For L = 5 the value obtained from Eq. (8) differs from the exact one 
by 10% and for L= 15 by 2.5%. The most salient feature of GOE fluc-

tuation properties is a very strong spectral rigidity, which shows 
up in the logarithmic behaviour of 63 (compare to the linear beha­
viour for the Poisson case). 

What is, now, the predicting power of GOE when applied to level 
fluctuations of complex nuclei? Recently, the whole body of accurate 
nuclear data (~ 1750 resonances coming from ~ 30 different nuclei) 
has been analyzed simultaneously and several new spectral measures 
have been used 10. The results for p (x) and 63 (0 < L < 25) are repro­
duced in Fig. 2. Other fluctuation measures have been considered and 
the comparison between GOE predictions and experimental data has 
yielded a remarkable agreement, even for very sensitive quantities 
like the variance of 63. These results provide a conclusive evi­
dence for the validity of GOE fluctuations, raising again the old 
question: why is this parameter-free theory, in which no informa­
tion about the specific features of the system is included (as, for 
instance, the interaction between nucleons), so efficient? Does the 
success of GOE denote that fluctuation properties of nuclear levels 
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Table 1. Fluctuations of Atomic Energy Levels. 

Nd Nd Nd+ Nd+ Nd+ Sm+ Sm+ 

JTI 4 - 6 - 7/2 - 13/2 - 15/2 - 3/2 - 9/2 -

L 35 38 34 28 32 26 31 

I" expo 0.39 0.45 0.30 0.37 0.39 0.31 0.40 

r.:-
ll3 (L) ~ 

0.35 0.36 0.35 0.33 0.34 0.32 0.34 
GOE ±O.II ±O. II ±O .11 ±0.11 to. II ±O.11 ±0.11 

Results obtained by Camarda and Georgopulos lI for ~3 for 
different series of levels of neutral and singly ionized 
atoms. Each series is identified by the angular momentum 
and parity (JTI). For GOE the value of X3 is followed by 
the square root of the ensemble average of the variance 
of ~3 (asymptotic value =0.11). 

Tb 

-9/2 

45 

0.31 

0.38 

±o .11 

result from a general law of nature? That this is probably the case 
is corroborated by a recent analysis I1 of 269 atomic energy levels 
corresponding to 8 different atoms. We reproduce in Table 1 some of 
the results for ~3' One can see that the agreement between theory and 
experiment is good. 

3. LEVEL FLUCTUATIONS OF QUANTUM SINAI'S BILLIARD 

We present now numerical results for the level fluctuations of 
the desymmetrized quantum Sinai's billiard (see Fig. 3a). Use will 
be made of the methods outlined before. We proceed as follows : We 
determine the eigenvalues E. = k.2 /2m of the Schrodinger equation 

l. l. 

2 
(~+ k. ) I/J. = 0 

l. l. 
(9) 

with Dirichlet boundary conditions by using the method of Korringa­
Kohn-Rostoker as described in Ref.4. We compute several sets of 
eigenvalues {Ei(R)} for different values of R. To unfold the spec­
trum we use the Weyl-tYP14formula which gives the average number 
of levels up to energy E 

N(E) = _1 (SE - L IE + K) , 
41T 

(10) 

where Sand L are respectively the surface and the perimeter of the 
billiard and K is a constant of the order of unity. To insure 
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Fig. 3. Results of energy level fluctuations for desymmetrized Sinai's 
billiards as specified on the upper right corner of Fig. 3a. 740 
levels have been included in the analysis corresponding to the 
5I-th to 268-th level for R=O.I, 2I-th to 24I-th level for 
R=0.2, 16-th to I94-th level for R=0.3, ll-th to I32-th 
level for R=0.4. Fig.3a: results for the spacing distribution 
p(x). Fig. 3b : results for the average value of the 113(L) statis­
tic of Dyson and Mehta for L = 5, 10 and 15. Curves corresponding 
to the Poisson case (stretch of uncorre1ated levels) and to the 
random matrix theory predictions (GOE) are drawn for compa­
rison. The error bars on Fig. 3b (one standard deviation) 
correspond to finite sampling effects as predicted by GOE. 

translational invariance we have excluded from the final analysis 
the first levels of every spectrum. This is natural if one observes 
the spectra corresponding to different values of R : one realizes 
that the smaller the value of R the more the number of levels, star­
ting from the ground state, that can be obtained by perturbing the 
spectrum {Ei(R=O)} (triangular billiard). And, as it will come out 
from our analysis, the fluctuation properties of Sinai's billiards 
are essentially different from the triangular billiard and are charac-
teristic of levels that cannot be attained by perturbation, i.e., of 

levels that are at relatively high energy. To increase the statisti­
cal significance of the results several spectra {Ei(R)} corresponding 
to four different values of R have been analyzed as corresponding to 
a single stretch of 740 levels. In doing so, care has been taken that 
one is working with "independent information" : the different values 
of R should not be chosen to be too close to one another. Otherwise 
two different spectra corresponding to Rand R+oR would be almost de­
ducib1e one from the other and one would just be dealing with redun­
dant information. 

In Fig. 3a is shown the spacing distribution p(x) which compares 
beautifully with the GOE prediction not only for small spacings 
(level repulsion) but over the entire range of spacings. As can be 
seen in Fig. Ib, the results obtained in Ref.4 do show departures 
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Table 2. Fluctuation measures of Sinai's billiard 

Sinai GOE Poisson 

C -0.30 -0.27 ± 0.04 0.0 

cr2 0.273 o . 286 ± 0 .0 15 1.0 

Correlation factor C between adjacent spacings and 
variance cr 2 of the spacing distribution p{x). See 
caption of Fig. 3 for further explanation. 

from GOE predictions : this is due to lack of translational inva­
riance in the spectra considered (only the lowest - 20 first levels 
of each spectrum were included) and probably also to redundancy in 
the spectra (too close values of R were considered). In Table 2 the 
variance cr 2 of p{x) is reproduced for Sinai's billiards and shown to 
be consistent with the GOE prediction. We consider next spacing 
correlations. In Fig. 3b are shown the results for the average value 
of 1I3{L) for L = 5, 10 and 15 which again compare remarkably well 
with the corresponding GOE predictions. In Table 2 is shown the 
correlation factor between two neighbour spacings which again agrees 
with GOE. We therefore conclude that all level fluctuation measures 
of Sinai's billiard investigated so far are consistent with GOE 
predictions. 

4. SUMMARY AND CONCLUSIONS 

The present work gives a short review of the remarkable success 
of the GOE in predicting nuclear and atomic energy level fluctua­
tions. Some of the more characteristic properties of GOE fluctua­
tions are described. It is emphasized that the repulsion of levels 
does not exhaust, by any means, the richness of GOE fluctuations. 
Indeed, properties like the rigidity of the spectrum are of most 
relevance. In contrast, in the previous studies of spectral behaviour 
of regular and irregular systems, attention has been exclusively 
paid to the presence or absence of level repulsion (which is unable 
to distinguish between chaotic and non chaotic systems). We propose 
to use the tools developed in random matrix theory for searching 
signatures of chaotic spectra. 

We then proceed to study numerically the level fluctuations of 
Sinai's quantum billiard (a chaotic system). We find that all fluc­

tuation measures investigated are consistent with the corresponding 
GOE predictions. One can then conjecture that chaotic systems {which 
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ones should be made precise in the future) show GOE fluctuations. 
The correctness of the conjecture would bring a new perspective 1n 
the understanding of the origin and domain of validity of GOE 
fluctuations. 
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