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Abstract. This paper serves to prove the thesis that a computational trick

can open entirely new approaches to theory. We illustrate by describing such

random matrix techniques as the stochastic operator approach, the method of
ghosts and shadows, and the method of “Riccatti Diffusion/Sturm Sequences,”

giving new insights into the deeper mathematics underneath random matrix
theory.
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1. Introduction: A Computational Trick Can Also Be a Theoretical
Trick

We advise mathematicians not to dismiss an efficient computation as mere “im-
plementation details”, it may be where the next theory comes from. This note will
supply examples (real case outlined in Table 1). (Throughout the notes, matlab
codes are in typewriter font. In Table 1, trideig and maxeig can be downloaded
from [Per].)

We start with the famous semicircle distribution f(x) = 1
2π

√
4− x2; illustrated

at the bottom (a) of Algorithm 1. This distribution depicts the histogram of the
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RMT Laws Naive Computation Clever Computational Tricks

All eigs Semicircle Law

A=randn(n) A=sqrt(chi2rnd((n-1):-1:1))

v=eig((A+A’)/sqrt(2*n)) v=trideig(randn(n,1),A) Tridiagonal

Space: O(n2) O(n) models (2.3)

Time: O(n3) O(n2)

Max eig Tracy-Widom Law

A=randn(n) k=round(n-10*n^(1/3)-1) Truncated

vs=eig((A+A’)/sqrt(2*n)) A=sqrt(chi2rnd((n-1):-1:k)) Storage,

v=max(vs) v=maxeig(randn(n-k+1,1),A) Bisection,

Space: O(n2) O(10n1/3) Sturm Sequence,

Time: O(n3) O((10n1/3)2) Sparse Eigensolver

Tridiagonal and Bidiagonal models (Section 2)

Theories Stochastic Operators (Section 3)

Inspired by Computation Sturm sequence and Ricatti difussion (Section 4)

Method of Ghosts and Shadows (Section 5)

Table 1. A Computational Trick Can Also Be a Theoretical Trick.

n eigenvalues of a symmetric random n × n matrix S = (AT + A)/
√

2n obtained
by symmetrizing a matrix whose elements follow the standard normal distribution,
i.e., in matlab notation: A=randn(n).

The complex version starts with A = randn(n) + sqrt(-1)*randn(n) and
forms (AH + A)/2

√
n to get the semicircle law. The Tracy-Widom distribution

(illustrated in Algorithm 1 bottom (b)) describes the normalized largest eigenvalue,
which, in the complex case, is

(1.1) f(x) =
d

dx
exp

(
−
∫ ∞
x

(t− x)q(t)2dt

)
,

where q(t) is the solution of a so-called Painlevé II differential equation q̈(t) =
tq(t) + 2q(t)3, with the boundary condition that as t → ∞, q(t) is asymptotic
to the Airy function Ai(t). Algorithm 1 shows Monte Carlo experiments for the
semicircle law and the Tracy-Widom law.

We recommend Bornemann’s code as the current best practice for computing
the Tracy-Widom density f(x) [Bor10]. Alternatively, we present a simpler method
in Algorithm 2, showing that even the formidable is but a few lines of matlab.

The semicircle and Tracy-Widom laws are theorems as n → ∞ but compu-
tations for small n suffice for illustration. The real S is known as the Gaussian
Orthogonal Ensemble (GOE) and the “complex S” the Gaussian Unitary Ensem-
ble (GUE). In general, they are instances of β-Hermite ensemble where β = 1, 2
correspond to the real and complex cases respectively.

As we can see in Algorithm 1, direct random matrix experiments usually involve
calculating the eigenvalues of random matrices, i.e. eig(s). Since many linear
algebra computations require O(n3) operations, it seems more feasible to take n
relatively small, and take a large number of Monte Carlo instances. This is our
strategy in Algorithm 1.
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Algorithm 1 Semicircle Law (β = 1) and the Tracy-Widom distribution (β = 2)

%Experiment : Demonstration o f S e m i c i r c l e and Tracy−Widom d i s t r i b u t i o n

%Plot : Histogram of the e i g e n v a l u e s and the l a r g e s t e i g e n v a l u e

%Theory : S e m i c i r c l e and Tracy−Widom as n−>i n f i n i t y ;

%% Parameters

n=100; % matrix s i z e

t =5000; % t r i a l s

v = [ ] ; % e i g e n v a l u e samples

v l = [ ] ; % l a r g e s t e i g e n v a l u e samples

dx =.2; % b i n s i z e

%% Experiment

for i =1: t

%% Sample GOE and c o l l e c t t h e i r e i g e n v a l u e s

a=randn(n ) ; % n by n matrix o f random Gaussians

s=(a+a ’ ) / 2 ; % symmetrize matrix

v=[v ; eig ( s ) ] ; % e i g e n v a l u e s

%% Sample GUE and c o l l e c t t h e i r l a r g e s t e i g e n v a l u e s

a=randn(n)+sqrt (−1)∗randn(n ) ; % random nxn complex matrix

s=(a+a ’ ) / 2 ; % Hermitian matrix

v l =[ v l ;max( eig ( s ) ) ] ; % Larges t Eigenva lue

end

%% S e m i c i r c l e law

v=v/sqrt (n / 2 ) ; % normalize e i g e n v a l u e s

% Plot

[ count , x]=hist (v , −2:dx : 2 ) ;

bar (x , count /( t ∗n∗dx ) , ’ y ’ )

% Theory

hold on

plot (x , sqrt(4−x . ˆ2 )/ (2∗ pi ) , ’ LineWidth ’ , 2 )

axis ( [ −2.5 2 .5 −.1 . 5 ] )

hold o f f

%% Tracy−Widom d i s t r i b u t i o n

v l=n ˆ(1/6)∗ ( vl −2∗sqrt (n ) ) ; % normalized e i g e n v a l u e s

% Plot

figure ; [ count , x]=hist ( vl , −5:dx : 2 ) ;

bar (x , count /( t ∗dx ) , ’ y ’ )

% Theory

hold on

tracywidom
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(a) Semicircle Law (b) Tracy-Widom distribution
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Algorithm 2 Tracy-Widom distribution (β = 2)

%Theory : Compute and p l o t the Tracy−Widom d i s t r i b u t i o n

%%Parameters

t0 =5; % r i g h t endpoint

tn=−8; % l e f t endpoint

dx =.005; % d i s c r e t i z a t i o n

%%Theory : The d i f f e r e n t i a l equat ion s o l v e r

deq=@( t , y ) [ y ( 2 ) ; t ∗y(1)+2∗y ( 1 ) ˆ 3 ; y ( 4 ) ; y ( 1 ) ˆ 2 ] ;

opts=odeset ( ’ r e l t o l ’ ,1 e−12, ’ a b s t o l ’ ,1 e −15);

y0=[ a i r y ( t0 ) ; a i r y (1 , t0 ) ; 0 ; a i r y ( t0 ) ˆ 2 ] ; % boundary c o n d i t i o n s

[ t , y]=ode45 ( deq , t0 :−dx : tn , y0 , opts ) ; % s o l v e

F2=exp(−y ( : , 3 ) ) ; % the d i s t r i b u t i o n

f 2=gradient (F2 , t ) ; % the d e n s i t y

%% Plot

plot ( t , f2 , ’ LineWidth ’ , 2 )

axis ([−5 2 0 . 5 ] )

In fact, sophisticated matrix computations involve a series of reductions. With
normally distributed matrices, the most expensive reduction steps can be avoided
on the computer as they can be done with mathematics! All of a sudden O(n3)
computations become O(n2) or even better. The resulting matrix requires less
storage either using sparse formulas or data structures with even less overhead.

The story gets better. Random matrix experiments involving complex numbers
or even over the quaternions reduce to real matrices even before they need to be
stored on a computer.

The story gets even better yet. On one side, for finite n, the reduced form
leads to the notion of a “ghost” random matrix quantity that exists for every β
(not only real, complex and quaternions), and a “shadow” quantity which may be
real or complex which allows for computation. On the other hand, the reduced
forms connect random matrices to the continuous limit, stochastic operators, which
in some ways represent a truer view of why random matrices behave as they do.

The rest of the notes is organized as follows. In Chapter 2, we prepare our
readers with preliminaries of matrix factorization for random matrices. In Chap-
ter 3, stochastic operator is introduced with applications and we discuss Sturm
sequences and Ricatti diffusion in Chapter 4. We introduce “ghost” and “shadow”
techniques for random matrices in Chapter 5. The final chapter is devoted to the
smallest singular value of randn(n).

Note: It has now been eight years since the first author has written a large sur-
vey for Acta Numerica [ER05], and two years since the applications survey [EW13].
This survey is meant to be different as we mean to demonstrate the thesis in the
very name of this section.

2. Random Matrix Factorization

In this section, we will provide the details of matrix reductions that do not re-
quire a computer. Then, we derive the reduced forms of β-Hermite and β-Laguerre
ensembles, which is summarized in Table 2 and Table 3 shows how to generate them
in sparse formula. Later this section, we give an overview of how these reductions
lead to various computational and theoretical impact.
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Ensemble Matrices Numeric Models matlab (β = 1)

Hermite Wigner eig Tridiagonal (2.3)
g = randn(n,n);

H=(g+g’)/2;

Laguerre Wishart svd Bidiagonal (2.4)
g = randn(m,n);

L=(g’*g)/m;

Table 2. Hermite and Laguerre ensembles.

Ensemble matlab commands (Statistics Toolbox required)

Hermite

% Pick n , be ta

d = sqrt ( ch i2rnd (beta ∗ [ n : − 1 : 1 ] ) ) ’ ;

H = spdiags (d , 1 , n , n ) + spdiags (randn(n , 1 ) , 0 , n , n ) ;

H = (H + H’ ) / sqrt ( 2 ) ;

Laguerre

% Pick m, n , be ta

% Pick a > be ta ∗ (n − 1)/2

d = sqrt ( ch i2rnd (2 ∗ a − beta ∗ [ 0 : 1 : n−1 ] ) ) ’ ;

s = sqrt ( ch i2rnd (beta ∗ [ n : − 1 : 1 ] ) ) ’ ;

B = spdiags ( s , −1, n , n) + spdiags (d , 0 , n , n ) ;

L = B ∗ B ’ ;

Table 3. Generating the Hermite and Laguerre ensembles as
sparse matrices.

2.1. The Chi-distribution and orthogonal invariance. There are two key
facts to know about a vector of independent standard normals. Let vn denote such
a vector. In matlab this would be randn(n,1). Mathematically, we say that the
n elements are iid standard normals (i.e., mean 0, variance 1).

• Chi distribution: the Euclidean length ‖vn‖, which is the square root
of the sum of the n squares of Gaussians, has what is known as the χn
distribution.

• Orthogonal invariance: for any fixed orthogonal matrix Q, or if Q is
random and independent of vn, the distribution of Qvn is identical to
that of vn. In other words, it is impossible to tell the difference between
a computer generated vn or Qvn upon inspecting only the output. It is

easy to see that the density of vn is (2π)−
n
2 e−

‖vn‖2
2 which only depends

on the length of vn.

We shall see that these two facts allow us to transform matrices involving standard
normals to simpler forms.

For reference, we mention that the χn distribution has the probability density

f(x) =
xn−1e−x

2/2

2n/2−1Γ(n/2)
.

Notice that there is no specific requirement that n be an integer, despite our original
motivation as the length of a Gaussian vector. The square of χn is the distribution
that underlies the well-known Chi-squared test. It can be seen that the mean of
χ2
n is n. For integers, it is the sum of the n standard normal variables. We have
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that vn is the product of the random scalar χn, which serves as the length, and an
independent vector that is uniform on the sphere, which serves as the direction.

2.2. The QR decomposition of randn(n). Given a vector vn, we can read-
ily construct an orthogonal reflection or rotation Hn such that Hnvn = ±‖vn‖e1,
where e1 denotes the first column of the identity. We do this using the standard
technique of Householder transformations [TB97] (see Lec. 10) in numerical linear
algebra, which is a reflection across the external angle bisector of these two vectors.

In this case, Hn = I− 2wwT

wTw
where w = vn ± ‖vn‖e1.

Therefore, if vn follows a multivariate standard normal distribution, Hnvn
yields a Chi distribution for the first element and 0 otherwise. Furthermore, let
randn(n) be an n × n matrix of iid standard normals. It is easy to see now that
through successive Householder reflections of size n, n−1, . . . , 1 we can orthogonally
transform randn(n) into the upper triangular matrix

H1H2 · · ·Hn−1Hn × randn(n) = Rn =


χn G . . . G G

χn−1 . . . G G
.. .

...
...

χ2 G
χ1

 .

Here all elements are independent and represent a distribution and each G is an iid
standard normal. It is helpful to watch a 3× 3 matrix turn into R3: G G G

G G G
G G G

→
 χ3 G G

0 G G
0 G G

→
 χ3 G G

0 χ2 G
0 0 G

→
 χ3 G G

0 χ2 G
0 0 χ1

 .

The Gs as the computation progresses are not the same numbers, but merely
indicating that the distributions remain unchanged. With a bit of care we can say
that

randn(n) = (orthogonal uniform with Haar measure) ·Rn
is the QR decomposition of randn(n). Notice that in earlier versions of lapack
and matlab [Q, R]=qr(randn(n)) did not always yield Q with Haar measure.
Random matrix theory provided the impetus to fix this!

One immediate consequence is the following interesting fact

(2.1) IE[det[randn(n)]2] = n!.

2.3. The tridiagonal reduction of the GOE. Eigenvalues are usually in-
troduced for the first time as the roots of the characteristic polynomial. Many
people just assume that this is the definition that is used during a computation,
but it is well-established that this is not a good method for computing eigenvalues.
Rather, a matrix factorization is used. In the case that S is symmetric, an orthog-
onal matrix Q is found such that QTSQ = Λ is diagonal. The columns of Q are
the eigenvectors and the diagonal of Λ are the eigenvalues.

Mathematically, the construction of Q is an iterative procedure, requiring infin-
itely many steps to converge. In practice, S is first tridiagonalized through a finite
process which usually takes the bulk of the time. The tridiagonal is then iteratively
diagonalized. Usually, this tridiagonal to diagonal step takes a negligible amount
of time to converge in finite precision.
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Suppose A = randn(n) and S = (A + AT )/
√

2, we can tridiagonalize S with
the finite Householder procedure (see [TB97] for general algorithms). The re-
sult [DE02] is

(2.2) Tn =


G
√

2 χn−1

χn−1 G
√

2 χn−2

. . .
. . .

. . .

χ2 G
√

2 χ1

χ1 G
√

2

 ,

where G
√

2 refers to a Gaussian with mean 0 and variance 2. The superdiagonal
and diagonal are independent, as the matrix is symmetric. The matrix Tn has the
same eigenvalue distribution as S, but numerical computation of the eigenvalues is
considerably faster when the right software is used, for example, lapack’s DSTEQR
or DSTEBZ (bisection). The largest eigenvalue benefits further as we only need to
build around a 10n1/3 × 10n1/3 matrix ad we can input an estimate for the largest
eigenvalues such as λmax = 2. See Section 2.5 for details.

A dense eigensolver requires O(n3) operations and will spend nearly all of its
time constructing Tn. Given that we know the distribution for Tn a priori, this is
wasteful. The eigenvalues of Tn require O(n2) time or better. In addition, a dense
matrix requires O(n2) storage while the tridiagonal matrix only needs O(n).

2.4. Bidiagonal reduction of Real Wishart Matrices. Suppose A=randn(m,n),
W = ATA/m is called the Wishart matrix or Laguerre ensemble (β = 1). Com-
puting its eigenvalues amounts to calculating the singular values of A. For that
purpose, we need to reduce A to lower bidiagonal form [TB97] (Lec. 31) (shown
here for n > m),

Bn =


χn−1

χm−1 χn−1

. . .
. . .

χ2 χn−m+2

χ1 χn−m+1

 .

See [Sil85] and [Tro84] for details. Computation of singular values is greatly
accelerated in bidiagonal form when using, for example, lapack’s DBDSQR.

2.5. Superfast computation. Most of earlier numerical experiments com-
puted the eigenvalues of random matrices and then histogrammed them. Can we
histogram without histogramming? The answer is Yes! Sturm sequences can be
used with Tn for the computation of histograms [ACE08]. This is particularly
valuable when there is interest in a relatively small number of histogram intervals
(say 20 or 30) and n is very large. This is an interesting idea, particularly because
most people think that histogramming eigenvalues first requires that they compute
the eigenvalues, then sort them into bins. The Sturm sequence [TB97] idea gives
a count without computing the eigenvalues at all. This is a fine example of not
computing more than is needed: if you only need a count, why should one compute
the eigenvalues at all? We will further discuss Sturm sequence in Section 4.

For the largest eigenvalue, the best trick for very large n is to only generate the
upper left 10n1/3 × 10n1/3 of the matrix. Because of what is known as the “Airy
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decay” in the corresponding eigenvector, the largest eigenvalue, which technically
depends on every element in the tridiagonal matrix — numerically depends signifi-
cantly only on the upper left part. This is a huge savings in Monte Carlo sampling.
Further savings can be obtained by using the Lanczos “shift and invert” strategy
given an estimate for the largest eigenvalue. Similar ideas may be used for singular
values. We refer interested reads to Section 10 of [ER05]. Algorithm 3 provides an
example of how we succeed to compute the largest eigenvalue of a billion by billion
matrix in the time required by naive methods for a hundred by hundred matrix.

2.6. Generalizations to complex and quaternion. We can consider ex-
tending the same matrix algorithms to random complex (GUE) and quaternion
(GSE) matrices. For the complex case, we take randn(n)+i*randn(n). Quater-
nions may be less familiar. Not available in matlab (without special programming)
but easily imagined is randn(n)+i*randn(n)+j*randn(n)+k*randn(n), where ij =
k, jk = i, ki = j, ji = −k, kj = −i, ik = −j, ijk = −1. One can complete to an
entire algebraic system obtaining the third division ring. Remember that a division
ring is an algebra where ab = 0 implies at least one of a or b is 0. Matrices are not
a division ring even though they are an algebra.

In matlab, one can simulate scalar quaternions a+bi+cj+dk with the matrix
[a+bi c+di;-c+di a-bi]. Similarly, the quaternion matrix A + Bi + Cj + Dk
can be simulated with the matlab matrix [A+Bi C+Di;-C+Di A-Bi].

The generalizations to β = 2, 4 are as follows. Let β count the number of
independent real Gaussians, and let Gβ be a complex (β = 2) or quaternion (β = 4)
Gaussian respectively. G denotes G1 by default.

Therefore, the upper triangular Rn, tridiagonal Tn (β-Hermite ensemble) and
bidiagonal Bn (β-Laguerre ensemble) reductions have the following form

Rn =


χnβ Gβ . . . Gβ Gβ

χ(n−1)β . . . Gβ Gβ

. . .
...

...
χ2β Gβ

χβ

 ,

Tn =


G
√

2 χ(n−1)β

χ(n−1)β G
√

2 χ(n−2)β

. . .
. . .

. . .

χ2β G
√

2 χβ
χβ G

√
2

 , and(2.3)

Bn =


χ(n−1)β

χ(m−1)β χ(n−1)β

. . .
. . .

χ2β χ(n−m+2)β

χβ χ(n−m+1)β

 .(2.4)

Of interest is that Tn and Bn are real matrices whose eigenvalue and singular value
distributions are exactly the same as the original complex and quaternion matrices.
This leads to even greater computational savings because only real numbers need
to be stored or computed with.
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Algorithm 3 Compute the largest eigenvalues of a billion by billion matrix.

%% This code r e q u i r e s s t a t i s t i c s t o o l b o x

beta = 1 ; n = 1e9 ; opts . disp = 0 ; opts . issym = 1 ;

alpha = 10 ; k = round( alpha ∗ n ˆ ( 1 / 3 ) ) ; % c u t o f f parameters

d = sqrt ( ch i2rnd (beta ∗ n : −1: (n − k − 1 ) ) ) ’ ;

H = spdiags (d , 1 , k , k ) + spdiags (randn(k , 1 ) , 0 , k , k ) ;

H = (H + H’ ) / sqrt (4 ∗ n ∗ beta ) ; % Sca le so l a r g e s t e i g e n v l a u e i s near 1

e i g s (H, 1 , 1 , opts ) ;

2.7. Generalization Beyond. We follow out there that a computation trick
lead to deep theoretical results. We summarize two generalizations and will survey
recent results in Section 3 and Section 5 correspondingly.

• Stochastic Operator: that tridiagonals tend to a stochastic operator
was first announced by Edelman [Ede03] in 2003 and subsequently devel-
oped in [Sut05, ES07] with a formal argument that was perhaps satis-
factory at the physics or applied math level. Pure mathematics treatment
was rigorously investigated in [RR09, RRV11, Blo11, BV11].

• Ghosts and Shadows of Random Matrices: there is little reason
other than history and psychology to restrict β to only the values cor-
responding to the reals, complexes, and quaternions β = 1, 2, 4. The
matrices given by Tn and Bn are well defined for any β, and are deeply
related to generalizations of the Schur polynomials knows as the Jack
Polynomials of parameter α = 2/β. [Ede10] proposed in his method of
“Ghosts and Shadows” that even Gβ exists and has a meaning upon which
algebra might be doable.

3. Stochastic Operators

Classically, many important distributions of random matrix theory were ac-
cessed through what now seems like an indirect procedure: first formulate an n-by-n
random matrix, then compute an eigenvalue distribution, and finally let n approach
infinity. The limiting distribution was reasonably called an eigenvalue distribution,
but it did not describe the eigenvalue of any specific operator, since the matrices
were left behind in the n→∞ limit.

All of that has changed with the stochastic operator approach to random matrix
theory. The new framework is this:

• Select a stochastic differential operator such as the stochastic Airy oper-
ator

d2

dx2
− x+

2√
β
W ′(x),

where W (x) is the Wiener process.
• Compute an eigenvalue distribution.

That’s it. This approach produces the same eigenvalue statistics that have been
studied by the random matrix theory community for decades but in a more direct
fashion. The reason: the stochastic differential operators of interest are the n→∞
continuum limits of the most-studied random matrix models, as we shall see.

The stochastic operator approach was introduced by Edelman [Ede03] in 2003
and developed by Edelman and Sutton [Sut05, ES07].
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3.1. Brownian motion and white noise. We begin by discussing simple
Brownian motion and its derivative, “white noise.” Right away we would like
to demystify ideas that almost fit the usual calculus framework, but with some
differences. Readers familiar with the Dirac delta function (an infinitesimal spike)
have been in this situation before.

The following simple matlab code produces a figure of the sort that resembles
logarithmic stock market prices. Every time we execute this code we get a different
random picture (shown in Figure 1 Left).

x = [ 0 : h : 1 ] ; %Think o f h as ” Delta x”
dW = randn( length ( x ) , 1 )∗ sqrt (h ) ; %Think s q r t ( Del ta x )

W= cumsum(dW) ;
plot (x ,W)

Intuitively, we break [0, x] into intervals each having length ∆x. For each
interval, we sample ∆W which is a zero mean normal with variance equal to ∆x
and then sum them up. Thus, if we look at one point x, we have

W (x)
d
=

[ x
∆x ]∑
i=1

∆W =

[ x
∆x ]∑
i=1

G ·
√

∆x.

W (x) is a normal with mean 0 and variance x
∆x × ∆x = x, i.e. W (x) ∼ N(0, x)

(shown in Figure 1 Center and Right). We can write this as W (x) =
√
x · G,

G denoting a standard normal. In particular, W (1) is a standard normal, and
W (x) −W (y) has mean 0 and variance (x − y), i.e. W (x) −W (y) =

√
x− y · G.

W (x) is known as the Wiener process or standard Brownian motion. It has the
property that W (x)−W (y) has the distribution N(0, x− y).

A suggestive notation is

dW = (standard normal) ·
√

dx

and the corresponding Wiener process is

W (x) =

∫
dW.

The
√

dx seems troubling as notation, until one realizes that the cumsum then has
quantities that do not depend on h (or ∆x) at all. Like the standard integral,
mathematics prefers quantities that at least in the limit do not depend on the
discretization size or method. Random quantities are the same. The

√
dx captures

the idea that variances add when adding normals. If each increment depends on
dx instead of

√
dx, then there will be no movement at all because the variance of

W (x) will be x
∆x × (∆x)2 = x×∆x which will be 0 when ∆x→ 0.

The derivative W ′(x) = dW
dx at first seems strange. The discretization would

be dW/h in the matlab code above, which is a discrete-time white noise process.
At every point, it is a normal with mean 0 and variance 1/h, and the covariance
matrix is 1

h I.In the continuous limit, the differential form dW denotes a white noise
process formally satisfying∫

f(x,W )W ′(x)dx =

∫
f(x,W )dW.
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Figure 1. Left: Sample paths for standard Brownian motion;
Center: histogram of W (1) vs. the pdf of the standard normal;
Right: quantile-quantile plot of W (1).

Its covariance function is the Dirac delta dWxdWy = δ(x− y). We might say that
W ′(x) has a “variance density” of 1, referring to the variance divided by the step
size of the discretization.

In general we can consider integrals of the form

∫ x

0

f(t)dW = lim
∆x→0

[ x
∆x ]∑
i=1

f(i [∆x])∆W,

which discretizes to cumsum(f(t).*dW). We can think of dW as an operator such
that f dW is a distribution—not a function in the classical sense, but able to serve
as the differential in a stochastic integral. Multiplication by dW is called the white
noise transformation [Ros09].

3.2. Three local eigenvalue behaviors; three stochastic differential
operators. The most commonly studied random matrix models over the years
have been the Gaussian, Wishart, and MANOVA ensembles, also known as the
Hermite, Laguerre, and Jacobi ensembles. We are primarily concerned with local
eigenvalue behavior (that is, a single eigenvalue or a small number of eigenvalues
rather than the entire spectrum), which depends on the location in the spectrum
as well as the random matrix distribution. Remarkably, though, we see only three
different local behaviors among the classical ensembles:

Region of spectrum
Ensemble Left edge Interior Right edge
Hermite soft edge bulk soft edge
Laguerre hard edge bulk soft edge
Jacobi hard edge bulk hard edge

In the next section, we will explore how the operator

Aβ =
d2

dx2
− x+

2√
β
W ′(x)

might reasonably be considered to have a random largest eigenvalue that follows the
limiting largest eigenvalue law of random matrices. Before proceeding to rigorous
mathematical treatment, the authors hope readers will be convinced after running
the following numeric experiment.
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Algorithm 4 Distribution of the largest eigenvalue of the stochastic Airy operator.

% Experiment : Larges t e i g e n v a l u e o f a S t o c h a s t i c Airy Operator

% Plot : Histogram of the l a r g e s t e i g e n v a l u e s

% Theory : The Tracy−Widom law

%% Parameters

t =10000; % number o f t r i a l s

v=zeros ( t , 1 ) ; % samples

n=1e9 ; % l e v e l o f d i s c r e t i z a t i o n

beta=2;

h=nˆ( −1/3); % h s e r v e s as dx

x =[0:h : 1 0 ] ; % d i s c r e t i z a t i o n o f x

N=length ( x ) ;

%% Experiment

% generate the o f f d iagona l e lements

b=(1/hˆ2)∗ ones (1 ,N−1);

for i =1: t

%% d i s c r e t i z e s t o c h a s t i c a i r y operator

% d i s c r e t i z e a i r y operator

a=−(2/hˆ2)∗ ones (1 ,N) ; % d i f f e r e n t i a l operator : dˆ2/ dxˆ2

a=a−x ; % dˆ2/ dxˆ2 − x

% add the s t o c h a s t i c par t

dW=randn (1 ,N)∗ sqrt (h ) ;

a=a+(2/sqrt (beta ) )∗dW/h ;

%% c a l c u l a t e the l a r g e s t e i g e n v a l u e o f t r i d i a g o n a l matrix T

% diagona l o f T: a

% subd iagona l o f T: b

v ( i ) = maxeig ( a , b ) ;

% maxeig (a , b ) : e i g e n v a l u e s o l v e r f o r t r i d i a g o n a l matr ices

% downloadable at h t t p :// persson . b e r k e l e y . edu/ m l t r i d / index . html

end

%% Plot

b i n s i z e = 1/6 ;

[ count , x ] = hist (v , −6: b i n s i z e : 6 ) ;

bar (x , count /( t ∗ b i n s i z e ) , ’ y ’ ) ;

%% Theory

hold on ;

tracywidom
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Figure 2. Local eigenvalue behavior

For example, after appropriate recentering and rescaling, the largest eigenval-
ues of the Hermite and Laguerre ensembles are indistinguishable in the n → ∞
limit, because the limiting distributions are identical—both show “soft edge” be-
havior. In contrast, the limiting behavior of the smallest eigenvalues of the Laguerre
ensemble—those at the “hard edge”—follow a very different law. Near a point in
the interior of the spectrum support—in the “bulk”— a pair of eigenvalues is more
interesting than a single eigenvalue, and the spacing between consecutive eigen-
values is the most commonly studied distribution. Figure 2 contains plots for the
three scaling regimes. Plot (a) often describes a largest eigenvalue; plot (b) often
describes a smallest singular value; and plot (c) often describes the spacing between
two consecutive eigenvalues in the interior of a spectrum.

The stochastic differential operators mentioned above are associated with the
three local eigenvalue behaviors:

Local eigenvalue behavior Stochastic differential operator
Soft edge Stochastic Airy operator
Hard edge Stochastic Bessel operator
Bulk Stochastic sine operator

They are simple to state:

Stochastic Airy operator:

Aβ =
d2

dx2
− x+

2√
β
W ′(x),

b.c.’s: f : [0,+∞)→ R, f(0) = 0, lim
x→+∞

f(x) = 0;

Stochastic Bessel operator:

J βa = −2
√
x

d

dx
+

a√
x

+
2√
β
W ′(x),

b.c.’s: f : [0, 1]→ R, f(1) = 0, (J βa f)(0) = 0;

Stochastic sine operator:

Sβ =

[
J∞−1/2

(J∞−1/2)∗

]
+

2√
β

[
W ′11(x) 1√

2
W ′12(x)

1√
β
W ′12(x) W ′22(x)

]
,

b.c.’s: Sβ acts on
[
f
g

]
, b.c.’s of J∞−1/2 and (J∞−1/2)∗ apply.
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The eigenvalues of the stochastic Airy operator show soft edge behavior; the
singular values of the stochastic Bessel operator show hard edge behavior; and
the spacing between consecutive eigenvalues of the stochastic sine operator show
bulk behavior. These operators allow us to study classical eigenvalue distributions
directly, rather than finding the eigenvalue of a finite random matrix and then
taking an n→∞ limit.

3.3. Justification: from random matrices to stochastic operators.
The stochastic operators were discovered by interpreting the tridiagonal (2.3) and
bidiagonal beta models (2.4) as finite difference schemes. We have three classi-
cal ensembles, and each has three spectrum regions, as discussed in the previous
section. Continuum limits for eight of the 3 × 3 = 9 combinations have been
found [Sut05, ES07]. We shall review one derivation.

Consider the largest eigenvalues of the β-Hermite matrix model H = [hij ].
These lie at a soft edge, and therefore we hope to find the stochastic Airy operator
as n→∞.

First, a similarity transform produces a nonsymmetric matrix whose entries are
totally independent and which is easier to interpret as a finite difference scheme.
Define D to be the diagonal matrix whose ith diagonal entry equals

(n/2)−(i−1)/2
i−1∏
k=1

hk,k+1.

Then DHD−1 equals

1√
2β



G
√

2
√
βn

1√
βn
χ2

(n−1)β G
√

2
√
βn

. . .
. . .

. . .
1√
βn
χ2

2β G
√

2
√
βn

1√
βn
χ2
β G

√
2

 ,

and all entries are independent.
To see the largest eigenvalues more clearly, the matrix is recentered and rescaled.

We consider
√

2n1/6(DHD−1−
√

2nI). The distribution of the algebraically largest
eigenvalue of this matrix, when β ∈ 1, 2, 4, converges to one of the curves in Figure
2(a) as n→∞.

The recentered and rescaled matrix has a natural interpretation as a finite
difference scheme on the grid xi = hi, i = 1, . . . , n, with h = n−1/3. First, the
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tridiagonal matrix is expressed as a sum of three simpler matrices:
√

2n1/6(DHD−1 −
√

2nI)

=
1

h2


−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2



−


0 0
x1 0 0

. . .
. . .

. . .

xn−2 0 0
xn−1 0



+
2√
β
· 1√

2h



G 0
χ̃2

(n−1)β G 0

χ̃2
(n−2)β G 0

. . .
. . .

. . .

χ̃2
2β G 0

χ̃2
β G


,

with χ̃2
r shorthand for 1√

2βn
(χ2
r − r). More briefly,

√
2n1/6(DHD−1 −

√
2nI) =

1

h2
∆− diag−1(x1, x2, . . . , xn − 1) +

2√
β
N.

The random variable χ̃2
(n−j)β has mean zero and standard deviation 1 + O(h2)

uniformly for j satisfying xj ≤M for fixed M . Hence, the total standard deviation

on row i is asymptotic to 1√
2h

√
12 + 12 = h−1/2. The recentered and rescaled

matrix model encodes a finite difference scheme for

Aβ =
d2

dx2
− x+

2√
β
W ′(x).

4. Sturm sequences and Riccati Diffusion

Probabilists and engineers seem to approach eigenvalues in different ways.
When a probabilist considers a cumulative distribution function F (λ) = Pr[Λ < λ],
he or she conducts a test: Is the random eigenvalue less than a fixed cutoff? In
contrast, when an engineer types eig(A) into matlab, he or she expects to receive
the locations of the eigenvalues directly.

If one looks under the hood, however, the distinction may disappear. A compet-
itive numerical method for eigenvalues is bisection iteration with Sturm sequences.
The method is easiest to describe for the largest eigenvalue. Starting from an initial
guess λ0, the method determines if there are any eigenvalues greater than λ0. If
so, the guess is increased; if not, it is decreased. In time, the largest eigenvalue is
captured within an interval, and then the interval is halved with each step. This is
linear convergence, because the number of correct bits increases by one with each
step. At the end, the numerical location is found from a sequence of tests.
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Linear convergence is fast, but it is not as fast as, say, Newton’s iteration,
which converges quadratically. What makes the overall method competitive is the
sheer speed with which the test against λk can be conducted. The key tool is
the Sturm sequence for tridiagonal matrices, which has a close connection to the
Sturm-Liouville theory of ordinary differential equations. Below, we show how these
theories inspire two seemingly different approaches to computing random eigenvalue
distributions. The Sturm sequence approach was introduced by Albrecht, Chan,
and Edelman and applied to computing eigenvalue distributions of the β-Hermite
ensemble [ACE08]. The continuous Riccati diffusion was introduced by Ramı́rez,
Rider, and Virág [RRV11], by applying a change of variables to the stochastic
differential operators of the previous section [RRV11].

4.1. Sturm sequences for numerical methods. A Sturm sequence can
reveal the inertia of a matrix, i.e., the number of positive, negative, and zero eigen-
values.

For an n-by-n matrix A = [aij ], define Ak to be the k-by-k principal submatrix
in the lower-right corner, e.g., A1 = [an,n] and A2 =

[ an−1,n−1 an−1,n
an,n−1 an,n

]
. Because the

eigenvalues of Ak interlace those of Ak+1, the Sturm sequence

(detA0,detA1,detA2, . . . ,detAn)

reveals the inertia. Specifically, assuming that no zeros occur in the sequence, the
number of sign changes equals the number of negative eigenvalues. (Because a zero
determinant occurs with zero probability in our random matrices of interest, we
will maintain the assumption of a zero-free Sturm sequence.) Alternatively, the
Sturm ratio sequence can be used. If ri = (detAi)/(detAi−1), then the number of
negative values in (r1, r2, . . . , rn) equals the number of negative eigenvalues.

The Sturm ratio sequence can be computed extremely quickly when A is tridi-
agonal. Labeling the diagonal entries an, an−1, . . . , a1 and the subdiagonal entries
bn−1, bn−2, . . . , b1 from top-left to bottom-right, the ith Sturm ratio is

ri =

{
a1, i = 1;

ai −
b2i−1

ri−1
, i > 1.

This reveals in quick order the number of negative eigenvalues of A, or the number
of eigenvalues less than λ if A− λI is substituted for A.

Computing eigenvalues is one of those “impossible” problems that follow from
the insolubility of the quintic. It is remarkable that counting eigenvalues is so quick
and easy.

4.2. Sturm sequences in random matrix theory. The Sturm sequence
enables the computation of various random eigenvalue distributions. Let us consider
the largest eigenvalue of the β-Hermite ensemble.

The tridiagonal β-Hermite matrix model Hβ
n has diagonal entries ai = Gi and

subdiagonal entries bi = χ(i−1)β/
√

2. Hence, the Sturm ratio sequence of Hβ
n − λI

is

ri =

{
G1 − λ, i = 1;

Gi − λ−
χ2

(i−1)β

2ri−1
, i > 1.
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The distribution of the largest eigenvalue is

Pr[Λmax < λ] = Pr[Hβ
n − λI has all negative eigenvalues]

= Pr[all Sturm ratios ri are negative]

=

∫ 0

−∞
· · ·
∫ 0

−∞
fr1,...,rn(s1, . . . , sn)ds1 · · · dsn,

in which fr1,...,rn is the joint density of all Sturm ratios. Albrecht, Chan, and
Edelman compute this joint density from (4.2) and find

fr1,...,rn(s1, . . . , sn) =
1√
2π
e−(s−λ)2/2

n∏
i=2

fri|ri−1
(si|si − 1),

fri|ri−1
(si|si−1) =

|si−1|pi√
2π

e−
1
2 (si+λ)2+z2

i /4D−pi(sign(si−1)(si + λ+ si−1)),

with Dp denoting a parabolic cylinder function.
The level density, i.e., the distribution of a randomly chosen eigenvalue from

the spectrum, has also been computed using Sturm sequences[ACE08].

4.3. Sturm-Liouville theory. The presentation of Sturm sequences focused
on finite matrices. However, there is a deep connection with the continuous world,
through Sturm-Liouville theory.

Recall that the eigenvalues of A that are less than λ are equal in number to the
negative Sturm ratios of A− λI. This is not all. A similar relationship exists with
the solution vector x = (xn, xn−1, . . . , x1) of (A − λI)x = 0. Of course, if λ is not
an eigenvalue, then no nontrivial solution exists. However, the underdetermined
matrix

T̃ =
[
e1 (A− λI)

]
,

with e1 denoting the first standard basis vector, always has a nontrivial solution
x̃ = (xn+1, xn, xn−1, . . . , x1), and λ is an eigenvalue of A if and only if T̃ x = 0 has
a nontrivial solution with xn+1 = 0. This recalls the shooting method for boundary
value problems—the solution space is expanded by relaxing a boundary condition,
a solution is found, and then the boundary condition is reasserted.

As just mentioned, the test xn+1
?
= 0 highlights the eigenvalues of A. The other

solution vector entries xn, xn−1, . . . , x1 provide useful information as well. Letting
si = xi/xi−1, i = 2, . . . , n+ 1, the reader can check that

si =

{
− ri−1

bi−1
, i = 2, . . . , n;

−rn, i = n+ 1.

If the subdiagonal entries bi−1 are all positive—as they are for the β-Hermite matrix
model with probability one—then the “shooting vector ratios” sn+1, . . . , s2 and the
Sturm ratios rn, . . . , r1 have opposite signs.

In particular, A has no eigenvalues greater than λ if and only if the shooting
vector ratios sn+1, . . . , s2 are all positive.

This result may sound familiar to a student of differential equations. One of
the important results of Sturm-Liouville theory is this: the nth eigenfunction of a
regular Sturm-Liouville operator L has exactly n zeros. In particular, the lowest-
energy eigenfunction never crosses 0. This leads to the already-mentioned shooting
method: From a guess λ for the lowest eigenvalue, relax a boundary condition and
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solve L − λf = 0. If the solution has no zeros, then the guess was too low; if the
solution has zeros, then the guess was too high.

4.4. Riccati diffusion. The stochastic Airy operator is a regular Sturm-
Liouville problem [ES07, Blo11]. It can be analyzed by the shooting method
and a Riccati transform, following Ramı́rez, Rider, and Virág [RR09], and the
largest eigenvalue distribution can be computed with the help of Kolmogorov’s
backward equation, as shown by Bloemendal and Virág [BV10, BV11]. Bloe-
mendal and Sutton have developed an effective numerical method based on this
approach [BS12].

First, the Riccati transform. Consider the stochastic Airy operator Aβ acting
on a function f(x). Define w(x) = f ′(x)/f(x). Then

w′(x) =
f ′′(x)

f(x)
−
(
f ′(x)

f(x)

)2

=
f ′′(x)

f(x)
− w(x)2.

If f(x) is an eigenfunction of Aβ , then it passes two tests: the differential equation

f ′′(x)− xf(x) +
2√
β
W ′(x)f(x) = Λf(x)

and the boundary conditions f(0) = 0 and limx→+∞ f(x) = 0. In fact, the bound-
ary condition at +∞ forces f(x) to decay at the same rate as Ai(x). After the
change of variables, these conditions become

w′(x) = x+ Λ +
2√
β
W ′(x)− w(x)2.

and

lim
x→0+

w(x) = +∞,

w(x) ∼ Ai′(x)/Ai(x) ∼ −
√
x (x→ +∞).

Conversely, if w(x) satisfies the first-order differential equation and satisfies the
boundary conditions, then f(x) = exp(

∫
w(x) dx) is an eigenfunction with eigen-

value Λ. Sturm-Liouville theory leads to the following three equivalent statements
concerning the largest eigenvalue Λmax of the stochastic Airy operator:

(1) Λmax < λ.
(2) Suppressing the right boundary condition, the solution to (Aβ−λ)f(x) =

0 has no zeros on the nonnegative half-line.
(3) Suppressing the right boundary condition, the solution w(x) to the first-

order ODE w′(x) = x + λ − w(x)2 + 2√
β
W ′(x) has no poles on the non-

negative half-line.

Computing the probability of any of these events gives the desired distribution, the
generalization of the Tracy-Widom distribution to arbitrary β > 0.

One final trick is in order before moving to computation. The test value λ can
be removed from the diffusion equation with the change of variables t = x+λ. The
resulting equation is equivalent in distribution to

(4.1) w′(t) = t− w(t)2 +
2√
β
W ′(t),

and the left boundary condition becomes limt→λ+w(t) = +∞. We have Λmax < λ
if and only if w(t) has no poles in [λ,+∞).
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4.5. Kolmogorov’s backward equation. The probability of a pole in the
solution to the stochastic Riccati diffusion (4.1) turns out to be a tractable compu-
tation; Kolmogorov’s backward equation is designed for this sort of problem.

We ultimately need to enforce the left boundary condition limt→0+ w(t) =
+∞. The trick is to broaden the problem, analyzing all boundary conditions
before finding the original one as a special case [BV10]. That is, we compute
Pr(t0,w0)[no poles] for all initial conditions w(t0) = w0.

For initial conditions with large t0, it is rather easy to predict whether a pole
appears in the solution of the Riccati equation. When noise is removed, the equation
has two fundamental solutions: Ai′(t)/Ai(t) ∼ −

√
t, which is like an unstable

equilibrium in that it repels nearby solutions, and Bi′(t)/Bi(t) ∼
√
t, which is like a

stable equilibrium. Solutions with w(t0) < Ai′(t0)/Ai(t0) hit w = −∞ in finite time
when run forward, and solutions with w(t0) > Ai′(t0)/Ai(t0) become asymptotic to√
t when run forward. White noise has no effect on this behavior in the t0 → +∞

limit. Hence, we know a slice: limt0→+∞ Pr(t0,w0)[no poles] = 1w0≥−
√
t0 .

Kolmogorov’s backward equation specifies how this probability evolves as the
initial condition moves backward. Let F (t, w) = Pr(t,w)[no poles]. (Notice that we
have dropped subscripts from t0 and w0, but these are still initial values.) The
backward equation is

∂F

∂t
+ (t− w2)

∂F

∂w
+

2

β

∂2F

∂w2
= 0.

With our initial condition and the boundary condition limw→−∞ F (t, w) = 0, this
has a unique solution. The desired quantity is a horizontal slice:

Pr[Λmax < λ] = Pr[Riccati diffusion started at w(λ) = +∞ has no poles with t > λ]

= F (λ,+∞).

Bloemendal and Sutton have developed a numerical routine for solving the PDE
numerically. Some challenges arise, particularly when β becomes large. Then the
PDE is dominated by convection, and its solution develops a jump discontinuity (a
butte, so to speak). The solution can be smoothed out by an additional change of
variables [BS12].

5. Ghosts and Shadows

We propose to abandon the notion that a random matrix exists only if it can
be sampled. Much of today’s applied finite random matrix theory concerns real or
complex random matrices (β = 1, 2). The “threefold way” so named by Dyson in
1962 adds quaternions (β = 4). While it is true there are only three real division
algebras (β=“dimension over the reals”), this mathematical fact while critical in
some ways, in other ways is irrelevant and perhaps has been over interpreted over
the decades.

We introduce the notion of a “ghost” random matrix quantity that exists for
every beta, and a “shadow” quantity which may be real or complex which allows
for computation. Any number of computations have successfully given reasonable
answers to date though difficulties remain in some cases.

Though it may seem absurd to have a “three and a quarter” dimensional or
“π” dimensional algebra, that is exactly what we propose and what we compute
with. In the end β becomes a noisiness parameter rather than a dimension.
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This section contains an “idea” which has become a “technique.” Perhaps it
might be labeled “a conjecture,” but we think “idea” is the better label right now.
Soon, we hopefully predict, this idea will be embedded in a rigorous theory.

The idea was discussed informally to a number of researchers and students at
mit for years now, probably dating back to 2003 or so. It was also presented at a
number of conferences [Ede03] and in a paper [Ede10].

Mathematics has many precedents, the number 0 was invented when we let go
of the notion that a count requires objects to exist. Similarly negative numbers
are more than the absence of existing objects, imaginary numbers can be squared
to obtain negative numbers, and infinitesimals act like the “ghosts of departed
quantities.” Without belaboring the point, mathematics makes great strides by
letting go of what at first seems so dear.

What we will obtain here is a rich algebra that acts in every way that we
care about as a β-dimensional real algebra for random matrix theory. Decades
of random matrix theory have focused on reals, complexes, and quaternions or
β = 1, 2, 4. Statisticians would say the real theory is more than enough and those
who study wireless antenna networks would say that the complexes are valuable,
while physicists are an applied community that also find the quaternions of value.
Many random matrix papers allow for general betas formally, perhaps in a formula
with factor

∏
|xi − xj |β ; we wish to go beyond the formal.

Though it may seem absurd to have a “three and a quarter” dimensional al-
gebra, as long as α = 2/β is associated with “randomness” rather than dimension,
there is little mathematical difficulty. Thus we throw out two notions that are held
very dear: 1) a random object has to be capable of being sampled to exist and 2)
the three division algebras so important to non-random matrix theory must take
an absolute role in random matrix theory. One reference that captures some of this
philosophy is [Par03].

The entire field of free probability introduced by Dan Voiculescu around 1986
is testament to the power of the first idea, that a random object need not be
sampled in order to exist. Some good references are [VDN92] or [NS06]. In
free probability, the entire theory is based on moments and generating functions
rather than on sampling. To be sure β = 1, 2, 4 will always be special, perhaps in
the same way that as the factorial function melts away into the gamma function:
permutations are no longer counted but analysis goes so very far.

We introduce the notion of a “ghost” in a straightforward manner in the next
section. We propose that one can compute with “ghosts” through “shadow” quan-
tities thereby making the notions concrete. Some of the goals that we wish to see
are

(1) The definition of a continuum of Haar measures on matrices that gener-
alize the orthogonals, unitaries and symplectics;

(2) A mechanism to compute arbitrary moments of the above quantities;
(3) A mechanism to compute Jacobians of matrix factorizations over beta-

dimensional objects;
(4) Various new definitions of the Jack polynomials that generalize the Zonal

and Schur Polynomials;
(5) New proofs and insights on any number of aspects of random matrix

theory.
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In section 3 we showed that the large n limit of random matrix theory corresponds
to a stochastic integral operator where β inversely measures the amount of ran-
domness. We believe that finite random matrix theory deserves an equal footing.

5.1. Ghost Random Variables. In [Ede10] we provided the beginnings of
a formal theory. In these notes we prefer the informal approach. Let x1 be real
standard normal, x2 be a complex number with independent real and imaginary
part that are iid standard normals, and x4 be a quaternion composed of four inde-
pendent standard normals. We observe that

• |xβ | ∼ χβ (the absolute value has a real Chi distribution)
• <(xβ) ∼ G (the real part is a standard normal)
• ‖vβ‖ ∼ χnβ if vβ is an n-dimensional vector whose entries are independent

and distributed as xβ
• Qβvβ ∼ vβ if vβ is defined as above and Qβ is (orthogonal/unitary/sym-

plectic).

We pretend that the above objects (and others) make sense not only for β = 1, 2, 4
for any β > 0. We call xβ a ghost Gaussian, vβ a vector of ghost Gaussians, and
Qβ , a ghost unitary matrix.

Definition 1. (Shadows) A shadow is a real (or complex) quantity derived
from a ghost that we can sample and compute with.

We therefore have that the norm ‖xβ‖ ∼ χbeta is a shadow. So is <(xβ).

5.2. Ghost Orthogonals (“The Beta Haar Distribution”). We reason
by analogy with β = 1, 2, 4 and imagine a notion of orthogonals that generalizes
the orthogonal, unitary, and symplectic groups. A matrix Q of ghosts may be said
to be orthogonal if QTQ = I. The elements of course will not be independent.

We sketch an understanding based on the QR decomposition on general matri-
ces of independent ghost Gaussians. We imagine using Householder transformations
as is standard in numerical linear algebra software. We obtain immediately

Proposition 2. Let A be an n × n matrix of standard β ghost Gaussians
We may perform the QR decomposition into ghost orthogonal times ghost upper
triangular. The matrix R has independent entries in the upper triangle. Its entries
are standard ghost Gaussians above the diagonal, and the non-negative real quantity
Rii = χβ(n+1−i) on the diagonal. resulting Q may be thought of as a β analogue of
Haar measure. It is the product of Householder matrices Hk obtained by reflecting
on the uniform k-dimensional “β sphere.”

The Householder procedure may be thought of as an analog for the O(n2)
algorithm for representing random real orthogonal matrices as described by Stew-
art [Ste80].

We illustrate the procedure when n = 3. We use Gβ to denote independent
standard ghost Gaussians as distributions. They are not meant in any way to
indicate common values or that even there is a meaning to having values at all.
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 χ3β Gβ Gβ

0 χ2β Gβ

0 0 χβ


.

The Hi are reflectors that do nothing on the first n − i elements and reflect
uniformly on the remaining i elements. The absolute values of the elements on the
sphere behave like i independent χβ random variables divided by their root mean
square. The Q is the product of the Householder reflectors.

We remark that the β-Haar are different from the circular β ensembles for
β 6= 2.

5.3. Ghost Gaussian Ensembles and Ghost Wishart Matrices. It is
very interesting that if we tridiagonalize a complex Hermitian matrix (or a quater-
nion self-dual matrix), as is done with software for computing eigenvalues, the result
is a real tridiagonal matrix. Equally interesting, and perhaps even easier to say,
is that the bidigonalization procedure for computing singular values takes general
rectangular complex (or quaternion) matrices into real bidiagonal matrices.

The point of view is that the Hermite and Laguerre models introduced in Sec-
tion 2 are not artificial constructions, but they are shadows of symmetric or general
rectangular ghost matrices respectively. If we perform the traditional Householder
reductions on the ghosts the answers are the tridiagonal and bidiagonal models.
The tridiagonal reduction of a normalized symmetric Gaussian (“The Gaussian
β-orthogonal Ensemble”) is

Hβ
n ∼

1

2
√
nβ


G
√

2 χ(n−1)β

χ(n−1)β G
√

2 χ(n−2)β

. . .
. . .

. . .

χ2β G
√

2 χβ
χβ G

√
2

 ,

where the elements on the diagonal are each independent Gaussians with mean 0
and variance 2. The χ′s on the super and subdiagonal are equal giving a symmetric
tridiagonal.

The bidiagonal for a the singular values of a general ghost is similar with chi’s
running on the diagonal and off-diagonal respectively. See [DE02] for details.

We repeat the key point that these “shadow” matrices are real and can therefore
be used to compute the eigenvalues or the singular values very efficiently. The notion
is that they are not artificial constructions, but what we must get when we apply
the ghost Householder transformations.

5.4. Jack Polynomials and Ghosts. Around 1970, Henry Jack, a Scot-
tish mathematician, obtained a sequence of symmetric polynomials Jακ (x) that are
closely connected to our ghosts. The parameter α = 2/β for our purposes, and κ
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is a partition of an integer k. The argument x can be a finite vector or a matrix. It
can also be a formal infinite sequence.

With MOPS [DES07], we can press a few buttons before understanding the
polynomials just to see what they look like for the partition [2,1,1] of 4:

J1
2,1,1(x, y, z) = 3xyz(x+ y + z)

Jα2,1,1(x, y, z) =
12α2

(1 + α)2
xyz(x+ y + z)

Jα2,1,1 = 2(3 + α)m2,1,1 + 24m1,1,1,1,

where m2,1,1 and m1,1,1,1 denote the monomial symmetric functions.
When β = 2, the Jack polynomials are the Schur polynomials that are widely

used in combinatorics and representation theory. When β = 1, the Jack polynomials
are the zonal polynomials. A wonderful reference for β = 1, is [Mui82]. In general
see [Sta89, Mac98].

We will not define the Jack polynomials here. Numerical and symbolic routines
for their computation may be found in [DES07, KE06] respectively.

We expect that the Jack Polynomial formula gives consistent moments for Q
through what might be seen as a generating function. Let A and B be diagonal
matrices of indeterminates. The formula

EQJκ(AQBQ′) = Jκ(A)Jκ(B)/Jκ(I),

provides expressions for moments in Q. Here the Jκ are the Jack Polynomials with
parameter α = 2/β [Jac70, Sta89]. This formula is an analog of Theorem 7.2.5
of page 243 of [Mui82]. It must be understood that the formula is a generating
function involving the moments of Q and Q′. This is formally true whether or not
one thinks that Q exists, or whether the formula is consistent or complete. For
square Ghost Gaussian matrices, we expect an analog such that

EGJκ(AGBG′) = c(β)
κ Jκ(A)Jκ(B).

5.5. Ghost Jacobian Computations. We propose a β-dimensional volume
in what in retrospect must seem a straightforward manner. The volume element
(dx)∧ satisfies the key scaling relationship. This makes us want to look a little into
“fractal theory,” but at the moment we are suspecting this is not really the key
direction. Nonetheless we keep an open mind. The important relationship must be∫

a<‖x‖<b
(dx)∧ =

∫ b

a

Sβ−1r
β−1dr = Sβ−1(bβ − aβ)/β,

where Sβ is the surface area of the sphere (in β dimensions) for any positive
real β (integer or not!), i.e.,

Sβ =
2πβ/2

Γ(β/2)
.

We use the wedge notation to indicate the wedge product of the independent
quantities in the vector or matrix of differentials.

This allows the computations of Jacobians of matrix factorizations for general
β. As an example relevant to the tridiagonalization above, we can compute the
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usual Jacobian for the symmetric eigenvalue problem obtaining

(dA)∧ =
∏
i<j

(|λi − λj |β)(QTdQ)∧(dΛ)∧.

The derivation feels almost straightforward from the differential of A = QΛQT or
QTdAQ = (QTdQ)Λ − Λ(QTdQ) + dΛ. The reason it is straightforward is that
the quantity in the (i, j) position that multiplies (qTi dqj) is exactly λi − λj . In a
β-dimensional space this must be scaled with a power of β, respecting the dimen-
sionality scaling (rdx)∧ = rβ(dx)∧.

5.6. Application: Numerical Generation of Samples of Singular Val-
ues from GΣ−1/2. To sample from the singular values of an m × n matrix of
standard ghosts, all that is necessary is to compute the singular values of the real
bidiagonal form (2.4). lapack contains algorithms that very efficiently compute
the singular values. Standard procedures in matlab, Mathematica, or MAPLE are
less efficient, as they presume dense or general sparse formats, not taking advantage
of the bidiagonal matrix.

Sampling the singular values of anm×nmatrix of standard ghosts with columns
scaled by a diagonal matrix Σ−1/2 is harder. In an upcoming work [DE12], we will
show how the method of ghosts allowed for the computation of a practical algorithm.

When Σ = I, the joint density of the squared singular values has the Laguerre
density

cm,n,β

n∏
i=1

λ
m−n+1

2 β−1
i

∏
j<k

|λj − λk|βe−
β
2

∑n
i=1 λi .

The more general form when Σ 6= I, which is sometimes associated with Harish-
Chandra-Itzykson-Zuber integral when β = 2 is more complicated:

cm,n,β,Σ

n∏
i=1

λ
m−n+1

2 β−1
i

∏
j<k

|λj − λk|β0F
(β)
0 (−β

2
Λ,Σ−1),

where 0F0 denotes the hypergeometric function of matrix arguments, which is itself
defined in terms of Jack Polynomials [KE06].

We outline the idea of our algorithm here. See [DE12] for the details. If n = 1,
i.e., we only have one column, then we can replace each ghost with a real χbeta
without changing the singular value. By induction we assume that we can get the
SVD of a matrix with n − 1 columns and thus get the SVD with n columns. We
therefore assume that we can put the SVD problem in the form

Z =


dng1,n

UTV ′
...

dngm,n

 ,

where U and V are ghost-unitary matrices, the g’s are standard ghost Gaussians
and dn is real as is T which is diagonal. We can multiply the right n− 1 columns
by V and on the left by U taking advantage of the invariance of ghost Gaussian
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vectors. This yields a new matrix with the same singular values:


t1 dnχβ

t2
. . .

...
tn−1

dnχβ

 .

We can then proceed to replace the ghosts with independent χβ without changing
the singular values. We think of this as moving the phases into the ti and then
removing them on the left. The resulting real matrix is


t1 dng1,n

t2
. . .

...
tn−1

dngm,n

 .

As evidence of the effectiveness of this algorithm, see Algorithm 5 and Figure 3.
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Figure 3. The empirical (blue) and analytic (red) cdf’s of the
largest eigenvalue of the general β-Wishart Ensemble.
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Algorithm 5 Singular values of General β-Wishart Ensemble.

%Experiment : S ingu lar Values o f the General Beta−Wishart Ensemble .

%Plot : The e m p i r i c a l ( b l u e ) and a n a l y t i c ( red ) cdf ’ s o f the l a r g e s t e i g .

%Techniques : Method o f Ghost and Shadows

%Theory : The General Beta−Wishart Ensemble .

function ghost exp

%% Parameters

m = 5 ; n = 4 ; % matrix s i z e

t = 10ˆ5 ; % t r i a l s

beta = . 7 5 ; % dimension

Sigma = diag ( [ 1 , 2 , 3 , 4 ] ) ; % Wishart Covariance

M = 120 ; % terms in hypergeometr ic sum

%% Experiment

s v l i s t = zeros ( t , 1 ) ;

for j = 1 : t

sv2 = mxn(m, n , beta , Sigma ) . ˆ 2 ;

s v l i s t ( j ) = max( sv2 ) ;

end

%% Experiment Plo t

hold on , c d f p l o t ( s v l i s t ) ;

%% Theory Plot

xrange = 1 0 : 1 0 : 6 0 ;

for j = 1 :6

yrange ( j ) = cdfBetaWishart ( xrange ( j ) , n ,m, beta , Sigma ,M) ;

end

plot ( xrange , yrange , ’ rx ’ ) ;

hold o f f

end

function sv = mxn(m, n , beta , Sigma )

%% Computes the General Beta−Wishart S ingu lar Values

i f m < n

sv = [ ] ;

e l s e i f n == 1

sv = sqrt ( Sigma (1 ,1 )∗ chi2rnd (m∗beta ) ) ;

else

sv 0 = mxn(m, n−1,beta , Sigma ( 1 : n−1 ,1:n−1)) ;

sv = svd ( [ [ diag ( sv 0 ) ; zeros (m−n+1,n−1) ] , . . .

sqrt ( Sigma (n , n)∗ chi2rnd (beta ,m, 1 ) ) ] ) ;

end

end

function y = cdfBetaWishart (x ,m, n , beta , Sigma ,M)

%% The T h e o r e t i c a l General Beta−Wishart Max−Eig D i s t r i b u t i o n

alpha = 2/beta ;

y = multigamma ( (m−1)∗beta/2+1,m, beta )/ multigamma ( (m+n−1)∗beta/2+1,m, beta ) ;

y = y ∗ det ( . 5∗ x∗ inv ( Sigma ) ) ˆ ( n∗beta / 2 ) ;

y = y∗mhg(M, alpha , (m+n−1)∗beta/2+1−n∗beta /2 , (m+n−1)∗beta/2+1, . . .

−eig (−.5∗x∗ inv ( Sigma ) ) )∗exp( trace (−.5∗x∗ inv ( Sigma ) ) ) ;

% mgh : downloadable from : h t t p ://www−math . mit . edu/˜plamen/ so f tware /mhgref . html

end

function y = multigamma ( c ,m, beta )

y = pi ˆ(m∗(m−1)∗beta/4)∗prod (gamma( c−(beta / 2 ) ∗ ( 0 : 1 : (m−1 ) ) ) ) ;

end
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6. Universality of the Smallest Singular Value

The Central Limit Theorem (CLT) is a theorem in pure mathematics and a
way of life in applied mathematics, science and engineering. Outside of pure math-
ematics, it is a methodology that says that if quantities are independent enough,
and perhaps do misbehave in some egregious manner, one can pretend that random
variables “mixed up” enough behave as if they are normally distributed.

One can make many variations, but for this section, let us imagine that we
have Mn, an n × n random matrix with independent elements all of mean 0 and
variance 1. We would imagine that some suitably mixed up quantity would behave
as if the entries were normal, i.e., the distribution of the smallest singular value of
Mn should be close to that of randn(n), which asymptotically, equals to [Ede89]

Pr[nλmin ≤ t] =

∫ t

0

1 +
√
x

2
√
x
e−(x/2+

√
x)dx.

Twenty four years ago, the first author performed a kind of “parallel matlab”
experiment that convinced him beyond a shadow of a doubt that two things were
true:

• One can replace randn(n) with other nice distributions with mean 0 and
variance 1 and the answer would hardly care;

• This was already true even for small n.

The experiments were performed in “the computer room” on the third floor of
the Math department at mit. Every Sun workstation in the room had a matlab
session running with a polite handwritten note explaining why the machines were
being used, and permission to kill the computation if the machine was needed, but
to please leave the machine running otherwise, because then matlab could not run
in the background conveniently.

For many years, the first author thought the right probabilist would pull a
theorem from a textbook, maybe modify it a little, and prove a big theorem that
explained when random variables can be replaced with normals. The authors knew
some variations of CLT, learned of Lindeberg and Berry-Esseen style results, but
remain to this day disappointed, as well as hopeful. Recently, Tao and Vu [TV10]
showed the universality of the smallest singular value and renewed hope that the
right theorem would come along to make the applied mathematician’s life easier.

Perhaps a personal satisfaction and disappointment is that with careful experi-
ments one can usually know what is going on with random matrices, but the theory
remains short. Even the celebrated Tao-Vu results are statements as n → ∞; the
proof details pessimistically require that n be huge before the phenomenon kick in.
In this section, we provide a reformulation of the Tao-Vu intuition in numerical
linear algebra language.

Consider computing a block 2× 2 QR decomposition of an n× n matrix M .

M =
(
M1 M2

)
n−s s

= QR =
(
Q1 Q⊥1

)
n−s s

×
(
R11 R12

R22

)
n−s s

n− s

s
.

Thus, we have

(Q⊥1 )TM2 = R22.

The smallest singular value of the lower right triangular block R22 (of size s×s)
scaled by

√
n/s is a good estimate for the smallest singular value of M .
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• IfM were exactly singular, and in the most generic way (the last column or
one of the last columns) is a linear combination of the previous columns
that are independent. Then R22 is exactly singular, hence its smallest
singular value is exactly 0. The factor

√
n/s is explained by Tao and Vu

as the factor seen from recent results on sampling theory. We encourage
readers to try the following code.

n=1000;v = [ ] ;
[ q , r ]=qr (randn(n ) ) ;
s s=min(svd ( r ) ) ;

for i =1:400 ,
k=(n+1− i ) : n ;
v ( i )=min(svd ( r (k , k ) ) ) ;

end
%s c a l e the s i n g u l a r v a l u e s

v=v .∗ sqrt ( 1 : 400 )/ sqrt (n ) ;
plot ( v/ ss , ’−∗ ’ )

• The CLT would give a standard normal if a random vector on the unit
sphere is dotted into a random vector of independent elements of mean 0
and variance 1. This is a kind of stirring up the non-gaussian to smooth
out its “rough edges.” Indeed the vector on the unit sphere needs not be
random, it just has to be not to concentrated on any of the coordinate.
For example, a vector with one 1 and n− 1 0’s would work, but anything
that mixes things up is fine.

Combine these two ideas together, we can see that multiplying the s × n matrix
Q⊥1 by the n × s matrix M2 gives an s × s matrix that behaves like randn(s) as
n→∞. It is particularly clean that span{(Q⊥1 )T } depends only on M1, and hence
independent of M2. There is no guarantee that Q⊥1 is not concentrated, but with
high probability it will “mix things up”. We also wish to mention some recent
progresses [ESYY12, EY12].
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[ESYY12] L. Erdős, B. Schlein, H.T. Yau, and J. Yin, The local relaxation flow approach to

universality of the local statistics for random matrices, Annales de l’Institut Henri
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