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This paper is intended to provide the axiomatic study of nonequilibrium quantum statistical 
mechanics with some simple and rigorously solvable models. The models considered here are obtained 
as generalizations of the Ising model. They illustrate and allow a rational discussion of the following 
concepts relevant to the theory of irreversible phenomena: coarse-graining and time-smoothing, 
ergodicity, recurrences, impossibility of a Markovian description of the approach to equilibrium 
for some physical systems, justification of the various random phase assumptions, properties of the 
interaction responsible for the approach to equilibrium, master equations, etc. 

I EXPERIMENTAL BACKGROUND 

THE phenomena called free-induction relaxation 
exhibits an oscillatory approach to equilibrium. 

From the first time it was observed, it was inter-
preted! as the result of the dipolar interaction 
between nuclear spins arranged in a rigid lattice. 

Just to show that what follows is not only a 
mathematical game, but also a topic of some definite 
physical relevance, we shall recall briefly the 
experimental situation. This is also intended to 
provide a safer basis for the present theoretical 
considerations. 

A CaF 2 crystal is placed in a magnetic field B, 
the direction of which we shall call z. The system 
is allowed to reach thermal equilibrium. When this 
is achieved, a rf pulse is applied to turn the net 
magnetic moment t' in the x direction, orthogonal to 
the z direction of B. The time-evolution of the x 
component IJ.z of t' is then observed. It exhibits an 
oscillatory decay to zero, starting from a nonzero 
initial value. This is interpreted as the result of the 
dipolar interaction between the (I = i)-spin of the 
fluorine nuclei. No relaxation via lattice vibration 
is needed to account for this phenomena, so that 
the spin system may be considered as isolated. It 
has been shown that the interaction responsible for 
this approach to equilibrium can be reduced to the 
following form (we do not want to worry here 
about units): 

v = L (aiidi d; + - B L (1) 
i. i i 

lead to a quantitative agreement with experiment, 
it provides a qUalitative description of the observed 
oscillatory approach to equilibrium, and makes the 
model exactly solvable: 

ai; = 0 for all (i, D. (2) 

This form of the model is the basis of our considera-
tions. The aim of these is indeed to discuss the 
consequences of the definite approach to equilibrium 
encountered in this problem. The remarkable fact 
about this model is that it does not involve any 
kind of repeated random phase assumption (the 
quantum analog of Boltzmann's Stosszahlansatz) , 
and that no approximations at all are needed. The 
approach to equilibrium is shown to be a consequence 
of only the particular choice of a wide class of 
initial conditions (connected with the partial in-
formation obtained from macroscopic measurements) 
and of the peculiar form of the Hamiltonian. Be-
cause of its great simplicity, this model also allows 
some enlightening of many aspects of the theory 
of nonequilibrium processes. This is the principal 
motive for the present investigation. 

II THEORETICAL ANALYSIS OF THE MODEL 

We express the main features of our model in a 
quite naive mathematical form. We try to proceed in 
such a way that: 

(i) the simplicity of the model is exhibited; 
(ii) the road to the slightly more sophisticated 

considerations of the next section is prepared. 
where i, j ... denote the position of the fluorine 
nuclei, and uZ

, uU
, u' are the Pauli matrices. In this Consider an infinite linear chain (in several of the 

form the model has not been solved exactly. Even considerations to come it is convenient to consider 
if the following simplifying assumption does not the infinite linear chain as the liInit of a finite ring) 

* This research was carried out at the Institute for Fluid of fixed spin-! identical particles. The quantum 
Dynamics and Applied Mathematics of the University of mechanical evolution of the system will be described 
Maryland under the support of the Office of Naval Research- by a continuous one-parameter group of unitary 
Contract NONR 595 (22). 

11. J. Lowe and R. E. Norberg, Phys. Rev. 107,46 (1957). operators {U' J acting on the Hilbert space 
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APPROACH TO EQUILIBRIUM 1199 

= (3) 
i 

where the index i runs over all the particles and 
are the identical replicas of the two-dimensional 

Hilbert space used to describe each individual particle. 
We furthermore suppose that U' can be written as 

U' = II U!, (4) 
",,0 

where all the unitary groups {U!l are defined on 
commute among themselves, and are respectively 
generated by 

Ho = -B 
i (5) 

H" = e(n) L .. , for n > O. 
i 

We finally suppose that the real-valued function 
e(n) satisfies the following conditions: 

(i) e(n) is monotonically nonincreasing in n, 
(ii) lim e(n) = O. (6) ..... '" 
These assumptions correspond to physical situations. 
For the moment we do not specify the exact form 
of e(n), nor do we indicate whether e(n) reaches 
its asymptotic value for finite n. Let us write for 
the generator of {U' } : 

'" 
H= EH". (7) 

.. -0 

Incidently, we note that 

Let us now denote by (SZ)(O) the initially ob-
served expectation value of SZ. We now have to 
specify the initial state of the system. As usual, 
many different density matrices p(O) lead to the 
prescribed expectation value. If we now speak the 
language used, for instance, in Ref. 2, we say that 
these various p(O) correspond to different micro-
scopic states but are macroscopically equivalent. 
Each of them would, in principle, lead to a different 
time-dependence of (SZ)(t). We then have to make 
an assumption on the initial state we want to con-
sider. The most reasonable choice for this is the 
state which maximizes the microsopic entropy, and 
is subject to the constraint: 

Tr SZp(O) = (SZ) (0). (11) 

If one takes the usual expression for the entropy, 
the solution of this problem is well known (it is 
just a transposition of one of the most satisfactory 
ways to derive the canonical distribution3

) : 

(12) 

where r is determined by the constraint (11). 
Incidentally, we remark that (12) could also be 
justified in a more traditional (but approximate) 
way, following more closely the actual preparation 
of the system in the laboratory as described in the 
first section (see again Ref. 1). 

The problem now is to calculate 

(SZ) (t) = Tr SZ pet) (13) 

HI == Ho + Hl (8) with 

is the ordinary one-dimensional Ising model with 
nearest-neighbor interaction only. We see that it 
is indeed quite essential for the approach to equi-
librium to consider the generalized form of the Ising 
model, where the interaction extends over all pairs 
of neighbors. 

Usually the observable of interest in the Ising 
model is 

S' = L (9) 
; 

which commutes with H. In this sense the ordinary 
Ising model, even generalized in the above way, 
is a classical system and is moreover only suitable 
for describing equilibrium situations. 

Here, on the contrary, we want to consider the 
time-dependence of the expectation value of the 
observable: 

SZ = L (10) 
i 

(14) 

where p(O) and U' are prescribed by (12), (4), and (5). 
The expression (13) is more easily calculated if one 
writes it in the form 

(SZ)(t) = Tr {U- t SZU' p(O)}. (15) 

Since Tr is independent of the basis in which it is 
evaluated, we choose as a convenient basis: 

'I"all = II 0 1/Ia;, 
i 

(16) 

• 2 G. Lecture notes, 8th Theoretical Physics In-
stltute, Uruverslty of Colorado, Summer 1965. Preprint JILA 
University of Colorado and Nat!. Bur. Std., Boulder 1965: 
For further details see G. Emch, Relv. Phys. Acta 37 270 
(1964); ibid., 37, 532 (1964); ibid., 38, 164 (1965), and ref-
erences quoted therein. See also: G. Emch and C Favre 
Preprint Geneva 1965. . , 

3 J. von Neumann, Mathematical Foundation8 of Quantum 
Mechanic8 (Princeton University Press, Princeton 1955). See 
also the book published under the same title by G. 'w. Mackey 
(W. A. Benjamin Company, Inc., New York, 1963). 
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1200 GERARD G. EMCH 

where (with ai = ±1) is the basis defined in 
each .pi by 

(17) 
We next note that p(O) is diagonal in the basis 
{W(a.I}, so that only the diagonal part of 
is relevant for the evaluation of (15). Now, for any 
bounded operator A acting on .p, it is convenient 
to define 

U!A == U;;'AU!. 

Since the U! commute among themselves, 

U-' S%U' = {II U!} S% 

:E {II U!lcr: 

== U' 8%. 

Let us then first calculate 

where 

== 
with 

= exp(+iBcrit). 

Since 

u: commutes with for j i, 

one has 

One can now use the property 

= I 

to write 

= I cos Bt + icr: sin Bt. 

Combining now (23) and (24) one gets: 

= cos 2Bt + sin 2Bt 

and therefore 

U-'S%U' = ({ II U!18X
) cos 2Bt 

n>O 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

+ ({ II U!} SO) sin 2Bt. (26) 
n>O 

This takes care of the influence of the magnetic 
field. Next, we must calculate the influence of the 
spin-spin interaction. To do so, let us first evaluate 

U:u7 = {II U:.; }u:, (27) 

where U:. i is constructed in the usual way from 

U:.; = exp [-iE(I)uiui+lt]. (28) 

For reasons quite analogous to those encountered 
above, (27) reduces to 

(29) 

which can be readily calculated (using the same 
technique as for the B dependence) as: 

= cos2 [2E(I)t] 

- + U:+l) sin [4E(I)tJ 

- sin2 [2E(1)tj. (30) 

At this point it becomes more and more intricate 
to write the successive explicit expressions for 

etc. 

However, we should remember that we are not 
interested in the evaluation of the operator (26) 
for itself, but in the expectation value (15), to 
which only the diagonal part of (26) contributes. 
A somewhat closer glimpse to the form of the succes-
sive U! shows that the only part of 

which contributes to (15) is 

u: II cos2 2E(n)t. 
n 

The reader can rapidly convince himself that 

cannot contribute to (15). We immediately have the 
desired result: 

(8%)(t) = (8%)(0)[il cos2 2E(n)tj cos 2Bt. (31) 
n>O 

One also obtains 

(8")(t) = -(8X )(0)[II cos2 2E(n)t] sin 2Bt, (32) 
n>O 

(S')(t) = (8')(0) = O. (33) 

The generalization of the above result from a 
one-dimensional chain to an n-dimensional crystal 
is obvious and can be taken care of simply by 
replacing E(n) by Eik and making the subsequent 
trivial changes. The resulting expression is known 
and provides a qualitative (if not quantitative) 
agreement with experimene if the Eik are properly 
adjusted. We gave the calculation with some details 
for the case of a linear chain with the following 
reasons: 
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(1) To emphasize that no approximation and no 
supplementary "statistical" assumptions are in-
volved in the derivation of (31)-(33) when one 
starts from 

(a) the generalized Ising-model microscopic 
evolution as prescribed by (4) and (5); 

(b) the initial condition (12). 
(This remains true also for any n-dimensional Ising-
model generalized in the sense described above.) 

(2) To provide a basis (in a hopefully intuitive 
language) for the generalized considerations, which 
is the topic of the following section. 

ill RELEVANCE TO THE GENERAL THEORY OF 
NONEQUlLmRIUM 

A. Particularization of the model 

The main purpose of Sec. II was to exhibit the 
presence in Eqs. (31)-(32) of the function 

f(t) = IT cos2 (34) 
n>O 

In general, one could try to discuss the behavior 
of this function for any satisfying the very weak 
conditions (6). However, our purpose is not to 
produce the oddest analytical time behavior one 
could imagine from a particular model, but rather 
to exploit the greater simplicity of the model as 
extensively as possible in order to gain some insight 
into the general theory and the pseudoparadoxes 
and difficulties usually met. The very problem in 
which we are interested is to see how and why a 
macroscopic approach to equilibrium is compatible 
with a purely quantum mechanical microscopic de-
scription, in order to bring to light the central role 
played by the lack of information involved in any 
classical measurement on a quantum system. 

We therefore postulate to have the form 

(35) 

The advantage of this choice is that f(t) has an 
exceedingly simple form which can be deduced from 
a formula due to Euler: 

(36) 

This is a positive function which obviously leads 
(with an oscillatory approach) to stationary value of 
(8): 

lim f(t) exists and is zero! (37) 

This result corresponds to an infinite linear chain 
with the spin-spin interaction extending over all 
pairs of neighbors. In the case of a finite ring, or 

equivalently, of an infinite chain with a cut-off 
described by 

= 0 for all n > N, (38) 

one can also calculate exactly the corresponding 
N 

fN(t) = IT cos2 

n-l 

= (39) 

where 

WN(t) = [sin (40) 

The function therefore, takes care of the 
"finite-size effects" (for the finite rings) or for the 
finite-extension of the interaction (for both finite 
rings and infinite linear chain). It shows that, for 
times t « TN with 

(41) 

these effects are negligible. This remark is relevant 
for the recurrence problems and is confirmed by the 
fact that for finite times 

lim WN(t) = 1. (42) 
N .... '" 

This, moreover, shows explicitly that, in the lll-

finite-"volume" limit, the recurrence paradox re-
solves itself naturally without any recourse to 
more or less ill-defined probabilistic statements such 
as "only small deviations with the tendency of 
approaching equilibrium occur often." 

B. Generalization of the model 

One of the reasons why we explicitly did the 
calculations of Sec. II was to make obvious the fact 
that the model, as presented there, is open to gen-
eralizations. The first point we wish to make is that 
the only property we used of the initial state p(O), as 
defined by (12), was the fact that p(O) is diagonal in 
{'It(ao}-basis (16). Therefore, the result (31)-(33) 
will remain true without any modification for quite 
a large class of initial states, namely for the p(O) 
which are diagonal in (16). 

Secondly, these results would also remain true if, 
instead of the one observable 8 z

, we would have 
been interested in any observable A of the form 

(43) 

Besides 8 z
, which is obviously recognized as a macro-

scopic observable, there is, therefore, a wide class 
of observables which also exhibit an approach to 
equilibrium, and are indeed related to a much finer 
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1202 GERARD G. EMCH 

description of the system than the original one 
provided by SZ alone. In fact, the set generated by 
all of the observables of the form (43) is maximal 
Abelian. In a less pedantic language, one could sim-
ply express this property by saying that the set of the 
observables (43) is a (over) complete set of com-
muting observables (csco). More simply, the simul-
taneous measurement of all the observables which 
generate this set would lead to an information which 
cannot be improved by any compatible quantum 
measurement performed at that same instant. Using 
now a language even more familiar to statistical 
mechanicists, we could say that this generalized 
version of our model leads to an approach to equi-
librium which does not require any real coarse-
graining, or expressed in a better form, that the 
macrocell defined by the observation2 are all one-
dimensional. This corresponds to the situation 
usually referred to as fine-graining. That a definite 
approach to equilibrium is compatible with fine-
graining illustrates a remark already made by 
Pauli' a long time ago. He emphasized that one 
of the few fundamental differences between classical 
and quantum statistical mechanics is that an in-
formation which is complete at a given instant 
remains so in time in the former description, whereas 
it can be lost in the latter. This is essentially due 
to the fact that, when the Hamiltonian does not 
commute with the csco considered, a state p, initially 
diagonal in the proper basis of this csco, does 
not remain diagonal; however, the nondiagonal ele-
ments of p which appears in the course of the evolu-
tion are of no relevance for the determination of 
the instantaneous expectation values of the ob-
servables belonging to the csco of interest. The 
generalized version of the model discussed in this 
subsection precisely provides an illustration of this 
remark. Incidentally, this is related to the fact that 
the quantum master equations, either fine- or coarse-
grained, are formally identical. 2 We should also 
recall at this point that no random phase assumption 
is needed in the fine-grained case. This is consistent 
with the fact that the coarse-graining projector [), 
introduced in Ref. 2, coincides in this case (and 
in this case only) with the projector introduced 
by von Neumann 3 in his discussion of the measuring 
process. 

C. illustration of the coarse-graining concepts 
We now consider the particular case of a (large 

but) finite ring, comprising say M sites whose 

• W. Pauli, Nuovo Cimento, Suppl. 6,166 (1949). 

positions are denoted by the index i = 0, ... , M - 1. 
Each site is occupied by a t-spin particle. The time 
evolution of this system is again assumed to be 
given by (4) and (5) with the supplementary con-
dition (35), complemented by any cut-off compatible 
with the ring structure. We moreover assume for 
simplicity that B = 0 (at least for t > 0). Now, 
instead of being interested in SZ we consider the 
following particular observable of the family (43) 

A = = O'z 0 I 0 ... 0 I, (44) 

where O'Z is the usual two-dimensional Pauli matrix. 
The spectral decomposition of A is thus 

with A running over the two indices + and 
One has obviously 

A(±) = ±1, 
E± = t(l ± A), 

(45) 

(46) 

where E± are two orthogonal projectors with the 
following properties: 

(47) 

(the equality sign is valid for all i except i = 0) 
and 

dim E± = 2M
-

I
• 

One can now use the language systematically estab-
lished in Ref. 2 and say that the E± are the two 
macrocells of our system: An observation based on 
A only can provide an information on the relative 
populations of these macro cells, but cannot lead to 
any information on the inside of them. One can 
furthermore introduce the maximal representative 
of the two macroscopic equivalence classes which 
occur in this model: 

(48) 

The macroscopic state {p corresponding to any 
given microscopic state WI is defined by: 

(49) 

Following the considerations developed in Ref. 2 
we are only interested (for the prediction of the 
evolution of the expectations values of A) in the 
time-dependent p with the initial condition 

WO = L: p1W<l, (50) 
<l, 

and the microscopic evolution equation 
WI = U-'WoU'. 
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This problem can be solved directly (without the 
need to go through the master equation techniques) 
following the calculations of Sec. II. We obtain 

= !(l ± afN(t», 
where a is determined by 

p2 = HI ± a). 

(51) 

(52) 

In this form the model will lead to further considera-
tions. 

D. Ergodicity 

The first problem of interest in the discusssion 
of nonequilibrium problems is to check whether a 
given system approaches equilibrium in some very 
restricted sense, namely 

liT -T 0 dt (A)(t)_ = (A), (53) 

where (A) is the microcanonical equilibrium value 
of the observable A. Although it is clear that the 
left-hand side of Eq. (53) has hardly any physical 
(operational) sense in connection with the problem 
of the true approach to equilibrium, its evaluation 
has some relevance to the problem, for the following 
reason: if (A )(t) ever approaches a limit as t -7 ro, 
then this limit should be equal to the ergodic 
average of (A)(t) which by definition is the left-hand 
side of (53) [There is no point to discuss here ergodic 
limits other than the ordinary (e, I)-Cesaro aver-
age.] 

One could calculate the left-hand side of (53) 
directly from (51). One would then see immediately 
that (53) is satisfied when the length of the cut-off 
(described by N) and subsequently the size of the 
ring (described by M) both go to infinity 

lim lim fN(t) = lim f(t) = 0, (54) ,_co N_otJ '-HD 

and consequently 
lim lim p,,(t) = i, (55) '_aD N-+rrJ 

which corresponds to the micro canonical distribu-
tion. 

We now discuss another approach which can be 
illustrated by the model in the form discussed in 
Sec. IILC. A general criterion for (53) has been 
proposed2 in the case of discrete spectrum of the 
Hamiltonian. This criterion reads as follows [see 
also (68) below]: 

.L: Tr (P"WAP"EA·) 
" 

(56) 

where WA is defined as above [by (48) in the present 
case], N A = dim E A, is the dimension of the 
energy-shell and P" are the eigenprojectors of 
the total Hamiltonian. 

To make this condition clear, we first have to 
state precisely what we mean by energy-shell. An 
energy-shell is defined as any eigenprojector of the 
following operator 

(57) 

to which we refer as the macroscopic energy for 
reasons which have been explained. 2 

In the present model 

Ho = 0, (58) 

and therefore there is only one energy-shell: the 
whole space .p defined by (3). We then have 

(59) 

To see whether (56) is satisfied or not, we proceed 
as follows: First, we remark that the whole Hamil-
tonian of the system as it results from the definition 
(4), (5) is not relevant for the evolution of our 
model, but can be replaced by the effective Hamil-
tonian 

H. = .L: + a-:V-n) (60) 
n>O 

without changing anything to the evolution, as it 
should be clear from the detailed calculations of 
Sec. II. This Hamiltonian is diagonal in the basis 
of .p defined by 

where 

with 

cf>fPI) = IT ® !PPo 
i 

(3i = ±1. 

Let us now remark that 

(61) 

(62) 

(63) 

P fPiI W"P fPI ) = PfplliN for all {{3.}, (64) 

where P ffJiI are the one-dimensional projectors on 
the respective pure states cf>ffJiI' 

Therefore, if the spectrum of H. were nonde-
generate, (56) and consequently (53) would be 
satisfied. However, in the model considered here, 
H. is degenerate and, consequently, there appear 
terms of the form 

(65) 
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1204 GERARD G. EMCH 

in the summation (56), where {.8.1 and {.8n would 
correspond to configurations having the same total 
energy. 

Given any configuration {.8.}, let us denote by 
{.8, I * the configuration obtained from {.8. I by chang-
ing only .80 into (- .80)' Let us, furthermore, denote 
by PfJ, (resp. wd) the restriction of the operator 
P 1fJil (resp. Wd ) to the subspace 5)' (resp. 5)0). 
We can now remark that (65) vanishes unless 

and that (65) is then equal to 

(PfJ,WdPfJJ (2) (II (2) pfJJ· 

(66) 

(67) 

From the symmetry of the model, it is, further-
more, evident that two configurations {.8.} and 
{.8. I * can correspond to the same eigenvalue of H. 
only if this eigenvalue is zero. Therefore, for all 
eigenprojectors P" corresponding to a nonzero eigen-
value of the effective Hamiltonian, we have 

(68) 

valid for all P" except Po (the eigenprojector cor-
responding to the eigenvalue zero of He). At this 
point, we draw the attention of the reader to the 
importance of Eq. (68) (satisfied for all P,,!) in 
the general theory developed in Ref. 2 for the 
existence and the uniqueness of an equilibrium state. 
The fact that Po does not satisfy (68) allows us, 
then, to evaluate the departure from ergodicity 
(in the sense of Ref. 2) in our model. It is, in fact, 
a simple matter of playing with the degenerate 
eigenstates corresponding to the eigenvalue zero to 
evaluate the contribution of this level to the ergodic 
average. One finally obtains 

lim -TIlT dt P: = t[l ± - (69) 
T_O'.) 0 

This result completes (55), which was obtained 
more directly. We remark that, besides its theoretical 
interest, this evaluation of the ergodic average in 
the case of a finite ring (or of an infinite linear 
chain with a cut-off in the interaction) can be 
generalized quite easily to the case where ten) has 
a more general form than that assumed in (35). 
This allows us, in particular, to determine, without 
calculating the exact time dependence of the expecta-
tion value of the magnetization, the value around 
which it oscillates and which is usually referred to 
as its equilibrium value.2 In the case of an infinite 
chain with an interaction extending to infinity, this 
equilibrium value is zero, the magnetization then 

oscillates above its equilibrium value and, in fact, ap-
proaches it with a damped oscillating time behavior. 
That this equilibrium value corresponds to the 
microcanonical distribution is readily seen. 

In the above remarks we were careful to describe 
the approach to equilibrium in terms of expectation 
values of macroscopic observables. It is not by 
accident that we avoided statements in terms of 
microscopic density operators. The reason for this 
is that it is only in the macroscopic sense that the 
states considered here approach equilibrium. More 
precisely, given any state WO of the form (50), we 
do not assert that WI approaches, in general, the 
microcanonical distribution in the course of time. 
We only claim that the macroscopic equivalence 
class of WI [defined through (49) as the set 
approaches the macroscopic equivalence class (de-
fined by Pd = N ,1/ N 3) of the microcanonical dis-
tribution. This statement is obviously sufficient to 
account for the macroscopic approach to micro-
canonical equilibrium, even if no such approach 
can be traced when one uses only arguments per-
taining to the microscopic description. By these con-
siderations we hope to strongly emphasize the 
central role of the concept of macroscopic equiv-
alence classes of microscopic states inherited from 
the notion of coarse-graining (even in cases where 
not all the assumptions usually made2 are satisfied!). 

E. Zennelo's and Loschmidt's Paradoxes 

We already mentioned in Sec. III.A how this 
model allows us, without any recourse to probabi-
listic arguments, to eliminate the recurrence paradox 
by a passage to the limit of infinite size and infinite 
extension of the interaction, and then obtain a 
bona fide approach to equilibrium. This takes care 
of Zermelo's paradox in the sense predicted by 
Boltzmann (and not only in a probabilistic sense!) 
in his well-known exclamation "Then, wait!" The 
expression (40) states precisely "how long!" 

This model also shows how an approach to equi-
librium can be compatible with the reversibility of 
the microscopic evolution. 

This reversibility manifests itself through 

f(t) = f( -t) (70) 

and, incidentally, also through 

(71) 

(which, however, is less surprising). Equation (70) 
can be interpreted in two ways. One could say that 
the behavior for t < 0 is simply irrelevant since 
it cannot be produced in the laboratory. This is, 
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however, not quite satisfactory and we feel that a 
better interpretation seems to be the following: 
Given a situation at time t = 0, we have the same 
information on "which situation it comes from" as 
we have on "which situation it will evolve to." 
In short, the security of a prediction is the same 
as that of a postdiction. This illustrates also the 
challenge raised when Boltzmann reportedly an-
swered to the critics of Loschmidt's type: "Go ahead, 
reverse them." Our model indicates a slightly more 
sophisticated answer which we believe to be of quite 
a general character: If we "reverse the time" at 
a given instant, say t = to, taking only into account 
the macroscopic knowledge we have of the system 
at this particular instant t = to, we shall also have 
an approach to equilibrium in the direction of the 
past, and the system will in general not pass again 
through its initial state (the verification of this last 
statement cannot be made since it was decided, at 
t = to, that any information besides the one at 
that time t = to is forgotten). On the contrary, if we 
keep records of what happened on the system be-
tween t = 0 and t = to, and then reverse the time 
at t = to, taking into account all the information 
we now have, the system will return to its initial 
state (at time t = 0) and then decay to equilibrium 
in the direction of the past in agreement with (70). 

F. The Non-Markovian Character of the Evolution 

In statistical mechanics, one of the favorite ways 
to obtain (with relative ease) an equation describing 
(at least within some approximation) the actual 
approach to equilibrium is to make an assumption 
of the kind of Boltzmann's Stosszahlansatz. The 
quantum analog of this assumption is the so-called 
repeated random phase assumption. Pauli used it 
to derive his famous master equation, hereafter re-
ferred to as the PEM. The nonmechanical char-
acter of this assumption is evident. Its result is 
that the reduction of the microscopic unitary evolu-
tion to the macroscopic subspace2 becomes a semi-
group, the generator of which is dissipative in case 
of an actual approach to equilibrium. The evolution 
obtained in this way is usually referred to as a 
Markovian process. The validity of this assumption 
has been extensively questioned in the last ten years. 

The main property of the present model, in the 
different variations presented here, is that no re-
peated random phase is required to solve it exactly 
and to obtain an actual approach to equilibrium. 
The fact that such an assumption is not needed 
in the derivation of the result still does not prove 
that the evolution is non-Markovian. To show this 

we proceed ad absurdo. Suppose then that the evolu-
tion were Markovian. Under the usual continuity 
assumptions (which are satisfied here!) the evolution 
of a Markov process is determined by the Chapman-
Kolmogorov equations. These equations are nothing 
but the mathematical abstraction corresponding to 
the PEM. In a perhaps not quite orthodox2 form 
(but equivalent to the usual one), the PEM can 
be written as 

(djdt)p' = - Ap' (72) 

defined only for t O. A is an operator acting in 
the macroscopic Liouville subspace.2 A is positive 
and Hermitian in the usual PEM. When A is 
bounded, (72) can be integrated (without any "if" 
and "but") to give 

(73) 

If, moreover, A has a discrete spectrum, the p are 
discrete superpositions of nonincreasing real ex-
ponentials. 

In the variation of our model considered in Sec. 
III.C, the macroscopic space is two-dimensional. 
Therefore A is obviously bounded and has at most 
two distinct eigenvalues. As a consequence, the pl, 
if described by a PEM, should be the superposition 
of at most two nonincreasing real exponentials. 'Ve, 
however, have the explicit form (51) of the Even 
in case where both the size (M) of the system and 
the extension (N) of the interaction are infinite, 
these pl cannot be written as linear combination 
of two nondecreasing real exponentials. Conse-
quently, by this reduction ad absurdo, we proved 
that this variation of the model presents a macro-
scopic approach to equilibrium which cannot be 
described as a Markovian process. This result ap-
parently depends on the form of the function E(n) 
as ascribed by (35). It is, in fact, the expression of 
a general theorem. 2 One could now still argue further. 
Very often one sees that a system, the evolution 
of which has to be described by a generalized master 
equation (GEM), can, however, present an evolution 
which, in the long-time limit, can be described by 
a PEM, at least if one does some kind of time-
smoothing.2 This, however, is not the case here, 
as might readily be seen from the time-smoothed, 
long-time limit of (51), even if one first carries out 
the limit of infinite extension of the interaction. 
This last result now depends strongly on the special 
assumption (35). In particular, it can be seen that 
there exist some other particular spatial dependence 
of the interaction (which are indeed closer to the 
actual spatial dependence of the dipole-dipole in-
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teraction!) which would lead to an asymptotically 
exponential decay to equilibrium. 

From the point of view of the axiomatics, the 
interest of this version of the model, as discussed 
above, is that it exhibits explicitly an approach to 
equilibrium which can be predicted exactly, and 
which can in no sense be described (even in some 
approximation) as a Markov process, the differential 
evolution equation of which is of the PEM type. 
Therefore, if one wants to describe the evolution 
of the model through a master equation, one has 
to consider a GEM which cannot be approximated 
by a PEM. One could obviously carry out the 
evaluation of the kernel of the GEM for this model. 
This would, however, turn out to be a somewhat 
tedious task, especially in the case of an interaction 
extending in space as (35). The simplicity of the 
model would anyway be lost in the process as one 
could already figure out by feeding the result (51) 
into the Laplace transform of the GEM. Similarly, 
one could also discuss on this model van Hove's 
conditions of diagonal singularity and interconnec-
tion of states. This would, however, not lead to an 
information deeper than that obtained from the 
general theory.2 We therefore do not pursue further 
in this direction here. 

IV CONCLUSIONS 

The formal simplicity of a generalized Ising model 
allowed us to calculate exactly the time evolution 
of the transverse magnetization as well as some other 
related quantities, starting from a wide class of 
initial conditions. The exact solubility of the model 
was used to discuss several problems connected with 

the actual approach to equilibrium. We succeeded 
in stating precisely some of the persistently unclear 
statements related to the phenomena. 

The two main ingredients of nonequilibrium sta-
tistical mechanics, namely the unitary, mechanistic, 
microscopic evolution and the partial macroscopic 
information connected already with any classical 
measurement on a quantum system, were proved 
to be sufficient (in principle) to ensure in some cases 
an actual approach to equilibrium if one evaluates 
correctly the infinite-size limit. In particular, the non-
necessity of any kind of repeated random phase as-
sumption was exemplified by a truly non-Markovian 
model. 
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