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We study the correlation exponent v introduced recently as a characteristic measure of strange attractors which allows one 
to distinguish between deterministic chaos and random noise. The exponent v is closely related to the fractal dimension and 
the information dimension, but its computation is considerably easier. Its usefulness in characterizing experimental data which 
stem from very high dimensional systems is stressed. Algorithms for extracting v from the time series of a single variable are 
proposed. The relations between the various measures of strange attractors and between them and the Lyapunov exponents 
are discussed. It is shown that the conjecture of Kaplan and Yorke for the dimension gives an upper bound for v. Various 
examples of finite and infinite dimensional systems are treated, both numerically and analytically. 

1. Introduction 

It is already an accepted notion that many  

nonlinear dissipative dynamical systems do not 
approach stationary or periodic states asymp- 

totically. Instead, with appropriate  values of  their 

parameters,  they tend towards strange attractors 
on which the mot ion is chaotic, i.e. not (multiply) 

periodic and unpredictable over long times, being 
extremely sensitive on the initial conditions [1-4]. 

A natural question is by which observables this 

situation is most  efficiently characterized. Even 

more basically, when observing a seemingly 
strange behaviour,  one would like to have dear-cut  

procedures which could exclude that the at tractor 

is indeed multiply periodic, or that the irregu- 
larities are e.g. caused by external noise [5]. 

The first possibility can be ruled out by making 
a Fourier analysis, but for the second one has to 
turn to some other measures. These measures 

should be sensitive to the local structure, in order 
to distinguish the blurred tori o f  a noisy (multi-) 
periodic motion from the strictly deterministic 

t Permanent address: Department of Physics, University of 
Wuppertal, W. Germany. 

motion on a fractal. Also, they should be able to 

distinguish between different strange attractors. 

In this paper  we shall propose such a measure. 

Before doing so we shall discuss however the 
existing approaches to the subject. 

In a system with F degrees of  freedom, an 
attractor is a subset of  F-dimensional phase space 

towards which almost all sufficiently close tra- 
jectories get "a t t racted"  asymptotically. Since vol- 

ume is contracted in dissipative flows, the volume 

of  an attractor is always zero, but this leaves still 
room for extremely complex structures. 

Typically, a strange at tractor  arises when the 
flow does not contract a volume element in all 

directions, but stretches it in some. In order to 

remain confined to a bounded domain, the volume 

element gets folded at the same time, so that  it has 
after some time a multisheeted structure. A closer 

study shows that it finally becomes (locally) 
Cantor-set like in some directions, and is accord- 
ingly a fractal in the sense of  Mandelbrot  [6]. 

Ever since the notion of  strange attractors has 
been introduced, it has been clear that the Ly- 
apunov exponents [7, 8] might be employed in 
studying them. Consider an infinitesimally small 
F-dimensional ball in phase space. During its 
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evolution it will become distorted, but being z 
infinitesimal, it will remain an ellipsoid. Denote /~ . . . . .  ~ 
the principal axes of this ellipsoid by ~(t) (~- . . . . .  ~ x  

----- , . . ~ ~ -  / (i 1, F). The Lyapunov exponents 2~ are 
then determined by Y 

E i ( t ) , ~ E i ( O ) e  ~'' . (1.1) 

The sum of the 2i, describing the contraction of 
volume, has of course to be negative. But since a 
strange attractor results from a stretching and 
folding process, it requires at least one of the 2i to 
be positive. Inversely, a positive Lyapunov ex- 
ponent implies sensitive dependence on initial con- 
ditions and therefore chaotic behaviour. 

One drawback of the 2i's is that they are not 
easily measured in experimental situations. An- 
other limitation is that while they describe the 
s t r e t c h i n g  needed to generate a strange attractor, 
they don't  say much about the f o l d i n g .  

That these two are at least partially independent 
is best seen by looking at a horshoe-like mapt  
embedded in 3-dimensional space (fig. 1). Assume 
that each step of the evolution consists of (i) 
stretching in the x-direction by a factor of 2, (ii) 
squeezing in the y- and z-direction by different 
factors Pz < Py < ½, and (iii) folding in the ( x , y )  

plane (fig. la) or in the (x, z) plane (fig. lb). From 
fig. 1 one realizes already that the attractor will in 
both cases be a Cantorian set of lines, being more 
"plane-filling" in the first case than in the second 
case. Indeed, using the results of Section 7, one 
finds easily that the fractal dimensions are 
Da = l + ln2/lln  l and D b = 1 + In2/Jln#zl, re- 
spectively. 

It is this fractal (or Hausdorff-Besikovich) di- 
mension which has until now attracted most atten- 
tion [9-14] as a measure of the local structure of 
fractal attractors. In order to define it [5], one first 
covers the attractor by F-dimensional hypercubes 
of  side length 1 and considers the limit 1~0. If the 

t Notice that  this is not a Smale's horseshoe. We also neglect 
in the following the bent parts  of  the horseshoe, in comparison 
to the parallel parts (i.e. we assume L x >> Ly, L2; see fig. 1). 

(a) 

z 

y 

(b) 

Fig. 1. Shape of an originally rectangular volume element after 
two iterations, each consisting of stretching, squeezing and 
folding. In fig. la (lb), the folding is in the y(z)-direction, which 
is the direction of  lesser (stronger) squeezing. 

minimal number of cubes needed for the covering 
grows like 

M ( I )  "~ 1 - °  , (1.2) 

the exponent D is called the Hansdorff dimension 
of  the attractor [5]. 

Being a purely geometric measure, D is indepen- 
dent of the frequency with which a typical tra- 
jectory visits the various parts of the attractor. 
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Even if these frequencies are very inequal, devel- 
oping maybe even singularities somewhere, all 
parts contribute to D equally. It has been docu- 
mented [12, 14] that the calculation of D is exceed- 
ingly hard and in fact impractical for higher di- 
mensional systems. 

Another measure which has been considered and 
which is sensitive to the frequency of visiting, is the 
information entropy of  the attractor. By "informa- 
tion entropy" here we understand the information 
gained by an observer who measures the actual 
state X(t)  of the system with accuracy 1, and who 
knows all properties of the system but not the 
initial condition X(0). This is very similar to the 
entropy in statistical mechanics if we relate X(t)  to 
the microstate (F ,~ 1023), and the "system" to the 
macrostate. It is not the Kolmogorov entropy 
which is essentially the sum of all positive 
Lyapunov exponents. 

Using the above partition of phase space into 
cells with length/,  the information entropy can be 
written as 

M(I) 
S(I) = - ~ p, lnp, ,  (1.3) 

i = l  

ponential divergence of  trajectories, most pairs 
(X~, Xj) with i # j  will be dynamically uncorrelated 
pairs of  essentially random points. The points lie 
however on the attractor. Therefore they will be 
spatially correlated. We measure this spatial cor- 
relation with the correlation integral C(l), defined 
according to 

C(I) : lirnoo ~2 x {number of  pairs (i,j) whose 

distance [Xi-  Xj[ is less than l}. (1.5) 

The correlation integral is related to the standard 
correlation function 

c ( , )  = - x j  - r )  ( 1 . 6 )  
id= 1 

by 

l 

C(I) = f d%c(r). 

0 

(1.7) 

where Pi is the probability for X(t)  to fall into the 
ith cell. For all attractors studied so far, S(1) 
increases logarithmically with 1/l as l ~ 0 ,  and we 
shall accordingly make the ansatz 

One of the central aims of this paper is to 
establish that for small r s  C(l) grows like a power 

C(I)~I v, (1.8) 

S(l) " So - tr In l.  (1.4) 

The constant a will be called, following ref. 8, the 
information dimension. It is always a lower bound 
to the Hausdorff dimension, and in most cases they 
are almost the same within numerical errors. 

The measure on which we shall concentrate 
mostly in this paper, has been recently introduced 
by the present authors [l 5]. It is obtained from the 
correlations between random points on the attrac- 
tor. Consider the set {Xi, i = 1 • .. N} of points on 
the attractor, obtained e.g. from a time series, i.e. 
Xi = X( t  + iz) with a fixed time increment z be- 
tween successive measurements. Due to the ex- 

and that this "correlation exponent" can be taken 
as a most useful measure of the local structure of 
a strange attractor. It seems that v is more relevant, 
in this respect, than D. In any case, its calculation 
yields also an estimate of a and D, since we shall 
argue that in general one has 

v ~< a ~< D.  (1.9) 

We found that the inequalities are rather tight in 
most cases, but not in all. Given an experimental 
signal, if one finds eq. (1.8) with v < F, one knows 
that the signal stems from deterministic chaos 
rather than random noise, since random noise will 
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always result in C ( I ) ~  l t'. Explicit algorithms will 
be proposed below. 

One of the main advantages of v is that it can 
easily be measured, at least more easily than either 
a or D. This is particularly true for cases where the 
fractal dimension is large (~> 3) and a covering by 
small cells becomes virtually impossible. We thus 
expect that the measure v will be used in experi- 
mental situations, where typically high dimen- 
sional systems exist. 

In theoretical cases, when the evolution law is 
known analytically, the easiest quantities to evalu- 
ate are the Lyapunov exponents. General formulae 
expressing D in terms of  the 2; have been proposed 
by Mori [9] and by Kaplan and Yorke [10]. If they 
were correct, they would obviously be very useful. 
They have been verified in simple cases [11, 14]. But 
Mori's formula was shown to be wrong in one case 
by Farmer [8], and the above example shown in fig. 
1 shows that also the Kaplan-Yorke formula 

21 + 2 2 + ' " + 2 j  
D =DK,:==-j-~ 12j+,l (l.10) 

does not hold even in all those cases where 
v = a = D. Here, the exponents are ordered in 
descending order 21 _> 22 _> " • " > 2F, and j is the 
largest integer for which )-t + 21 + • • • + 2j _> 0. 

In section 7 we shall take up this question again. 
We shall show that the counterexample in fig. l b 
is not generic. We shall however claim that eq. 
(l.10) cannot generally be expected to be correct, 
and that in fact D Ky is an upper hound, if 
V = o ' ~ - - - D .  

In the next section, we shall present numerical 
results for several simple models, for which the 
fractal dimensions are known from the literature. 
This will serve to illustrate the scaling law (1.8), 
and to verify the inequality v ~< D. This inequality 
and its stronger version, eq. (1.9), will be derived 
in section 3. The case of  one-dimensional maps at 
infinite bifurcation (Feigenbaum [16]) points is 
special in that there the information dimension a 
and the exponent v can be calculated exactly, with 
the result v ¢ a 4: D. It is treated in section 4. 
Section 5 is dedicated to an important modification 

which allows to extract v from a time series of  one 
single variable, instead of  from the series {Xi}. This 
is of course most important for infinite-dimen- 
sional systems, but it is also very useful in low- 
dimensional cases where it diminishes systematic 
errors. Among others, we shall apply this method 
in section 6 to the Mackey-Glass [17] delay equa- 
tion studied in great detail in ref. 8. 

In section 7 we discuss the relation of  v to the 
Lyapunov exponents, and establish the result 

v ~< DKv. (1 . l l )  

A summary and a discussion of the actual method 
of  treating experimental signals is offered in section 

8. 

2. Case studies of low-dimensional systems 

In this section we shall establish that C(I )  can be 
very well represented by a power law l v, by ex- 
hibiting numerical results for a number of low 
dimensional systems. These results are summarized 
in table I. In section 5 we shall show that this is the 
case also in high (and infinite) dimensional sys- 
tems. Details of  the numerical algorithms are 
discussed in appendix A. 

2. i. One-d imens iona l  maps  

The simplest cases of  chaotic system are repre- 
sented by maps of some interval into itself, as e.g. 
the logistic map [2] 

x .+ , = ax.(1 - x . )  . (2.1) 

We shall study this map both at the point of  onset 
of chaos via period doubling bifurcations, i.e. when 
a = a ,  = 3.5699456.. .  and for the case a = 4.0. In 
fig. 2 we show the result for the first case. It is well 
known [2, 16] that for this map the attractor* is 

* Note that the term "at t ractor"  would not  be universally 
accepted here due to the fact that in any neighbourhood there 
exist trajectories which do not  tend towards it asymptotically. 
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Table I 

193 

v No. of iterations, D tr 
time increment 

H6non map 1.21 + 0.01 d) 15000 1.26 (ref. 11) 
a = 1.4, b = 0.3 1.25 + 0.02 e) 
Kaplan-Yorke map 1.42 + 0.02 15000 1.431(ref. 11) 

=0 .2  
Logistic eq., 0.500 +__ 0.005 25000 0.538(ref. 13) 
b = 3.5699456.- • 0.4926 < v < 0.5024 ~) 
Lorenz eq. a) 2.05 +_ 0.01 15000; z = 0.25 2.06 + 0.01 
Rabinovich -b) 2.19 + 0.01 15000; z = 0.25 
Fabrikant eq. 
Zaslavskii map ~) (~  1.5) 25000 1.39(ref. 11) 

0.5170976 

~)Parameters as in refs. 7 and 11. 
b)Parameters as in section 3 of ref. 20. 
c)Parameters as in ref. 11. 
d)From eqs. (1.5) and (1.8). 
e)From single variable time series, with f = 3. 
~) Exact analytic bound. 

C a n t o r - l i k e  w i t h  a f rac ta l  d i m e n s i o n  sa t i s fy ing  the  

exac t  b o u n d  [13] 0.5376 < D < 0.5386. In  sec t ion  4 

we shal l  p r o v e  exac t ly  t h a t  g = 0.517097 . . . .  a n d  

tha t  0.4926 < v < 0.5024 whi le  f r o m  Fig.  2 we f ind 

v = 0.500 + 0.005. F o r  v e r y  smal l  d i s tances ,  the  

d a t a  for  C( l )  dev ia t e  f r o m  a p o w e r  law,  b u t  t ha t  

w a s  to  be expec ted :  the  b e h a v i o u r  a t  a = aoo is n o t  

ye t  chao t i c ,  a n d  t h e r e f o r e  the  va lues  x ,  a re  s t rong ly  

# 
2 

-20 

I I I I 

Logistic map 

u =0 .500-+005  

t I I I 
0 I0 20 30 40 

L o g  2 ( I / I  o) ([ o a rb i t ra ry )  

Fig. 2. Correlation integral for the logistic map (2.1) at the 
infinite bifurcation point a = aoo = 3.699... The starting point 
was Xo = ½, the number of points was N = 30.000. 

co r re l a t ed .  W e  ver i f ied  tha t  i n d e e d  the  p o w e r l a w  

ho lds  d o w n  to  sma l l e r  va lues  o f  l i f  we inc rease  N 

or  use on ly  va lues  xi, xi+p, xi+2p, x~+2p . . . .  w i t h  p 

be ing  a la rge  o d d  n u m b e r .  

T h e  s a m e  m a p  can  be  used  a lso  to i n t r o d u c e  the  

i m p o r t a n t  issue o f  c o r r e c t i o n s  to  scal ing.  These  are  

f o u n d  fo r  the  p a r a m e t e r  va lue  a = 4. I t  is wel l  

k n o w n  tha t  in this  the  a t t r a c t o r *  cons is t s  o f  the  

in t e rva l  [0, 1], a n d  t h a t  the  i n v a r i a n t  p r o b a b i l i t y  

dens i ty  is e q u a l  to  

1 N 
p ( x )  =- l im ~ 6(xi  - x )  

N~0v Ni= =--'-I 
(2.2) 

1 
= - [x(1 - x ) ] -1 /2 .  (2.3) 

7[ 

F r o m  this,  one  f inds easi ly 

v = a = D = 1. (2.4) 

N o t i c e ,  h o w e v e r ,  t ha t  whi le  the  sca l ing  laws  (1.2) 

and  (1.4) a re  exact ,  the  sca l ing  l aw (1.8) fo r  C( l )  

* Again, the term is questionable, as no point outside the 
interval [0, 1] gets attracted towards it. We shall ignore this 
irrelevant point, which could be avoided by using a = 4 -  ¢. 
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requires logar i thmic  correct ions,  due to the singu- 
lar behav iour  o f  p (x ) :  

1 

c , , ,  y , ,  

0 

4 
,~0 ~51 In 1/I. (2.5) 

Thus,  a numerical  calculat ion o f  v is expected to 
converge very slowly. This p rob lem and a remedy  
for  it are discussed fur ther  in section 5. 

2.2. Maps of the plane 

Here  we examined the H6non  [18] m a p  

- - - - T  -F  ~ - -  • l 

0 Henon m a p /  

- F O  

LP 
. / "  ~ef f  J2rtod 

o / 2O 

I A L ' 
0 5 I0 15 20 25 

log 2 (i/I o) (I o arbitrory) 

Fig. 3. Correlation integral for the H~non map (2.6) with 
a = 1.4, b = 0.03 a n d  N = 15.000. 

x.+j  = y . +  1 -ax2 . ,  

Y.+ 1 = bx. ,  (2.6) 

with a = 1.4 and b = 0.3, the K a p l a n - Y o r k e  [10] 
m a p  

x . + ~ = 2 x .  (rood 1), 

y.+~ = ~ty. + cos 4~zx. (2.7) 

with ~ = 0.2, and the Zaslavskii  [19] m a p  

x.+~ = Ix. + v(1 + py.) + Evp cos 2nx.] (mod 1), 

Y.+ 1 = e -  r(y. + E cos 2~x . ) ,  (2.8) 

with the pa ramete r s  

I - e  - r  
/~ = - -  (2.9) 

F 

and F = 3.0, v = 400/3, and E = 0.3 taken f rom ref. 
11. 

Figs. 3-5 exhibit  t he  results for  the correlat ion 
integrals. In the first two cases, we find excellent 
agreement  with a power  law; while for  the 
K a p l a n - Y o r k e  m a p  we find v = 1 .42+  .02 in 
agreement  with the publ ished [11] value o f  D, a fit 
to the H6non  m a p  yields v¢~= 1.21, smaller  than 

LD 
O 

-IO 

-20 

Kaplan Yorke map 

- -  ° o o  

J 
I0 20 

log?_ (I / Io) (I o arbitrary) 

Fig.  4. S a m e  as fig. 3, bu t  fo r  K a p l a n - Y o r k e  m a p  (2.7) wi th  
=t = 0.2. 

the value [11] D = 1.261 -t- 0.003. We shall argue in 
sectin 5 that  actually the value o f  v for  the H~non 
m a p  is underes t imated  here, and that  instead 
v = l . 2 5 + 0 . 0 2 ~ D .  

The case o f  the Zaslavskii  m a p  is exceptional  as 
it was the only system for  which we did not  find 
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-5 

-I0 
( D  

o 

-15 

-20 

0 

I I ] .... ovlkii /.. : 

5 I0 15 

Iog2 (I/I o) I o arbitrary 

El Zaslavski map, 15000  pts. 

. _ . . . . .  . . . . .  . . - .  . . . . . . .  . " 

- : . 2  

- . - Y "  

b Zaslavski map, I0000  pts. ( detail ) 

Fig. 5. Correlation integral for Zaslavskii map (eqs. (2.8), 
(2.9)); N = 25.000, parameters as in the text. For faster scaling, 
the y-coordinate was blown up by a factor of 25, rendering the 
attractor square-like at low resolution (see fig. 6; without this, 
the attractor would have looked effectively 1-dimensional for 
t >~/.~J25). 

clear-cut power  behaviour.  Also ,  an (admittedly 
poor)  fit would  yield v ,~0 1.5, in clear v io lat ion  o f  
the b o u n d  v < D. The  reasons  w h y  our  m e t h o d  has 
to fail for this m a p  - with the parameters  as quoted  
a b o v e -  b e c o m e s  clear w h e n  l o o k i n g  at fig. 6. Call  
10 the outer  length scale. F r o m  fig. 6a one  sees that 
the attractor l o o k s  2-d imens ional  for l ~> l0 x 2 -  ~ 
and ~ 1-dimensional  for 10 x 2 -  ~ >~ 1 ~> I0 x 2 -~ .  
F r o m  fig. 6b one  sees that it l o o k s  ~ 2-d imens ional  
again d o w n  to ~ 10 x 2 - ~ ,  scaling behaviour  set- 
ting in only  at about  that scale (which is beyond  
our resolut ion) .  It seems to us that the box-  
count ing  a lgor i thm o f  ref. 11 in which  D is evalu- 
ated, should  confront  the same problem~.  

Fig. 6. Attractor of the Zaslavskii map, a) entire attractor 
(15.000 points plotted; y-scale blown up by factor 25); b) Blown 
up view of part indicated in part a (10.000 points plotted). 

2.3. Differential equations 

W e  have studied the Lorenz  [1] m o d e l  

t Note added: Dr. Russel kindly provided us with the original 
data of M(E) versus E. From these, it seems that indeed a similar 
phenomenon occurs and that accordingly a value D ~ 1.5 
cannot be excluded. 

= tr(y - x ) ,  

) = - - y - - x z  + R x ,  

= x y  - b z ,  

(2. i o) 
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with R = 2 8 ,  a = 1 0 ,  and b = 8 / 3 ,  and the 
Rabinovich-Fabrikant  [20] equations 

Yc = y ( z  - 1 + x 2)+ ?x,  

= x(3z  + 1 - x  2) + ? y ,  

= - 2 z ( ~  + xy), 

(2.11) 

with ? = 0.87 and 0~ = 1.1. 
As seen in fig. 7 we get adequate power laws for 

C(l) ,  and in the case of  the Lorenz model, where 

D is known [1 I], we obtain v -~ D. 
Further examples will be studied in section 6, in 

the context of  higher dimensional systems. 
It should be stressed that the algorithm used to 

calculate v converged quite rapidly. Although each 
entry in table I and figs. 2-7 were based on 

15.000-25.000 points each, reasonable results 
(i.e. results for v within + 5%) were obtained in 
most cases already with only a few thousand 

points. This should be contrasted with the 
difficulties associated with estimating D in box- 
counting algorithms [1 i, 14]. 

Summarizing this section, we can say that except 
for the logistic map at a = a~ ("Feigenbaum at- 
tractor") we found in all cases that v ~ D within 
the limits of  accuracy. We now turn to a theoretical 
analysis of the relations between v, a and D. 

3. Re la t ions  be tween  v, tr and D 

In this section we shall establish the inequalities 
(1.9). We shall do this in 3 steps. 

a) The easiest inequality to prove is tr ~<D. 
Consider a covering of  the attractor by hypercubes 
("cells") of edge length l, and a time series 
{Xk;k = 1 . . . . .  N} .  The probabilities pi for an 
arbitrary X k to fall into cell i are simply 

O-- 

Lorenz eqs 

z., = 2 05-+ OI 
-5 

-20 

-25 

-IO 

o 
-15 

\ 

] 

Robinovlch 

Fobrikonf eqs 

z/=2 P9 -+.OI 

L 

0 5 I0 t5 

Ioq2 ( I / [  o) (I 0 a rb i t ra ry )  

Fig. 7. Correlation integrals for the Lorenz equations (eq. 
(2.10); dots) and for the Rabinovich-Fabrikant  equation (eq. 
(2.11); open circles). In both cases, N = 15.000 and r = 0.25. 

1 
P~ = N-~lim ~ #i. (3.1) 

where #i is the number of  points X~ which fall into 
cell i. 

If the coverage of  the attractor is uniform, one 
has, 

1 
P i - M ( l ) ,  (3.2) 

where M ( I )  is the number of cells needed to cover 
the attractor, and one finds from eqs. (1.3) and 
(1.2) 

S(I)  = S{°)(I) = In M(I )  = const - D In 1. (3.3) 

In the general case, one uses the convexity o f x  In x 
in the usual way to prove that S(l)<~ St°)(l). In- 
voking the ansatz S ( l ) =  const - a  In l, we find 
tr<~D. 

b) Instead of showing immediately v ~< a, let us 
proceed slowly and show first that v ~< D. 

From the definition of  C(/), we get up to a factor 
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of order unity 

1 M(I) M(I) 
C(l) "" lira ~ Z U 2 = Y. p2. 

N~o N i=1 i=1 
(3.4) 

Here, we have replaced the number of pairs with 
distance < l by the number of  pairs which fall into 
the same cell of  length l. The error committed 
should be independent on l, and thus should not 
affect the estimation of  v. Using the Schwartz 
inequality we get 

c ( t )  = M(t)@~,) >1 M ( t ) ~ , )  ~ = 
1 

M(l) ~ l °  (3.5) 

In this equation square brackets denote average 
over all cells. Comparing eqs. (3.5) and (1.8) we 

find immediately v <~ D. 
c) In order to derive v ~< a, consider two nested 

coverings with cubes of  lengths l and 21. The 
numbers of cubes that contain a piece of the 
attractor are then related by 

M(I) = 2nM(21 ) .  (3.6) 

Denote by p~ the probability to fall in cube i of the 
finer coverage, and by Pj the probability to fall in 

cube j  of  the coarser. Define co~(i = 1 . . . .  M(l)) by 

and compare it to the entropy difference 

M(l) M(2/) 

S ( 2 1 ) - S ( l ) =  ~ pilnp~- ~ PjlnPj 
i=l  j = l  

M(2t) 

= E PJE°9~lnt°, • 
j=  1 iEj 

(3.11) 

In order to estimate eq. (3.10) in terms of  eq. 
(3.11), we have to introduce a new assumption. We 
assume that the coi's are distributed independently 
of  the Pj. This means essentially that locally the 
attractor looks the same in regions where it is 
rather dense (Pj large) as in regions where Pj is 
small. Although we cannot further justify this 
assumption, it seems to us very natural. It leads 
immediately to 

c(t) (~o') 
C(2/) - (co) = 2n(°>2) ' (3.12) 

and to 

S(2/) - S(l) = 2°(o9 In oJ) .  (3.13) 

Define now a normalized variable W by 

Ok 
W = ~ - ~  = 2009. (3.14) 

p, = co,P) (i E j ) .  (3.7) 

Evidently we have 

e~=Ep,, E,o,= I. (3.8) 
i~)' i~j 

We can then write the correlation integral as 

M(l) M(2I) 

c(;)-_ y~ p~ = Z e~ Z o,, ~. 
i = l  j=  l iEj 

(3.9) 

Consider now the ratio 

Ze~Zo,, ~ 
C(l) _ ~ iEj 

c(2t) g e~ 
J 

(3.10) 

Using the inequality [21] 

( W  z) > e x p ( W  In W ) ,  (3.15) 

we establish 

C(t) 
- -  >/exp[S(2/) - S(/)] (3.16) 
C(2/) 

and thus 

v ~< a .  (3.17) 

Remarks. From the proofs it is clear that if the 
attractor is uniformly covered, one has equalities 

v = a = D.  (3.18) 
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It is an interesting question how non-uniform the 
coverage must be in order to break them. With the 
exception of  the Feigenbaum map (logistic map 
with a = ao~), which is however not generic, all 
examples of  the last section were compatible with 
eq. (3.18). 

In cases where v 4: D, we claim that indeed v is 
the more relevant observable. In these cases, the 
neighbourhoods of  certain points have higher "se- 
niority" in the sense that they are visited more 
often than others. The fractal dimension is igno- 
rant of  seniority, being a purely geometric concept. 
But both the correlation integral and the entropy 
dimension weight regions according to their senior- 
ity. 

Eqs. (1.9) and (3.18) have been used previously 
in the context of  fully developed homogeneous 
turbulence [22]. The connection 

c( l )  oc l ~ ~, l e R f 

following from v = D has been used previously 
also in percolation theory [23] and in a model for 
dendritic growth [24]. 

4. Information entropy and v of  the Feigenbaum 
attractor 

In this section we shall compute exactly the 
information dimension and v of  one-dimensional 
maps 

Xn + 1  -d- F(x.) (4.1) 

at the onset of  chaos. The method follows closely 
the one of  ref. 13. 

It is well known that such m a p s -  provided they 
have a unique quadratic m a x i m u m -  have univer- 
sal scaling features, studied in most detail by 
Feigenbaum [16]. This behaviour is most easily 
described by observing that the iterations 

F~2")(x ) = F ( F (  . . . .  F ( x  ) . . . )) (4.2) 

2" times 

tend after a suitable rescaling towards a universal 
function 

1 
g ( x )  = lim ~ F~2")(xF~2")(O)) (4.3) 

. ~  F ~ (0) 

This "Feigenbaum function" g ( x )  satisfies the 
exact scaling relation 

1 
g (g (x)) = -- - g (¢x) ,  (4.4) 

with ~ = 2.50290 . . . .  and the normalization con- 
dition g ( 0 ) =  1. We have here assumed that the 
maximum of  F ( x )  is at x = 0, which can always be 
achieved by a change of  variables. In order to 
obtain the information dimension of  the logistic 
map at a = a~ --- 3.5699345 . . . .  it is thus sufficient 
to compute a for the Feigenbaum map. 

The "at t ractor"  (see the reservations in s~ction 
2) of  g ( x )  consists of  the sequence {~,, 
n = 0 , 1 , 2 , . . . }  with 

G0 = 0 (4.5) 

and 

~.+~ = g(~.).  (4.6) 

The first few ~k'S are shown in fig. 8. There, it is 
also indicated how they build up the Cantorian 
structure of  the attractor: the points ~,  ~z, 
43 . . . . .  ~z* +, form the end-points of  2 k intervals, 
and the following (k'S fall all into these intervals. 
Furthermore, any sequence {~,, ~ , + l . . .  ~,~2,-~} 
of 2 k successive points visits each of these intervals 
exactly once. Thus, the a priori probabilities 
pi(i = 1 . . . . .  2 k) for an arbitrary x, to fall into the 
ith interval are all equal to pi = 2 -k. 

'l -; b ; i 
× 

Fig. 8. First 16 points ~ l , . . - ,  ~16 of the attractor of the 
Feigcnbaum equation describing the onset of chaos in 
1-dimensional systems. 
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By the grouping axiom, we can first write the 
information entropy as 

after a few manipulations and after taking the limit 
k--. c~ 

S ( I )  = ~[S[2,41(I ) -a t- SI3al(i)] -1- In 2 ,  (4.7) In 2 
a = lim 2k (4.1 1) 

k~co 1 
where we denote by SI~j1 the information needed to 
specify the point on the interval [~, ~j], and where 
we have used the fact that an arbitrary x. has equal 
probability to be on [~2, ~4] or on [~3, ~1]. From eq. 
(4.4) we find, however, that 

~,= - ~ ¢ . .  (4 .8)  

Thus, the interval [ ~ 2 ,  ~4]  is a down-scaled image of 
the whole attractor, and we have 

St2.a](/) = SOd) ~ S(1) - a In 0t, (4.9) 

where we have used the scaling ansatz (1.4). 
In order to estimate St3,q(l ), we decompose the 

interval [3, 1] into the 2 k- ~ subintervals discussed 
above, defined by the ~, with odd n's: 

2 k -  I 

St3,q(/) = (k - 1)In2 + 2 -k+l ~ S,(I). 
i = 1  

Again, we have applied the grouping axiom, using 
that pi = 2-k. The Si(l) are the informations needed 
to pin down x, provided one knows that it falls into 
the ith subinterval. Since each subinterval maps 
onto one on the left-hand piece [~2, ~4], each S~(l) is 
equal to the information g,(Ig;I/) needed to pin 
x. + ~ on the corresponding interval on the left-hand 
side. Here, g; is some average derivative o fg (x )  in 
the ith subinterval. Using that  (Ig;lt) - 

lnlg ; I, we obtain 

2 k - I  

S[3,,](t ) = ( k -  1)1n2-11- 2 -k+` Z ~( / )  
i = 1  

2 k -  l 

- ~ Z lnlg;I 
i ~ l  

2 k - I  

= s t : , 4 / ) -  ~ Z lnlg;I • (4.1o) 
i = l  

Inserting this and eq. (4.9) into eq. (4.7), we find 

The limit converges very quickly, leading (for 
k > 7) to 

tr = 0.5170976. (4.12) 

The calculation of the correlation exponent, or 
rather of the exponent of the Renyi entropy (see 
eq. (3.4)) 

M(I) 
R(l) = ~ p~ (4.13) 

i ~ l  

follows even more closely the one in ref. 13. 
As in that paper, we obtain a nested set of 

bounds. The first (and least stringent) is obtained 
by writing 

R(l) = ¼ {R[2,41(I ) + Rt3,q(1)} (4.14) 

and using Rt2,4l(l ) = ROcl) and Ri3AI(I ) = ROtg'l) 
with 

1g'(¢3)1 < g '  < [g'(¢0[ • (4.15) 

Assuming R ( I ) ~  F, we obtain 

1 + Ig'(¢3)l v < 4 < 1 ÷ Ig'(~l)l' 
{~v . ) (4.16) 

leading to 0.4857 < v < 0.5235. 
For the next more stringent bounds, we write 

further 

Ri3,~l(l) = ¼{Rt3,~(/) + Rts,~l(l)}, (4. ! 7) 

with 

R[3.71(l) + R(°t~g (')./), [g'(~3)[ < g(') < [g'(~v)[ 

(4.18) 
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and 

Rfs.u(l) + R[3,1](o~g(2)l), }g'(¢~)l < g ~  < Ig'(~,)l • 

(4.19) 

Some algebra leads then to 

ct" 4 
1g'(¢5)1 ~+ ~ 1g'(¢3)[ ~ < ~-s 

@v 
< [g,'(¢,)l v + ~ Ig'(¢01', 

with the result 

0.4926 < v < 0:5024, 

in agreement with the 
v = 0.500 __+ 0.005. 

(4.20) 

(4.21) 

numerical value 

5. Using a single-variable time series 

Very often one does not have access to a time 
series {X,} of  F-dimensional vectors. Instead one 
follows only one or at most a few components of  
An. This is particularly relevant for real (as op- 
posed to computer) experiments where the number 
of  degrees of  freedom often is very high if not 
infinite. Such systems nevertheless can have low- 
dimensional attractors. It would be very desirable 
to have a reliable method which allows a character- 
ization of  this attractor from a single-variable time 

series. {xi, i =  1 . . . . .  N ;  x i ~ R ) .  
The essential idea [25, 26] consists in construc- 

ting d-dimensional vectors 

~ = (x, x~ + 1 . . . . .  xi + d- ~) (5.1) 

and using ~-space instead of  X-space. The cor- 
relation integral would e.g. be 

N 
C(I) = lim l~,r ~ O(l -1¢,-  ¢Jl)" (5.2) 

~vz ij= 1 N~c~ 

More generally, one can use 

¢i = (x(t,), x( t ,  + z ) . . .  x ( t ,  + (d  - 1)z)), (5.3) 

with r some fixed interval. The magnitude of z 
should not be chosen too small since, otherwise 
x i ~ x i + ~ x i ÷ 2 ~ - " "  so that the attractor in 
C-space would be stretched along the diagonal and 
thus difficult to disentangle. On the other hand, z 
should not be chosen too large since distant values 
in the time series are not strongly correlated (due 
to the exponential divergence of  trajectories and 
unavoidable small errors). 

A similar compromise must be chosen for the 
dimension d. Clearly, d must be larger than the 
Hausdorff dimension D of  the attractor (otherwise, 
C(I ) , , ,  1~). If the attractor is Cantorian in more 
than one dimension, this might however not be 
sufficient. Also, it might be that, when looked at in 
d dimension, the density 

1 N 
p(¢)  = lim ~ a ( ¢ , -  ¢) 

N ~  A/i= 
(5.4) 

develops singularities which are absent in more 
than d dimensions (such singularities occur e.g. 
when one projects a sphere with constant density, 
p ( ¢ )  = p ~ ( x  2 + y2 + z 2 _ R2), onto the x - y  plane: 
the new density/~(x, y)  is infinite at x 2 + y2 = R2). 

On the other hand, one cannot make d too large 
without getting lost in experimental errors and lack 
of  statistics. 

In the next section, we shall study an 
infinite-dimensional system from this point of  
view. In the remainder of  the present section, we 
shall apply these considerations to the logistic map 
with a = 4, and to the Hrnon  map. 

In the logistic map, we have seen that there are 
logarithmic corrections to the power law C(I )  ~ I v. 

They result precisely from singularities o f p ( x ) ,  at 
x = 0 and x = 1. While embedding the attractor in 
a higher dimensional space does not completely 
remove these singularities, it substantially reduces 
their influence. The reason is that embedding in 
higher dimensional space always results in stretch- 
ing the attractor. However, the portions which are 
most strongly stretched are those which are most 
densely populated at the lower dimension. For  
example in the logistic map with a = 4 the "attrac- 
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tor" is the interval [0, 1] in ld  but is the parabola 
in 2d. The parabola has highest slopes at the end 
points, exhibiting the stronger stretching associ- 
ated with regions of  singular distributions at a 
lower dimension. A similar effect appears when 
going from d = 2 to d = 3. We thus expect that the 
importance of  the singularities in the distribution 
would be reduced in higher dimensions. 

In order to check this, we have calculated for the 
logistic map at a = 4 the original correlation inte- 
gral and the modified integral obtained by em- 
bedding in a 2- and 3-dimensional space. The 
results are shown in fig, 9. We observe indeed the 
expected decrease of  systematic error when in- 
creasing d, accompanied by an increase of  the 
statistical error. 

Analogous results for the Hrnon  map are shown 
in fig. 10. There, we used as time series the Series 
{Xn, Xn + 2, Xn + 4 . . . .  }. While the 2-dimensional cor- 
relation integral gives an effective v in agreement 
with the result of  section 2, the 3-dimensional 
embedding gives a larger values v = 1.25 +_ 0.02 
which agrees with the value of  D found in refs. 11 
and 14. 

No such effects were observed in the Lorenz 
model, where both the originally defined C(I) and 

E 
- 5 -  oo., 

_J 

-tO - 

0 20 

Logistic mop 

Xn+l:4Xn (l'x n) . , ~  

.o.,,.,.,o,.o, / . /  
/ , , , - /  

, M /  , , 
5 I0 15 

log 2 (I/ io) /I 0 arbitrary) 

F i g .  9. M o d i f i e d  c o r r e l a t i o n  i n t e g r a l s  f o r  t h e  l o g i s t i c  m a p  (2 .1 )  

w i t h  a = 4.  T h e  d i s t a n c e  1 b e t w e e n  2 p o i n t s  ~.  a n d  ¢,n o n  t h e  
a t t r a c t o r  is  d e f i n e d  a s  l 2 = (~. - -  ~m) 2 = (X, - -  Xrn) 2 + . . .  + 

(X. + d - I - -  Xm + a - 02" F o r  e a c h  v a l u e  o f  d,  w e  t o o k  N = 15 .000 .  

I I I I I I 

(3 Hen°n mop 

• ~:2 f ¢  
-~  • d=3 / /  

/ /  
_~" -I0-- v=122 +_01~ 

/ /  -15- / \  ~:, zs +_.oz 
- 2 0  - 

-z5 1' ~ ' i '  
- j 

- 3 0  I . I I I I I 
0 5 I 0 15 20 25 30 

log 2 ( I )  (origin arbitrary) 

Fig .  10. M o d i f i e d  c o r r e l a t i o n  i n t e g r a l s  f o r  t h e  H ~ n o n  m a p  

(2 .6) .  T h e  t i m e  se r i e s  c o n s i s t e d  o f  c o o r d i n a t e s  x , ,  x , + 2 ,  

x..4 . . . . .  and ¢=(x,,x,+2 . . . .  ,x,+2(a_,) for each d. For 
d = 2, we took N = 30.000; for d = 3, we took N = 20.000. 

the modified correlation integral using only a single 
coordinate time series gave values of  v which 
agreed with D [15]. 

The conclusion drawn from these examples is 
that it is often useful to represent the attractor in 
a higher dimensional space than absolutely neces- 
sary, in order to reduce systematic errors. These 
errors result from a strongly non-uniform coverage 
of  the attractor, provided this non-uniformity is 
not so strong as to make v ~ D. 

6. Infinite-dimensional systems: an example 

An extremely convenient way of  generating very 
high dimensional systems is to consider delay 
differential equations of the type 

dx(t)  
dt  = F (x ( t ) ,  x ( t  - z ) ) ,  (6.1) 

where z is a given time delay. Such a delay equation 
is in fact infinite dimensional, as is most easily seen 
from the initial conditions necessary to solve eq. 
(6.1): they consist of  the function x ( t )  over a whole 
interval of  length z. 
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Following ref. 8, we shall study a particular 
example, introduced by Mackey and Glass [17] as 
a model for regeneration of  blood cells in patients 
with leukemia. It is 

a x ( t  - -  z )  
2 ( t )  = - b x ( t ) .  (6.2) 

1 + [ x ( t  - T)] '° 

As in ref. 8, we shall keep a = 0.2 and b = 0.1 fixed, 
and study the dependence on the delay time ~. 

For the numerical investigation, eq. (6.2) is 
turned into an n-dimensional set of  difference 
equations, with n =600-1200 .  Details are de- 
scribed in the appendix. The time series was always 
chosen as {x(t) ,  x ( t  + z),  x ( t  + 2 z )  . . . .  } except 
for some runs with z = 100, where we took points 
at times t, t + z /2, t + 2z /2  . . . . .  

The results for the correlation integral are shown 
in figs. 11-14. Estimated values of  v are given in 
table II, together with values of  D obtained in ref. 
8 by applying the defining eq. (1.2) to a Poincar6 
return map. Also shown in table II are the 
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-20 

I --F 
O' Mackey-Glass 

T=25 

J,d:3 

ed:4 

• d:5 

u = 2 4 4 ± 0 5  

- 2 5  - 

0 
I I _ 

5 IO 15 
log 2 (1/Io) (Io arbitrary) 

Fig. 12. Same as fig. 11, but for z = 2 3 .  

Mackey Glass 

-IC 

-~5 o 

u=1.95¢.03 

- 2 0  

0 5 I0 15 
lOg 2 (I/I o) (I O arbitrary) 

Fig. 11. Modified correlation integrals for the Mackey-Glass 
delay equation (6.2), with delay ~ = 17. The time series consis- 
ted of  {X(t + iQ; i = 1 . . . . .  25.000}. 
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Fig. 13. Same as fig. 11, but for ~ = 30. 
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Kaplan-Yorke dimension DKv (see eq. (1.10)) 
which will in the next section be shown to be an 
upper bound to v, and the number of  positive 
Lyapunov exponents, both taken from ref. 8. It is 
obvious that this latter number, called DLB, is a 
lower bound to D. If the density of  trajectories on 
the attractor is not too non-uniform, we expect 
that DLB yields also a lower bound to v. 

From table II we see that indeed in all cases 

DLa <~ v ~< D <~ DKv, (6.3) 

L 
O 

• d=12 
• d:14 

o d=16 

y=75± 15 

2 4 6 8 

LO~2 (1/I o) (Io arbitrary) 

Fig. 14. Same as fig. 11, but for x = 100. For d= 16, the time 
series consisted of points {X(t + i~/2); i = 1 . . . . .  25.000}. 

except for • = 17 where v is slightly less than DLa. 

However, for those small values of • for which 
box-counting according to the definition of  D had 
been feasible, our values of  v are considerably 
smaller than the values of  D found in ref. 8, while 
the values of  D were fairly close to DKv. 

In all cases, the linearity of  the plot of  log C(l) 
versus log l improved substantially when increasing 
d above its minimal required value. For increasing 
values of  d, the effective exponent at first also 

Table II 
Estimates of the correlation exponent v for the Mackey-Glass 
equation (6.2) with a = 0.2, b = 0.1. Values for DLB, D and DKv are 
from ref. 8. For T = 100 the value of v saturated at d = 16 

z DLa v D DKv 

17.0 2 1 .95_+0.03(d=3)  2.13+0.03 2.10+_0.02 
1.35 +_ 0.03 (d = 4) 
1.95 +_ 0.03 (d = 5) 

23.0 2 2.38+0.15 ( d = 3 )  2.76+0.06 2.92+__0.03 
2.43 +_ 0.05 (d = 4) 
2.44 + 0.05 (d = 5) 
2.42-1-0.1 ( d = 6 )  

30.0 3 2.87 + 0.3 (d = 4) > 2.94 3.58 + 0.04 
3.0 + 0.2 (d = 5) 
3 .0+0.2  ( d = 6 )  
2.8 -t- 0.3 (d = 7) 

100.0 6 5.8 + 0.3 (d = 10) ~ 10.0 
6.6 + 0.2 (d = 12) 
7.2 + 0.2 (d = 14) 
7.5+0.15 (d= 16) 
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increases, but settles at a value which we assume to 
be the true value of  v. We must stress that we have 
no proo f  that the values of  v obtained with the 
highest chosen d represent the " t rue"  exponent. 
We feel however that they surely represent reason- 
able estimates even for attractors with dimensions 
as high as ~ 7. 

In real experiments, where Lyapunov exponents 
are not available and thus DLB and DKv not easily 
obtained, our method seems the only one which 
could distinguish such an attractor from a system 
where the stochasticity is due to random noise. In 
that case, one would expect C ( I ) ~  I d as the tra- 
jectory is space-filling, in clear distinction from 
what we observe. 

7. Relation to Lyapunov exponents and the 
Kaplan-Yorke conjecture 

As we already mentioned in the introduction, the 
Lyapunov exponents are related to the evolution of  
the shape of  an infinitesimal F-dimensional ball in 
phase space: being infinitesimal, it depends only on 
the linearized part of  the flow, and thus becomes 
an ellipsoid with exponentially shrinking or grow- 
ing axes. Denoting the principal axes by E~(t), the 
Lyapunov exponents are given by 

2, = lira lim 1 In ('i(t-) (7.l) 
, ~  ,,to)~o t El(O) " 

Directions associated with positive Lyapunov ex- 
ponents are called "unstable", those associated 
with negative exponents are called "stable". 

Originally [10], Kaplan and Yorke had conjec- 
tured that DKv is equal to D. In a recent preprint 
[27], they claim that DKv is generically equal to a 
"probabilistic dimension", which seems to be the 
same as a. 

This latter claim has been partially supported in 
ref. 28, where essentially DKv is proven to be an 
upper bound to the probabilistic dimension. 

As shown by the counter example mentioned in 
the introduction, there are (possibly exceptional) 

cases where this bound is not saturated. In this 
section, we shall elucidate this question by giving 
a heuristic proof  for the inequality v ~< D. From 
this, we see necessary conditions for the 
Kaplan-Yorke conjecture to hold, and which do 
not seem to be met generally. 

Consider two infinitesimally close-by trajectories 
X ( t )  and X ' ( t ) = X ( t ) + A ( t ) ,  where the latter 
could indeed be X ' ( t ) = X ( t  + T), which for 
sufficiently large T is essentially independent of  
X(t ) .  We assume that A,(t) increase exponentially, 
without any fluctuations, as 

A,(t)  = A,(O) e ~'' , (7.2) 

where the components are along the principal axes 
discussed above. This is of  course a strong assump- 
tion which would imply, in particular, that 
v = a = D. Corrections to it will be treated in a 
forthcoming paper, but our main conclusion will 
remain unchanged. Conservation of  the number of  
trajectories implies that the correlation function 
increases like 

O(A (0)) c(A (0)) = e-,z~o ,~e c(A (0)). 
c(A (t)) = O(A (t)) 

(7.3) 

TO proceed further, we need a scaling assump- 
tion which generalizes the scaling ansatz 

c(IA I) "~ ] A I v- F . (7.4) 

Observing that the attractor is locally a topological 
product of  an R" with Cantor sets, and that the 
relevant axes are the principal axes, we associate 
with each axis an exponent vi, 0 < v, < 1, and make 
the ansatz 

F 

c(a)  ~ I-I c,(A,), 
i = l  

with 

~X vi - 1 

c,(x) oc [ 6(x), 

(7.5) 

if 0<vi~< 1 , 
(7.6) 

if vi= 0. 
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If  vi = 0, this means that  the mot ion  along this 
axis dies asymptotical ly (example: directions nor-  
mal to a limit cycle). Directions with vi = 1 are the 
unstable directions, with the cont inuous  density. 
Directions with 0 < vi < 1, finally, are either Can- 
tor ian or, in exceptional cases, directions along 
which the distribution is cont inuous  but  singular at 
di = 0. Not ice  that  v~ > 1 is impossible. 

Substituting eq. (7.5) into (7.3), we find 

I - I  (Z~i (0)  vi -- I e/2i(...i - 1)) = e -tY"2i l - I  h i (  0)vi - 1 ( 7 . 7 )  
i i 

or 

F 
~, 2,v i = 0 .  (7.8) 
i=1  

In addit ion we have, f rom eqs. (7.5) and (7.4), 

F 
y '  v, = v,  (7.9) 
i=1  

and 

O<<,vi<<, 1 . (7.10) 

F r o m  the derivat ion it is clear that  the 
K a p l a n - Y o r k e  conjectures tr = DKv or D = D r y  
cannot  be expected to hold when either the attrac- 

tor is Cantorian in more than one dimension, or i f  

the folding occurs in a direction which is not the 

minimally contracting one. The latter was indeed 
the case for example b in fig. 1. But example b o f  
fig. 1 is not  generic, the generic case being the one 
where the folding is in a plane which encloses an 
arbi t rary angle q~ with the z-axis (see fig. 15). It is 
easy to convince oneself  tha t  D = Di~v whenever  

4: 0, i.e. nearly always. A still more  general case 
is obtained if we fold in each (2n)th i terat ion in a 
plane characterized by ~bl, and each (2n + l)st  
i teration in a different plane. Again, it seems that  
D = D~v is generic. 

The examples might  suggest that  indeed 
D = DKy in all those generic cases in which v = D, 
but  we consider it as not  very likely in high- 
dimensional cases. For  invertible two-dimensional  
maps, the above condit ions are of  course satisfied, 
and thus tr = Dt~v if v = ~ = D (see ref. 29). 

It is now easy to find the max imum of  v subject 
to the constraints  (7.8)-(7.10). It is obtained when 

1, for  i ~<j, 
v i=  0, for  i ~ j  + 2 ,  (7.1 la)  

and 

1 
v~+~ = W - - i  E 2,. (7.11b) 

I~j+ 11 i<j 

Here,  we have used that  21 >I 22 ~ . . . ,  and that  
Ej2; < 0. Expressed in words,  the distribution 
(7. ! 1) means that  the a t t rac tor  is the most  extended 
along the most  unstable directions. Inserting it into 
eq. (7.9), we obtain 

i ~ j  ~ l'~ 
v _<j + 12:+ 11_ --'~v. (7.12) 

as we had claimed. 

/ / 

/ 

Fig. 15. Cross section through a rectangular volume element 
and its first 4 iterations under a map which stretches in 
x-direction, contracts in y- and z-directions (factors ~ and ~, 
respectively), and folds back under an angle ~ with respect to 
the z-direction. 
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8. Conclusions 

The theoretical arguments of  section 3 and 6 of  
this paper have shown (though not with mathe- 
matical rigour) that the correlation exponent v 
introduced in this paper is closely related to other 
quantities measuring the local structure of  strange 
attractors. 

The numerical results presented in section 2, 5 
and 7 have yielded proof  that v can indeed be 
calculated with reasonable efforts. While all results 
presented in this paper were based on time series 
of  10.000-30.000 points, reasonable estimates of  v 
can already be obtained with series of  a few 
thousand points, in most cases. Surely, for higher 
dimensional attractors one needs longer time se- 
ries. However, rather than taking longer time 
series, we found it in general more important to 
embed the attractor in higher dimensional spaces, 
and to choose this embedding dimension judi- 
ciously. Compared to box-counting algorithms 
used previously by other authors, our method has 
two advantages: First, our storage requirements 
are drastically reduced. Secondly, in a box- 
counting algorithm one should iterate until a// 
non-empty boxes of  a given size l have been visited. 
This is clearly impractical, in particular if I is very 
small. Thus, one has systematic errors even if the 
number of  iterations N is excessively large. In our 
method, there is no such problem. In particular, 
the finiteness of  N induces no systematic errors 
beyond the corrections to the scaling law C(I) ,,~ I v. 

We found that in most cases v was very close to 
the Hausdorff  dimensions D and to the informa- 
tion dimension a, with two notable exceptions. 
One was the Feigenbaum map, corresponding to 
the onset of  chaos in 1 dimension. In that case, we 
were able to compute a exactly in an analytic way, 
with the result a ¢: D, supporting the numerical 
evidence for v < a. 

The other exception was the Mackey-Glass de- 
lay equation, where we found numerically v < D. 
The information dimension has not been calcu- 
lated directly in this case. Accepting the claim 
made in ref. 8 that the Kaplan-Yorke formula 

(1.10) predicts correctly a, we would have 
v < a  = D  =DKv. This seems somewhat sur- 
prising, since we argued in section 7 that a rather 
direct connection (as an inequality v ~< DKy) exists 
between v and DKv, while a connection between a 
and Drcv seems less evident to us. 

The main conclusion of  this paper, as far as 
experiments are concerned, is that one can dis- 
tinguish deterministic chaos from random noise. 
By analyzing the signal as explained in section 5, 
and embedding the attractor in an increasingly 
high dimensional space, one finds whether C(I) 
scales like l v or l a. With a random noise the slope 
of  log C(I) vs. log l will increase indefinitely as d 
is increased. For  a signal that comes from a strange 
attractor the slope will reach a value of  v and will 
then become d independent. 

An issue of  experimental importance is the effect 
of random noise on top of  the deterministic chaos. 
The treatment of  this question is beyond the scope 
of this paper and is treated elsewhere [30]. Here we 
just remark that when there is an external noise of  
a given mean square magnitude, a plot of  log C(I) 
vs. log I has two regions. For  length scales above 
those on which the random component blurrs the 
fractal structure, C(I) continues to scale like l v. On 
length scales below those that are affected by the 
random jitter of  the trajectory, C(I) scales like l d. 
The analysis of  experimental signals along these 
lines can therefore yield simultaneously a charac- 
terization of  the strange attractor and and estimate 
of  the size of  the random component. For  more 
details see ref. 30. 

It is thus our hope that the correlation exponent 
will indeed be measured in experiments whose 
dynamics is governed by strange attractors. 
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Appendix A 

All numerical calculations were performed in 
double precision arithmetic on an IBM 370/165 at 
the Weizmann Institute. 

The integrations of  the Lorenz and 
Rabinovich-Fabrikant  equations were done using 
a standard Merson-Runge-Kut ta  subroutine of  

the N A G  library. 
In order to integrate the Mackey-Glass delay 

equation we approximated it by a N-dimensional 
set of  difference equations by introducing a time 
step 

At  = z / n ,  (A.I) 

with n being some large integer, and writing 

At 
x ( t  + A t )  ,~ x ( t )  + - ~  (:~(t) + Yc(t + A t ) ) .  (A.2) 

Notice that this, being the optimal second- 
order approximation, is a very efficient 
a lgor i thm-provided  we can compute :~(t + A t ) .  

In the present case we can, due to the special form 

~ ( t )  = f ( x ( t  - z)) -- b x ( t )  . (A.3) 

Inserting this in eq. (A.2) and rearranging terms, 
we arrive at 

2 - b a t  A t  
x ( t  + A t )  = x ( t )  -~ 

2 + b a t  2 + b a t  

× { f ( x ( t  --  ~)) + f ( x ( t  --  "c + At))}. 

(A.4) 

In all runs shown in this paper, we used n = 600 
(corresponding to 0.03 < At ~< 0.15), except for 
the runs with z = 100, where we used n = 1200 and 
with n = 600, finding no appreciable differences. 

We also performed control runs with a fourth- 
order approximation instead of  eq. (A.2). The 
correlation integral was unchanged within statisti- 
cal errors, and the stability of  the solutions did not 
seem to improve much. This could result from the 
very large higher derivatives of  x, resulting from 
the tenth power in eq. (6.2). 

In order to ensure that all xi are on the attractor, 
the first 100-200 iterations were discarded. 

Generating the time series {X~}~= ~ was indeed the 
less time-consuming part of our computation, the 
more important part consisting of  calculating the 
N ( N  - 1)/2 >~ l0 s pairs of distances r o = IX~ - Xjl 

and summing them up to get the correlation inte- 
gral. 

In particular, we found that an efficient algo- 
rithm for the latter was instrumental in applying 
the method advocated in this paper. 

Such a fast algorithm was found using the fact 
that floating-point numbers are stored in a com- 
puter in the form 

r = + mantissa • base +exp. (A.5) 

with base = 16 in our case 1/base < mantissa < 1, 
and exp being an integer. I f  one can extract the 
exponent, one can bin the ro's in bins of  widths 
increasing geometrically. By extracting the ex- 
ponent of  an arbitrary power r p of  r, one can 
furthermore choose the width of this binning arbi- 
trarily. Access to the exponent is made very easy 
and fast by using the shifting and masking oper- 
ations available e.g. in extended IBM and in CDC 
Fortran. After having computed the numbers Nx 
of  pairs (i, j )  in the interval 2k-1< r o < 2', the 
correlation integrals are obtained by 

1 k 
c(r  = 2 k) = ~ 5  k "~;--- o~ Nk, . (A.6) 

We found this method to be nearly an order of  
magnitude faster than computing e.g. the loga- 
rithmics of  r 0 directly, and binning by taking their 
integer parts. A typical run with 20.000 points 
t o o k -  depending on the model s tud ied-  between 
15 and 30 minutes CPU time. 
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