
P H Y S I C A L R E V I E W L E T T E R S week ending
23 APRIL 2004VOLUME 92, NUMBER 16
High Temperature Expansion Applied to Fermions near Feshbach Resonance
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We show that, apart from a difference in scale, all of the surprising recently observed properties of a
degenerate Fermi gas near a Feshbach resonance persist in the high temperature Boltzmann regime. In
this regime, the Feshbach resonance is unshifted. By sweeping across the resonance, a thermal
distribution of bound states (molecules) can be reversibly generated. Throughout this process, the
interaction energy is negative and continuous. We also show that this behavior must persist at lower
temperatures unless there is a phase transition as the temperature is lowered. We rigorously demonstrate
universal behavior near the resonance.
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energy proportional to the Fermi energy EF. mann regime. In this case, physical quantities can be
At present, much experimental activity is concentrated
on degenerate quantum gases near a Feshbach resonance
[1–5] where the nominally weak effective interactions are
strongly enhanced. By applying a magnetic field, which
moves the energy of a bound molecular state relative to
the scattering continuum, the interactions can be tuned by
many orders of magnitude. The scattering length diverges
to negative/positive infinity when the molecular energy is
infinitesimally above/below threshold. At resonance, the
scattering cross section is limited only by unitarity (� �
4�=k2, where k is the relative momentum of the two
atoms) and is universal (independent of the microscopic
physics). The universal nature of the unitarity limit leads
to a challenging many-body problem, since there are no
small parameters readily identifiable for the application
of perturbation theory.

Recently, a sequence of beautiful experiments on
Fermi gases have found unexpected and dramatic behav-
ior near unitarity, including a universal interaction en-
ergy [1,2] and the reversible interconversion of atoms and
molecules [4]. The former demonstrates the effects of
unitary scattering on bulk properties, and the latter sug-
gests the possibility of an equilibrium phase with atoms
and molecules in chemical equilibrium. Several of the
experimental results are not well understood, and some
even appear to be mutually contradictory [2]. In the
following, we summarize these experiments and the fun-
damental questions that they raise. We refer to the range
of magnetic fields on either side of the resonance where
the scattering length asc is positive or negative as the
‘‘�’ve’’ and ‘‘�’ve’’ side of the resonance.

(I) Universal interaction energy.—Thomas’s group at
Duke [1] has studied a gas containing two spin states of
fermionic 6Li (which has a Feshbach resonance around
855 G). The experiment is performed on the negative side
at 910 G. Upon release from the trap, the Fermi gas
undergoes anisotropic expansion for temperatures be-
tween 0:1TF and 3:5TF. This anisotropy can be explained
by collisional hydrodynamics with a universal interaction
0031-9007=04=92(16)=160404(4)$22.50
(II) Properties near resonance.—More recently,
Salomon’s group directly measured the interaction energy
of the same 6Li system, at temperatures between 0:5TF
and TF. (a) Crossing the resonance from the negative side,
they find that the interaction energy 	int remains negative
and continuous across the resonance, despite the expected
infinite jump of the scattering length. They find an inter-
action energy similar to that of the Duke group, convinc-
ingly demonstrating that 	int remains roughly constant
over the temperature range 0:1TF to TF. (b) Approaching
the resonance from the opposite side, 	int is positive but
drops to a negative value at a field of 700 G, roughly 150 G
before the resonance is reached. (c) The three-body re-
combination rate is maximal at 700 G, rather than at
855 G, a result consistent with the work of Ketterle’s
group at MIT [3]. (d) The anisotropy of the expansion
(which is a measure of the interaction strength) is maxi-
mal at 855 G. While (a) through (c) seem to indicate that
the resonance is shifted from 855 to 700 G by many-body
effects, (d) is consistent with an unshifted resonance.

(III) Conversion between atoms and molecules.—Very
recently, Jin’s group at JILA has studied a gas consisting
of two spin states of fermionic 40K [4]. They show that
molecules are produced as one crosses the resonance from
the �’ve to the �’ve side. Moreover, this process is
reversible. This experiment, performed at T � 0:1TF,
finds no significant shift of the original resonance.

Here, we focus on the Fermi gas near a Feshbach
resonance. Far from resonance, the interaction energy is
	int � gn"n#, where g � 4� �h2asc=M, and n" and n# are the
number densities of the two spin components. (We con-
sider the case n" � n# � n=2.) A key question is how this
nonuniversal form of 	int turns into a universal function
near resonance [see (I) and (II)]. Moreover, how does this
function reflect the existence of molecules, and what sig-
natures do these molecules have if they exist? Equally
important is whether the original resonance is shifted in a
many-body medium [see (II)]. To use methods where er-
rors can be estimated precisely, we consider the Boltz-
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FIG. 1 (color online). Energy levels of a two body system in
the center of mass frame calculated from the phase shift and
the boundary condition in the text, with R � 14 �m, B0 �
855 G, �B � 325 G, and abg � �120 nm. The vertical scale is
expanded to isolate individual energy levels. The dotted lines
are energy levels of a noninteracting system, E�0	

n � E0n
2, E0 �

�h2��=R	2=M, n � 1; 2; 3. Passing from B > B0 to B< B0, the
lowest state in the continuum becomes bound. Light (yellow)
upright and dark (red) inverted triangles indicate states at the
same field with and without the bound state occupied. The
interaction energies due to thermal occupation of these states,
and those marked by circles and squares, are shown in Fig. 2 by
the same symbols. The inset shows the behavior of the scatter-
ing length.
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calculated systematically through a high temperature
series expansion, and yet the issues of the emergence of
universal behaviors at unitarity still remain.

One might wonder whether the phenomena in the
Boltzmann regime have any relevance to current ultralow
temperature experiments. The connection is simply that
in the absence of any phase transition in the normal state,
the thermodynamic functions in the Boltzmann regime
are analytically continuations (in T and n) of those in the
degenerate regime. This analytic continuation imposes
strong constraints on the phase diagram, allowing one
to qualitatively understand the physics at all tempera-
tures. In fact, apart from a difference in scale, the exact
results in the Boltzmann regime show all of the features
discovered in experiments (I), (II), and (III). Surpris-
ingly, the high temperature results, which should work
well when n"�

3 � n#�
3 � n�3=2 � 1 (where � � h=�������������������

2�MkBT
p

is the thermal wavelength and kB is Boltz-
mann’s constant), agree reasonably well with the ENS
(Ecole Normale Supérieure) experiments [2] performed
at n�3=2 � �4=3

����
�

p
	�TF=T	3=2 
 1:6 [see point (E) later].

In the following, we derive the interaction energy density
in the Boltzmann regime, then draw a series of conclu-
sions labeled below as (A) to (D).

At high temperatures, or low densities, the grand par-
tition function Z � Tre��H��N	=kBT can be expanded in
the fugacity z � e�=kBT [6,7]. To second order in z, where
interaction effects first appear, the partition function is
Z � Z�0	 � 2

���
2

p
�Vz2=�3	b2, where the superscript ‘‘0’’

denotes quantities for noninteracting systems, and b2 �P
��e

��E�2	
� � e���E�2	

� ��0	 � is the second virial coefficient,

b2 �
X
b

ejEbj=kBT �
X
‘

�‘

Z 1

0

dk
�

d�‘�k	
dk

e� �h2k2=mkBT; (1)

where �‘ � 2‘� 1, the sum is over all integers ‘ �
0; 1; . . . , Eb is the energy of the two body bound state,
and �‘�k	 is the phase shift of the ‘th partial wave [8].

A standard thermodynamic calculation [9] shows that,
to lowest nontrivial order in n�3, the energy density is

	 �
3nkBT

2

�
1�

n�3

27=2

�
�	int � 	kin � 	int; (2)

where 	kin and 	int are, respectively, the kinetic and
interaction energy densities:

	int �
3kBTn

2
�n�3	

�
�

b2���
2

p �

���
2

p

3
T
@b2
@T

�
: (3)

Since the contributions of partial waves with ‘ � 1 in
Eq. (1) are a factor of n�3 smaller than the s-wave con-
tributions, we ignore them in subsequent discussions.

Far from resonance the phase shift is ��k	 � �asck for
small k. Because of the Gaussian cutoff in Eq. (1), no
errors are made by using this expression for all k. In the
absence of bound states, we then have b2 � �asc=�

���
2

p
�	,
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and hence T@b2=@T � b2=2. Equation (3) then reduces to
the usual expression 	int � gn"n#, with n" � n# � n=2.

To evaluate 	int near a Feshbach resonance we use the
expression for the phase shift valid for k � b�1, where b
is the range of the potential [10]

kcot��k	 � �
1

asc
�
r0k2

2
; (4)

where r0�
b	 is the effective range and asc is the s-wave
scattering length. As a function of magnetic field, asc
varies as asc � abg�1�

�B
B�B0

	, where B0 and �B are the
location and the width of the resonance, and abg is the
background scattering length away from resonance.
The region B>B0 and B<B0 where asc<0 and asc> 0
are referred to as the �’ve and the �’ve sides of the
resonance. For a temperature range such that the thermal
wavelength is larger than the range of the potential, � >
b, we can use Eq. (4) in Eq. (1) where the integral is cut
off at ��1. Near resonance,�=asc; ro=asc ! 0, and Eqs. (1)
and (4) imply that up to terms of order r0=asc

b2 �
X
b

ejEbj=kBT �
sgn�asc	

2
�1� erf�x	�ex

2
; (5)

where x � �=�
�������
2�

p
asc	 and erf�x	 is the error function.We

can then evaluate 	int using Eqs. (3) and (5). At the same
time, it is useful to look at the effect of phase shifts on the
energy levels. In a box of size R, the wave vector k is
changed from its noninteracting value k0 � ‘�=R (‘ �
1; 2; 3; . . . ) to k
 k0 � ��k0	=R through the boundary
160404-2
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condition sin�kR� ��k	� � 0 at a large distance R.
Scattering states and bound states correspond to the real
and the imaginary k solution of this boundary condition.
The energies of the lowest few states in the center of mass
frame (E � �h2k2=M) are shown in Fig. 1. As one passes
through the resonance from the �’ve side, the lowest state
in the continuum turns into a bound state, causing ��k �
0	 to change abruptly from 0 to �. The corresponding
interaction energy 	int calculated from Eqs. (3) and (5) are
shown in Fig. 2. Despite the simplicity of the calculation,
considerable information can be deduced.

(A) Approaching the resonance from the �’ve side, 	int
follows a ‘‘negative branch’’ 	��	

int which is negative and
decreases monotonically (see Fig. 2). 	��	

int evolves from
the (temperature independent) nonuniversal form gn"n#
far from resonance to a (temperature dependent) univer-
sal form �	0 � ��3nkBT=2	�n�

3=23=2	 at resonance, and
continues on to the �’ve side. This universal form, which
follows from the fact that b2 � 1=2 and @b2=@T � 0 at
resonance �x � 0	 [6], is the high temperature analog of
universal interaction found in (I) and (II).

(B) Despite the change in sign of the scattering length,
the interaction energy 	��	

int remains negative across the
resonance (shown in Fig. 2) because of the thermal popu-
lation hnbi of bound states that exist when asc is positive,

hnbi �
2

���
2

p
z2

�3 e�Eb=kBT � n
�
n�3���
2

p

�
ejEbj=kBT � . . . : (6)

Although proportional to the small factor n�3, hnbi is
macroscopic in the thermodynamic limit. Equation (6) in
turn implies that in a bulk system, the original resonance
(at field B0) cannot be shifted to the positive side (to B1 <
B0) at a lower temperature unless there is a phase tran-
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FIG. 2. Interaction energy. The energies 	��	
int increase mono-

tonically as the field is increased, reaching the universal value
�	0 at resonance, where 	0 � �3nkBT=2	�n�

3=23=2	. The nega-
tive branch, 	��	

int , is continuous across the resonance, while 	��	
int

will jump to 	��	
int if the bound state is occupied (say, at the field

labeled by the triangle). Inset shows the temperature depen-
dence: solid, dashed, and dotted lines correspond to T � 1, 10,
and 100 �K.
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sition for all magnetic fields between B1 and B0 where
hnbi disappears as temperature is lowered from the
Boltzmann regime (see Fig. 3). So far, such a phase
transition has not been observed. Should future experi-
ments rule out such a transition in 6Li, one must then
conclude that the resonance in the ENS experiment [2] is
not shifted. The absence of a shift of the resonance is also
consistent with the findings in Ref. [4] for 40K.

(C) Approaching the resonance from the �’ve side, if
the bound states are not occupied 	int will follow a ‘‘posi-
tive branch’’ 	��	

int > 0 that increases monotonically,
evolving from gn"n# to 	0 � �3nkBT=2	�n�3=23=2	 at
resonance (see Fig. 2). However, a gas containing only
scattering states is not in true equilibrium, as the latter
requires that all states, including bound states, are ther-
mally populated. As pointed out by Petrov [11], the three-
body collisions that convert scattering states into bound
states can lead to chemical equilibrium only if the re-
leased energy is insufficient to eject the particles from the
trap. If one is sufficiently far from the resonance, then the
molecular binding energy is larger than the trap depth,
and the three-body collisions instead lead to loss. The
sudden drop in the interaction energy near 700 G in the
ENS experiment [2] is consistent with the production of
trapped molecules. Moreover, Jochim et al. [5] have
directly observed the equilibration of atom/molecule pop-
ulations near this field. This scenario also predicts that the
development of an equilibrium molecular population will
coincide with a peak in the three-body loss rate. This peak
is observed at ENS [2], MIT [3], and Innsbruck [5].

(D) The extension of 	��	
int to the positive side of the

resonance is due to the population of the bound state that
becomes available there. If the system is brought across
the resonance adiabatically, quasiequilibrium is main-
tained and the process is reversible. Consequently, mole-
cules generated on the positive side will turn back to
atoms when the system is brought back to the negative
side. This is consistent with the experiments on 40K [4].

(E) The experiment at ENS was performed at tempera-
ture T � 3:5 �K and degeneracy factor T=TF � 0:6,
B 0B 0 BBB 1

〈nb〉   = 0〈 nb〉    = 0 〈 nb〉  = 0〈 nb〉  = 0

TT(a ) (b)

FIG. 3. Schematic phase diagrams. Because the original reso-
nance �B0	 is unshifted at high temperature, a shift in reso-
nance at low temperature �B1 < B0	 will imply a phase
boundary as shown in (a), which means that hnbi will disappear
(or appear) as temperature is lowered (or raised) along the path
indicated by the double-headed arrow. The phase diagram for
an unshifted resonance is shown in (b).
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FIG. 4 (color online). The ratio 	int=	kin for T � 3:5 �K.
Squares (circles) show data from Ref. [2], which agrees with
	� (	�). Triangles do not fall on either curve and probably
reflect a nonequilibrium situation. The dashed, solid, and
dotted lines are for T=TF � 1:2, 0.6, and 0.4, respectively.
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corresponding to n�3=2 � 1:6. Using the same tempera-
ture, we have plotted the ratio 	int=	kin in Fig. 4 for
T=TF � 1:2, 0.6, and 0.4, corresponding to n�3=2 �
0:6, 1.6, and 3.0. Although our result on interaction en-
ergy should be accurate only when n�3=2< 1, we also
plot it at higher phase space densities (i.e., extending it to
regions n�3=2 > 1) to indicate its temperature depen-
dence. Moreover, these extensions are the leading terms
of the interaction energy in powers of n�3=2. On the
positive side all three of our curves are consistent with
the experimental data, while on the negative side the
T=TF � 1:2 curve is closest. The fact that the B > B0

data match this higher temperature curve may be due to
higher order terms in the high temperature expansion or
systematic differences in the density/temperature of the
sample on the two sides of the resonance. In any case, it is
clear that a Fermi gas in the Boltzmann regime exhibits
all the phenomena seen in current experiments. Equally
important is the fact that the exact high temperature
results near unitarity force one to conclude the existence
of a phase where atoms and molecules are in chemical
equilibrium.

Having shown that the behavior of the quantum gas in
the Boltzmann regime has all the characteristics seen in
experiments at lower temperatures, we reiterate that the
two regimes are connected by the analyticity of the
thermodynamic functions. Despite the divergent scatter-
ing length, at small fugacity z (or equivalently small
density n�3) the probablility of particle collisions is
small, leading to our systematic perturbative scheme.
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