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1. Introduction

In this paperthe statisticalpropertiesof so-calledquantumchaosarediscussedon the basis of the
relativelysimple modelof a kicked rotator. This modelwas for the first time introducedin [CCFI79]as
aquantumanalogof “the standardmapping” [C79].Thelatter is knownto be the basicmodelfor the
studyof the conditionsunder which dynamicalchaosappears;it also servesas a good model for the
investigationof the statisticalpropertiesof strongchaoticmotion. Unlike classicalchaos,in the kicked
rotatormodeldynamicalchaoswas found to havesomespecific featureswhich arecloselyrelatedto the
quantumnatureof the model. In particular,the so-called“quantum suppressionof classicalchaos”has
beendiscoveredin [CCFI79],which hassomerelevanceto Andersonlocalization in solid statemodels
with disorder [FGP82J.The model of the kicked rotator turned out to be very rich, reflecting many
general featuresof quantum chaos.In fact, like the standardmapping in the classical theory of
dynamicalchaos,it is the basic model for understandingthe conceptof quantumchaos.

The aim of this paperis threefold.First, this is anattemptto collect all themost importantresultson
the kicked rotatormodel, which are distributednow in manyjournalsand preprints,someof them not
easilyavailable.Second,it seemsto be productive,at present,to discussthe old andnew datafor the
kicked rotator, in the light of the modern understandingof the generalproblem of quantumchaos.
Third, sincethe statisticalpropertiesof the quasienergyspectrumandquasienergyfunctionsare not so
well studiedasthoseof autonomoussystems,thispapermaybe regardedas areviewof the main results
and problems of quantum chaos in its application to the spectral statisticsand the eigenfunction
structureof periodically driven systems(seealso [CM89}).Also, new resultsarepresentedwhich may
haverelevanceto more realistic models, in particular,to solid statemodels.

As a result, the presentpaperis not a review of generalproblemsof quantumchaosand can be
regardedonly as a supplementto the knownbooksandreviews.To studythe currentstateof quantum
chaostheory, the readeris referredto the literaturegiven in the text. Recently,a numberof very good
reviewshaveappearedon this subject (see,e.g., [E88Jand [E88a]).Also, the reviews [CIS81,C1S881
may be useful for understandingthe concept of the quantumsuppressionof classical chaos. The
application to the specific problem of the microwave ionization of hydrogenatoms is thoroughly
discussedin [DKS83,CCGS87,CGS88}. Therearealso reviewson the applicationsof quantumchaos
in other fields (see, e.g., [BG84, BW881 and referencesin [E88a, E88]). The best collection of
referenceson the subject of quantumchaos,together with its different applications, is containedin
[E881.

2. Quantum chaosin the kicked rotator model

2.1. Classicalmodel: standardmapping

Let us first considerthe classical counterpartof our main model and discussbriefly its properties.

The classicalmodel is representedby the Hamiltonian

Hzp2/21+eOcosO~T(t), (2.1.1)

which describesa pendulumin a kicked gravitationalfield. Herep is the angularmomentum(action), U
is the angulardisplacement(phase),I is the moment of inertia of the pendulum and e~is the kick
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strength(perturbation).In what follows weusethe dimensionlessvariableI = 1. The time dependence

of the externalfield in (2.1.1) is given by a periodic deltafunction,

~T(t) ~ 8(t — iT), (2.1.2)

with T being the period of the kicks. Such a form of the perturbationallows us to go from the
differentialequationsof motion to a mapping,which is muchmoreconvenientfor numericalanalysis.It
turns out that in spite of the specific form of the perturbationthe model (2.1.1) revealsthe general
propertiesof nonlinearsystemswith the Hamiltonian

H=H0(p)+V(O)f(t), f(t+ T)=f(t). (2.1.3)

Here H0 standsfor the unperturbed(integrable)part, while the perturbation,generallynonlinear, is
periodic in time and hasmany resonantharmonicswith unperturbedmotion.

Startingfrom the Hamiltonian (2.1.1)onecan get the equationsof motion andthen,integratingover
one period T it is easyto obtain the mappingfor p and 0,

p~+1=p~+e0sinU~, ~ = {U~+Tp1~1}, (2.1.4)

wherep and U ~are the values of the momentumand of the phase just after the tth delta function
“kick”. Here the brackets indicate that the phase U is taken modulo

21T. Also, here t is the
dimensionlesstime; in what follows, we often use the samenotation t both for the time t and for the
normalizedtime, t = tIT. At first glance,the motion of the model (2.1.4) seemsto dependon two
parameters:kick strengthe

0 andperiodT (apart from the initial conditionsp0, U0). Nevertheless,as can
be seenfrom the rescalingof the momentump by P = pT, only the parameterK = e0Tis essentialfor
the behaviourof the model. Then, in the new variablesP and U we have the so-called“standard
mapping” in its standardform (see, e.g., [C79,LL831),

Pt+i=Pr+KsinUr, U5÷1={U~+P~+1}, (2.1.5)

which is also known as the “Chirikov—Taylor mapping”.
Having a long history (see [T69, F72, C79j), the mapping (2.1.5) is a cornerstoneof the modern

physical theory of dynamical chaos. Moreover, it is used as a test model for polishing the new
approachesin the descriptionof the transition from quasiperiodicto chaotic motion as well as the
statisticalpropertiesof fully developedchaos.It shouldbe noted that, in spiteof its apparentsimple
form, the standardmappingcan be usedas a good modelof somerealphysicalsystems.Forexample,it
describesthe motion of a chargedparticlein a magnetictrap (see,e.g.,[C79]). But most importantis
that the standardmappingcan be usedto describe(for small K) the motion of a genericHamiltonian
systemin the casewhereonly one isolatednonlinearresonancecan be takeninto accountwhile other
resonancesare regardedas a perturbation.

The propertiesof this mappinghavebeenthoroughlyinvestigatedandthis was a goodreasonto start
with the study of its quantumanalog[CIS81,CCFI79] as the main model for the investigationof the
quantumcounterpartof classicalchaos(seenext section).

We now recall the most essentialpropertiesof the model(2.1.5) (see [C79,LL83]). As far as the
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perturbationin (2.1.5) is periodic in 0, the phasespaceof the systemis a cylinder, thereforeallowingan
unboundedmotion in momentumP. In addition, it turnsout that the phasespaceis also periodic in P
with period 2ir. The latter property simplifies very much the investigationand makesit possible to
restrictoneselfto studyingthe structureof the phasespaceon the square0 ~ P, 0 <2i~.For thisreason
the model (2.1.5) sometimesis called “uniform model”.

Without perturbation(K = 0) all trajectoriesof the motion can be representedin phasespaceby the
straight linesP = const. (which are so-called“unperturbedtori” in the terminology of KAM theory
[K54,A63, M62]; see also [AA68]). With increasingperturbation(K >0) someof theselines startto
bend; meanwhilethosetrajectorieswhich correspondto special(resonant)valuesof P turn out to be
destroyed.At the sametime, new invariant curvesappearwhich correspondto nonlinearresonancesof
different harmonicsof the perturbation.In parallel, in the vicinity of theseresonancessmall regions
arise with a new type of motion, so-called “stochastic” or “chaotic” motion. Nevertheless,for a
sufficiently small perturbation,all chaotic trajectoriesare restricted in momentum P by the non-
destroyed(nonresonant)tori. This situationis known as “global stability” of the motion.

Finally, when the perturbationK exceedssomecritical value Kcr, the last invariant nonresonant
curve is destroyedandthemotion becomesunboundedin momentum(if the initial conditionsP0, O~do
not belongto the remnantsof resonanttori or, in otherwords,if the startingpoint of this trjectory is
not insidea region with quasiperiodicmotion). Thereare differentapproachesto find out this critical
value (see [C79,LL831); accordingto [G79JKcr 0.9716.

With further increaseof K> Kcr the regions of phasespace with regular quasiperiodicmotion
(“stable regions”) decreaseand becometoo small to take care of their influenceon the motion of the
system.Indeed,it hasbeenestimated[C173,C79] that the total areaof theseregionsis exponentially
small for generic valuesof K ~ 1. Therefore, the motion of the systemfor K ~ 1 turns out to be,
practically, fully chaoticand revealsstrong statisticalpropertiessuch as local instability, mixing, fast
decayof the correlationsand hasa positive Kolmogorov—Sinaientropy (seethe reviews [C79,LL83,
Z85, SUZ89]). Numericaldatashow[C79]that evenfor a not very largevalueK ~ 5 our model(2.1.5)
has all thesepropertiesand can be treatedas completelychaotic.

Oneof the propertiesof our model (2.1.5), the most important in view of future comparisonwith the
quantummodel, is the diffusive characterof the motion in momentumP. This diffusion takesplace
both for individual trajectoriesand for sets of trajectoriesinitially localizedin someregion of phase
space.The time dependenceof the momentum(in the numberof kicks) can be expressedfrom (2.1.5)
as

(P1 — P0)
2 = K2 ~ (sin ~ sin Orn), (2.1.6)

where Ui, O~are the phasestaken at different times. It is seenthat in the caseof fast decay of
correlationsbetween thesephasesthe increaseof the momentum is of a diffusive form. Indeed,
numericaldata give excellentagreementwith a diffusion law for K S~1. As an examplewe can takea
large number of trajectorieswith initial momentumP

0 = 0 and phases0~uniformly distributed in
(0,

21T). Then, the meansquareof the momentum,averagedover all trajectories,grows linearly in
time,

(2.1.7)

The sameresultappearswhenthe averageis performedover manysectionsof the individualtrajectory
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(normalizing P to zero at the beginning of each segment). It was also numerically found that the
momentumdistributionitself hasa time-dependentGaussianform

f(P) = 1 exp(—P21K27), (2.1.8)
KV~

as would be expectedfrom the centrallimit theoremprovidedthe phasesO~,Urn in (2.1.6)areregarded
as statistically independent.

The diffusion coefficientD~
1(K)for the model (2.1.5)wasfound to bean oscillatingfunctionof K for

K >4.5(with decreasingamplitudeof the oscillationfor K ~‘ 1, see[RW8O,RRW81]). In the caseof K
slightly abovethe critical value (K — Kcr ~ 1) anotherlaw holds [C79, MMP84, DF85, CS861. As a
result, the combinedexpressionfor D~,(K)can be given as

~K
2{1— 2J

2(K)[1 — J2(K)]} , K � 4.5,
D~1(K)= ((~P)

2)/7= (2.1.9)
0.30(K — Kcr)3, Kcr < K <4.5,

whereJ
2(K) is a Besselfunction and the time tis measuredin the numberof kicks. It turns out that for

K 5 the diffusion coefficient D~1is close to the limiting (K—s~oc) value K
212, and this is why in

numericalexperimentsthe valueK = 5 is often used.Correspondingly,for the diffusion in momentump
[seeeq. (2.1.4)1we get the coefficient

D~= ((z~p)2~It=D~
1IT

2, (2.1.10)

with D~ ~/2 for K ~ 1. Therefore, the energygrowth for our model (2.1.1) in a diffusive regime
(K ~‘ 1) can be approximatelyrepresentedas

= E~
1(t)— E~1(0) ~D~t= ~ (2.1.11)

2.2. Quantumsuppressionof classicaldiffusion

It is now natural to put the questionof the influence of quantumeffects on the dynamicalchaos
which appearsin the model (2.1.5)under strong (K~1)perturbation.To startwith this problemwe
comebackto our original model (2.1.1) and write down its quantumversion,

iTt = —(h
2121)32/3U2+ r

0 cos0 6T(t), (2.2.1)

whereh is Planck’sconstantand e~is the perturbationstrength. This model was first introduced in
[CCFI79Iandstill it attractsmanyresearchers.The motion of the quantumkicked rotator is governed
by the time-dependentSchrödingerequation,

ih~zr_~-j ~—~+V(0)5T(t)c(J, V(U)=e0cosO, (2.2.2)

whichis muchmoredifficult to analysenumericallythanthe classicalstandardmapping(2.1.4), (2.1.5).
Nevertheless,the specific form of the perturbationgiven by periodic instantaneouskicks, as in the
classicalcase,is used to simplify our investigationby reducing (2.2.2) to a mapping for the wave
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function,

t~r(0,t + T) = (Jçli(o, t),

(2.2.3)
• 7. TIl a2 ‘\ / . \ 7. Tti a2
U=expy-~j exp~—1-~-cos0)expy~~-

1-~

Here the value of the function cli is determinedjust in the middle of the rotation, betweentwo
successivekicks. Actually, this expressioncorrespondsto the formal solution of the Schrödinger
equation(2.2.2) over oneperiodof the perturbation.The evolution operatorU of the systemin one
period, thanks to the instant action of the perturbation,can be written as the product of three
noncommutingunitary operators,the first of which correspondsto the free rotation during half a
period,

f.r a
2\ lITG(T12) = expy ~ .) r ; (2.2.4)

the seconddescribesthe kick,

E(k) = exp(—ikcos0), k e~Ih, (2.2.5)

andthe third one is the sameas the first, eq. (2.2.4).
It is seenfrom (2.2.3) that, unlike the classical model, the behaviourof the quantum model

essentiallydependson two parameters:k and r (in the following we put I = 1 as in section2.1). This
fact reflects the appearanceof a pure quantumparameter,in addition to the classicalone, K = kr =

e
0T. As a new independentparameterwe can choose,for example,the perturbationstrengthk, which

gives the effectivenumberof unperturbedstatescoveredby onekick of the perturbation(seebelow).
The transitionto classical mechanicsis describedby the limit k—s’ oc, r—~0, K = const.

Sincewithout perturbation(k 0) the Hamiltonian(2.2.1) is time independent,the solution i/i(0, t)

of (2.2.2) is convenientlyrepresentedin the form of anexpansionin eigenfunctions(EF) of the angular
momentum,

cl’(U, t) = ~ A,~(t)e’~°, (2.2.6)

wherethe coefficientsA~(t) areessentiallytheFouriercoefficientsof the time-dependentwave function
t/i(0, t). It is easyto obtain that in the momentumrepresentationthe free rotationoperatorG hasa
diagonalform with matrix elements

G11(r12) = exp[i(rI4)l
2]~

11 . (2.2.7)

Correspondingly,for the matrix elementsof the kick operatorE we have

Bn~rn~(k)= I””Jn_rn(k), (2.2.8)

whereJ~(k)is a Besselfunction. Therefore, the total operator(i in one period T is given by
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Unrn = ~ (2.2.9)

As a result, the mappingfor the Fourier coefficientsof cl’ is

A~(t+ T) = rn~-~UnrnArn(t) = in e~~A2~ i_rnJ (k) eI(n/4)m~rn(t). (2.2.10)

Therefore,to follow the dynamicsof the system(2.2.1)wehaveto numericallyiterate the mappingfor
a given initial distributionA rn(0). (As for the classicalmodel, in what follows, time is measuredin the
numberof kicks: t = tT with t = 1, 2,. .. being the numberof iterations.)

One of the peculiaritiesof any numericalexperimentwith (2.2.10)is the artificial truncationof the
unperturbedbasis at some finite size m sN. One should thereforetake into accountthe possible
influenceof such a truncation on the final result. For this purpose,we can use the normalization
conditionfor the wave function

Arn(t)~2~ 1, (2.2.11)

wherethe summationis performedover a finite number2N + 1 of unperturbedstates.It should be
noted that thereis the additional problemof the correctcomputationof Besselfunctionswith large
indices n — m~~‘ 1 [see(2.2.10)]. On the otherhand,the angularmomentumbasis,in whichthe matrix
elementsof the evolutionoperatorareexpressedby Besselfunctions,hassomeadvantage.Indeed,the
values of the Bessel functionsdecreasevery rapidly with increasingdifferencebetweenindices and
argument(for In — m > k). It meansthat the unitary matrix Unrn hasthe form of a bandmatrix with
negligible matrix elementsoutsidea band of size =2k. Therefore, it is possibleto put Unrn = 0 for
off-bandelements,say for In — mI >2k.

Thereis anothernumericalapproachnot connectedwith the computationof Besselfunctionsat all.
It is evenmoreefficient from the point of view of minimization of computationaltime. It is relatedto
the specific form of the evolutionoperator[see(2.2.3)]. More precisely,from (2.2.4) and (2.2.7) it is
seenthat free rotation hasthe simplestform in the momentumrepresentationandis representedas a
shift of all phasesof the Fouriercomponentsby the values r12/4. At the sametime, the resultof a kick
is just a phaseshift of the function t,ls by an amountkcos0; therefore,the kick operator(2.2.5)hasthe
simplest(diagonal)form in the phaserepresentation.For this reasonit is very convenientto passfrom
one representationto another using in numerical experimentsa subroutine of the Fast Fourier
Transform. Such an approachallows a significant reductionof computationaltime but in this casethe
normalizationof the function cl’ turnsout to beindependentof thenumberof statesandautomaticallyis
satisfied.Therefore,the only checkof the effectof truncationis to repeatthe runwith increasedsize of
the basis.

A typical numericalexperimentconsistsof the iterative computationof the wave function compo-
nentsA rn(t) accordingto (2.2.10)startingfrom agiven initial statecl’(O, 0). Thenthe time dependence
of anyaveragedobservablecan be foundandcomparedwith its classicalcounterpart.For example,for
the energyof our rotatorwe have

E(t) = n~N w~(t)h2n2I2, w~(t)= IA~(t)I2, (2.2.12)

wherew~(t) is a probability distribution in momentumspaceafter t kicks of the perturbation.
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The first numericaldata[CCFI79,CIS81] for the model(2.2.1)showeda quite strangebehaviourof
the rotator. It was expectedthat for K ~ 1 in the deepsemiclassicalregion (k~ 1) the energygrowth
shouldcorrespondto that in the classicalmodel [see(2.1.11)]. For ourconvenience,in what follows we
use a normalizedenergy,E E/112 therefore,for E(t) the expectationis

E(t) = E(0) + ~D~(t)t, D~ ((~n)2)It = D~Itl2, (2.2.13)

whereD~describesclassicaldiffusion in unperturbedlevelsn: D~ k212 r~/2lI2for K ~ 1. However,
it turned out that such a correspondencetook place only on somefinite time scale t~after which a
considerabledeviationwas observedfrom (2.2.13)with an essentialdecreaseof the diffusion rate. A
typical example of such behaviouris representedin fig. 1, where for comparisonthe “theoretical”
dependence(2.2.13)is also shown.As an initial conditionthe stateA~(0)= 8,~with n

0 = 0 was taken,
which correspondsto the set of classicaltrajectorieswith initial momentump0 = un0 = 0 and equally
distributedphases0~ 0~s

21T. It was also found that with increasingperturbationk the characteristic
time t~of good correspondencewith classicaldiffusion, eq. (2.2.13),increasedfor a fixed valueof the
classicalparameterK = 5.

Sucha remarkablebehaviourof the quantummodel in the regionof strongclassicalchaoswascalled
“the quantumsuppressionof classicalchaos”.This phenomenonfor the model (2.2.1) turns out to be
typicaland doesnot,in fact,dependon the initial distributionand,therefore,on theshapeof theinitial
wave function. For example,qualitatively the samepicture appearswhen,insteadof oneunperturbed
state,many low states(jn

0 I ~ 10) with randomamplitudesA~0are initially excited (with zero mean
momentum(n0) = 0). Also, the resultremainsqualitatively the sameif the centreof the wave packetis
shiftedin momentumspaceto largevalues((n0) = 500, 1000) while the width of the packetis changed
in the range10<~n0<200[CCFI79,S83]. In all theseexperimentsthe total numberof levelsis quite
large,M=2N+1=4001.

On the otherhand, it should be pointed out that theremust exist special initial statesfor which
diffusion will be strongly suppressedor evenbe absentjustfrom thevery beginning(for t >0). Indeed,
thosestatescan be found from the dynamicsof the model (2.2.1);namely,if we takeas an initial state

cl’(O, 0), the wave packet ~/i(0,t) after diffusion hassignificantly decreased.However, it is clear that
thesestatesareexceptionalbecauseall componentsAn of the function cli should be stronglycorrelated
to each other. It is hardto imagine how they can be constructedwithout using the mapping(2.2.10)
itself.

4E
k’~

120

0 400 800 i200 1600 ~000

Fig. 1. Dependenceof the normalizedenergy(2.2.13)on thediscretetime 1= lIT for k = 20; r = 0.25; K = kr = 5; 1m~x= 2000. The straight line
correspondsto classical diffusion, E= ~k

2t(after [C1s81]).
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Moreover, since the paper[CCFI79] it has been known that thereis a specialtype of motion in
model (2.2.1) for which the energyis infinitely increasing.In thiscasethe asymptotic(for t—~oc) growth
of energy is quadraticin time, unlike the linear growth for genericmotion correspondingto the
diffusive spreadof the wave packet in momentumspace.This phenomenonwas called “quantum
resonance”(n [CCFI79],since it is causedby purequantuminterferenceeffectsandhasno relationto
the classicalbehaviour.The detailedanalysisof quantumresonancebehaviouris given in [1S79,1S80]
(seealso [CCFI79,CS86a,CS85, DGP84,CFGV86])and will be discussedin section2.5. Herewe just
note that quantumresonancecorrespondsto special resonantvaluesof the dimensionlessperiod T,

T (4lTIq)r, (2.2.14)

wherer, q are integerswhich do not havea commonintegralfactor. At a first glance,thisrelationcan
be importantalso in the generalcasebecauseany irrational numbercan be well approximatedby the
rationalones.Moreover, in any computerall numbersareknownto be rationalfor the reasonof finite
accuracy.However, as follows from the analysis in [IS79, 1S80, CFGV86], for large values of the
denominatorq ~ 1 in (2.2.14)the motion of the model follows the nonresonantbehaviourfor a very
long time, after which resonantbehaviourrevealsitself. This time of correspondenceincreasesvery
rapidly with increasingq. Thus, resonantbehaviourshould be consideredas a nongenerictype of
behaviourwhich does not reflect the main propertiesof quantumsystemsin the region of classical
chaos.

Suppressionof the diffusion in energymeansthat in momentumspacethe spreadingof the wave
packetstops.In fig. 2 a typical distributionof w~aftersuffièiently largetime is shownin the normalized

~2O X
Ii liii I ii Ill lii liii ltl II Ill Ill 11111 II Ill Ill ii II II lii tIll 1111111 tj

0.00 0.1~ 0.2~ 0.50 0.52 0.66 0.70 0.92 1.05 1.16 1.51

Fig. 2. Distribution of w~over the unperturbedstatesin the normalizedvariablesf(n) and X lsee (2.2.15)1.The straight line correspondsto the
classicaldistributionf= exp(—X) (after ICIS81I).
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variables

f(n)=w~V~k, X=n2Ik2t. (2.2.15)

For comparisonthe dependencef= exp(—X), which representsdistribution of w,~in the classical
model, is alsoshown.A largedifferencewith the classicalresultsis clearlyseenfor largevaluesof nI,

I nI ~ 1, reflecting the suppressionof the diffusion in momentumspace.
The characteristictime ti’, which gives the time of correspondencebetweenclassicaland quantum

diffusion, is of specialinterestbecauseit can be usedto connectclassicalandquantumcharacteristicsof
the model. It was found numerically [CIS81,S83] that the following approximatelaw holdsfor t*:

= Ckn, (2.2.16)

with the powera = 1.5—2.0. It is quite difficult to establisha more detaileddependenceof t~on the
parametersK andk. The main problemis that the definition of t’~itself is quite arbitrary,becausethe
saturationof energyis not sharp.In addition,therearelargefluctuationsdependingon the initial state
cl’(U, 0). Also, the size of the basis neededfor correctnumericalexperimentsgrows very fast with the
increaseof the quantumparameterk. In (2.2.16),t~was takenas the time t whenthe deviationof the
quantumenergyfrom the classicaldependence(2.2.13)exceedsa given value(say, 25% of the classical
value). As was shown in [CIS81,S81, S84], the quantumcorrectionterms in the region of classical
diffusion grow very fast and need to be takeninto accountfor tD k2. By assumingthis time to be
consistentwith t~we havegood agreementwith numericaldata; therefore,onecan assumethata = 2.

Another interestingquestion is: how good is the correspondencebetweenquantumand classical
motion on the time scalet < t*? As we alreadysaidabove, detailednumericalexperiments[CCFI79,
CIS81, S83] haveshownvery good agreementfor the timedependenceof the energyas comparedwith
classicaldiffusion whenK ~ 1, k~ 1. Moroever, it turns out that the quantumdiffusion coefficient Dq
hasthe sameoscillationsas a function of the classicalparameterK as the classicalexpression(2.1.9).
For this reasonwe will call the time scale

tD=k=1IlI (2.2.17)

the “diffusion scale”.
As mentionedabove, the smaller the quantumparameterk, the strongeris the suppressionof

diffusion. As a result, thereis somecritical value kcr belowwhich diffusion doesnot existat all for any
largevalueof the classicalparameterK ~ 1. In otherwords,quantumeffectscan be so strongthat they
suppressanydiffusion from the beginning, t >0. This effect was discussedfor the first time in [S76],
wherethe influenceof quantumeffects in moleculeswas investigatedprovidedthe classicalnonlinear
resonancesoverlapandstrongstochasticityoccursin the classicallimit. It was found that in addition to
the classicalborderof global stability (Kcr 1), in the quantummodelthereappearsanothercondition
for suppressionof the classicalmotion (“quantumstability border” or “Shuryak’s border”, see,e.g.,
[CS86]).To avoid confusionwhendeterminingthe quantumborderof stability,we discussthisproblem
in moredetail taking our model (2.2.1) as a typical example(seealso [CS86]).

The natureof the quantumstability borderis directly relatedto the discretenessof the spectrumof
the quantumsystem.Sinceourmodel(2.2.1) is time dependent,the perturbed(k $0) eigenstateshave
no definite energybut a quasienergy,provided the perturbationis periodic in time (see below).
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Nevertheless,it is possible to analyze the appearanceof the quantumstability border in terms of
unperturbed(k = 0) states.Indeed,if theperturbationparameterk is so small that the matrix elements
describingthe transitionbetweenneighbouringunperturbedstatesare negligible comparedwith the
energydistance~Ebetweenthe levels, then onemight expectthe stability of the motion independently
of the value~ofthe classicalparameterK. In this case,expression(2.2.10)gives a critical value kcr 1,
becauseoff-diagonal elementsof Unm [see(2.2.10)1for k~ 1 becomevery small. Nevertheless,the
situationis morecomplicatedsincewe shouldtake into accountthat the motion of the classicalmodel
(2.2.1)depends,in an essentialway, on whetherthe classicalparameterK is belowor abovethe critical
value Kcr=l~

The point is that thereare two different quantumconditions: oneis a conditionfor applicability of
commonperturbationtheory (“perturbativeborder”), whereasthe other one is a condition for the
semiclassicalapproachto describequasiperiodicor chaoticclassicalmotion (Shuryak’sborder [S76]).
From this point of view the critical value kcr 1 representsboth the “perturbative border” and
“Shuryak’sborder” for K ~ 1, when in the classicalmodelstochasticdiffusion occurs. In this case,for
k~ 1, all perturbedeigenstatesarevery closeto unperturbedones,resultingin a quasiperiodicstable
motion of the quantumsystem.However, thesetwo bordersbecomedifferent for K ~ 1, whenin the
classical model the motion is quasiperiodicinside a nonlinear resonance.Then, the numberz~nof
quantumstatesinvolved in the dynamicscan bevery largeevenfor k s 1 andthereforethe semiclassical
approachis valid. The estimatefor the size ~p (in momentum)of the main resonanceis z~p
for K ~ 1 (see[C79, LL83]), which gives for the numberof unperturbedstates

It is nowclear that ~n ~ 1 for k ~‘ \/k (or for T ~ k< 1). In this casethe quantummotion will exhibit
classicalquasiperiodicoscillationsevenif the quantumparameteris small (k ~ 1). In the oppositecase,
for k~ Vk, quasiperiodicclassicalbehaviouris completelysuppressedby quantumeffectsbecausethe
size ~p of the nonlinearresonanceis less thanthe distancebetweenneighbouringunperturbedlevels
(zip = II z~n<lI). Therefore,Shuryak’sborder(k~r VA~~ 1) is different from the commonperturba-
tive border(k~~1), if K <1.

It should be noted that in the region ~/X~~ k~ 1 the semiclassicalapproachis valid only for the
motion inside the resonances.As for the motion in the vicinity of the separatrix,wherenarrowchaotic
regionsexistprovidedthe resonancesof high ordersoverlap,againthe critical valuekcr 1 appearsas a
stability border. The situation hereis similar to that for strongclassical chaos (K ~ 1). Inside the
resonances,common perturbationtheory fails becauseperturbed statescontain many unperturbed
states,despitethe fact that the off-diagonalmatrix elementsUnrn aresmall.Nevertheless,it is possible
to find new collectivestateswhich areto be closeto exacteigenstatesandperturbationtheory will again
be valid (for details see [BK87, BIKV86]). This situationhasalso beennumerically investigatedin
[BIV87, T187] for the model of two interactingresonances.

To concludethe discussionabout the different types of motion in the quantummodel (2.2.1) we
summarizeour resultsin fig. 3, whereall regionsareshown as a function of the classicalandquantum
parameters,K and k. Here, the borderk 1 is Shuryak’sborderfor quantumstabilization(regionsV,
VI andIV in fig. 3) of the classicalchaoticmotion bothfor strongchaos(K ~ 1) in all of phasespace
and for weak chaos (K ~ 1) in small regionsof phasespacebetweennonlinearresonances.The two
regionsIV andVI, discussedabove,areseparatedby the borderK k2, whichis Shuryak’sborderfor
suppressionof quasiperiodicclassicalmotion inside themain nonlinearresonance.The threeregionsIV,
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Fig. 3. Different regions of the behaviourof the quantum kicked rotator as a function of the valuesof the classical (K) and quantum (k)
parameters.I: Purequantumdiffusion in theclassicallychaoticregion;II: theregionof full correspondencebetweenquantumandclassicaldiffusion
(on the finite time scalet~ ID); III: semiclassical(k s’ 1) region below the classicalglobal stability border (K < 1); IV: the region where the
semiclassicalapproachis valid only inside the main nonlinear resonance;V: quantumstabilization (k < 1) of classicalchaotic motion abovethe
global stability border(K> K, = 1.0); VI: quantum stabilizationboth of the stablemotion inside the main resonanceand of the motion in the
vicinity of the separatrix.

VI and III correspondto classicalmotion, boundedin momentumspace.Abovethe classicalborderof
global stability, for K> 1, thereare threeregions V and I, II. Unlike region V, wherediffusion is
absent becauseof quantumstabilization, for K> 1 andk> 1 (regions I and II) the motion of the
quantummodel hasa diffusive character.Thesetwo regionsareseparatedby the semiclassicalborder
K k (or r 1). Above this border (K> k) the diffusion is of a purequantumnaturealthoughit can
be close to classicaldiffusion (for details see[S87])~.We notethat for the motionin the purely quantum
region Ito be of diffusive character,oneonly needsthe condition k~ 1; otherwisethe behaviourhasa
clearquasiperiodicdependence(seeexamplewith k 2.87, 7 2.53 in [HH82]). Our main interestis in
the semiclassicalregion II, wherediffusion in thequantummodel follows all peculiaritiesof the classical
diffusion (2.1.9). We shouldrecall that now we are discussingthe genericmotion of the model (2.2.1)
for irrational values rl4ir $ rlq and not the specific quantum resonancebehaviour,which will be
investigatedin section2.5.

To end the discussionof fig. 3 it is worthwhile to addthat region III is also of special interestwhen
investigating the motion of the quantumsystemin the presenceof many nonlinearresonances.It is
known that in a classicalnonlinearsystembelowthe global stochasticityborder(K ~ 1 in our case)the
phasespacehasa hierarchicstructureof nondestroyedresonancesof differentorders(see,e.g., [C79,
LL83]). The size of theseresonancedecreasesvery rapidly with the increaseof the resonanceorder.
Therefore,passingfrom largeresonancesto smallones,we againapproacha quantumstability border,
which is of the samenature as we discussedabovefor the main resonance(region IV). It meansthat
evenin adeepsemiclassicalregion (k ~‘ 1) quantumeffects areessentialfor the resonanceswhich areso
small that theycontainonly a few unperturbedlevels. This fact might bevery importantwhenapplying
classical resultsto quantummodels. For example,somerenormalizationprocedurecan be used (see
[LL83] and referencestherein) for modelslike our classicalmodel (2.1.1), which allows one to pass
from resonancesof low order to those of the next order. It becomesclear that in this situation
Shuryak’s border breaks down this renormalization for any large value of the quantum (or
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semiclassical)parameterk~ 1. Thereare a numberof paperswherethis problemis investigated(see,
e.g., [B1V87,BK87, BIKV86]).

We now turn to the diffusion in region II (seefig. 3), wherethe quantummotion is remarkablyclose
to the classicaldiffusion (2.1.9), albeiton a finite scalet ~ tK k2. Such a time restrictionturnedout to
be unexpected,reflecting the extraordinarycharacterof quantumeffects. At first glance,thereis no
contradictionwith the knowncorrespondenceprinciple. Indeed,thistime t~Kgoesto infinity whenk—~oc

(h—~0)providing the classical limit. However, the situation is much more complicated. Already in
[K791(seealso the discussionin [CIS81])it was pointedout that thereis a major difficulty in attempts
to describechaoticmotion in quantumsystems.It is relatedto the fact that for autonomousquantum
systemswith boundedmotion the energyspectrumhasto be discreteindependentlyof whetherthe
correspondingclassical systemis integrableor all its integralsof the motion, apart from the total
energy, are destroyed.This results in the quasiperiodicityof the wave function as well as of any
average.At the sametime, it is known that the spectrumof the motion in a classicalsystemchanges
from discreteto continuouswhenthe motion changesfrom quasiperiodicto chaotic. Accordingto the
moderntheoryof dynamicalchaos,the possibilityof chaoticmotion is directly relatedto the continuity
of phasespace,which allows a classicaltrajectory to be extremelycomplicatedwithout anyrestriction.
This causesthe so-called “local instability”, which meansthat two initially close trajectoriesdiverge
exponentiallyfast in the phasespaceof the system.Actually, local instability is the mechanismfor the
appearanceof chaos in a completely deterministic system. The averagerate of this exponential
instability, knownas the “dynamicalentropy” h (see,e.g., [CIS8I, LL83]) (not to be confusedwith the
thermodynamicentropy) is commonlyusedas a measureof chaos.Therefore,positiveness,h >0, can
be takenas a definition of chaositself [A68, AJ81].

Coming back to our model (2.2.1) we should note that the systemunder considerationis not
autonomousandthereforethe notion of energyfor theperturbedstatesfails. Nevertheless,becausethe
perturbationis periodic in time, onecan introducequasienergies£ [Z66, R661,whichare determinedby
the relation

cllF(U, t) = e~t/T~(U,t) , ~f(U,t + T) = ~F(U,t) , (2.2.18)

where~F(U,t) are periodicfunctionswith the sameperiod T. Inserting(2.2.18)in eq. (2.2.3),one can
see that ç~(U, t) are eigenfunctions(EF) of the evolution operator U transformingcli(U, t) over one
period T. It is also seenthat the quasienergiesE are determinedmodulo 2i~and related to the
elgenvaluesA of the unitary matrix accordingto relation

Aq~(0,t) = U~(U,t), A = exp(ir). (2.2.19)

Unlike the energyspectrumof autonomoussystems,the quasienergyspectrumcan be continuous.
Therefore,in our casethereis no restrictionthatpreventsthe motion from beingchaotic, in the sense
of classicalchaos.This is why the model (2.2.1) was chosenin [CCFI79]to examinethe possibility of
chaosin quantumsystems.

It is importantto emphasizethat the presenceof a continuousspectrumdoesnot automaticallyimply
chaosbecausein our case(2.2.1)phasespaceis not boundedin momentump. It was alreadymentioned
abovethatunboundedgrowthof the energyin (2.2.1) appearswhenthe quantumresonancecondition
(2.2.14) is satisfied and is not relatedto the classicalbehaviourat all. On the other hand, infinite
increaseof the energymeansthat the quasienergyspectrumhasto be continuous.As a matterof fact,
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in classicalmechanicstheorigin of the continuousspectrummaynot necessarilybe relatedto chaosbut
to the unboundnessof the motion. More precisely, for the spectrumto be continuousa distinctive
propertyof the chaoticmotionis needed:aborderin phasespace,whichallows mixing of trajectoriesin
some part of phase space. The discussionof the spectralpropertiesof our model (2.2.1) will be
continuedin section2.3; for nowthe only importantconclusionis that in the modelunderconsideration
the quasienergyspectrummaybe continuous,therefore,thereis no contradictionin principle with the
conceptof classicalchaos.

Nevertheless,a remarkableproperty of the model(2.2.1)hasbeendiscovered(see[CIS81,C1S881)
which posesa new problem.It was provedin [S81a]that local instability doesnot exist in the quantum
model (2.2.1) either in the purely quantumregion I or in the semiclassicalregion II for any K ~ 1,
k~ 1. Two questionsthenarise: (i) What is the mechanismwhich providesa diffusion similar to the
one in the classicalmodel? (ii) Does the correspondenceprinciple hold in the caseof classicalchaos?
To motivate the secondquestion,we discussthe situation in more detail. Since the concept of an
individual trajectoryis not valid in quantummechanics,we mayexpectthat local instability, knownin
classicalmechanicsto be very importantfor chaos,hasno sensein the quantumdescription.Therefore,
to establishthe correspondencebetweenclassical and quantummotion we haveto deal with average
physicalquantities,like the energyof the rotator. In classicalmechanicsthe local instability of motion is
known to be also related to the behaviour of observableslike time-dependentcorrelations. For
example,typical correlationsin classicalchaoticsystemsdecayin time very rapidly (exponentially,in
the caseof fully developedchaos)when local instability occurs. On the contrary, for quasiperiodic
motion, correlationsdo not vanishfor t—* 0. Therefore,we shouldalso expect,in accordancewith the
classicalresult, that someotherquantitiesexist which, unlike the energy,aremoresensitive,on a time
scale0< t ~ t~,to the rateof instability. Indeed,this is the caseand numerousdata [S81,BZ82, B188]
show nonvanishingresidual correlationsin quantum models comparedwith the fast decay of the
correspondingclassicalcorrelations(see also section2.4).

Thus, the absenceof local instability in quantummodelscreatesa very serious problemin the
applicationof the correspondenceprinciple in the caseof classicalchaos.The above questionswere
posedin [CIS81]and a possibleexplanationwas given. The main point to solve this problemwas to
introducetwo different time scales,oneof which, the diffusive time t’, was discussedabove.Another
scale appearswhen consideringhow the wavepacketevolves in time dependingon whetherclassical
motion is quasiperiodicor chaotic.This shortertime scalewas investigatedfor the first time in [BZ78,
BZ78a] (seealso[BK83,Z851),whereit was establishedthat in the caseof classicalchaoswave packets
spreadin phase U exponentiallyfast with time. It was also shown that the rate of this spreadingis
relatedto the dynamicalentropyh of the classicalsystem (2.1.1) (seealso [CIS81]). As a result, the
wavepacket,modellinga set of classicaltrajectorieswith a smallsize both in momentump andin phase
0, turns out to be completelyspreadover all phases0 ~ 0 <2ir in a time estimatedas

tE~~ —ln(1/h). (2.2.20)

It is now clear thatfor timeslargerthan“the spreadingtime” tE the conceptof wavepacketscannot
be usedto describethe motion of individual classicalparticles, sincethe meaningof the centreof the
packetis not clear. Therefore,the fundamentalEhrenfesttheorem,which claimsthat the centreof the
wavepacketshouldfollow the classicaltrajectory,is not valid for t ~ tE. Note, this time tE turns out to
be extremelyshort. For example,for the typical parametersused in numericalexperimentswith the
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model (2.2.1), it correspondsto a few kicks of the perturbation.This estimatecan be easilyobtained
[C79, LL831 with the helpof the expressionfor the dynamicalentropy,h = ln(K/2); thus for k= 40,
K=5 we have tEl.

As a result, we can see that two different time scales, tE and 1D’ are of importanceto describe
quantumevolution in a semiclassicalregion correspondingto classicalchaos. Another point of the
approach[CIS81Iis the statementthat the correspondenceprinciple is valid only on the logarithmic
time scale (2.2.20),with all the propertiesof classicalchaosappearingin the quantumbehaviour.For
intermediatetimes, tE ~ t ~ t~,only rough statisticalpropertieslike diffusion remain,while quantum
interferenceeffectsbecomestronger leadingto the suppressionof chaos.

This conclusion has also been supported by analytical investigationsof the role of quantum
correctionsto semiclassicalvariablesas a function of time. In particular,quantumcorrectionsin the
slightly different model of a periodically kicked nonlinear oscillator [BK83, KS8O] were found to
increaseexponentiallyfast, resulting in the divergenceof the semiclassicalseriesfor theaverageaction.
At the same time it was shown in [KS8O]that exponentially increasingterms in the semiclassical
expansionmight be effectively summedby a specialprocedure.Earlier, the ideathat the semiclassical
description,in spiteof exponentialgrowth of terms, can be valid for timeslargerthanthe logarithmic
time tE, wasusedin a different approach[S811,wherethe expansionis constructedfor a semiclassical
function cl’. In such an approachanothertime scale tD appearswhen quantumcorrectionsbecome
significant. A more rigorous result is presentedin [S84}(see also on this subject [Z81, S81, BZ78,
Z85]), where the approachof [KS8OIwas developedto sum all semiclassicalterms for the time
dependenceof the quantity (ptm~ in the model of a kicked nonlinearoscillator (herep is action and
m � 1 is an integer).

The final conclusionis thatexponentiallyincreasingtermsare, indeed,effectively summedafter tE,

resulting in the diffusive behaviourof the averagemomentumon the scale tE S t ~ tD, while the
correlationfunctionscorrespondto the classicalresultonly on the small time scalet ~ tE. For a more
detaileddiscussionof the relation betweendiffusion and correlation,see section2.6.

Thus,completecorrespondencein the behaviourof the quantum(2.2.1)andclassical(2.1.1)models
should be expectedonly on the shortesttime scalet ~ tE. Unfortunately, detailednumericalexperi-
mentson this time scalearevery difficult becauseof thevery fastspreadingof wave packets.Recently,
however,new dataappeared[T187a1wherethistime tE for similarmodelswasincreasedup to 5—7 kicks
usinga specialchoice of the initial statecli(U, 0). The datashowedquite good correspondencewith the
classical result for the exponentialtime dependenceof the distancebetweenthe centresof two wave
packetsbefore theyspreadin phase U.

Now weturn to the questionof the diffusionmechanismon the secondtime scaletE ~ t ~ tD, where
the quantumdiffusion exhibits classicalproperties,local instability is absentandquantumcorrelations
do not vanish.The answerturns out to bequite unexpected:we aredealingwith a very good imitation
of chaoticdiffusion whereasthe motion itself is quasiperiodic.The situationis similar to that occurring
in statisticalmechanics,which is not relatedto nonlinearity and local instability (see [B81a1and the
discussionin [C861).The only condition to obtain statistical properties is the existenceof the
thermodynamiclimit whenthe numberof degreesof freedomgoes to infinity.

A simple exampleof such a classicalmodel with a completeset of integrals of the motion was
proposedby Bogolyubovin [B70] (seealso[C86])to constructadynamicalsystemwhich is describedby
classical statistical r~iechanics.This model is representedby N linear oscillators with randomly
distributedfrequenciesandlinear couplings. It wasrigorously proved in [B70] that in the limit N—,oc
this model reveals all the propertiesneededfor statistical mechanics.In particular, a continuous
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spectrum and relaxation of the distribution function appear. As is seen, the large number of
uncorrelatedfrequenciesin the motion is the basisof this classical“pseudochaos”.For comparison,in
the moderntheory of dynamicalchaosalargenumberof frequenciesdoesnot result from anincreaseof
the numberof degreesof freedombut appearsas a resultof acomplicationof the motion itself. As was
pointed out, the mechanismof such a complicationis just the local instability of the motion. This is
why, in contrastto the traditionalapproachin statisticalmechanics,dynamicalchaosis also possiblein
systemswith a few degreesof freedom.

Convincing evidence that chaos in the quantum model (2.2.1) is not “true”, is given by the
remarkablenumericalexperimenton the reversibility of the motion after a long time of diffusive
evolution [S83](see also [CIS88,CCSG87]). It is well knownthat in anyclassicalmodelwith chaotic
behaviour round-off errors make it impossible to retrace the same trajectory when the motion is
reversed.Thereasonis the local instability which for the classicalmodel (2.1.1)allows oneto follow the
same trajectory only during a short time (=10 kicks for a round-off level _..1012and a typical value
K = 5, see[S83,CIS88]). In contrast,in the quantummodel (2.2.1) the motion provedto recurto the
initial statewith an accuracycomparableto the round-off errors in spite of hundredsof unperturbed
statesexcited at the moment tR when the motion is reversed.This fact implies that when quantum
diffusion occurs all phasesof the Fourier componentsare strongly correlatedto each other. It is
interesting to note that even a quite large randomdistortion of the phasesat time tR cannotdestroy
“antidiffusion”.

2.3. Theprinciple of quantumlocalization of classicalchaos

As wasshownin section2.2,the correspondenceprincipledoesnot fail in the caseof fully developed
classical chaos, but the time E of complete correspondencebetween the classical and quantum
dynamicsis restrictedby the exponentialspreadingof wavepacketsand turns out to be extremelysmall
[see(2.2.20)]. Nevertheless,on the secondtime scale(tE ~ t ~ tD) numerousexperimentswith model
(2.2.1) haverevealedremarkableagreementwith classicalpredictionsfor the diffusive energygrowth
(for K ~‘ 1 and k ~‘ 1, see region II in fig. 3). Here we discussin more detail the mechanismwhich
providesboth the diffusion itself for tE ~ t ~ tD andthe appearanceof the critical time I’D whichrestricts
this diffusion (see[CIS81,CIS88]).

We proceedhere from the experimental fact that diffusion in the quantum model (2.2.1) is
completely suppressedas ~—+ oc~ Of course, this fact does not rigorously stem from numerical
experiments,which alwaysdeal with finite t, but all the dataindicatethat it seemsto be true.Note, that
we arenot concernedherewith the specificcaseof quantumresonance(2.2.14),whichwill be discussed
separatelyin section2.6.

Our approach[CIS81,C1S88]is mainly basedon the conclusionthat the quasienergyspectrumhasto
be discrete,resultingfrom the completesuppressionof energygrowth. At first glance,thereis no real
difference in the dynamics of our model whether the spectrum of quasienergiesis discrete or
continuous.In fact, all quasienergiese [see(2.2.18)and (2.2.19)] are determinedmodulo21Tand the
spectraldensity (numberof levels per unit interval) happensto be infinite provided that the total
numberof quasienergiesis infinite. Nevertheless,we areinterestedin the time evolutionof someinitial
stateç&

0(O) çli(0, 0). Therefore,only thosequasienergiesthat are initially excitedby this stateshould
be takeninto account.It is useful to representclro(0) in termsof perturbedquasienergyeigenfunctions
çc’~(0,t) takenat t = 0. The main point of the approach[CIS81,C1S88] is that all theseEFs are to be
localized in the unperturbed(k = 0) basis of the momentumrepresentation.In other words, the
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coefficients ~n(E, t) in the expression

~(U, t) = ~ ~(r, I’) e~° (2.3.1)

vanish very rapidly for InI—+ oc~Therefore,eachperturbedEF effectively containsa finite numberof
unperturbedstatesand,vice versa,eachunperturbedstateexp(in0U) canbe effectively representedas a
superpositionof a finite numberof perturbedstates~(U, 0).

To establisha relation betweenA~(t)[see (2.2.6)] and ~(r, t) we write A~(t)in the form

A~(t)= ~ A,~(F,I’) . (2.3.2)

Then, from (2.2.10)one can obtain

e~~(e,t) = ~ ~ t), (2.3.3)

p~(r,t) = e~htTA~(r,t) . (2.3.4)

As far asonly the valuesof time t = iT with t= 0, 1, 2,. . . areof interestto us,we usefor simplicity in
what follows the notations~~(r) ~(r, t) andA~(r) A~(r,t), or ip~andA~if it doesnot lead to
confusion.

As a result, we can seethatany initial statecl’0(U) containinga finite numberof unperturbedstates
effectively excites somefinite number N4 of perturbedstatesq~with different quasienergies£, if all
tp~(e)arestronglylocalizedin n. For this reason,the spectrumof quasienergiescan be characterizedby
the averagespacingi1~,betweena numberN4 of perturbedstates~, or by the finite densityp0 N4/2~r
of thesestates.This important fact gives a further interestingconclusion:on the time scale I’ ~ p0 our
model(2.2.1)doesnot “feel” that the spectrumis discrete.Indeed,the smallestfrequencywq presentin
the motion correspondsto the spacingbetweentwo close quasienergiesWq — e~therefore,to
resolvethisfrequency,oneneedsa timelargerthant = 1 IWq p0 kicks. For this reasononecanassume
that on the time scale

tD=po=N4 (2.3.5)

the motion of the quantummodel is similar to classicaldiffusionwith the samerate.This allows oneto
estimateI’D in the following way. Accordingto classicalpredictions,for t S tD the effective numberi~n
of unperturbedstatesinvolved in the dynamicsincreaseswith time as

(2.3.6)

andreachesits maximalvalue(~)maxat t = tD. On the otherhand,this value (L~fl)maxis approximately
of the sameorderas the totalnumberN4 of perturbedstates[(~)rnax = N4] andis proportionalto tD.
Therefore,from (2.3.5) and (2.3.6) we have

tDDfl=~k, (2.3.7)

which is consistentwith numericaldata [see(2.2.17) andthe discussionin section2.21.
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Another remarkablerelation appearswhentaking into accountthat N
4 [or (AP)maxl determinesthe

effective size I of perturbedEFs in momentumn,

1—~D~---k
2. (2.3.8)

As a result, such a quantumcharacteristicas the averagelocalization length I turnsout to be directly
relatedto the classicaldiffusion rate D~.This conclusionplaysan essentialrole in the understandingof
the peculiaritiesof the quantummotion in the classicallychaoticregime.

Typical shapesof quasienergystatesqs~(e)for a few differentquasienergies(QE) e areshownin figs.
4a, b, where I ~ (e) 2 is plottedversusthe numbern of unperturbedstates.Due to parity conservation,
H(U) = H(—U), for the given Hamiltonian (2.2.1), all EFs are evenor odd in the phase6, ~(0) =

±~(—0).Correspondingly,in the momentumrepresentationwe havecp~(F)= ±~~(e).This property
is clearly seenin fig. 4a. Like 4b, for simplicity, only half of EFs areshownwith n � 0. All theseEFs
havebeen numerically found by diagonalizationof somefinite matrix Unrn of size N = 600 describing
only odd-paritystates(seedetails in section3.1). It is clear that any roughtruncationof the infinite
matrix U~ [see(2.2.10)] breaksunitarity and somehowchangesall QEsand EFs. In spiteof the fact
that the matrix U~hasbeenconstructedin a specialway, without breakingof unitarity, its EFs are
different from those of the infinite matrix Unm. Nevertheless,thoseEFs of the matrix ~ that are
localizedfar from the edge nI = N seemto be very closeto the exactones(seeFFGP85,FF871).For
this reason,the EFsshownin fig. 4 areexpectedto representthe exactEFs of our matrix U,~.In this
figure the strong (exponential)localizationof the EFsas In I —~ N is clearly seen.

Thereare_differentwaysto determinethe localizationlength1. One way is direct computationfrom
the matrix U,~by its diagonalization,as was shown above. But this method is ratherexpensivein
numericalsimulations. In addition, thereis a seriousrestriction in the operationswith matriceswith
very large N. We should rememberthat the size of thesematricesmustbe much largerthan I - k2 to
haveclearexponentialtails in the EFs.For this reasonin [S86,BFGS86Janotherapproachhasbeen
used,which is basedon the well-known transfermatrix methodof solid states(see,e.g.,[LGP82,PS81,
MK81, MK83]). As was notedin the previoussection,the matrix elementsUnrn rapidly vanishoutsidea
diagonalband of effectivesize =2k (for In — mI> k). It meansthat in (2.3.3), which determinesthe
eigenfunctionsco~(o~),one can perform the summationover a finite numberN > 2k + 1 of elements.
Then, eq. (2.3.3)can beconsideredas somenew dynamicalsystem(N-dimensionalmapping)wheren

playsthe role of time. This systemcan be shownto be of Hamiltonianform andtherefore,its dynamics
is completelydeterminedby the Lyapunovexponents,

A. = ~ (In IclJE(n)I In)

On the other hand, the minimal exponentAmin >0 can be associatedwith the localization length
1,,, = A~as the inverserate of exponentialdecreaseof the EFs, ~~(e)— exp(— In — n

0I /I~).Detailed
numericalexperiments[S86]haveshown that the relation

l = D~I2 D~1/2h
2T2 (2.3.9)

is satisfiedwith an accuracybetterthan 10%. This expression(2.3.9)was found to be valid in awide
rangeof the parametersof the model(2.2.1):5~k~75,1.5~K~29,T~1. Hence,this mayalso be
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Fig. 4. A few quasienergystatesw, = ~,,(r)I2are shownin theunperturbed(k = 0) basisfor k 9.2, K 5.0, T = 4s~rI(2N+ 1) tmO.54,N = 600,
= 52. (a) The symmetry ~ = 2 is shownfor someEFs; (b) only w~with n >0 are presentedfor threeEFs (after [CGI59O]).

treatedas numericalevidencefor the exponentiallocalizationof EFs (in the caseof irrationalvaluesof
7/4 ii). But the most impressiveresult is that the localizationlength 1,. turns out to follow all oscillations
in the classicaldiffusion coefficientD~

1,in accordancewith (2.1.9) (seedetailsin [S86,CIS81,CIS88]).
Moreover, such a good correspondenceexistsnot only in the region of well-developedchaos(K ~ 5),
whenthe totalareaof the islandswith quasiperiodicclassicalmotion is negligibly small, but alsoslightly
above the borderof global stability (~K= K — ~ ~ 1), when the stablecomponentis quite large
(=50%, see [C79]). In this region of K the rate of classical diffusion drops by a few orders of
magnitude,nevertheless,relation (2.3.9) remainsvalid.

It should be noted that such a correspondence(2.3.9) betweenthe localization length and the
classical diffusion coefficient occurs when l~ is much larger than the number of neighbouring
unperturbedstatescoveredby onekick (1 ~“ N > 2k). The lattercondition is true for K ~‘ 1 but fails in
the caseof not fully developedclassicalchaos(K ~ 1), if the quantumparameterk is not largeenough
(see details in [CS86,CIS88]). It is related to the fact that for K ~ 1 considerableregions with
quasiperiodicmotion remain in phase space and the chaotic componenthas a very complicated
structure.Therefore,quantumeffects in first instanceappearin thoseregionsof momentump where
stochasticlayersarenarrow andclassicaldiffusion is decreasedvery much(seediscussionin section2.2
aboutthe influenceof Shuryak’sborder). In contrast,for K ~ 1 classicaldiffusion doesnot dependon p
andturns out to be homogeneousin all infinite momentumspace.Detailedanalyses[CS861haveshown
that the conditionfor the validity of relation (2.3.9) has the form
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k> kcr K2/D~
1~ 1, K ~ K~1= 1. (2.3.10)

The quantumlocalizationof classicalchaos,which we are now discussing,concernsthe caseof the
deepsemiclassicalregion k ~‘ 1 for which quantumeffects start to suppressclassicaldiffusion after a
long time t ~ tD ~‘ tE. For this reason,we term this suppression“dynamical localization”. Of course,
suppressionof the diffusion also takesplace when k~ 1, and sometimesin the literature this is also
called localization.Such a caseof completesuppressionof anyclassicalmotionis describedby quantum
perturbationtheory (see discussionin section2.2) and we will term it “perturbative localization” to
distinguishit from dynamicallocalization.

As we alreadypointedout, all theseresultsconcerninglocalizationof EFs for the model (2.2.1)are
not rigorous in the sensethat they are basedon numerical data. Rigorous mathematicalanalysis
appearsto be extremelydifficult not only for k~ 1 but evenfor k s 1. The only analytically proved
result [S87a]is the exponentiallocalization of EFs in the perturbativecase,when k~ 1.

In the caseof inhomogeneousdiffusion (k ~ K
2ID~

1~ 1) numericaldata [CS86]indicate a linear
dependenceon k for the localization length, 1,, k. A similar dependencealso appearsin another
situation,whereclassicalmotion is stable(K < 1) inside the regionsof nonlinearresonances.In both
casesthe localization lengthis of the sameorder (— k) as the effective numberof unperturbedlevels
covered by one kick of the perturbation.Therefore, it is clear why diffusion has to be strongly
suppressedin thesecases,unlike the regime where the localization length 1,, (or the length i~of
localization of the final stationarydistribution) is much largerthanone excitationstep.
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Another approachto determinethe localization length in numericalexperimentshasbeenused in
[CS86].The main ideaconsistsin the detailedinvestigationof the so-calledstationarydistributionfor
the probabilities w~(t)= IA~(t)l2of the componentsof the wave function [see (2.2.6)] in the
unperturbedbasis. Here the time t is large enough to ensurethat diffusion hasstoppedand only
stationaryoscillationsof w~(t)occur, which can be effectively averaged.Then, for someinitial state
cli

0(0), say, for cl’0 = const. (when only one unperturbedstatewith n0 = 0 is excited) we have

w~(t~)= A~(t5)l
2= ~ I4DE(0)(n)I2, (2.3.11)

where Em are quasienergiesand averagingis performedover a large time intervalL~t>1 startingfrom
I’ = I’, ~ tD. In accordancewith the expectationthat all EFs are exponentiallylocalized,the q~were
assumedin [CS86]to be of the form

arnn —~n—mII! am_n Hn+mI/1
± ~ e , (2.3.12)

wherem � 0 correspondsto the centreof theEF in the momentumrepresentationn andthe symmetry
q~(— n) = ± q~(n) is taken into account. Expression(2.3.12) correspondsto an exponential de-
creaseas Inl—~oc but cannotdescribethe shapeof the EF for any n sincethe amplitudes~ and~
areunknown.Then, avery seriousquestionarisesaboutthetypical shapeof the EFs attheplacewhere
they arelocalized. Since we aremainly interestedin largevaluesof k ~‘ 1, the effectivesize of eachEF
in n is quite large (—k2). It meansthat on the scale In — ml ~ k~large fluctuations of ~ (n) are
expected.Numericaldatashowthat this is true and moreover,the size of the EFs turns out t~exhibit
extremelylargefluctuations(see[188,1891). By the effective size of EFs herewe meansomeeffective
numberof unperturbedstateswhich contain the main part (say, 95%) of the total probability of an
individual EF (seesection4.2). One of the interestingproblemsis whetherthe shapeof the EFs,
obtainedby averagingover all fluctuations,can be describedby the sameexponentialform as in the
tails, or if thereis some“hat” around the centreof the EF which needsa specialdescription(see
discussionin section4.2).

In [CS86jit was suggestedthat~ a,_~arestatistically independentandfluctuate in sucha way
that amn — exp(~rnn) with ~ ~t = 0. In this caseit is possibleto obtainan analyticalexpressionfor ii~

[CS86,CIS81,CIS88I,

= ~ e~~(1+ 2In1 /I~), (n2~ l~, (2.3.13)

wherea new localizationlength I~is introduced(s emphasizesthat it maybedifferent from la,). Indeed,
detailednumericalexperiments[CS86]haveled to the relation

l~=2I~=D~, (2.3.14)

which is satisfiedto a good accuracyin a wide rangeof parameters(k = 5—120, 7 ~ 1, I~= 9—180). The
origin of the relatively large differencebetweenI,~and l~was explainedin [CS861by the influenceof
fluctuationsin ~rnn~Nevertheless,the statisticalpropertiesof ~rnnarenot well understood.In particular,
it is important to understandthe role of theotherLyapunovexponentsratherthat only the smallestone
relatedwith 1. It seemsreasonableto expectthat all exponentstakepart in the constructionof thecore
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of the EF, while only one is responsiblefor the limiting (InI—”°)behaviour.It is interestingto note
that numericaldata[CS86]for oi1,~arein good agreementwith the analyticaldependence(2.3.13), even
thougha large rangeof n was analyzedwhere i~ changesover four orders of magnitudes.Also, a
sensitivityof thedistributionof the ii~to the ratio K2ID~

1[see(2.3.10)]hasbeenfound,whichconfirms
the conceptof homogeneousdiffusion in the quantummodel.

It turnedout that for k~ K
2ID~

1in the region of incompleteclassicalchaos(K ~ 1), the distribution
of the ~i5nexhibits a numericalplateauin n insteadof a clearexponentialdependence.This remarkably
reflects inhomogeneousclassicaldiffusion which occursbetweenremnantsof nonlinearresonancesof
different harmonics. In particular, the most noticeableplateausin jim are well associatedwith the
regionsof classicalresonancesof low harmonics.

It should be noted that in the approachwhere the localization length i~is extractedfrom the
distributionof the w

3
51, the initial statecli0(0) hasto bewell localizedin momentumspace.Indeed,if the

size of the initial packet in n is comparablewith the localization length i~,then the stationary
distribution will essentially dependon this initial state. Unlike this, in the approachwhere 1,,. is
determinedfrom the smallestLyapunovexponent,the shapeof the initial stateçli0(U) is not important
since l,,~is determinedas InI—~cc; therefore,it entirely dependson the parametersK andk only.

A specialquestionis whetherin numericalsimulationsthe distributionof the iim,, can be really taken
as stationarybecauseof the finite times I’5. Strictly speaking,diffusion is not completelysuppressedat
the time t5, but, as was mentionedabove, it hasdecreasedsubstantially.For example, in [CS86]
measurementsof the rate of diffusion give 2IEI IDn ~2 x 10_6 at times I’ ~ t~(here E = (n

2) /2 and
E= EIh2). Nevertheless,a rigorousanalysisis very desirable.

In the aboveapproachwherethe distribution(2.3.13) is obtainedand numerically examined,some
conclusioncan be drawn concerningthe final energyof the system (as t—~cc) resulting from diffusive
excitation [see(2.2.12)],

E,, I12i~I2= D~
1I2T

4h4= K4I8T4112 s~I8lI2. (2.3.15)

This result for E, can alsobe usedas an independentcheckof the validity of the exponentialform of
localization, eq. (2.3.13)(seedetails in [CS86]).Note that the expressionsobtainedfor i~and E,~are
consistentwith the correspondenceprinciple. Indeed, both the localization length li,, in momentum
space, I,, = !ul~= IlD~— r~Ih, and E,

0— £41112 go to infinity providing the classical limit with un-
suppresseddiffusion.

Anotherinterestingproblemis thediffusion in regionI (seefig. 3), whereonesemiclassicalcondition
is fulfilled (k ~‘ 1) but the otherone (r ~ 1) is violated. In the previoussectionthis region (T a 1) was
treatedas purely quantum;however,numericaldatashowthat evenin this casethereis somesimilarity
to the classicalmotion. First, for largevaluesof the semiclassicalparameterk ~° 1 it is naturalto expect
somesort of diffusion of the energyof the system.According to numericaldata, this is true but,
unexpectedly,it turnedout thatthe classicalexpression(2.1.9) for the diffusioncoefficient is alsovalid
for pure quantumdiffusion whenthe classicalparameterK is resealed.Namely, the quantummotion
can be describedby introducingthe quantumdiffusion coefficient Dq insteadof D~1for the energy
growth, E(t) — Dqt + E0, which is obtainedfrom (2.1.9) by the changeK—~Kq = 2k sin(T12).

This result [CS86,C1S88] was obtainedwhen investigatingthe role of classical correlationswhich
provide the oscillations in (2.1.9) as a function of K. It was found that the sameapproachcan be.
applied to relate the diffusioncoefficient Dq with quantumcorrelations.Analytical expressionsfor the
most important correlationsC(ç)= (sin0(ç) sin0(0)) with time shift t,~= 1, 2, 3, 4 (in number of
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kicks) havebeenfoundto be closeto thosein the classicalmodelwith the only differenceK —* Kq~This
allows oneto assumethatthe generalexpression(2.1.9)could be valid also for the quantumcasewith
K0 replacingK. Numerical simulations [BFGS86]are, in general, consistentwith this prediction;
however,a more detailedanalysisis needed.

Thus, all numericaldata give strongevidencethat in our model (2.2.1) quantumlocalization of
classicalchaosalwaysoccursfor any finite k ~‘ 1 andK> 1 (apart from the caseof quantumresonance,
which is exceptionalfor real physical systems).Then immediatelythe seriousquestionariseswhether
this phenomenonis genericfor quantumsystemsof the type(2.1.3)or localizationis closely relatedto
somepeculiarities of the given model. Indeed,the most essentialproperty of the model (2.2.1) is
homogeneityof the phasespacein momentump. It is clearthat for real physicalsystems,like atoms
and molecules,the densityof statesincreaseswith increasingquantumnumbers.This meansthat the
classicaldiffusioncoefficientD~1genericallydependson the numberof excitedstatesn (or, equivalently,
on the momentum p). Indeed, unboundeddiffusion in classical models occurs when nonlinear
resonancesoverlapandthe borderof globalstability breaks.However,the thresholdfor overlappingof
resonancestypically decreaseswith increasingp, therefore, diffusion increaseswith n for a fixed
perturbationstrength.

On the other hand, the main point of our approachis that localization ariseswhenthe numberof
unperturbedstates~p(t) — kV’~[see(2.3.6)] increasesmoreslowly thanthe diffusion scale,I’D — I’. For
this reason,if diffusion also increasesin p (therefore,in time) we would expectthat~p(I’) can grow
fasterthan I’, resultingin delocalization.This ideahasbeendiscussedfor the first timein [CIS81],where
somemodificationof the model (2.2.1)wasproposedto investigatethe possibilityof delocalization.For
this, the perturbationstrengthin (2.2.1) was takenin a form directly dependenton time,

k(t) = k0t~, (2.3.16)

with someparametera. Then, a rough estimatefor i~p(t)can be obtained,

~p(t)— k0t’~~’
2, (2.3.17)

with the conclusionthat for a � 1/2 onewouldexpectunboundeddiffusion (delocalization).Of course,
in this casewe cannotusethe conceptof quasienergiesand eigenfunctionsbecausethe perturbationis
no longer periodic,hence,the meaningof localization length I,, fails. However, the dynamicsof the
model (energygrowth and stationarydistribution) is expectedto be sensitiveto the value of a. The
numericalsimulationperformedin [CIS81]with the model(2.3.16)did not give a clear answerabout
the critical value of a, becausethe number of states2N + 1 that is neededfor a good numerical
accuracyincreasesvery rapidly whena increases.Nevertheless,the diffusive time scaleI’D was foundto
increasesharply for a>0 and thesenumericaldata may be treatedas qualitative evidenceof the
possibility of delocalization(the largestvalueof a attainedin [CIS81]was a 0.35; below this value
clear localization was observed).

In a similar way one can obtain somepredictionson the delocalizationborderfor inhomogeneous
diffusion [CS86]assumingthat

D~j(n) D
1n~. (2.3.18)

Then,for largeenoughf3, thenumberof unperturbedlevels i~n(t)involvedin the dynamicsby diffusion
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can grow faster thant. Estimateshaveshown [CS86]that this happensfor

/3 � 1, D1 > n~
8, (2.3.19)

wheren
0 is an initial state. In the caseof (2.3.19), delocalizationariseswith a rate of diffusion that

equals,as t—~cc,the classicalone. Below this border, when condition (2.3.19) doesnot hold, the
characterof the localization is not clear. According to the conjecturepresentedin [C86], for /3 <1
localizationis completein the sensethatD~—~0 as I’—~cc, correspondingto a discreteQE spectrum.In
the othercase,for /3 > 1 andD1 ~ localizationdoesnot occur but the rate of quantumdiffusion
substantiallydropsin comparisonwith classicaldiffusion.

The ideasdiscussedin this sectionwere recently applied to the problemof diffusive ionization of
hydrogenatomsunder a strongperiodic microwaveperturbation(seethe reviews [CCSG87,CGS88]
and referencestherein).It turned out that for the parametersused in the first experiments[BGK77,
BK74], the delocalizationborderwas, accidentally,of the sameorderas the classicalchaotic threshold.
For this reasonearliernumericalsimulations[LP78,JLP8O] with the correspondingclassicalmodelgave
good agreementboth with analyticalclassicalpredictionsandexperimentaldata[BGK77,BK74]. It led
to the conclusionthat in the deepsemiclassicalregion, for highly excitedstates,the behaviourof the
quantumsystemalwaysfollows classicaldiffusive motion. Therefore,somecontradictionappearedin
view of the predictionsof quantumlocalization theory.

This problem was solved by a detailed analysis of the conditions under which the quantum
suppressionof classicaldiffusion occursin sucha physical model (see,e.g., [CCSG87]).In particular,
an analytical expressionfor the delocalizationborderwas found, with an indication of the rangeof
parameterswhereclassicalandquantumpredictionsgive different results.To check thesepredictions,
numericalsimulationsfor the quantummodelof hydrogenionization havebeencarriedout with a clear
confirmationof quantumlocalization (seedetails in [CCSG87,CGS88]). Using theseresults,special
experimentswith highly excited hydrogenatoms in a strong microwave field have recently been
performed[BS88,GSMKR88, KMSGLR89, BCGS89]. The data showedthe expectedsuppressionof
ionization comparedwith numericaldatafor the classicalmodel. This is the first experimentalevidence
of dynamicallocalization of classicalchaos.

Comingbackto our model,the kicked rotator,wenote that localizationof EFs in momentumspace
is similar to the well-known Andersonlocalization in solid statephysics [A58]. For the first time this
analogy was discoveredin [FGP82,PGF84],where a transformationwas found from (2.2.1) to a
so-calledtight-bindingmodel (seealso [S86]),

~nUn + ~ WrUn+r = EFun. (2.3.20)

Here the un are directly related to the values of the eigenfunctionstp~(r) before and after one
perturbationkick; W,. is a new perturbation(coupling) betweenthe elementsof a one-dimensional
discretechain (E~ — W~)and

4~plays the role of a diagonalpotentialwhich dependson somefree
parameter~ (for more details see the original papers[FGP82,PGF84]or the reviews [S84a,E88]),

= tan ~ — ~n2r). (2.3.21)

Equationsof the type (2.3.20)arisein the descriptionof the behaviourof quantumexcitation in the
solid state(see,e.g., [LGP82]). Mainly, modelswith interactionof only neighbouring“quasiparticles”
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u~(r= ±1)are investigatedwith the assumptionthat 4~is a randompotential. In this caseAnderson
localization occurs, which means that all EFs correspondingto the energies E~in (2.3.20) are
exponentiallylocalized in n. It resultsin the localization of any initial (localized)stateaftersometime
t~’of spreading.For this reason,the diffusion of electronsin such a model will be suppressedby
quantumeffects.

The sequence4~seemsto havesomestatisticalpropertiesand may be used in the model(2.3.20)
insteadof a randompotential (for irrational values of rI4lT). As for the nondiagonalterms, Wr~it is

seenthat only for k— 1 this model is closeto the Andersonmodel, sincethe Wr decreasevery rapidly
for Irl > k. Indeed, numerical data [FGP82, PGF84J for not very large k~ 1 have shown the
exponentiallocalizationof EFs. It also correspondsto the localization of EFs in our model (2.2.1) in
momentumspace.As far as all theseresultsarebasedon numericaldata,anyrigorousstatementis very
important. In particular,the conclusion[FGP82,PGF84] that the sequence4~,,in (2.2.1) is random,
appearsnot to be rigorously true (see next section). From this point of view it is of interest to
understandwhat statisticalpropertiesareneededfor all EFs to be exponentiallylocalized. In anycase,
thereis a majordifferencebetweenAndersonlocalizationin the solid stateanddynamicallocalization.
Namely, in the latter case there are no random parametersin the model, while for Anderson
localization randomnesshasto be assumedfrom the beginning.To stressthis difference,one should
note that the nature of the “pseudorandomness”in dynamicalmodels, as was shownabove,is closely
relatedto chaosin the correspondingclassicalmodels.

2.4. Relevanceof dynamicalchaosto the spectralproperI’ies of quasienergies

In the previoussectionthe quantumsuppressionof classicaldiffusion was explainedby the relation
betweenthe dynamicsand propertiesof the EFs andthe spectrum.It is clearthat completeknowledge
of the EFs andquasienergies(QE) makesit possible,in principle,to predictall dynamicalpropertiesof
the model. In particular,we haveseen how localization of the diffusion in time is associatedwith
localization of the EFs in momentumspace. Moreover, an expressionwas found connectingtwo
quantities:the localizationlengthI~of the stationarydistributionfor the final statet/i(U, I’s) when I’

5 ~ I’D,

andthe localizationlength I,. of EFs in the tails, as nl—~cc The approachof establishinganyrelations
between the dynamics and the structure of the EFs and the QE spectrum is very useful for
understandingboth the quantumdynamicsand the statisticalpropertiesof spectraand EF structure.
Unlike the previoussection,wheremain attentionwas given to the EFs,herewe discussthe properties
of the QEspectrumof model (2.2.1), restrictingourselvesto the nonresonantcase(for irrationalvalues
of r/4~r).

We havealreadymentionedthat the most importantresult in the investigationof spectralproperties,
is the numericallyestablishedfact thatthe QE spectrumof the modelunderconsideration,eq. (2.2.1),
should be discretefor any finite k ~‘ 1. This fact rigorously stemsfrom the completelocalization of the
diffusion, D~—~ 0, as t —~ cc, and implies the relaxation of any initial distribution A~(0) to some
stationaryoscillatorystateinvolving a finite numberof unperturbedstates.Strictly speaking,in thiscase
the quantummotion is quasiperiodic,being recurrentboth for the function cl’ and the energyof the
system. However, the typical time Tr for such a recurrenceis enormouslylarge (see on this subject
[P821).A rough estimateseemsto be given by Tr — exp(N4), where N4 — i~— k

2. For this reason,
quasiperiodicityof the motion for k ~‘ 1 does,practically, not exist. Nevertheless,for smallk ~ 1, the
quasiperiodicbehaviourof the energyis well detectedin numericalsimulations(see,e.g.,[HH82]). The
latter caseof perturbativelocalizationis not of interestto us in what follows.
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The discretenessof the QE spectrum in the caseof well-developedclassicalchaos (K ~‘ 1) and
(k ~‘ 1) is far from being a trivial fact. Indeed,unlike boundedautonomoussystems,wherethe energy
spectrumis rigorously discretefor any valuesof the dynamicalparameters,in our model it can be
continuoussince momentumspaceis unbounded.To stressthis point, we emphasizethat for quantum
resonancethis is just the case(seesection2.5). Nevertheless,for generic(nonresonant)valuesof 7, the
spectrumis always discrete,which can be treatedas an indication of the appearanceof dynamical
integralsof the motion which restrictdiffusion in momentumspace.Startingfrom this relevantfact of
discreteness,otherimportantstatisticalpropertiesof the QE spectrumcan be brought to light.

The problemof the statisticalpropertiesof spectrahasa long history (seethe reviews and books
[P65,M67, BFFMPW81,BG84]). Up to now, much attentionhas beenpaid to autonomoussystems
such as nuclei, atomsandmoleculeswith a complexenergyspectrum.As for QE spectra,investigations
havestartedonly recently, through the theoreticaland numerical analysisof somemodelsand new
experimentaldata on the behaviourof atoms andmoleculesin strong periodic electromagneticfields.
The traditionalapproachto thedescriptionof quantumsystemswith very complexbehaviourconsistsin
the useof somestatisticalassumptionsconcerningthe interactionbetweennumerousstatesin a given
basis.Such an approachis the coreof the Wigner—Dysontheory (see,e.g.,[P651),in which all matrix
elementsof the Hamiltonian are taken as random and statistically independent.Then, classifying
systemsaccordingto different invariantproperties,threeclassesof ensemblesof randommatriceshave
beenestablished:GOE(GaussianOrthogonalEnsemble)for systemswhich aretime reversalinvariant,
GUE (GaussianUnitary Ensemble) for systemswith broken time reversal symmetry and GSE
(GaussianSymplectic Ensemble)for systemswith an odd numberof particleswith half-integerspin.
Correspondingly,theseensemblesare representedby matriceswith dfferent symmetriesof the matrix
elements: GOEs are describedby real symmetric random matrices, GUEs by Hermitian random
matricesand GSEsby so-calledsymplecticrandommatrices(see[P65,M67, BFFMPW81]).

Another version of random matrix theory (RMT) hasbeenextensivelydevelopedby Dyson [D621
(see[P65]). Here, insteadof real matriceswhich areassumedto representstatisticalpropertiesof real
Hamiltonians,randomunitary matricesareinvestigatedwith different symmetries(in the literature,to
distinguishthem from real matrices,the notationsCOE,CUE and CSE are usedwith the C standing
for “circular” ensembles).In Dyson’s approachtheseunitary matriceswere not directly relatedwith
real systemssinceeventhe correspondencewith Hamiltonianswas not clear.

The basic ideaof RMT both for Gaussianand circular ensemblesis that RMT can be applied to
describefluctuations in the spectra,which are assumedto be universal, rather than predict specific
propertiesof real physical systemssuch as the densityof states.In other words, in spite of the big
difference in spectra,say, of different atoms, the statistical propertiesdo not dependon the local
density in the limit of sufficiently stronginteraction.The questionof the conditionsunderwhich RMT
can be applied to real physical systemsis a different problem,which is outsidethe scopeof RMT.
However,evenwithout anyapproachto decidewhenRMT can beusedin real situations,it is of great
interestto determinetheseuniversalstatisticalpropertiesin the framework of RMT and to compare
them with experimentaldata.

Thereare many predictionsof RMT which may be used for comparisonwith the data (see [P65,
M67, BFFMPW81]). Herewe shall discussonly a few of them,the bestknown in the literature.One
commonly usedquantity is the so-called“level spacingdistribution” P(s) for the spacingss between
neighbouringlevels. Since the densityof levels depends,as a rule, on the energy,s is defined as the
meanlocal spacing.Therefore,s is thenormalizedspacinghereafter.Therearetwo waysto obtainP(s)
from an experimentalsequenceof energies.In the first one just computesthe local densityp(E) of
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statesby averagingover somepart of the spectrum.Then, thetotal P(s) canbe obtainedby normalizing
s with furthersummationof P(s) for all segmentsof the spectrum.In spiteof the nonrigorousprocedure
for finding the local density, this procedureworks quite well andis often used.

Anotherapproachis relatedto the so-called“unfolding” of the wholespectrumunderconsideration
(see, e.g., details in [BG84]). As a result of such unfolding, a new spectrumwith a constantlocal
density is constructedwhich containsthe samefluctuationsas the given spectrum.In our caseof QE
spectrum,all quasienergiesarelocatedon the unit circle; therefore,the problemof unfolding doesnot
exist sincethe densityof levelshasto beconstant.This simplifies the numericalinvestigationof theQE
spectrum.

One of the most important resultsof RMT is the predictionof the form of P(s). The analytical
derivation of P(s) turned out to be extremely difficult (see [P65, M67]) and rigorous analytical
expressionsareknownonly for the limiting casesof small,s~ 1, and large,s~‘ 1, spacings.Neverthe-
less,it was shownthat the approximateformulasuggestedearlier (theso-called“Wignersurmise”,see
[P651),

P(s)= As~e~Bs
2, (2.4.1)

is very close to the exact one obtainednumericallyin the framework of RMT with useof a special
methodby Mehta (see[P65,M671 anddiscussionin section4.1). In (2.4.1) the coefficientsA andB are
normalizationparametersdeterminedby the conditions

J P(s) ds= 1, J sP(s)ds= 1, (2.4.2)

and /3 is a parameterconnectedwith the symmetry of the randommatrices:/3 = 1, 2 and 4 for GOE,
GUE and GSE,respectively(or, for COE,CUE andCSE, in caseof unitary matrices).Theparameter
/3, which is knownas the “repulsionparameter”,characterizesthe degreeof repulsionof nearbylevels
and is of greatimportancein describingthe propertiesof spectra.The appearanceof repulsionof
energylevelsfor complexquantumsystemshasbeendiscussedearlier thanRMT (see, e.g., [LS55]).
The physical explanation of the repulsion is based on the fact that coincidenceof two levels
(degeneracy)is highly unlikely for levelswith the samesymmetry.For this reason,in the caseof very
complexsystems,it is naturalto expectthat all quantumnumberscorrespondingto the symmetriesare
destroyed,resulting in a nondegeneracyof the levels. To our knowledge, the first experimentaldata
where the repulsionof levels has beenclearly seen,were reportedin [G391(see also [GP57]) for
nuclearspectra.

A more detailedcomparisonof experimentaldata for P(s) with (2.4.1) hasbeenmadein [RP6O,
CG83] for complexatomsandin [HPB82]for heavynuclei (seealsoreferencesin [BG84]). In general,
the dependence(2.4.1) is better confirmed by the data for nuclei than for atomswhere statistical
propertiesseemnot to be sostrong (see,e.g., [C851).It is interestingto notethat in investigationsof
experimentaldata, manysequencesof energylevelsfor differentnuclei (or atoms)havebeensummed
independentlyin the spirit of Wigner—Dyson’sconjectureabout the universalityof fluctuations. Also,
when somequantumnumbersare not destroyed,the sequenceswith fixed numberscan be treatedas
independent.Recently, some experimentaldata have appearedfor molecules (see, e.g., [HKC83,
AFIIK84] andreferencesin [BG84]) andfor hydrogenin a strongmagneticfield [DG86,WF86, WF87]
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where qualitative agreementwith (2.4.1) has been observed.However, although they give strong
evidencefor level repulsion,all theseexperimentaldata cannotbe usedfor a detailedcomparisonwith
the analyticalprediction(2.4.1), becauseof insufficient statisticalsignificanceof the data.

Independentlyof the developmentof RMT, the problemof finding distinctivepropertiesof quantum
spectrafor classically chaotic systemshas beenunder considerationsince the late 1970s (see, e.g.,
referencesin [E88a]). A very stimulating idea for distinguishingclassically chaotic systemsfrom
integrableonesin termsof the propertiesof the energyspectrum,was Percival’sconjectureabout the
sensitivity of levels to a smallperturbation,dependingon the characterof the classicalmotion. As a
quantity for testing the level sensitivity the second derivative of the energywith respect to the
perturbationstrengthhas beensuggestedin [P73].Leaving this very interestingproblem out of the
discussion(see, e.g., the review [E88a1),we would like to note that the statementabout strong
repulsionof the levels for classicallychaoticmotion is inherent to this approach.

At a late stagecamethe understandingof the similarity of the level spacingdistribution P(s) for
quantumdynamicalsystemsexhibitingstrongchaoticpropertiesin the classicallimit, to that knownin
RMT, eq. (2.4.1) [MK79, CVG8O, B81] (seealso [ZF73,Z77, Z811, whereP(s) for quantumchaotic
systemsas a function of the classicalentropy hasbeeninvestigated).This understandinghas led to
extensivenumericalsimulationswith two famousquantummodelswhich are known to be chaotic in
classical mechanics.The first model is the so-called“stadium” (see [MK79, CVG8O, BGS84aI) for
which classicalchaoticpropertieshavebeenanalyticallyproved [B74,B79]. The secondmodel is known
asthe “Sinai billiard” [S70]which also hasstrongchaoticproperties.The bestcorrespondencewith the
RMT prediction (2.4.1) hasbeenfound with the Sinai billiard [BGS841,for which about740 energy
levels were analysed(see alsoearlier results [B81]). Up to now, this resultseemsto provide the best
quantitativeagreementfor autonomousdynamicalsystemswith (2.4.1) accordingto the x

2 approach
(for other examplessee referencesin the reviews [BG84, E88,E88a]). The use of the x2 test is quite
important for our purposesince it gives a statisticalsignificanceto the final statementconcerningthe
correspondenceof numericaldatawith theoreticalpredictions.

To summarizethe abovediscussion,one mayconcludethat quantumchaoshasa closerelation to
RMT, andit is ourpurposeto analysethis correspondencein moredetail (seefurther). We now turn to
our modeland askthe question:what is P(s) for the QE spectrumin the caseof classicalchaos(K ~ 1)
andthe semiclassicalconditionk~ 1? From the point of view of previousnumericalexperimentswith
autonomoussystems(stadium, Sinai billiard etc.) we may expect that the spacingdistribution P(s)
shouldbeclose to the form (2.4.1)or, atleast,exhibit somesortof repulsion.Onthe otherhand,if one
proceedsfrom the analogywith the solid statemodel (2.3.20),one can foreseea completelydifferent
result. Indeed, for the one-dimensionalAnderson model the dependenceP(s) is known to be of
Poissonianform,

P(s)_e_s. (2.4.3)

This rigorousresult [M81] is closely relatedto the exponentiallocalizationof EFs,which occursfor any
weak diagonaldisorder.Of course,our model (2.2.1) is not completelyanalogousto an Anderson
model. Moreover,for largek, k ~‘ 1 we havea strongdifference,sincethe parameterk determinesthe
effectivenumberof neighbours[nondiagonalelementsin (2.3.20)1,whereasin the Andersonmodel the
correspondingmatrix is three-diagonal.

However,onecan give a qualitativeargument[184]which explainsthe Poissondependencefor P(s)
(see also [MT61]). Indeed,assumingthat all EFs of the model (2.2.1) are exponentiallylocalized in
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momentumspace,one can seethat eachquasienergylevel effectively “feels” only thoselevelswhose
EFs strongly overlap.On the contrary, if two EFs arelocatedvery far from eachotherin momentum
space,thenthe correspondingoverlapintegral is exponentiallysmalldueto the exponentialdecreaseof
the EFs far from their centres.Therefore, thesetwo statescannotfeel eachotherin the sensethat, if
one stateis slightly perturbed,the other one doesnot changeat all. In otherwords, theselevelsare
independentandcan be very closeto eachotherresultingin the absenceof repulsion.Only thosestates
whoseEFs substantiallyoverlap,give a nonvanishingoverlapintegralandtherefore,the corresponding
levelsaresensitiveto eachother. However, the numberof effectively overlappingstatesvanisheswhen
the localizationlength remainsfinite for any finite k (in infinite momentumspace).Thus,the statistics
of level spacingsP(s), for all quasienergiesof model (2.2.1), is expectedto be of Poissonianform
(2.4.3) (so-calleduncorrelatedstatistics).

Of course,all theseargumentsare qualitative, but they seemto be true from a physical point of
view. Thenanotherquestionimmediatelyarises,relatedto the role of the Poissondistributionfor the
spacingss in automonoussystems.Onemayrecallthat suchadependence,eq. (2.4.3), is knownto be a
distinctivepropertyof the spectraof systemswhich are integrablein the classicallimit. This prediction
hasbeenclaimedin [BT771whenanalysinggenericnonlinearsystemswhichareclassicallyintegrable.It
was pointed out that the one-dimensionalcaseis an exceptionalone, with a strongrepulsionwhich is
due to the nondegeneracyof one-dimensionalspectra.For more than one dimension, numerical
simulations[BT771with somesimple nonlinear modelshaveshown good qualitativeagreementwith
(2.4.3). Nevertheless,somesuspicionremainedwhetherP(s) for integrablesystemsexactlyfollows the
Poissondistribution. For this reason,in [CCG85]a detailednumericalanalysishasbeencarriedout for
the model of a two-dimensionalnonlinearoscillatorwith energiesgiven by the expression

E5~= an
2 + m2, (2.4.4)

with someirrational parametera. It was found that in spite of the roughcorrespondenceof P(s) with
(2.4.1), there is serious deviation from (2.4.1) for small spacing s ‘~ 1. Moreover, the fluctuations
aroundthe Poissondistribution on all scalesof s turn out to be strongly correlated.Such “correlated
statistics”, which on the other hand appearsto be quite close to the Poisson law, reflects the
nonstatisticalcharacterof P(s). To summarizetheseresults, we may concludethat the Poisson-like
distribution(2.4.1) for the spacingsbetweenneighbouringenergylevelsfor autonomoussystemsis not
directly relatedwith classicalintegrability, althoughit maybe anindication of the completesuppression
of quantumchaos.

To clarify the role of the Poissondependence(2.4.1) for quasienergylevels we first discussthe
simplestcase(k = 0), which appearsin our model (2.2.1) when the perturbationvanishes.As was
noted,this questionis alsoof specialinterest,sinceit relatesto the otherquestion,namely,whetherthe
statisticalpropertiesof ~, in the tight-bindingmodel (2.3.20)are really good (see[CGI87]). For this,
we considerthe generalizedsequence

= {A
0 + n0~+ ~Tfl(fl — 1)) = {A0 + ~rn

2 + (U
0 — ~r)n}, (2.4.5)

which also describesthe unperturbedQE spectrumof our model for the particular choice of free
parametersA0 = 0 and O() = 7/2,

A,1 = {~Tn
2}. (2.4.6)
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Here { } denotesthatA~is takenmodulo1, or, in otherwords,the fractionalpart of A~.By comparing
(2.4.5) with (2.4.6) it appearsthat for the quasienergiesA~in (2.4.5) an additional “mixing” has
occurred;also, all QE levels are locatedin a finite interval, unlike the energylevels for autonomous
systems.For this reason,the statisticalpropertiesof QE spectraareexpectedto be stronger.

It is interestingto note that the model (2.4.5) for r>0 can be representedin the form of a
two-dimensionalmappingdefinedon the torus,

= {A~+ 0~}, ~ = {O,~+ ~ . (2.4.7)

This mappingis obviously not mixing in the commonmathematicalsense,namely, a small separation
(~A)~doesnot increaseexponentiallywith n and thereforethe dynamicalentropyh = 0. A numerical
analysiswith irrational valuesof r~and U0 (the valueof A0 is not importantsinceit givesa constantshift)
hasshowna largedifferencebetweenthe statisticalpropertiesof (2.4.5)and(2.4.6). It turnedout that
level spacingdistributionP(s) obtainedfor (2.4.6)with the total numberof QE levelsN = i0~seemsto
havethe samefeaturesas in the caseof the autonomoussysteminvestigatedin [CCG851(seefig. 5).

First, for small spacingss <0.01thereis an extremelylargedeviationfrom the Poissondependence.A
statisticalx

2 probe (x~
0 125 with 10 subintervalsin 0< s<0.01) gives the probability of such a

deviation(confidencelevel) to be —i0
4. Secondly,evenfor all otherintervalsthe x2 valueappearsto

be quite bad indicating that deviationsfrom the Poissonlaw are not of a statisticalnature.
Then, a moresensitivetesthasbeenused to checkwhetherthesedeviationsfrom (2.4.1) arereally

correlated.For this, a histogramfor normalizeddeviationsof the observednumberof spacingsin 1000
intervalswas constructedin sucha way that the expectednumberof levelsin eachinterval accordingto
the Poissonlaw is equal100. The resultpresentedin fig. 6a gives an extremelybadcorrespondencewith
the expectedGaussiandistributionof fluctuationsaroundthe Poissonlaw. Thesedatacan be treatedas
strongevidenceof correlatedfluctuations,while fig. 5 mayberegardedas a goodcorrespondenceto the
Poissonlaw for all s (excepts ~ 0.01).

P(s) P(s)

~ ~
Fig. 5. Distribution P(s)of thenearestlevelspacingscomputedfor N = 10’ valuesof A~[see(2.4.6)] for r, = 1 /V~.The smoothcurveis thePoisson
distribution.The inset showsthedistributionin thefirst interval(0, 0.01)with thestraight line asthe Poissondistribution.(Heres is thenormalized
spacing,s = 1 correspondsto the meanspacing,10’.) (After [CG187].)
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Fig. 6. Histogramof the distributionof deviationsrn = (n~— n,,)In~
2of the observednumberof spacingsn~from the expectedn~,in the ith

interval. Full line correspondsto the Gaussiandistribution with u = 1. (a) The sequence(2.4.6) with r
0 = 1 i’./~X~ooofor thedeviation from the

Poissondistribution is 3184; (b) thesequence(2.4.5) with T0 = 1 /V~and O~= r~I2— \/~. Here x~,,,0 934 with a good confidencelevel. (After

ICGI87].)

A clearly different result hasbeenobservedfor the model (2.4.5), which has, in comparisonwith
(2.4.6), an additional linear shift in n. This shift was discoveredto give rise to very good statistical
properties. In particular, P(s) was found to be in good agreementwith (2.4.1) accordingto a x

2 test
(see [CGI87]). Also, quite good agreementhasbeenobtainedfor the distributionof the fluctuations
around (2.4.1) with the Gaussiandistribution (x~

4=30, see fig. 6b). As an additional trial, the
well-known sequence

A~~1={~A~},~ (2.4.8)

which is often used as a randomnumber generator,hasbeen taken[CG187].This one-dimensional
mapping (2.4.8) was thoroughly investigatedboth analytically and numerically. The model (2.4.8)
exhibitsall strongstatisticalpropertiessuch as mixing andlocal instability. Numerically, the sequence
(2.4.8) has beeninvestigatedextensivelyin [CI68] by manyspecialtests;however,no deviationsfrom
statistical predictionshave been found. In [CGI87] the statistical propertiesof (2.4,8) have been
comparedwith those of (2.4.5) by making use of the same test when investigating the Gaussian
characterof the fluctuationsaroundthe Poissonlaw. The result is that no clear differencehas been
detectedin comparisonwith (2.4.5). It is of special interest to find good teststhat can distinguish
betweena nonmixingmapping (2.4.5) and a mixing mapping(2.4.8).

Rigorousanalysisof the model (2.4.5) turnedout to be quite difficult. It hasbeenproved in [P88]
that the first four momentsof the distribution of the values A~in the limit N—~cc correspondto the
Poissondistribution.

From the point of view of the statistical propertiesof the unperturbedQE spectrum,two results
seemto be important.First, the sequence(2.4.6)appearsto haverelativelypurestatisticalproperties.
Therefore, one may expectthat for the localization of EFs in the model (2.3.20) weak statistical
propertiesof 4~are sufficient. We would also like to note than an additional linear term in (2.4.5)
correspondsin our model (2.2.1) to the first derivative ~3I30in the unperturbedHamiltonian.Such an
additional term can be treatedas a magneticfield which breakstime reversalinvarianceof the given
model (for more details see section3.2).

Another quantity which is expectedto be sensitive to the spectral fluctuationsis the so-called%.~3
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statistics(see,e.g., [P65,M67, BFFMPW81,BG84j. This quantity can beusedas somemeasureof the
rigidity of the spectrum, dependingon the correlationsbetweenall levels in the spectrum.Some
analyticalexpressionsfor ~13arepredictedfor the threedifferent classesof ensemblesin RMT, which
areusually comparedwith the data. However, for details on the discussionof the 1.13 statisticsof the
models(2.4.6) and(2.4.4)we refer the readerto theabovereferences[CCG85,CG187].The reasonwe
are not discussingtheseresultshere is mainly relatedwith the fact that for the model (2.4.5) this
quantity turnedout to be much lessinformative than the P(s) (see [CG187]).

Thereis seriousdifficulty in observingthePoissonstatistics(2.4.1) in numericalexperimentswith the
model (2.2.1) for nonzeroperturbation(k�0). Indeed, for any finite k, especiallyfor ~ the
localization length i,,, hasto be comparedwith the size of the matrix. The latter is always finite in
numericalexperimentsaccordingto any typeof truncation.Previously,we discussedthe problemof a
truncationof our unitary matrix (2.2.9),which should beperformedin sucha way thatunitarity is not
destroyed.However, for any truncationwe are restrictedto somefinite basis in which localization is
considered.For this reason,somenew quantity appears,which is the ratio of the averagelocalization
length I,. to the size of the chosenbasis,A = ijN. Then it is natural to assumethat this parameter
essentiallyaffects the level spacingdistributionP(s) for K ~“ 1 [184].Fromthis point of view, to obtain
numericallyP(s) in the caseof strongclassicalchaosK ~ 1 (for k~ 1) oneneedshuge matricesof size
N 2~’I,. — k2. As a result, in numericalexperiments[184]somedeviationsfrom the Poissondependence
(2.4.1)with visible repulsionhavebeenobservedevenfor a quite small ratio k2IN~0.1with N=350.
The problemof howP(s) andthe repulsiondependon A will be discussedin moredetail in section4.3.
Hereweonly emphasizethat the deviationfrom (2.4.1) in ourmodel (2.2.1)with an infinite numberof
statesis entirely relatedto the truncationof the basis,andthereforeshouldbe treatedas an artifact.
Some evidencefor this statementis given in [184],where P(s) slightly approaches(2.4.1) when N
increasesfor fixed K andk (seealso [FM86, FM88]).

Important results on this subjecthavebeen presentedin [FFGP85,FF87], wherethe distribution
P(s) in the model(2.2.1)was examinedas a functionof the separationof the centresof the EFs in the
unperturbedbasis.In particular,the cleartendencyhasbeenobtainedthat P(s) approachesthePoisson
distribution(2.4.3)whenthe separationincreases.Thesedata can be regardedas a confirmationof the
statementthat the level spacingdistributionP(s) is expectedto be of Poissonianform like in the caseof
the one-dimensionalAndersonmodel (seealso the discussionin [FFGP88,FM88a]).

Anotherinterestingproblemariseswhenwe areinterestedin P(s) not for all eigenstates,but only for
thosethat areexcitedby someinitial wavepacket,qi

0(0). This problemalso appearsin otherphysical
models,for example,in plasmaphysics(see[BJ88]).We alreadydiscussedthe point that only perturbed
statestakepart in the dynamicsof the modelproviding boundeddiffusion on somefinite time scale
I’ S I’D. Onecan saythatthe QE statisticsof thesestateshasevenmoremeaningthanthe statisticsof the
total numberof eigenstatesof the matrix U,~.Indeed,the statisticalpropertiesof the perturbedpart of
the spectrumareresponsiblefor the detailsof the dynamicsof the wave packetcl’(O, I’). Fromthispoint
of view, it is of greatinterestto establishthe form of P(s) which correspondsto the initially excited
spectrum.For simplicity, onemaystartwith the case1,, ~‘ 1 andwith typical initial packetscl’0(U) which
shouldbe well localizedin momentumspace,z~n‘~ 1. Thensomeuniversalitymaybeexpectedfor P(s)
becausewith increasingk ~‘ 1 (for fixed K ~ 1) the effectivenumberof perturbedstatesincreasesand
the samecharacterof overlap of EFs could persist provided that the absolutenumber of perturbed
statesdoesnot affect the shapeof P(s). The connectionof such a P(s) distribution with the diffusive
dynamicsof our model(2.2.1) is the subjectof section2.6.
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2.5. Specialcase:quantumresonance

In this sectionwe discusssomeexceptionalpropertiesof the kicked rotatormodel(2.2.1) in the case
of specialvaluesof therescaledperiodr = 4lTr/q [see(2.2.14)]. In [CCFI79]thiscasehasbeentermed
“quantumresonance”,to stressthe quantumorigin of the phenomenon.The specific motion of the
systemin quantumresonanceis clearlyseenin the simplestcaseof r = 4IT, discoveredin [CCFI79].For
convenience,we useherea form of the unitary evolutionoperatorU which is slightly different from the
symmetricone givenby (2.2.3). It is clearthat any shift in time doesnot changetheQE spectrumof U.

As for the eigenvectors,they only changein phase,if the time shift does not include a kick (see
further). Insteadof (2.2.3) we write down the transformationfor the function cl’ in one periodwith

cli(0, I’) takenjust after eachkick,

t/i(0, I’ + T) = U~i(U,I’) = ~ cos0 e1(TI2~
2~02t~(0,I’). (2.5.1)

The free rotation from one kick to anotheronly shifts all phasesof the Fourier componentsof the
function i/i byx, = rn212. Therefore,x,, appearsto be the sameafter onerotation if r = 4IT. As a result,
only kicks affect the dynamics through the exact expressionfor the solution of the Schrödinger
equation,

cli(0, I’) =e~~~c056~(0,0), (2.5.2)

where I’ is measuredin the number of kicks, t IT, and cli(0, t) is any initial state.Using the usual

definition, the energyof our systemis given by

2,~

E(t) = -- J ~(U, t) ~ ~(0, t) dO, (2.5.3)

from which the quadraticterm — I’2 for the time dependenceof the energycan be easilyobtained.For
example, in case of ~i(0,0) = exp(in

0O) (only one unperturbedstate is initially excited), the exact
expressionis

E(t) = ~k
2h2t2+ E(0). (2.5.4)

For other choicesof cl’(U, I’), additional linear terms —t may appear.In any case,for I’—~cc, the
energyE(t) turns out to increasequadraticallyin time, independentlyof the valuesbothof the classical
(K) and the quantum (k) parameters.The resonancecharacterof this pure quantumeffect can be
clarified by comparingthe driving frequency11 = 2irIT = 11/2 with the frequenciesfor the transition
betweenneighbouringunperturbedstates,w,

1 (E~~1— E~)I11 2nQ. A quadraticenergygrowth is
also known to be the casefor classical modelslike our kicked rotator. It is the so-called“microtron
acceleration” (see, for details, [C79, HOA84]). However, in classicalmodels this type of motion is
directlyrelatedto the existenceof stableregionsequallyspacedin momentumspaceandoccursonly for
specialvaluesof the perturbationstrengthK0 (for example,for K0 sin O~= 2irm in (2.1.5),where00 is a
fixed point of period1). In contrast,quantumresonancebehaviourdoesnot dependon K andtherefore
arisesalso for K ~ 1, whenthe classicalmotion is boundedin momentum.
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The detailedanalysisof the quantumresonancebehaviourin the generalcaseof (2.2.14)hasbeen
performedin [1S79,1S80]. It was rigorously shown that for r = 4rrrlq, with integersr and q, the
transformation(2.5.1) for the function ~1iin the 0 representationcan be reducedto the form

q—1

cl’(O + 2ITnIq, I’ + T) = ~ Snm(0)cli(O+ 2irmlq, I’). (2.5.5)

Here a finite matrix Snm(0)hasappeared,insteadof the infinite matrix in (2.2.10),

/3 y ~

s= f3~ ~ 7q~1 ~ ‘)‘~ , (2.5.6)

0 $q-i Yi Y2 Yo

= exp[—ik cos(O+ 2irjlq)], (2.5.7a)

1 q1 / . 2i~r 2 . 2rrmn\
= — exp~—l m —1 ). (2.5.7b)

q~=0 q q

Therefore,

~nm f~nYm-n~ (2.5.8)

It is interestingto note that all matrix elementsSnm are constructedfrom 2q valuesof /3~and Y~’as
follows from (2.5.6).

A very important conclusionresulting from (2.5.5) is that only q discrete points in U spaceare
involved and map onto each other (for odd q; otherwise, for evenq, only q12 are mapped; for
simplicity we assumeq odd). Thesepoints are equallyspacedin the interval (0,2 ir) with O~beingthe
initial point of eachset of thesepoints. Therefore,all pointsin 0 spaceareconvenientlyrepresentedby
a set of q-vectors which depend on some continuous parameter00 from the range [0,2rrlq).
Correspondingly,the quasienergyEFs in the 0 representationare eigenvectorsof the finite unitary
matrix Snmof size q x q dependingon 00. As a result,operationswith suchEFs are the sameas with
q-dimensionalEFs,with integrationover 0~from 0 to 2ITIq.

All these propertiesof EFs in 0 space can be easily convertedto momentum spacewith the
remarkableresult that in the momentumrepresentationall the EFs of our model (2.2.1) are Bloch
stateswith period q. More precisely,all EFs in p spaceare representedby the setof q-vectorswhich
dependon the samecontinuous parameter00. Under the transformation n—~n + q each EF is
multiplied by the factor exp(iO0q),

~n+q(E(0o))= e’°°~r~(e(O0)). (2.5.9)

This situation is very similar to that known in solid state physics, namely, our model in the
momentumrepresentationin the caseof quantumresonancecan be associatedwith a one-dimensional
modelof a periodic crystal,with a periodicity of q atoms.This analogyseemsto be very importantto
establishpropertiesof the model underconsideration(seealso the discussionin section5).
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In the momentumrepresentation,the transformationfor theA~(I’) resultingfrom (2.5.5) [see(2.2.6)
with the changeA~—+ A~andcli .—~ cl’~to stressthe fact that theA~aredeterminedafter the kicks,and
not in the middle of the free rotation], is

q—1

~ Unm(0
0)Am(t,Uo), (2.5.10)

= 0

wheren, m= 0, 1,. . . , q — 1. Therefore,for fixed 00 the coefficientsA5 aredeterminedin q X q space.
To come back to the previous representationof A~in infinite momentumspace, one can usethe
relation (see also [CS86a])

An+qL = ~ J dO~e~°~A5(O0)

with integerL from the range (— cc, cc). The evolution of the q-dimensionalvectorA5(U0) is described
by a unitary matrix Unm taking the form, for (2.5.1),

Unm(0o)= Bnm~(k,00)Gm~m(T), (2.5.11)

wherethe matrix Bnm,(k, 00) correspondsto a kick perturbation,

1
Bnm~(k,0~)= — ~ exp[—ik cos(2ITi/q+ On)] exp[—i(2IT/q)i(n — m’)] exp[—i(n — m’)U0],

q,=0
(2.5.12)

andthe diagonalmatrix Gm~m(r) describesfree rotation in one period r,

Gm~m(T)= e~n/

2)m2~m,m . (2.5.13)

Comparing(2.5.11)with (2.2.9)onecan write down the finite matrix Unm(Os) for the transformationof
A~(I’,0~),wheret is takenin the middle of free rotation,

Unm(O
0) = Gnn~(TI2)Bn~m~(k,Oij)Gm~m(TI2). (2.5.14)

Both theseexpressions(2.5.11) and (2.5.14)areusedin the literature(see,e.g., [CS85,CS86, 188]);
however,the latteris written in a symmetricform andmoreconvenientfor the analysisof the symmetry
propertiesdependingon 00 (seesection3.1). It is clearthatboth Unm(On) and Unm(On) havethe same
quasienergies,e~(O0).As for the EFs of Unm(U0) and U5~(U0),they differ from eachother only by the
phases ‘i-n

2/4 in the components~
5(E,(U0))and ~5(r~(O0));hence the probabilities are the same,

I~5I °°‘Ico5h
Fromabovediscussionit is clear that the spectrumof QEsin quantumresonanceconsistsof q bands

with a dependenceon the continuousparameter0~ O~<2IT/q insideeachband. This is the continuity
of the spectrumwhich providesthe unboundedincreaseof theenergy.Exact expressionsfor r.(U~)have
beenobtained[IS79,1S80] only for the simplestcases,T =

41T (main quantumresonance,previously



F.M. Izrailev, Simplemodelsof quantum chaos:spectrumand eigenfunctions 335

discussedin section2.2) andfor r = IT (correspondingly,r = 1, q = 4). Also, the caser = 2ir hasbeen
investigatedin [IS79,1S80]; however,unexpectedly,the lattercaseappearedto be extremelyexception-
al, sinceonly in this casedid the function~frprove to be completelyperiodic with a periodof 2 kicks. To
be moreprecise,the exact transformationis

cl’(O, I’+ T)=e cosOcl,(9+ IT, I’), (2.5.15)

with only two valuesfor the quasienergies,e~= 0 and £2 = IT, which are infinitely degenerate.Such a
degeneracyseemsto be accidental;no indicationsfor othercaseshavebeenfound.From (2.5.15)one
can concludethat this specialresonanceis relatedto the particularform of V(O)= kcos0. Indeed,for
otherchoicesof V(0), say,for V(0)— cos20, thisperiodic behaviourof i4r(0, I’) disappears,andquantum
resonancebehaviour[E(I’) — I’2 as t—~cc] takesplace for all valuesof q.

Numerically,the dependenceof e~,(O
0)on the phase00 canbe investigatedby diagonalizationof the

unitaryq x q matrix(2.5.11)or (2.5.14)for differentvaluesof O~.Thestructureof the QE spectrumfor
somevaluesq ~ 1 anddifferentparametersk andK hasbeenanalysedin [CS85,CS86]. In particular,
the sharpdecreaseof bandwidths for approximatelyconstantvaluesof T, T = 4rrrlq = const.hasbeen
observedwhen T/

47Twas approximatedby simple rationalratioswith increasingq. Previously,in [IS79,
1S80] strong(exponential)decreaseof the bandwidthswas predictedfor the casek~ q as afunctionof
q—~ cc• Sucha propertyis well associatedwith the expectationthat the QEspectrumshouldbe discrete
for the nonresonantcase(r const.with r—~cc andq—~ cc). Thisprediction,that thesize of the bandsis
exponentiallysmall for q ~ 1 andk~ q is clearerwhen we assumethe analogy betweenour model
(2.2.1) and the Andersonmodel (see the discussionin the previoussection). Indeed, in solid state
physics a relation betweenthe localizationlength and the size of the band is known, which appears
when the boundaryconditionsfor the crystalare changed,

i~e—exp(—L/l~). (2.5.16)

HereL is the size of the crystaland i, is the localizationlengthdefinedas the inverseincreaseof EF,
i/i(x) — exp(—xIi,,),for I ~ L. In sucha definition, 1 is associatedwith i,, foundfor QE eigenfunctionsof
the kicked rotator (seesection2.3). It is interestingto notethat, in spiteof the fact that all EFs in the
caseof quantumresonancearedefinitely delocalizedin momentumspace[and quasiperiodic,according
to (2.5.9)], it appearsto be usefulto investigatewhethertheyare localizedor not, on the finite scaleof
quasipenodicity,for 0� n <q. Then, if 1 ~ q, the size of the bandsis expectedto be exponentially
small.

Direct numericalsimulationsperformedby the author have revealeda clear exponentialdepen-
dence,

(ln(4
1)) = —aqlk

2+ C
0, (2.5.17)

for the quantumresonancecase(for K = 5),wherek
212maybeassociatedwith thediffusion coefficient

D
5. Numericalexperimentswere run for matrices Usm [see(2.5.11)] of size q = 199 and 401, with q

beinga primenumberto avoid reduciblefractions.It can beprovedthat the s~(O~)aresymmetricabout
= IT/q; therefore,it is sufficient to run for 0 ~ 00 ~ IT/N only. Moreover,numericalsimulationshave

discoveredthat for a small ratio k
2Iq~ 1 only one oscillation is observedfor s~dependingon 00. This

remarkableproperty symplifies very much numerical experimentssince the size of each band is



336 F.M. Izrailev, Simplemodelsof quantumchaos: spectrumand eigenfunctions

essentiallydeterminedby the normalizeddifferencein two points:4.= [E
1(IT/N) — r.(0)]

12IT. Then,all
have to be averagedbecauseof extremelylarge fluctuationsin the bandwidths. Thesefluctuations

seemto be very importantin further investigationsof the statisticalpropertiesof localized(1 ~ q) EFs,
especially in view of comparisonwith solid state models, where such fluctuationsof 4. result in
fluctuationsof the conductivity.

It turned out, that, in spiteof the large fluctuationsin 4., they can be effectively averaged,when
averagingln(L1

1), not 4.. The summarizeddataareshownin fig. 7, where(ln(z11)) versus1/k
2 is plotted

and the dashedhorizontal lines correspondto the averagespacing4 = 1 /q. From thesedata the
approximatevalue of the coefficient a can beobtained,a = 2.4, which is practically independentof the
size q of the matrix. It is interestingto notethat the valuefound for a is closerto thatobtainedfor
i~= = k2/2 thanto thatobtainedfor 1 = D

5/2= k
2/4 (seesection2.3). Such a differencemaybe a

resultof fluctuations,which are meantto be importantfor I~and not for i. In anycase,the obvious
exponentialdependence(2.5.17) is seenfrom the data.

Another interesting observationwhich can be claimed from fig. 7 is the breakdownof the
exponentialincreaseof (ln(L1

1)) when the line (ln(i.11)) = —ln q is approached.This effect can be
associatedwith sometype of repulsionbetweenthe bandswhenthey are increasedsufficiently to be
comparablewith the meanspacing,zl. 1 Iq. This behaviouris quite unexpectedsinceonly levelswith
the same00 are knownto exhibit strongrepulsionwith the increaseof the ratio k

2/q (see,e.g.,[CS85,
CS86).Indeed,for k2Iq not too small, QE levelshavemanyoscillationsas a function of 00, resultingin
the levels possiblyintersectingdifferentbands,becauselevelswith different U

0 correspondto different
symmetriesand do not feel eachother. To checkthat such a repulsionis not a result of a specific
procedurewhen measuringthe band width only in two points, someotherpoints O~from the range
(0, ITIq) havebeenusedto estimatethe size of the bands.However, repulsionseemsnot to disappear
and further investigationsare neededto understandthis phenomenon.

A typical exampleof QE repulsionis shownin fig. 8a, wherethe Bloch parameterO~variesfor very
largeperturbationk=20000.A strongsensitivityof thelevelsis seenin comparisonwith fig. 8b, where

- ~(W9)
000 ~ A

0.04 0.03 0.02. 0.01 0

Fig. 7. Dependenceof the quasienergybandwidth for the model (2.5.11) with q = 199 (circles) and q = 401 (triangles).The dashedline is the
averagespacingbetweenquasienergies,~l, = 1 Iq.
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Fig. 8. The dependenceof 15 quasienergylevels e, on the Bloch parameterO~in the model (2.5.11) with the step~ = irl(41q) for q = 31 and
r = 4irlq. (a) Strong repulsionfor theextremelylargeperturbationk= 20000; (b) weakrepulsionfor therelatively small valuek = 20.

the parameterk is relativelysmall. A similar behaviourof the energylevelsis knownin autonomous
quantumsystemswhich can exhibit chaoticmotion in the classicallimit (see,e.g., the reviews [E88,
E88a] andreferencestherein).

It was suggestedin [P73] to usesuch a sensitivity of the levels as a distinctive property of the
irregularcharacterof the quantumspectrumin the caseof classicallychaoticmotion. To measurethis
sensitivity, the secondderivativeof the energylevelswith respectto the perturbationstrengthis used.
In our caseof QE levelsthis quantityhasthe form

Kk (d2e/dk2), (2.5.18)

where ( ) denotesaveragingover the numberof QE levels. As was mentionedabove,an analogous
quantity hasbeenanalysedin detailedsimulationsfor someautonomoussystems.However, up to now,.
it is not clearwhetherthis quantity Kk can be really usedto distinguishsystemswith classicallychaotic
motion from thoseexhibiting regular motion (see discussionin [E88a]). Indeed, in the latter case,
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avoidanceof crossingoccursonly in very small regionswhere the energylevels approacheachother
very closely. This happensquiterarely, whenthe perturbationis changing,but repulsionappearsto be
very strongin thesesmall regions. In contrast,for strongchaos,the levelscannotapproacheachother
very closelybecauseof the strongsensitivity of the levels. Therefore, locally, the secondderivativeis
smallerin this case,but repulsionoccurson thelargerscaleof perturbation.Thus,whenaveragingover
manylevelsfor a fixed perturbation,the quantity (2.5.18)maybe of the sameorder for both cases.The
samesituationis expectedin the caseof averagingover the perturbationfor somefixed level.

This situation is a real problem in numerical simulationswith autonomoussystems(see,e.g.,
[SS87]);therefore, more investigationsare desirable. In this sense,our model (2.2.1) in quantum
resonanceis quite useful to shed light on this question.In contrastto autonomoussystems,wherethe
densityof statestypically increaseswith the perturbation,in our casethe densityof QE levelsis fixed by
the size of the matrix. In addition, a new parameter00 arises, which can also be used as a free
parameterfor the investigationof level repulsion,

Ko~ (d2e/dU~). (2.5.19)

In this definition, however,the averagingover the parameter00 hasno sense,sinces(U~)is periodic in
U~,resultingin a zero meanfor whenaveragingfrom 00 = 0 to O~= 2~iq.For this reason,( ) is to
be takenas the averageover differentQE levelsfor somefixed valueof 00. Suchnumericalexperiments
with the computationof (2.5.18)and (2.5.19)as afunction of the classicalparameterK or the quantum
parameterk may be very interesting. Up to now, only qualitative resultsare known [CS85,CS86],
which give a clearpicture of the repulsionwhen O~or k varies.

Taking into accountthat the spectrumof quasienergieshasa continuouspart, with q bands,the
asymptoticexpressionfor the energyincreaseE(t) hasbeenfound rigorously [IS79,1S80] (for I’—occ),

E(I’) = -qt2 + at + b(t) + E(0). (2.5.20)

Here ~j and a are somecoefficients which dependboth on the initial state I/J~(0)andthe dynamical
parametersK and r = 4ITrIq. Detailed analysesof expression(2.5.20)haveshown, in particular,that
the coefficient i~vanishesin thecasewhenall QE are independentof 00. This meansthatthe asymptotic
quadraticdependence— I’2 is entirely relatedto the continuouscomponentin the spectrum.A special
caseof vanishing~j hasbeenalsodiscovered[1S80]for a specific form of the initial wavepackettf1

0(O)~
with the additionalconditionthat atleastoneof the QE5 doesnot dependon 0~.It shouldbe notedthat
the other coefficient, a, in (2.5.20),which provides the linear energyincrease,turns out to be also
relatedto the continuouscomponentin the QE spectrum.Indeed,the complicatedexpressionsfor ii

and a obtainedin [1S79,IS8O] dependon e~(O~)and e’(0~),wherethe first and secondderivativesare
takenwith respectto ~ Therefore,not only ~ but also a vanishesfor a purely discretespectrum.

The only time dependencefor the energy in the caseof a nonresonantcondition i-/4ir ~ r/q is
describedby somefunction b(t), given in theform of a finite sumof termsexp{i[e~(00)— e~~(O~)]}with
further integrationover 00 (m, m’ = 0, 1,. . . , q — 1). A nonresonantbehaviourcan be obtainedby
making use of the limit r—~cc, q ~ cc (r = const.). In this caseonly a summationremainsand the
questionof what typeof time dependenceis expectedfrom b(I’) is entirelyrelatedto the amplitudesof
termsin the infinite (q—~ cc)sum.As we know, only a finite numberof exact(perturbed)EFs is excited
by any initial state i/i~(O)localizedin momentumspace.This leadsto the fact that only a finite number
of oscillatingtermsareeffectively presentin the expressionfor b(t). Therefore,up to somefinite time
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I’D the time dependenceof b(I’) will be linear. The questionof the influenceof the statisticalproperties
of the QEs £m~ on the dynamicsis of specialinterest(seenext section).

Both coefficients q and a in (2.5.20)appearto vanish very rapidly with the increaseof q ~‘ k2.
Indeed,we may assumethe simple dependencee(0~)= Emaxcos00, which seemsto be approximately
true for exponentiallysmall bands,see (2.5.16). Then both e’(0~)and e”(0~)are exponentiallysmall
too. Therefore,for the caseof stronglocalization,when1— k2 4 q, the coefficientsi~anda areso small
that theydo not affect the nonresonancebehaviour.This meansthat the resonantcasecan be usedas a
good approximatemodel for the nonresonantbehaviourfor some finite times I’ during which the
quadraticgrowth of the energycan be neglected.

The opposite caseof a clear quadraticincreaseof the energy,without visible oscillations,occurs
whenk2~‘ q (seefig. 9a). Someadditionaloscillationsappearin caseof small valuesof k4 q (seefigs.
9b and 9c). The estimatefor ~ in the caseof k~ q and for a smooth initial wave packetcli

0(0) was
obtainedin [1S80,1S81],

(2.5.21)

where ~ is some parameter.Numerical data [1S79,IS8O] are found to be in good agreementwith

0 20 40 60 0 40 80 120 160 200

0 leO 80 120 160 200

Fig. 9. The timedependenceof therotatorenergyE in thecaseof quantumresonance;thestraight line (curve I) correspondsto classicaldiffusion,
E = k°t14,herefz = 1; (a) T = 4sr/1l, k = 19, K 14.0; (b) r = 8ir/5, k = 0.5, K~2.5; (c) r = 4,r/3, k = 0.25, K~1.0 (after [1S79,1S80]).
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(2.5.21)for differentvaluesof the parametersq = 7—17 and k 12—100, for which the averagevalue of

K ~) appearsto be (~) 2.4. In the caseof moderatevaluesof k~ q the numericalresultsmaybe
approximatedby the dependence

E(t) = E(t)1112 = k2t2/~
0q+ ~k

2t+ E(0), (2.5.22)

wherethe quadraticterm correspondsto (2.5.21).
Extensivenumericalinvestigationshavebeenmadein [CFGV861,whereattentionhasmainly been

paid to the dynamicsof the model(2.2.1) underthe quantumresonancecondition(2.2.14).Oneof the
questionswas how the energygrowth is affectedby the ratio r/q when the irrational numberT/4IT is
approximatedby a sequenceof rationals.Earlier, in [CG84]aninterestingresultwasrigorouslyproved:
for agenericchoiceof thepotentialV(0) in (2.2.2)thereis a nonemptyset of nonresonantvaluesof the
period TI4 IT for which the QE spectrumstill hasa continuouscomponent.Thesevaluesturn out to be
very exceptional in the sensethat they are extremely close to rational values (so-called Liouville
numbers).Thus,the seriousquestionarisesas to the typeof dynamicsfor the rotator for thesespecial
values of TI4IT.

Numerical data [CFGV86] have uncovereda quite interestingdependencefor the energyE(t),
reflecting the number propertiesof TI4IT. Namely, the typical time dependenceof E(I’) for rI
q = [m

1, m2,m3,. . .~with m3 ~ m2~°‘ m1, representedin the form of a continuousfraction expansion,
reflects the structureof rlq. It appearedthat E(I’) consistsof different time scales,with alternating
regimesof long diffusive linear growth (— I’) and quadratic(— t

2) energygrowth. The durationsof the
diffusive regimesare related to the numbersm

1, m2, m3 in the continuousfraction. However, an
analyticalexpressionfor this relation hasnot beenfound.

Anotherinterestingquestion,in view of theseexceptionalvaluesof TI4IT, is how the structureof the
EFs changeswhen irrationalvaluesof T/

47r are approachedusing thesespecialnumbers.It shouldbe
noted that for such transitionsthe localizationlength is expectedto be approximatelythe samesince
i — k2 andT = const.The only thingthat will drasticallychangeis the periodq, giving the scaleon which
the EF is localized; however,how the EF changeson a large scalen ~°‘ q is unclear.

To concludethis section,someapplicationsof the resonantcaseareworthwhile to bementioned.As
was pointedout, for rational TI4IT only afinite numberq of phasepointsaremappedonto eachother
under the unitary transformation(2.5.5). This property has beenusedin [BIK88] to construct the
so-calledclassicalmodelof quantumdiffusion,

= p, + [2r
0sin(2(U0 + 2’rrm1Iq))]~~~, m,+~= [m, +

2rpt+llq , (2.5.23)

which exhibits both classicaldiffusion during some time I’D andsuppressionfor I’ ~.‘ I’D. This model
correspondsto V(U

0) = cos2U in (2.2.2), insteadof V(00) = Eo cos0, which is takenfor sometechnical
reasonsconnectedwith the fact that Wigner’s function is usedto describethe propertiesof the kicked
rotatormodel(2.2.1).The notation[ ]jflt indicatesthatthe integerpart is taken;thereforep, areinteger
numbers.This is meantto reflect a distinctiveproperty of a quantummodellike the discretenessof the
momentum.In addition, the phasesm, arealso assumedto be discrete(or integer, for computational
convenience,with the use of the notation [ I q to emphasizethat the m, are takenmodulo.q).

A similar model,but with continuousphases0,, hasbeenusedearlier in [CIS81]to demonstratehow
the discretenessof the momentumleadsto the suppressionof the diffusion. It wasfound,however,that
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the effect of the suppressionis exhibited by this model only qualitatively, without quantitative
agreementwith the degreeof suppressionin the model (2.2.1). Indeed,the energygrowth in this
discretemodelappearedto besomehowsuppressedin comparisonwith theclassicalmodel (2.1.4),but
true energygrowth remainsmuch faster thanin the quantummodel.

In contrast, in the model (2.5.23) both the momentump, and m, are discrete,resulting in the
completediscretenessof phasespace.The free parameter00 playsan importantrole in the modeland
determinesthe total shift of the grid from 0 = 0 in the classicalmodel (2.1.5). Hence,many copiesof
theq x q grid on the toruswith different0 ~ O,~� 2IT/q haveto be taken,averagingover the wholeset
of trajectoriesE(I’, 0~).It was unexpectedlyfound that the classicalmodel (2.5.23)exhibits not only
diffusion andsuppressionof it, but, in the caseof very largeq ~‘ 1, also apurelyquadraticgrowthof the
energy (E— t2), which is a distinctive property of quantum resonancebehaviour (see details in
[BIK88]). Unfortunately,it is not clearwhichnumberof copiesof grids (or which numberof different
00 in the simulation) areneededto ensurethat for a given time I’ ~‘ tD a good correspondencebetween
the discrete model (2.5.23) and the given quantum model (2.2.1) is guaranteed.However, this
approachto the attempt to find a classicalanalogyto the quantummotion, apartfrom the theoretical
basis,is of greatinterest.

2.6. QuanI’um diffusion and correlationfuncI’ions

One of the importantproblemsis to describethe energygrowth in the model (2.2.1) both on the
diffusive time scaleI’ ~ I’D andon the largetime scaleI’> I’D, wherequantumsuppressionoccurs.As was
discussedin section2.2, the suppressionof classicaldiffusion can be directly relatedto the peculiarities
of quantumcorrelations,which, unlike the classicalcorrelations,appearnot to vanishfor I’ —* cc As a
result, the role of theseresidualquantumcorrelationsincreasesin time, due to strongquantumeffects
of localization. Here we discussthe possibilityof an analyticaldescriptionof quantumdiffusion usinga
phenomenologicalapproachbasedon somenumericaldata(for details,see [B188]).

We startwith the transformationfor the function cli given in the form wherethe first operatoris a
kick and the secondone is a free rotation,

U = exp[i(rI2)a2I~02]exp(—ik cos0)

[comparewith (2.5.1)]. This form appearsto be more convenientto representall correlationsin the
most simple expressions.Then, accordingto the definition of energy (2.5.3) one can obtain the
transformationfor E(I’) in one period,

~ (2.6.1)

whereI = —ih 3I~3Ois the momentumoperatorand the notation ( ) is used to denotethe quantum-
mechanicalaverage,

(F) f ~(O, I’)fr~(o,t) do, ~(O,I’) = (U)’~(0,0), (2.6.2)

which is takenat the instantsof time t = 1 beforethe kicks. To compare(2.6.1)with the classicalmodel
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[see(2.1.4)] we write the classicalanalogof (2.6.1) taking the limit ‘r=f1T—~0andk= s~I11_~*ccfor
K= £0T=const.,

= E~’~+ ~g~— ~r~(cos20,)+ E0(p~sinU~). (2.6.3)

Here the averagingis performedover the initial distribution p0(O,p) correspondingto the initial
quantumstate I/Jo(O). For example,in the casewhenone unperturbedstaten0 = p0111 at time I’ = 0 is
takenas the initial state,we have

= exp(in0O), p0(O, p) =

6(p — p
0). (2.6.4)

It is well knownthat in the classicalmodel(2.1.4) underthe conditionK ~‘ 1 diffusion of energyE~’~
occurs [see(2.1.10)] resulting from the very fast decay of correlations(cos20~)and (p,sin U,). In
contrast,the quantumcorrelationfunctions

F1(t) (cos2U),, F2(t) i(sin 0 ~/00 + (a/aU)sin 0), (2.6.5)

appearto be responsiblefor the suppressionof diffusion. It is our purposeto clarify the role of
quantumcorrelationsin the energygrowth,

= + ~k
2— ~k2F

1(I’)+ ~kF2(I’). (2.6.6)

Here, for convenience,we passedto the normalizedenergyE E111
2.

To investigatequantumcorrelationsin the kicked rotatormodel, an approachhasbeendevelopedin
[BK83] wherea generalizedcorrelationfunction is introduced,

R~’~(zlM
0)= J cl’~(OI’) e’~~°e1zT!~(O,I’) dO, (2.6.7)

which can be written in recursiveform,

R(t+~(z~M0)= e1TMu12m~ e’
mT MQ)/2J{2ksin[T(z + M

0)/2]}R~’~(z+ M0~M0+ m). (2.6.8)

In eqs. (2.6.7) and(2.6.8)z andM0 areparameters(M0 is an integer)determininga specificcorrelation
function. Using this definition it is possibleto obtainthe meanvalueof anyvariable, for example,

(cos(M00)),= ~[R~’~(0~M0)+ R~°(0l—M0)]
(2.6.9)

(sino 1), = -~- (~-[R~(zI1) - R~(zj_1)]).

First, let usdiscussthe behaviourof the correlationfunctions(2.6.7)on the shorttimescaleI’ ~ tE. It
was shown[BK83] thatin the classicallimit (T —~ 0, k—~ cc, K = const.)expression(2.6.8)takesthe form

R~’~(zlM0)= >~JJK(z + M0)]R~(z+ MOIMO + n). (2.6.10)
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Expression(2.6.10)can be estimatedfor strongchaoticmotion (K ~‘ 1) by the saddlepoint method(see
[BK83]),

R~’](zIM0)— exp(—~I’In K). (2.6.11)

It gives an effective time tE, eq. (2.2.20),for which the motion of the quantummodel is expectedto
follow the classicalbehaviourin all detailsincluding the exponentialtimedecayof correlationfunctions.

As was discussedin section2.2, this time scale0< I’ ~ tE is too short to investigatethe spreadof a
wavepacketin detail becausefor typical parametersusedin numericalexperimentsthe time I’E turns
out to be equalto a few kicks.

After sometime I’ — I’E quantumeffectsstart to affect the motion more and more and, as a result,
suppressionof classical diffusion occurs. Nevertheless,there is anothertime scale I’E ~ I’ ~ I’D where
quantumdiffusion turns out to be very close to classicaldiffusion for parametersK ~‘ 1 andk~ 1. To
obtainsomeestimatesfor thecorrelationfunctions(2.6.7)on this timescalewe expandthe initial state
t/i0(0) in quasienergyfunctions‘PE(O) [see(2.2.19)] takenat I’ = 0,

= -~= ~ g,,,p~(0,0). (2.6.12)

Then, the generalizedcorrelationfunction (2.6.7) can be written in the form

R~’~(z~M0)= ~ e1~1fheII12)I~mim2(zIMo),
m~,m, (2.6.13)

,,ç ( ~jj \ — _______ * * I \ I \ ~
~Prn1m2~~Z o~— 12 \2 ‘ ~ e n,—n1+M0.0 ‘

,, IT1 ‘~1~”2

wherethe coefficients~‘~(n)are determinedby

~e(O, 0) = E p~(n)e’~° (2.6.14)

[see(2.3.1)] and ~m1,m2 in (2.6.13) are the overlapintegralsof the quasienergyfunctions. It follows
from (2.6.13)that the correlationfunctionscan be representedas

R(t)(z~M0)= C(zJM0)+ W~’~(z~M0), (2.6.15)

whereC(zJM0) is the time-independentpart of the function R~’~(z~M0),that appearsin (2.6.13) for
m1 = m2. The secondterm in (2.6.15)representsinterferenceeffects (m1 � m2).

Analytical analysisof (2.6.15)for specific correlationfunctionsturns out to be very difficult. There
are two questionswhich arise in this context. The first concerns the level of residual quantum
correlations.To give an answeron this questionone needsto estimatethe constantterm C(zIM0) in
(2.6.15). Such an estimatehasbeenobtainedanalytically only for the simplest correlationfunction
(sin0) (see [BK83]). Using the quantumresonancecasewith high valuesof q ~‘ 1, an exponentially
small value for the time-independentterm of (sin 0) hasbeenfound; therefore,for I’.—* cc residual
correlationsvanish.Unfortunately,for the moreimportantcorrelationsF1 andF2, eq. (2.6.5), thereare
no analyticalestimatesandthe main information availablecomesonly from numericalsimulations(see
further).
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Anotherquestionconcernsthe rate of decreaseof quantumcorrelations.This rateis determinedby
the second, time-dependentterm in (2.6.15). Somerough analytical estimatecan be madein the
following way. For simplicity, we restrict ourselvesto the casez = 0 in (2.6.15).In what follows we
write W(t)(01M0) W~’~(M0).Some of the most important peculiaritiescan be understoodfrom a
simple qualitativeanalysis.Indeed,sincethe initial state(2.6.12)consistsof a final number~imof exact
eigenstates‘Pm(°) [accordingto (2.3.8), ~m— k

2], the number of not too small terms in the sum
(2.6.13) is also finite and approximatelyequal to ~m

1— ~im2— k
2. Therefore, typical minimal fre-

quenciesin (2.6.13)areof the orderof i/k2. Thelattermeansthat on thetime scalet s I’D in the system
(2.2.1) relaxationoccurs,relatedto the fact that on this time scalethe spectrumof the motion can be
regardedas continuous.However, for I’ ~ I’D, the discretenatureof the spectrumstartsto reveal itself
and leads to almost periodic oscillations, the rate of which is determined by a finite number
~m

1~m2— k
4 of terms.

Using (2.6.13)we can write W~’1(M
0)as

W~(M0)= ~ e~m1m2l~mm(Mo), (2.6.16)
m1�m2

where ml,m2 E~— Em standsfor the spacings(taken modulo
2IT) betweenthe quasienergies.For

further considerationit is convenientto representthe sum (2.6.16) in the form

W~’~(M
0)= ~ e .rn+1I~mm+i(Mü)+ ~ e +1m

t~m+im(Mo)+ ~ ehib02’~~,~
2(Mo), (2.6.17)

in m m1�m,±1

wherethe termswith nearestneighbourspacingsof quasienergiesare subtractedfrom the total sum.
Thesetermsare responsiblefor the time behaviourof the correlationfunction W~’~(M0)on the scale
tE ~ t ~ k~.To estimatethe contributionof thesetermswe passfrom the sumto an integration,

~ e~. bi~~~+i(Mo)~f ~ dm ~,~M0) Je’°’P(s)ds. (2.6.18)(in)

Here we introduceP(s) = dm1ds as the distributionfunction of nearestneighbourspacings.It is also
assumedin (2.6.18) that the overlapintegrals ~t)m,m+i(Mo) are only slightly dependenton the state
numberm. The latter conjectureseemsto be correctas follows from numerical results.

Thus,we assume~m,m±i(Mo) = /~(M0)is, approximately,independentof m and thereforethe
integral in (2.6.18)can beeasilyevaluated,providedthefunction P(s) is known.As was shownin [188],
the level spacing distribution P(s), under the condition of strong classical diffusion (K ~‘ 1), is
determinedby the degree of overlap of eigenfunctionsin the unperturbedbasis. In our caseall
eigenfunctions,which are excited in accordancewith (2.6.18), have a finite localization length
1= D~— k

2 and, as a result, they overlap only partly (see also [BIV87]). This situation can be
approximatelydescribedby a distribution P(s) which is intermediatebetweenthe Poissonand the
Wignerones.As wediscussedabove(section2.4), the first oneis knownto be good for localizedstates
while the latter is expectedto appearin the limiting caseof completelyextendedchaoticstates.For our
purposewe may usethe following form of P(s) (seedetails in section4.1):

P(s) = As~e~°2~, (2.6.19)
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whereA, B and C arenormalizationconstantsandthe parameter/3 is relatedto the degreeof repulsion
of nearbylevels. Using (2.6.19),the integralin (2.6.18)can be estimatedas

Je~’P(s)ds—1 It~, t ~ t~. (2.6.20)

It follows from (2.6.20)that on sometime scaletE < t~~ I’ — I’D the decayof the correlationfunction
W~’~(M0)hasthe form

w’~(M0) 1 It
1~, t ~ . (2.6.21)

Here t~standsfor somecharacteristictime correspondingto the lower limit of I’ in (2.6.21).
As a result, we mayconcludethat on the scaletE < ~ I’ — I’D the typical behaviourof correlation

functionscan be representedas

R(t)(z~M
0)= C(zIM0) + W(t)(z~M0)II”~~, (2.6.22)

whereW(t)(z M0) is someoscillatingfunction andthetime-independentpart C(zI M0), in general,is not
equalto zero.

To check the prediction(2.6.22)we analysesomedataof numericalsimulations(see[B188]).First,
we considerthe correlationfunction F1 (t), which reflectsthe correlationsbetweenthe phasesU only.
The typical behaviourof F1 (t) as afunction of the dimensionlesstime t/ T is shownin fig. 10. Theinitial
decreaseof F1(t) appearsto be so sharpthat it is completelyinvisible. This fact correspondsto the

a
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Fig. 10. Timedependenceof F1(t) lsee (2.6.5)]for K = 5 andinitial state~i~(O)= 1)V’~+ cos2U.Theaveragingis performedover 10trajectoriesfor
close valuesof k aroundk = 10 with step i~k= 0.1; the numberof unperturbedstatesis N = 2048 (after IBI8SD.
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prediction of exponential decreaseon the shortesttime scale I’ ~ tE (we should recall that I’E is
approximatelyequalto one or two kicks for the parametersusedin the simulations).Another result,
clearly seenin fig. 10, is that thereis somenonvanishingvalue of (cos20) aroundwhich quite large
fluctuationsoccur. Fromnumericaldata a roughestimatecan be obtainedfor the constantterm of F1,
namely, F1—iIk.

Unlike F1, a differentbehaviouris found for the correlationfunction F2, eq. (2.6.5). This function
reflects the correlationsbetweenthe phases0 andthe momentump. It turns out that F2 increasesin
time, havingsomelimit as I’—* cc~Typical behaviourof F2 is presentedin fig. ii, wherefor convenience
the constantterm k/2 was subtractedfrom F2. To reducefluctuations,the averagingwas performed,
bothfor F1 andF2, overtencurveswith slightly differentvaluesof k. It is seenfrom the data[B188] that
after sometime I’> I’D — k

2 the function F
2 exhibits steady-statefluctuationsaroundsomevaluewhich

can be roughlyapproximatedby (F2)max = kI2+ 4. Here,the relativelysmall term/~stressesthat the
time-independentterm F1 hasto becompensatedby ~i0in the limit I’ —* cc~A roughcomparson of these
two terms, F2 andF1, showsthat the first one, F2, is about k

2 times larger than F
1, F21F1 — kI(iI

k) — k
2. It meansthat the most essentialrole in the suppressionof classicaldiffusion is playedby the

correlationsbetweenU andp.
It is interestingto note the quite unexpectedbehaviourof the correlationfunction F

2. First, for the
shortesttime scale, I’ < tE, it startsto decreasevery fast andthengrowsup to F2 — k. The rate of this
increasehasto be essentiallydependenton k, to provide the classicallimit, accordingto which F2 is
expectedto increaseless and lessslowly as k—s~cc.

It is of specialinterestto determinethe parameter/3 for F2 from the numericaldata. As is seen,this
parameteris relatedto the repulsionof the QE levels. Sucha relationseemsto be very importantfor
further investigations.The most interestingpeculiarity is that for repulsion(/3 >0) decayof correla-
tions is expectedto occur slightly faster than i/I’. Anotherintriguing conclusionof (2.6.6) is that two
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Fig. 11. Time dependenceof F
2(t) Isee (2.6.5)1for thesameparametersas in 11g. 10; for convenienceof comparison,the constanttermk12 was

subtracted(after 1B188P.
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different correlation functionshaveto canceleachother, on average,(sin2O)+ (k/2)F
2=0 as I’—,cc.

Moreover, for the time-independenttermsof thesecorrelations,the aboverelation hasto be exact if
the suppressionof diffusion is complete. This fact may be associatedwith the existenceof some
dynamicalintegral of the motion. The latter should be related,somehow,to the localizationlength1.

As follows from (2.6.1),quantumdiffusion is directly relatedto the characterof the time behaviour
of the correlationfunctions(2.6.5). This allows us to obtain, in the frameworkof our kicked rotator
model,an approximateanalyticalexpressionfor the dependenceof the meanenergyto describeboth
classicaldiffusion andthe quantumsuppressionof diffusion.

Using expression(2.6.22)and taking into accountthat at small times classicaldiffusion occurs,we
assumethe averageincreaseof the energyper stepcan be written in the form

— = A01(I’ + t*)l~ , (2.6.23)

whereI” is somecharacteristictime up to which AE, correspondsto classicaldiffusion. The numerical
data in fig. 12 present~1E,(in units t~E= h

2 ~E) versustime for the model(2.2.1).The constantA
0

in (2.6.23) can be found from the condition that ~E, correspondto the classical expression
= D~1(K)/(2T

2),where D~,(K)is determinedin (2.1.9); therefore,L~E~”k2/4. Integrating
(2.6.23)over time we obtain

= D~(K)~ (i - (1+ ~/I’*)~Y (2.6.24)

Expression(2.6.24)containstwo unknownparameters,/3 and I’*, one of which maybe found from a
comparisonof (2.6.24)with the expressionfor the energyof stationaryoscillations [CS86,CIS88] as
I’ —* cc,
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Fig. 12. Time dependenceof A~,[see(2.6.6)] for theparametersof fig. 10 with thesameaveraging(after [B188]).
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= D~1(K)/2T
4. (2.6.25)

This relationshipwas verified numerically in [CS86,CIS81] over a wide range of parameters.The
energyE representsthe time averagedenergyafter classicaldiffusion hasstoyped(t ~ I’D) and only
fluctuationsremain, due to the finite numberof excitedeigenstates.In fact, E is determinedby the
degreeof localizationof eigenfunctionsin the unperturbedbasisof the system(seediscussionin section
2.3). With accountof (2.6.25)one can write

- D~
1(K)( 1 2626

— 2T~ ~ [1 + T2I’/DCI(K)p)]P) ( . .

whereonly the unknownparameter/3 > 0 remains,which is determinedby the correlationsbetween
excited states.If we do not take into account repulsion[/3 = 0 in (2.6.19) and (2.6.22)] logarithmic
growth of the energyappears,which can be suppressedonly by the additional assumptionthat the
numberof perturbedstatesis finite (see[C83]).

To check the prediction (2.6.26) for the energygrowth, numericalexperimentswith the model
(2.1.1) havebeenmade[B188]in the rangeof the quantumparameter10< k~ 40 andfor a constant
classicalparameter(K = 5). It is convenientto write expression(2.6.26) in dimensionlessunits,

Y=2{1_ (l~/2~)P}’ Y=~~)~ X=D
2~)~ (2.6.27)

where Y is the dimensionlessenergyand X is the new dimensionlesstime. Typically, averagingfor
Y(X) was performedover ten close values of k to reduce the fluctuations(~k4 k). The result is
presentedin fig. 13, wherefor comparisonthreeanalyticalcalculationsof Y accordingto eq. (2.6.27)
are shown for threevalues of the degreeof repulsion /3 = 0.1, 0.2, 0.3. It is seenthat the function
(2.6.27)quite well describesthe numericaldata.

It shouldbe notedthat the fluctuationsfor the energyE, as a function of k areinevitabledue to the
strongsensitivity of the motion to the valueof T = K/k. It is known that evena slight changeof T can
leadto a noticeablechangein the E, behaviour(see,e.g.,[CFGV86I).Onereasonis thatT can beclose
to somerational value, for which quantumresonancetakesplace. In addition, the expansionof the
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Fig. 13. The energygrowth in the normalized variablesY andX [see(2.6.27)], for K = 5. The averagingis performedover 10 trajectorieswith
differentk around k = 10, 15, 20, 25, 30; as for k = 40, the only onetrajectoryhasbeen examined.The initial stateis ~t,f0) = 1 /\/~+cos20 with
N = 2048 [for k = 40 the initial stateis ~i~(0)= exp(iO),N = 8192].Thevaluesof Yarepresentedaccordingto expression(2.6.27)for threevaluesof
f3: (x) f3 = 0.3, (0) $ = 0.2, (+) f3 = 0.1. The straight line shows classicaldiffusion Y= X (after [B188]).
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initial statecl’0(0) in exactEFs is sensitiveto the valueof k andr. Nevertheless,the valuesof /3 doesnot
fluctuate very much (0.1~ /3 ~ 0.3) when k changesin the range 10~ k � 40. It is important to note
that the correspondenceof the numericaldata to (2.6.27) is also confirmed at large times, see an
examplein fig. 14.

It is now interestingto compareour analyticaldependence(2.6.26)for E, with other results.For
example,in [FGP87]the questionof the scalingbehaviourof E, is investigatedfor the casewhenthe
classicalparameterK is slightly above the global stability border (K ~ Kcr 1). This bordercorre-
spondsto the destructionof the last invariant curve that restrictsunboundeddiffusion in momentum
space(seesection2.1). In particular,somescalingwas found for the time I’*, which characterizesthe
crossoverfrom classicalto quantumbehavior of the energy. The statementis that as the quantum
parameter11 scalesto largervaluesthenthe crossovertime tK scalesas t’~ h’~’.For the energygrowth
it gives [FGP87]

E, = tD(h
1~t) (2.6.28)

whereD is somefunctionwhich dependson the quantity~ = h~’tonly [for fixed classicalparameterse,,~
and T in (2.2.1)]. Using a renormalizationgroup approach,the value y = 3 was found analytically.
Numericaldata[FGP87]for K 1.5 on the short time scale,whenthe deviationsof E~from theclassical
behaviourarenot very large,havebeentreatedas a confirmationof the analyticalprediction(2.6.28).
To compareour result with (2.6.28)we rewrite (2.6.26) in the form

E, = [D~
1(K)/2T

2]f(~)= ~s~I’f(~), (2.6.29)

wherethe classicalexpression~ (K)1(2T2) standsin front of somefunction f(~),

= ~ (i - (1 + ~=I)~ (2.6.30)
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Fig. 14. Energygrowthof thekickedrotatorfor largetime ç~,= 4800and theparametersK = 5 andk = 40; the initial stateis ~1i~(o)= exp(iO).The
straight line is classicaldiffusion (Y= X); the smoothcurve correspondsto (2.6.27)with /3 = 0.3 and D~

1= K12 (after [B188]).



350 F.M. Izrailev, Simplemodelsofquantum chaos:spectrumand eigenfunctions

which dependsonly on the parameter~,

2 2 22
TI’ — KI’ — Tilt

— D~1(K)— D~1(K)k
2— D~

1(K) (2.6.31)

This result is in apparentcontradictionwith [FGP87Ibecauseit gives a differentscaling,t~— h~It is
importantto notethat the samescaling(2.6.31)correspondsto the knownrelation(2.2.16)with a = 2
betweenthe characteristictime t~andthequantumparameterk (I’* — k

2 — seediscussionin section
2.2). Sincein the simulations[BI88] only the valueK = 5 hasbeenused,anadditionalcomparisoncan
be performed between(2.6.29) and the data of [FGP87] taking into account that the diffusion
coefficient D~

1(K)for K = 1.5 is determinedby the second term in expression(2.1.9) [D~1(K)=
0.3(K — Kcr)

3]. The analysisshowsthat evenin the region of incompleteclassicalchaos (K = 1.5) the
dependence(2.6.29)is in good correspondencewith thenumericaldata,giving /3 = 0.2 and/3 = 0.35for
the two most representativecasesgiven in [FGP87I.Therefore,the scaling I’’ — seemsto be true
over a wide rangeof K. From this point of view, the result of [FGP87]leadsto the problemof the
transition from one type of scaling,eq. (2.6.28),to another,eq. (2.6.31)whenpassingfrom K ~ 1 to
K~1.

3. Maximal quantum chaos and its statistical properties

3.1. Thequantumrotator model wiI’h a finite numberof states

In theprevioussectionsamodelwas discussedwhich hasrestrictedstatisticalpropertiesfor any finite
perturbation.In particular, the statisticsof the quasienergyspectrumturns out to be very close to
uncorrelatedstatisticswith a Poissoniandistribution for the spacingsbetweennearestlevels. Also, all
eigenfunctionsare generically localized in the unperturbedmomentumspaceof the system. It was
found thatclassicalchaosmanifestsitself only in a specialway, namely,in the randomcharacterof the
eigenfunctionson a scalelessthanthe localizationlengthandin the level repulsionof thoseeigenstates
which are significantly overlapping.Therefore,such a model cannotbe used to study either maximal
statisticalpropertiesof quantumdynamicalsystemsor the transition from one limit caseof regular
motion to anotherone with completelychaoticmotion. For this reasonwe passhereto a new model
which seemsto be richer in describingall interestingsituations.

This model correspondsto the standardmapping(2.1.4), which is now assumedto be on a torus,
ratherthanon a cylinder. Therefore,the phasespaceis nowrestrictedboth in phaseU and momentum
p. As is known [C79, LL83], the local propertiesof the classicalmodel(2.1.1) arethe samefor these
two models due to the periodicity of momentumspace[with period of 2IT/T for (2.1.4) or 2IT for
(2.1.5)1.Nevertheless,the global propertiesare different since the phasespacefor the model on the
torus is boundedin momentumresulting in the restrictionof diffusion in the caseof strong enough
perturbation(K> 1). To quantize the standardmappingon the torus we follow the approach[186,
CIS88, 1891 which is essentiallybasedon the conceptof quantumresonance(seesection2.5). Indeed,
the quantumresonancecondition appearswhen we require that the boundedmomentumspaceis
discreteandthe total numberN of statesis integer,

N = 2ITm
0/Th= 2ITm0IT. (3.1.1)
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Here2ITm0ITis the totalsize of phasespacein momentump with m0 beingthe numberof classicalcells
of period 2ITIT. It meansthat the momentumspaceis closed after m0 periodic phasecells of the
classical model (2.1.4). Comparing(3.1.1) with the quantumresonancecondition (2.2.14)we obtain
the relation m0 = 2rNIq. For convenience,in what follows we consider only odd values of q [see
(2.2.14)];therefore,N = q andm0 is an eveninteger.Here,we just note that to quantizethe classical
modelwith m0odd we needto usea slightly differentprocedurewhichrequiresevenvaluesof q. Then,
for quantumresonanceswith q an eveninteger,half of the eigenfunctions~‘(s) turn out to be periodic
in momentumspacewith periodN = q12, which is twice smallerthan q. It allows us to constructthe
matrix Unm of size N X N correspondingto odd valuesof m0. The classicallimit in suchmodelsmeans
k—> cc, r—* 0, K = kr = const.with the additional conditionsNT = const.andN—*cc~

Thus,accordingto the resultsof section2.5, the behaviorof the quantumrotatoron the toruscan be
describedby somefinite unitarymatrix Unm of dimensionN x N. For thekicked rotatoron the cylinder
this matrix is knownto dependon someparameter(Bloch number00) which is relatedto the boundary
conditionsfor the eigenfunctions[see(2.5.9)]. It is clear that in ournew model this parameterhasto be
chosenas °0= 0. In this caseall eigenfunctionsareperiodic in momentumwith periodN = q, resulting
in the periodicityof the dynamicsof the model underconsideration.Finally,ourmodelcan begiven by
the matrix [187]

Unm= eiTnS/4 ~ ~ ~ cos(2~1/N)e_
2l_m)~NeiTm2/4 , (3.1.2)

I = - N

1

where n, m = —N1,. . . , N1 and N = 2N1 + 1. Here r = 4ITrIN and the summationover 1 is shifted to
obtain the most symmetricform of Unm [comparewith (2.5.12)—(2.5.14)].

This procedureof quantizationof the standardmappingon the torus can be easily generalizedfor
two-dimensionalmappingsof the form

+1=p,+e0f(U~), O,~~={O,+Tp,~1}, f(0)——V’(O), (3.1.3)

with periodic potentialV(O +
2IT) = V(0). The specialcasef(O) = 0 and e~= lIT is well known as the

so-called“cat map” (see,e.g., [AA68, LL83]), which was, for the first time, quantizedandstudiedin
[HB8O].Recently,new resultshavebeenobtainedfor this model [R87a,FMR89]. In particular,it was
found that the behaviourof the quantumcat mapcan beexactly describedby the classicalmodel on a
discretegrid in phasespace.This remarkablepropertyis closely relatedto the linear characterof the
force f(0) and can be regardedas exceptional.As was shown in [BIK88], for the general caseof a
nonlinearfunction f(O) such a correspondenceseemsto be impossible.

The model (3.1.2) can be generalizedby introducingnonzerovaluesof the Bloch number00. In this
casethe symmetry of the systemunder considerationturns out to be dependenton 00. This very
importantfact stemsfrom the studyof the propertiesof the unitary matrix Unm. Indeed,for the kicked
rotator on the cylinder the evolutionoperatorU [see(2.2.3)] is invariant with respectto the change
O—* —o provided bothH

0 = — ~h
2a2Iao2andV(0) = cos0 havethe sameinvariantproperties[I1~(0)=

H
0(—0) and V(O)= V(—0)1. This implies the existenceof an additional integral, which is parity.

Correspondingly,the quasienergyfunctions~ (0) in the phaserepresentationhaveto be eitherevenor
odd [We(O)= ±p~(—O),see section2.2]. In the momentumrepresentationthis property hasthe form

= ±(p_~(e).It can be seen that such a symmetry of the eigenfunctionscorrespondsto the
symmetry
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Unm = U_n_rn (3.1.4)

of the infinite matrix in (2.2.10).The samesymmetrycan be shownto exist for the model(3.1.2) in the
caseof parity conservation.It is easyto obtainthat therelation(3.1.4)holdsonly for 0~= 0 or 00 = IT/N
[see(2.5.12)—(2.5.14)]and is violated for other values0~U0<2IT/N. Therefore, the model with a
finite numberof stateswith 00 ~ 0 can be regardedas somenew dynamicalsystemon the toruswhere
parity conservationmaybe broken by the perturbation[V(U)� V(—0)1.

Another generalizationof the model can be obtainedby modifying the unperturbedHamiltonian as

H0 = — ~h
2a2/8U2+ iyh alao , (3.1.5)

wherea new term is addedwhich is linear in the momentumj3 = —ill a/aU.This term maybe treatedas
a magneticfield with the correspondingstrengthparametery. Sincethe Hamiltonian(3.1.5)now is not
real but complex,this resultsin the absenceof the basisin which the eigenfunctionscan be represented
in real form. As is known, a systemwith a complexHamiltonianhasno time reversalinvariance.This
may not only affect the eigenfunctionsbut alsothe statisticsof the spectrum[P65,BFFMPW81]. As a
result, the generalizedquantumsystem is determinedby the unitary matrix

Unm = ~ exp[i(Tn2/4 — yTn)1 ~ exp[ik Cos(2IT1/N+ 00)1 exp[—2ITil(n — m) /N1
I = - N

1

xexp[—iU0(n — m)] exp[i(Tm
2/4 — yrm)I, (3.1.6)

whereboth parity conservationandthe time reversalinvariancecan be brokendependingon 00 and y.
It can be shown that the time reversalinvariancefor the model (3.1.6) correspondsto the relation

U,~= U_rn_n , (3.1.7)

which reflects an additionalsymmetry of the matrix elements[comparewith (3.1.4)1.
It shouldbe noted that the aboveapproachto obtaina modelwith a finite numberof statesis not a

simple truncationof the evolutionmatrix (2.2.3)which breaksunitarity (seediscussionin section2.2).
The procedureof constructionof the finite unitarymatrix (3.1.6)can be regardedas a new methodto
quantizenonlineartwo-dimensionalmappingsof the type(3.1.3). Otherapproacheswhich alsoleadto
finite unitary matricescan be found in [BBTV79, BB79, HB8O, BV87, BV891 (seealso referencesin
[E88]). Themost studiedmodelof this kind is the so-calledkicked top [FM86,HKS86,HKS87], which
representsa three-dimensionalquantum top subjectedto periodic pulses. The relevantdynamical
variablesare the three componentsof angularmomentum operatorJ Since the squaredangular
momentumis conserved,thereis a good quantumnumberj definedby J2 = j(j + 1). It allows one to
reducethe dynamicsto sometwo-dimensionalquantummap as in the aboveexample.It is clear that
the quantizationin suchmodelsis naturalprovided the numberof statesis given by N= 2j + 1.

Oneshould notethat the potentialrichnessof the model (3.1.6)is far from beingexhausted.As was
pointedout in [CIS88],this systemmay alsobe treatedasa model of conservativedynamics.Indeed,in
the classicallimit a two-dimensionalmappingof the type(3.1.3) is relatedto someconservativesystem
of two degreesof freedom(see,e.g., [LL83]). Thus,sucha mappingcan be usedto describethe local
dynamicson the energysurface.To someextent,this shouldbe true for the quantummodel(3.1.6)as
well.
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Our main interestin the next two sectionsis the questionof the maximalstatisticalpropertiesof the
model (3.1.6). Unlike the previousmodel (2.2.1)with an infinite numberof states,the model(3.1.6)is
expectedto show strongstatisticalpropertiesundersomeconditions.It is also of greatimportanceto
find the conditionsfor the appearanceof such properties.

3.2. Limiting statistics of I’he quasienergyspecI’rum

In this sectionweshall discussthe maximalstatisticalpropertiesof the quasienergyspectrumfor the
model (3.1.6). Unlike the kicked rotator model on a cylinder (2.2.1), we may expect now much
strongerchaoticpropertiesdueto the possibilityof full overlapfor all eigenstates.This was not possible
in the model (2.2.10) since all eigenstatesarelocalized in the unboundedmomentumspacefor any
finite value of the perturbationk. In view of the abovediscussiononecan assumethat the strongest
quantumchaosappearswhen the quantumparameterk is larger than the size of momentumspace,
k ~ N, provided the classicalchaos is also strong (K ~ 1). In this casethe evolution matrix Unrn j5
expected to be of a very complicatedstructure; therefore, it is natural to compareits statistical
propertieswith those of randomunitary matrices. As was mentionedin section 2.4, the statistical
propertiesof such matrices are well investigatedby random matrix theory (RMT) and oneof the
commonly usedquantitiesto characterizethe spectrumis the distribution P(s) of spacingsbetween
nearestquasienergylevelssituatedon a unit circle. This distributionis known to be closely relatedto
the underlying symmetry of the matrix. For example, for symmetric matrices (circular orthogonal
ensemble,COE) P(s) is approximatelydescribedby the Wigner surmise(2.4.1) with /3 = 1. Corre-
spondingly,for matriceswhich arenot restrictedby anysymmetries(circular unitaryensemble,CUE)
the repulsionparameteris /3 = 2. Coming back to our matrix (3.1.2) oneshould note that it hasa
symmetricform; therefore,the possiblemaximal repulsionof the quasienergylevels is linear (/3 = 1).

First numericalexperiments[184]with a model of the type (3.1.6) proved that with increasing
perturbationk ~ 1 (for strongclassicalchaos,K ~‘ 1) the distribution P(s) changesfrom Poisson-like
[see(2.4.3)] to the Wignerdistribution (2.4.1) with /3 = 1. A more detailedanalysisof P(s) depending
on the symmetry of the evolution matrix hasbeenperformedin [1861,wherethe model (3.1.6) was
studiedin the U-representation.As far as only irrational valuesT � 4ITr/Nhavebeenusedin [186],it is
doubtful whethera correspondingclassicalsystemcan be foundespeciallywith nonzero00 and y. For
this reason,such a generalizedmodel is meantas a generic quantummodel which can demonstrate
statisticalpropertiesundersomeconditions.We would againlike to stressthat all chaoticpropertiesof
thesemodelsare intrinsic in the sensethat thereareno randomparametersand the behaviouris only
determinedby two dynamicalparameters,one of which is classical while the other one is of a pure
quantumnature. From this point of view, our interestis not in the exact correspondenceto some
classicalmodel but in the investigationof statisticalpropertiesof the quantummodel dependingon
theseparameters.Since it wasfound that the generalpropertiesof the model (3.1.6)do not dependon
whetherthe values of T/

4IT are irrational or rational (if rIN is irreducible) we discussherethe main
resultsof [186]in the framework of our model (3.1.6).

First, we start with the symmetric case 00 = y = 0, which correspondsto the space reflection
invariance of the system [H

0(0) = H0(—0) and V(0) = V(—0)}. As was noted, in this casethe
quasienergyfunctions PE(

0) haveto be eitherevenor odd, PE(O)= ±up
8(—0). Thismeansthat thereare

two setsof quasienergieswhich areindependentof eachother. Hence,the quasienergyspectrumshould.
be treatedindependentlyfor even-parityand odd-paritystates.Extensivenumericaldata haveshown
that the distribution P(s) is well describedby the Wigner distribution (2.4.1) with /3 = 1. The
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correspondenceof the datato this analyticalexpressionis confirmedby usingthe statisticalx2approach
(see [186]). To improve the statistical significance NG matrices Unm have beenused with slightly
different parametersk. Becauseof the strongsensitivity of the quasienergylevelsto small changesin
the parameterk (with step~tk4 k), thesesequencesof levelscan beregardedas mutually independent.
Also, the distributionsP(s) for evenand odd eigenfunctionshavebeensummed.As a result, the total
numberM of spacingsin [186]was quite large(M = 1990 with N = 199) to assertgood correspondence
to the RMT prediction. In this simulationtheextremelylargevalue k=20000was takenas a limit case
of the strongestperturbation(the classicalparameteris also very large (K k), but this is not very

importantsincefor K ~ 5 the result is not sensitiveto the valueof K). As was saidabove,in thiscase
the model(3.1.6) is not only spacereflection invariant but time reversalinvariant as well. Correspond-
ingly, the matrix Unm turns out to be symmetricabout two main diagonals[see(3.1.4) and (3.1.7)],
which reducesthe totalnumberof independentmatrix elementsby a factorof 1/4. It meansthat each
setof eigenfunctions(odd andevenparity) are describedby someunitary matricesof size N/2 x N/2
which shouldbe symmetric.This makesclear why the distribution P(s) correspondsto /3 = 1.

The distributionP(s)with linear repulsionhasbeenfoundto appearalsowhenonly the unperturbed
motion is space reflection invariant, H

0(0) = H0(—0) and V(0)~ V(—0). In the model (3.1.6) it
correspondsto the values 00 ~ 0 or IT/N (with y = 0); this breaksthe parity (3.1.4) but the system
remainstimereversalinvariant.Accordingto thecondition(3.1.7)the matrix Unmhalvesthe numberof
independentelements and, therefore,can be representedin symmetric form. Again, this case is
expectedto correspondto a circular orthogonalensemble(COE). Indeed,the numericaldata [186]
showedthe sameWignerdependencefor P(s) with /3 = 1.

The most interestingresult hasbeen obtainedfor the caseof H0(0) ~ H0(—0) but V(0) = V(—0)
[00= 0 and y ~ 0 in the model (3.1.6)]. It was unexpectedlyfound that P(s) again correspondsto
(2.4.1)with /3 = 1. This result is in clearcontradictionwith Dyson’sprediction,which claimsthat in the
caseof brokentime reversalinvariancesuchsystemswith very complexbehaviourshouldbe described
by the circular unitary ensemble(CUE) with /3 = 2 for P(s). Nevertheless,our model turnsout still to
havesomeadditionalsymmetry,which is clearlyseenfrom the structureof Unm~Indeed,in spiteof the
brokenparity in the unperturbedpart of the Hamiltonian (H0 = — ~Il2 a

2/ao2+ iyh a/aU) due to the
additional linear term in momentum,somesymmetry of the form

Unm = U~
5, (3.2.1)

remains.Then againthe numberof independentelementsis twice lessthanin the caseof CUE. Suchan
effect has beenfound also for some autonomousmodels [SV85, SV85a] where P(s) appearedto
correspondto /3 = 1. In the generalcasethisresulthasbeenexplainedin [RB86, BR86], wherea theory
was developedbasedon the existenceof a specialtypeof symmetrynot takeninto accountin Dyson’s
approach.We observethe appearanceof this symmetry (so-calledantiunitarysymmetry)in our model
(3.1.6) for 00 = 0 and y ~ 0. The physicalmeaningof this symmetryis theconservationof TP invariance
for the systemunder the transformationt—* — I’ togetherwith 0 —+ —0.

Finally, for the model in which the symmetriesin both H0 and V arebroken [II~(0) ~ H0(—0) and
V(0) ~ V(—O), or 00 ~ 0, inN and y ~ 0], a distribution P(s) is obtainedwith quadratic(/3 = 2)
repulsion(seefig. 15). In thiscaseno additionalsymmetriesexist andthe matrix Unm is of generalform
with N x N independentcomplexmatrix elements.

The aboveresultsshowthatthe maximalstatisticalpropertiesof the quasienergyspectrumarewell
describedby randommatrix theory.This fact is far from trivial becauseourmodel(3.1.6) is not random
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Fig. 15. Distribution P(s) for the model (3.1.6); s is the distancebetweenthe nearesteigenvaluesa. on the Unit circle; 4 is the meanspacing;
= 8 x 10~y = iW~,r = 1 iV~,k = 20000,N= 199, M = N NG= 1990. The smoothcurvegivestheanalyticaldependence(2.4.1) with /3 = 2;

thenumericaldatashow quite good correspondence~ = 18.9 with P~,= 65% confidencelevel) (after 1186]).

and only when both K andk are large enough do the spectral characteristics[at leastthe spacing
distributionP(s)] appearto bethe sameasfor randomunitarymatrices.Oneof the importantquestions
is to find the conditions under which such propertiesappear. As was noted, the values of the
parametersK and k used in [186]were very large. Now our interestis to find a parameterwhich
characterizesthe proximity of our model to the limit caseof a randommatrix. As a relatedphysical
parameteronecan take the parameterA which was introducedin section2.4,

A = l,,IN= k2I4N, (3.2.2)

which is the ratio of the localizationlength1,~to the size of thesystemin momentump. Let usnotethat
1 is determinedfor the eigenstatesin the model with infinite momentumspace;therefore,for the
model with boundedmomentumspaceit has the senseof a localization length only when 1,,. 4 N.
Accordingto our approach,this parametershowsthat in the caseof largeA ~ 1 onemayexpectthat all
eigenfunctionsfully overlapin the momentumspaceof the model(3.1.6). This fact seemsto be most
importantfor the appearanceof strongstatisticalproperties.Of course,it is alsoassumed,hereandin
the following, that the conditionof strongclassicalchaosholds (K ~‘ 1).

Indeed,numericaldatashow[186,187, CIS88} that for A ~‘ 1 the spacingdistributionP(s) is closeto
the Wignerdistribution. A typical exampleis givenin fig. 16 [187],wherethe distributionP(s) hasbeen
obtainedfor the model(3.1.6) of size N = 199with K 11.4 andk= 60. The symmetricalcaseis used,

00 = 0 and y = 0, with the resonantvalueT = l2inIN. The histogramis obtainedby the sameprocedure
asdescribedabove(by summingover a numberof differenthistogramsP(s)with slightly differentk for
odd-andeven-paritystates).The correspondenceof thedatato the theoreticaldependence(2.4.1)with
M = 995 is quite good (the x2 value for 24 subintervalsis x~

4 20.1, with a high confidencelevel,

30%). The valueof A is A 6.5 providedthe localizationlengthis found in accordancewith the
classicalrelation (2.1.9).Let us notethat here1,,, shouldbecomparedwith N1 = (N — 1)/2, not with N,
becauseof the symmetry aboutn = 0 (seefig. 4).
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Fig. 16. Distribution P(s) for the model (3.1.6) with 00 = = 0, T = l2irIN, K = 11.4, k= 60, ~k = 1.0, N = 199, N
1 = 99, NG= 5. The total

numberof eigenvaluesis equalto M = 990; herethe meanspacingis equal 4 = I IN1 dueto parity conservation.The x
2 value for /3 = 1 in relation

(2.4.1) givesx~
4= 20.1 with =30% confidencelevel (after [187]).

With decreasingA the distributionP(s) starts to deviatefrom the Wigner law and approachesthe
Poissondependence.Accordingto the numericaldata, valuesof A = 5—10 seemto be critical for the
closenessof P(s) to the limiting form. With this parameterA it is possibleto predictthe appearanceof
strongstatisticalproperties.The importanceof A is confirmed by recentsimulations[FM88] for the
model(3.1.6) with differentN. The datashowedthe existenceof two extremeregimesfor the spacing
distribution P(s), the Poissonand Wigner laws. However, it turnedout to be very difficult to analyse
the result without the parameterA indicating under which conditionsone may expectthe Wigner
distribution (seethe discussionof thesedatain [FFGP88,FM88a]).

Recently [S89a]the model (3.1.6) was generalizedby assumingthat the particle (rotator) has
half-integer spin. Therefore, the unitary matrix Unrn appearsto be of symplectic form, with total
numberof matrix elements2N x 2N. As is knownfrom RMT, the spacingdistributionP(s) for unitary
symplecticrandommatricesshouldbe of the form (2.4.1)with quarticrepulsionbetweenneighbouring
levels (/3 = 4). Therefore,such a distribution is also expectedin this half-integer spin model. The
numericalsimulation [S89a]confirmed this prediction.

To concludethis section,it should be mentionedthat thereare similar resultswith the kicked top
model [KSH87, SDKHB88], for which the distribution P(s) of the quasienergylevel spacingsalso
manifestsall theselimiting types of distribution with /3 = 1, 2, 4 dependingon the symmetry of the
model. Also, thereare manyresultsconcerningautonomoussystemswherethe statisticsof the energy
spectrumwas thoroughlyinvestigated(see,e.g., the reviews [E88,E88a]).

3.3. Chaoticstructureof the quasienergyeigenfunctions

Unlike the spectralstatistics,little is known aboutthe structureof the eigenfunctionsfor quantum
systemswhich arestrongly chaoticin the classicallimit. As we could see,for the kicked rotator on a
cylinder (2.2.1) the only moreor lessrigorousresultsarethe exponentiallocalizationof all eigenfunc-
tions q,0(r) as Inj—~cc (seesection2.3) andan estimateof the averagelocalizationlength1. As for the
structureof the eigenfunctionson a scalelessthan1, numerousdatashowthatit seemsto be chaotic.
Nevertheless,up to now, thereare no clear resultson this subject.
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The abovemodel (3.1.6) with a finite number of statesappearsto be more suitable to studythe
structureof the eigenfunctions(EF) as a function of the parametersof the system.This is relatedto the
possibilityof investigatingthe full transitionfrom localizedstatesto maximalquantumchaos,for K ~ 1
andA ~ 1. Fromthe point of view of theEF propertiesthe latterconditions(for nonresonantvaluesof

meanthatall EFs arecompletelydelocalized(extended)in the boundedmomentumspaceof the
systemprovidedstrongclassicalchaosoccursin the correspondingclassicalmodel. This caseis treated
as a limiting one with the expectationof maximalstatisticalpropertiesfor the EFs.The only rigorous
statementfor this limiting caseis Shnirelman’stheorem[S74](seealso [B77,V79]), which claims that
the eigenfunctionsshould be ergodicin the whole phasespaceof the systemwhen the corresponding
classicalsystemis chaotic.By the ergodicityfor quantumsystemswe meanthat thereexists only one
integral of the motion, the energy,and the EFs in the Wigner representationuniformly fill an energy
bandof finite width correspondingto the energysurfacein the classicallimit (seethe reviews[P84,E88,
E88a1). Also, thereis someconjectureabout the Gaussiancharacterof fluctuationsfor the eigenfunc-
tion components[B77]. There are also a numberof paperswherethesepropertiesare discussedfor
autonomoussystems(see, e.g., [BGR82, SG84, MK88] and the review [SH84]), but as for the
time-periodicmodels,the studyof the statisticalpropertiesof quasienergyeigenfunctionsis still at the
beginning.

In this sectionwe presentthe main results concerningthe structureof the eigenfunctionsfor the
model (3.1.6) in the limiting case,for K ~‘ 1 andA~ 1, when the statisticsof the spectrumshowsvery
nice correspondenceto the predictionsof RMT (see previoussection).A typical exampleof an EF
undersuchconditionsis presentedin fig. 17, wherethe probability w~= ~(e)~

2 of the EFwith some
quasienergye is plottedin the unperturbedbasisn. First, we discussthe data concerningthe ergodicity
of the EF.

Before we passto the data, one should note that thereis the delicatequestionabout the basis in
which we studythe EF structure.It is clear that thereexist basesin which the eigenfunctionsarevery
well localized for anyvaluesof the parameters(in our model, for any K and k). Indeed,thereis a
special basis where all EFs are completely localized, namely, the basis where the matrix Unrn j5
diagonal.Therefore, thereis somemeasurein N-dimensionalHubertspacecorrespondingto the bases
which arecloseto diagonal.It meansthat all resultsconcerningthe statisticalpropertiesof EFs,strictly
speaking,are not invariant with respectto the choiceof the basis.However, the answeris that this
measureis negligibly small in N-dimensionalspace;hence,it is very unlikely that we choosesuch a
specialbasisin advance;for this reasonwe can treatthesebasesas exceptionalones.We could recall
that the sameproblem appearsalso in random matrix theory, without any serious consequences.
Nevertheless,for physicalapplicationswe shouldbe carefulsince,actually,the choiceof the basisvery
often is associatedwith the basis in which the unperturbedHamiltonian hasa diagonalform. It means
that the basis in somecasesis physically definedand only for strongenoughperturbationdoesthis
choiceseemto be unimportant.

For convenience,only odd-parity eigenstatesço~were examinedin the model (3.1.6), namely,
ço~= — ço_~.Then, as was noted in the previous section, the total number of components is
N

1 = (N — 1)/2 (N is an odd integer). Underthe condition i,. ~ N1 it is naturalto expect (for K ~‘ 1)
that all probabilitiesWnrn = I~nrnI

2areequalon average[here Pflrn = ~Pn(Epn)with Em asthe quasienergy].
To be more precise,we define ergodicityby the relation

(Wnm)=1, (3.3.1)
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Fig. 17. Typical eigenfunctionin the unperturbedbasis for themodel (3.1.6) is shown for 0~= = 0, r = 81T/1201, k = 240, K=5, N
1 = 600,

N = 1201, .4 = k
21(4N)= 24. (a) On thevertical axis the probability w~= çs,j2 is plotted; (b) thesameas (a), on a logarithmicverticalscale.
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with the normalization condition E~’/.1Wnm = N1. The averaging in (3.3.1) is performed over the
elementsof the sameeigenfunctionor over different eigenfunctionsin the samematrix Unm~or over a
number of matrices Unrn with different parametersof the model (3.1.6). Such a definition is in
accordancewith the RMT (see, e.g., [BFFMPW81]). Other equivalentdefinitions of ergodicity are
discussedin [S74, B77, V79]. It should be noted that the matrix ~Pnmnot only representsthe
transformationfrom the unperturbedbasisto the basiswherethe matrix Unm is diagonal(the basisof
eigenfunctions)but the transformationback to the unperturbedbasisas well. This resultsfrom the fact
that the matrix çD~ is orthogonal.As a result, the relation E ~= Wnrn = N1 also holds;therefore,the
averagingover all elementsWnm automaticallygivesN~

2~m Wnm = 1. For this reason,the averagingin
(3.3.1) hasto be done over thoseelementswhich belongto the samematrix.

Somedataaresummarizedin table 1 for N = 51 (correspondingly,N
1 = 25) andT/

4IT = 4/N, m
0= 8.

The averagevalues (Wnm) were found in the following way. Eachof Nm matriceswith closevaluesof k
was divided into N0 equal squaresof size L x L. Then, for each of these squareswith index
i= 1, 2, . . . , N0 the sum

Si=~>.~Wnm (3.3.2)
L n.m

was computed.The numericaldatadiscoveredvery strongfluctuationsfor the elementWnm in the case
1,~~ N1. Therefore,as anindication of the ergodiccharacterof the EF, the decayof the dispersiono

2
can betakenfor the deviationof thesum S

1 from its averagevalue,whenthe numberof termsin (3.3.2)
is increased.The dispersionfor S1 is found in the usualway,

N0 1

u2(L)=i ~(S~-(S))
2, I(S)=— ~ Si. (3.3.3)

i~1

The quantity (3.3.3) hasbeenfound in the simulationfor threevaluesof L: for eachelementof the
matrix (L = 1) and for the sumsS

1 obtainedby dividing the matrix in such away that L = 5 andL = 12.
For each variant, in turn, two sorts of averaginghavebeendone: over the elementsof one matrix
(Nm = 1) andover the elementsof 20 matrices(Nm = 20) with differentk (with stepi~k4 k). Thedata
showthat the valuesof I(S) arecloseto 1, in accordancewith the ergodicityconjecture.In addition,the
valuesof if

2 for A> 1 appearto decayvery fastwith decreasingL.
A theoreticalvalue for cr2 can be found from the distribution of the elementsof a randommatrix

taking into account the correlationsbetweenthe matrix elementsdue to the finite size of the matrix

Table 1
Numericaldatafor the dispersion172. N=51, N

0 =25, i/4,r=4/N, m58

Dispersion 2

L=I 5 12
K k A N,,, N, = 625 25 4

19.7 20.0 5 — 1 1.74±0.14 0.038±0.014 0.0041±0.0010
—~20 =20 5 0.2 20 0.88 0.022 0.0028

5.0 5.0 0.25 — 1 2.80±0.58 0.215±0.057 0.0015±0.0012
=5.0 =5.0 0.25 0.1 20 1.18 0.044 0.005

theory (3.3.4): 1.77 0.05 0.0036
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(see,e.g., [BFFMPW81I),

(2) = 2(N1 — L)
2/L2(N

1 — 1)(N1 + 2). (3.3.4)

To derive this expression,a specific form of the fluctuationsfor the matrix elements‘Pnm of a unitary
randommatrixwas takeninto account.In this sense,comparisonof (3.3.4) with the numericaldatafor
~ allows oneto obtainsomeinformationaboutboth the ergodicityandthe characterof thefluctuations

for ço~,,,.
Let us first discussthe caseof largek, k = 20, whenthe localization length l,~= 130 is muchlarger

thanthe maximaldimensionN1 of the EF. Fromtable 1 it is seenthat the dispersionu
2 for onematrix

(Nm = 1) is in good agreementwith the expectedvalue(3.3.4). The meansquaredvaluegiven in table1
is obtainedfrom 20 different matriceswith closek (see the line with Nm = 20). At the sametime, the
averagingover 20 matrices(Nm = 20) doesnot give the expecteddecrease(by a factorof 20) compared
with the averagingonly over onematrix. This maymeanthat the changein theparameterk is not large
enoughto makethe eigenfunctionsof the differentmatricescompletelyindependent.

For comparison,now we discussthe oppositecase,when 1,~is much less thanN
1 (two bottomlines in

table 1). It is seenthat the nonergodiccharacterof the EFs found for Nm = 1 is alsoconfirmed by the
datafor L = 1 and L = 5 [all valuesof if

2 are larger thanthe theoreticalones,(~2)T1.Meanwhile, one
shouldnotethe anomalous(small) valueof o~2for L = 12. This resultcan beexplainedasfollows. As is
seen,the localization lengthl,~is of thesameorderasthe size L overwhich the averagingis performed.
This means that some specific EF may be essentially concentratedwithin the averaging interval.
Correspondingly,in the otherintervalstherearemany small valuesof Wnm~which resultsin additional
correlationsbetweenthe sumsS,. On the whole, the data for A = 0.25 indicatethat thereis a strong
deviationfrom the ergodiccharacterof the EFin comparisonwith A = 5. The clearestevidencefor this
is given by the dispersionfound from the averagingover blocks of size L = 5.

A moreinterestingquestionconcernsthe typeof fluctuationsof the componentsof the EF, ‘Pnm The
Gaussianform of the fluctuations,in general,hasbeenanalysedin severalpapers[B77,BGR82,SG84,
MK881 andseemsto be the strongestchaoticproperty of the eigenfunctions.Herewe discusssomeof
the results [C1S88]for the model (3.1.6).

Becausethe matrix Unm for 00 = 0 and y = 0 is symmetric,the real and imaginary parts of q~n(r)

coincide. Hence,it is sufficient to study only the realpart of the EF. For this, it is convenientin a
numericalsimulation to passfrom the matrix Unm to its real part, Re(Unrn),whose EFs are the real
parts of the EFs of tp~(r). This property is dueto the symmetryandunitarity of our matrix Unm~Also,
only odd-parityEFs areconsidered,for which the maximaldimensionin N-dimensionalHilbert spaceis
N

1, not N. A typical resultfor the caseof completelydelocalized(A ~‘ 1) andchaotic(K 2~l) statesis
shownin fig. 18, wherethe histogramof the componentsof the EF in the unperturbed(k = 0) basisis
given. To improve the statistics,NG matricesof size N havebeenconsideredfor differentvaluesof k
(with stepz~k4 k). The total numberof ço~componentsis equalto M = NG . N1 . N~= 12500.

At first glance,we mayconcludethat the data correspondto a Gaussiandistribution,

w(co~)= \/~

7~in e~~hI2, (3.3.5)

assumingergodicity, (~)= 1 /N
1 and (~)= 0. Nevertheless,this conclusionis wrong since the x

2
valuepointsto an extremelybadcorrespondenceto aGaussianlaw. Indeed,x~

8= 98 (for 38 intervals),
whichgives a negligible confidencelevel <10_6.Hence,in spiteof the Gaussian-likeshapeof w(~,1),the
fluctuationsare certainty not Gaussian.
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Fig. 18. Distribution of thecomponents~,, of theEF for the model(3.1.6) with N51, NG 20, ~ 16ir/N, K5, ~k’0.1, ~ 130, A~=5.2.
Curve II is the Gaussiandistribution(3.3.5),curve I is the distribution (3.3.6) with N

1 = 25; hereq~= N1~r~,M = N~. NG.

The explanation of this surprising disagreementrelies upon the finite dimension, N1, of the
eigenfunctions.As a result, ço~fluctuationsarestrictly boundedby the conditionq,~~ 1; therefore,an
exactGaussiandistributionappearsonly in the limit N1 —~cc In the spirit of RMT, insteadof (3.3.5)we
should assumethat the EFs areto be invariant under rotation of the N1-dimensionalbasis.Then the
distribution takesthe form [BFFMPW81]

F(N1I2) 2 (N1-3)/2
WN((Pn) v’~F((N,— 1) /2) (1 — ‘Pn) , (3.3.6)

whereF is the gammafunction. This distribution is also shown in fig. 18 (curve I), which looks very
similar to the Gaussiandistribution (3.3.5). However, the x

2 criterion (x~
8= 56 with 3% confidence

level) clearly indicatesamuch betteragreementof the numericaldatawith (3.3.6).This meansthat the
‘Pn fluctuationsare the same as those predictedby random matrix theory. With increasingN the
deviation of wN1((pfl) from a Gaussiandistribution decreases(seefig. 19), in agreementwith (3.3.6).
Universality of the eigenvectorstatisticshasrecentlybeen found also for the kicked top [KMH88].

The aboveresultis quite instructivefrom the point of view of a quantitativecomparisonof numerical
datawith analyticalpredictions.As we could see,the x

2 approachturns out to bevery useful in such
situations.It is interestingto note that the useof the x2 value allows one to determinethe effective
dimensionN

1 of the EF. As numericaldatashow,whenthe parameterN1 in (3.3.6) is changed,the x
2

value discoversthe minimum exactlyfor the actual maximum value N
1 = (N — 1) /2.

An additional check of the distribution (3.3.6) consistsof the calculation of the momentsm,~,
normalizedto unity in the limit of a Gaussiandistribution. For the parametersof fig. 16 the threefirst
evenmomentsm2, m4 andm6 are

(mr) = (~)=0.999, if2 =0.012,

(mr) = (~)=0.888, O~4=0.030, (3.3.7)

(m~)=(ç~)=0.703,cT60.068.
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Fig. 19. The sameasin fig. 18 for theparametersof fig. 17. Comparisonof thedatawith theGaussiandistribution(3.3.5),curveII, givesx~
1= 56.7

with P,, =36% confidencelevel; correspondingly,for the distribution(3.3.6), x~8= 50.0 with P, =20%.

The meansquaredvalues~k’ which are alsogiven, werefound by averagingover20 differentmatrices
U,im~Since somecorrelationsmay existbetweenthe different Unm~the dispersionfor the means,in
general,is not equalto o~k/\/~Ji.Nevertheless,if oneassumesthat the meandeviationis of the orderof

~k, then it is seen that the differencesof (mr’) and (mr’) from 1.0 are not accidental. The
theoreticalvaluesfor m~can be found from (3.3.6),

m2=1, m4=N1/(2+N1)=0.926, m6= (1+2/N1X1+4/N1)=0.798. (3.3.8)

Thesedata alsoprove that the deviationsfrom the Gaussiandistributionarein agreementwith random
matrix theory.

All aboveresultsdiscussedin sections3.2 and3.3 give strongevidencethat our dynamicalmodel
shows in some limit statistical propertieswhich are known for random matrices. One interesting
conclusionis that the matrix Unm can be treatedas pseudorandom,dependingonly on two parameters,
K andk. Therefore,we havesomeapproachto constructpseudorandomunitary matricesof different
symmetries.This might be usefulin some applications.

A seriousquestionariseswhencomparingtheseresultswith thoseknownfor autonomoussystems.It
was found [H84, STB84, CB85, CH88] that the eigenfunctionsin somequantummodels(for example,
in the billiard model)haveso-called“scars”,which seemsto be in contradictionwith the conjectureof
the randomcharacterof the EFs in the classicallimit. Thesescarsappearfor someeigenfunctionsin the
coherentstaterepresentation(or in the Wignerrepresentation)in the form of increaseddensityin the
regionsof phasespacewhereunstableperiodic trajectoriesof low periodsaresituated.This propertyof
EFs in the semiclassicallimit seemsto be genericfor many autonomousmodels (see,e.g.,the review
[G89]). Now it is understoodthatthis effect is not in contradictionto Shnirelman’stheorem,sincethis
theorem proves the ergodicity of the EF in integral form. This meansthat an increaseddensity is
allowedin somenarrowregionsof phasespaceof size -=11. Sincethethicknessof thesescarsappearsto
be proportional to 11, it is clear that after averagingover the energysurface the scarsdisappear.
However, the structureof the EFs in the coherentstaterepresentationcannotbe treatedas random
sincethe regionswith increaseddensityare well predictedfrom the considerationof periodic orbits of
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the correspondingclassicalsystem.Again, it shouldbe notedthat only stronglychaoticmodelsarehere
discussed,without significant stableregionsin the classicalphasespace.

Recently,new resultshaveappeared[BV89] concerningsomequantummaps,wherethe scarswere
alsofound. Thus,the quasienergyeigenfunctionsseemto havethe samescarproperties.This posesthe
very interestingquestionwhetherthecorrelationscausedby the existenceof thesescarscan bedetected
in the distributionw(p~)or if theyare “washedoff” whenpassingfrom the coherentstaterepresenta-
tion to the 0-representation.To get the answerto this question,moredetailedsimulationsareneeded.

4. Statistical properties of quantum chaos in the presenceof localization

4.1. Intermediatestatisticsof the spectrumand Dyson’s Coulombgas

Now wepassto thestudyof so-calledintermediatequantumchaos,by which the restrictedstatistical
propertiesof quantumsystemsaremeantwhile the correspondingclassicalmodel is stronglychaotic.As
we could see,for the modelwith a finite numberof states(3.1.6) this situationariseswhenthe classical
parameterK is large (K ~ 5) but quantumlocalizationeffects suppressthe chaoticproperties.It was
shown above that the relevantparameterA for the predictionof such a situationis the ratio of the
averagelocalization length 1,,, to the total numberof states.In particular,the level spacingdistribution
P(s) in this caseappearsto be different from the limiting Wigner distribution (2.4.1) and approaches
the otherlimiting caseof uncorrelatedPoissonstatisticswhen A decreases.

Our conjectureis that the statisticsof the quasienergyspectracan be quantitativelyrelatedto the EF
structure.We should note that here we are discussingonly the relatively simple casewhen classical
chaosis strong; therefore,all effects essentiallydependonly on the degreeof localization, or on the
quantumparameterk. The generalsituation, when the classicalparameterK also affects the spectral
statistics(K s 1), is muchmoredifficult becausethe featuresof classicaldynamicsthenshouldbe taken
into account(see discussionin section5). For this reason,we restrict ourselvesonly to an analysisof
strong classicalchaos,whenK is fixed and large enough(K ~ 5).

To relate the level spacingdistribution to the degreeof localization, first we needsomeanalytical
descriptionof P(s). In the literatureone can find two analytical formulae in the descriptionof the
transition from Poissonto Wigner statistics(see,e.g., the reviews [E88, E88a]), one of which is the
well-known Berry—Robnik dependence[BR84, R87]. This dependenceis commonly used to describe
the intermediatestatisticsof the spectrumfor the situationwhenthe correspondingclassicalsystemhas
significant regions of stable motion in phase space. The only parameterin the Berry—Robnik
dependenceis exactlythe ratio of the areawith stablemotion to that of chaoticmotion.It is clear that
for our case of strong classical chaos this formula is not valid. In some sense,the Berry—Robnik
expression deals with a situation which is opposite to our case. Namely, the deviation of the
Berry—Robnikdistributionfrom the limiting Wignerdistributionis entirelycausedby the classicaleffect
(the existenceof stable regions), while in our casethe intermediatestatisticsis of a pure quantum
nature (localization).

Another known expressionfor P(s) is the so-calledBrody distribution [B73], which is nothingbut
someapproximatedependencewith the only fitting parametera,

P(s) = Asa~ A = 1 + a, B = [F((2+ a)/(1+ ))]1+a (4.1.1)
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Here F is the gammafunction andthe repulsionparametera variesin the range0~ a � 1. Since this
formulahasno physicalbasis,it is uselessfor our purpose.In addition,thedependence(4.1.1) is wrong
for a> 1, which is important for us in view of applicationto modelsdiscovering strongerrepulsion
(/3 = 2, 4, see section3.2).

For this reason,we needsomenew approachin deriving the distribution P(s) (seealso [187,188]).
The proposedway to constructP(s) is associatedwith the theory of unitary randommatricesdeveloped
by Dyson [D62, P65]. The core of this theory is the physical model of a two-dimensionalgas of N
equally chargedparticles moving on the unit circle, with positions denotedby the angles 0~and
interactingvia a Coulombforce. Thepartition function of such a gaswith inversetemperature/3 = I / T
is

ZN(/3)= (21)N JedOl..dON, (4.1.2)

wherethe potentialenergyW is given by

W=— ~ ln~eIO/_eIO~. (4.1.3)
1�j<k~N

Then, the joint distribution of the anglesO~is

QNp(
01,02,. .. ,0~)= 1 [1 e~_eIO~. (4.1.4)

N(/3) 1~k<k~N

Herethe trivial part of the partitionfunction,whichdependson themomentum,is omitted. It turnsout

that for the specific values/3 = 1, 2 and4, expression(4.1.4) is exactlythe sameas the joint distribution
of the eigenphasesof the circular ensemblesof random matrices [with the normalization constant
Z~1(/3)].Therefore,by investigationof this physical model it is possible to deducesome quantities
describingthe statisticalpropertiesof randommatrices. In this way many resultshavebeenobtained
[D62, P65]; however,the exactanalyticalform of the spacingdistributionP(s) hasnot beenfounddue
to greatmathematicaldifficulties. Later, by making use of Mehta’s approach[P65,M67], P(s) was
foundnumerically to a greataccuracy(see alsorecentresults[DH9O]).Comparisonof the exact data
for P(s) with theWignersurmise(2.4.1)hasshownthat the latterdependenceis very closeto the exact
one and can be used in almost all real situations [D62J.

In Dyson’sapproachthe thermodynamicsof the Coulombgaswith the partition function (4.1.1)was
studiedfor any temperatureT= 1 1/3 but not only for the specific values /3 = 1, 2 and4. It was noted
that for intermediate/3 no analogywith matriceshasbeenfound. The main point of our conjectureis
the statementthat the abovediscussedintermediatequantumchaosto agood accuracycan be described
by the Coulomb gas model (4.1.1) with arbitrary /3 ~4. This allows us to obtain some analytical
expressionsby using the model (4.1.1). Unfortunately,such a characteristicof quantumchaosas the
level spacingdistributionappearsto be one of the mostcomplicated,from the point of view of deriving
analyticalestimates.As was mentioned,evenfor the specific values/3 = 1, 2 and4 it is questionableif
one can obtain appropriateanalyticalexpressions.However, it seemsto bepossibleto constructsome
approximateformulaeusing Dyson’s results. In particular,the limit caseof large spacingshasbeen
thoroughly investigatedby Dyson for any temperatureT = 1//3 and the asymptotic behaviour(for
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f3s ~ 1) was rigorously found [D62, P65, M67],

P(s)~exp[—~i~2/3s2— ~~(1 — ~/3)s]. (4.1.5)

This allows us to constructthe approximateexpressionfor P(s) [187,I88],*)

P,
3(s) = A(~i-rs)’~exp[—~/3ir

2s2— (B — ~,rr/3)s], (4.1.6)

wherethe two normalizationparameters,A and B, are determinedfrom the normalizationconditions

f Pa(s)ds= 1, f sPa(s)ds= 1, (4.1.7)

with s = 1 being the meandistancebetweenneighbouringlevels. The dependence(4.1.6) hasa form
that approximatelytakesinto accountthe rigorous asymptoticexpressionfor P(s) for s—~cc, namely,
the exponentialdecreaseexp(—~/31T2s2). Also, the behaviourof P(s) for small s41 correspondsto
repulsion—s, -=s2 and ..=54 for /3 = 1, 2 and 4, respectively.In addition, for /3 = 0 the dependenceis
exactly Poissonian.Comparisonof (4.1.6) with the expressionsgiven by the Wigner surmise (2.4.1),
namely,

= ~rrse’~2’~= A~(~rrs)e~~2’~, A7 = 1

P
2(s)= (32/i~

2)s2e4s2~= A~irs)2 e402~, A~= 8(2/ir)4= 1.314, (4.1.8)

P
4(s)= (64/9ir)

3s4e64s2/9~ Ar(~rrs)4e64s2I9~~, A~= 6(8/3~)~= 1.905,

showsa quite good correspondence.As an example,in fig. 20 expressions(4.1.6)and(4.1.8)areshown
for /3 = 1, togetherwith the numericaldata of RMT [P65,M67]. It is seenthat the deviationof the
approximateformula(4.1.6)doesnot exceed5% for the mostessentialregions = 1—2 (from a practical
pointof view). This meansthat the dependence(4.1.6)can be regardedas a good approximationif the
total numberN of levelsdoesnot exceedN = i04. A muchbettercorrespondenceoccursfor /3 = 2 (see
fig. 21), Also, for /3 = 4 expression(4.1.6) is very close to (4.1.8) with the sameaccuracy.Thus, we
may expect that for intermediatevalues0< /3 <4 the dependence(4.1.6) is good in describingthe
intermediatestatisticalpropertiesof the Coulombmodel (4.1.1). Figure22 showsthe dependenceof A
andB in (4.1.1)on /3 for the rangeof largestphysicalinterest.Thevaluesof A andB for /3 = 1, 2, 4 are
given in table2 togetherwith A”, eq. (4.1.8), andARMT (exactvalue, predictedby RMT [M67]). The
value of (2/i~)B

1)correspondsto Dyson’s asymptoticexpression(4.1.5).
An extensiveMonte Carlo simulation of the Coulomb gas model (4.1.1) was performedin [1S88,

SI9O] for /3 in the range0.1 </3 � 4.0. The thermodynamicalpropertiesof a gas with N particles(like
energyand specific heat)were found to be in good agreementwith Dyson’s theoreticalpredictions.
Also, the computationsof P(s) for the known cases/3 = 1, 2, 4 showedreasonableagreementwith
(4.1.6). The main data concernintermediatevaluesof /3, for which the actual distribution P(s) was
comparedwith the dependence(4.1.6). The comparisonwas done by minimizing the deviation(x

2
*1 Veryrecentlya similar expressionwith thesamepropertieswasfound by theauthor,which for /3 = 1, 2, 4 correspondsmuchbetterto thedata

of RMT than the Wignersurmise(2.4.1) (to be published).
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i~o P(s)

O~O!5hfh1!5I2.bOI2~5l~OI~
Fig. 20. Thelevel spacingdistributionP(s) for/I = 1. CurveI is theWignersurmise(2.4.1);circlesrepresentthenumericalresultof RMT; curveII
is the approximatedependence(4.1.6) (after [189]).

value)of P(s) from the experimentaldatawith the fitting parameter/3 = /
3hjsto• The datashow that it is

possibleto fit all experimentalspacingdistributionsover the whole rangeof physically interesting/3
valueswith sufficiently small deviationswhenusing the proposeddistribution (4.1.6).

The main result is presentedin fig. 23 for the dependenceof /3histo upon the inverse temperature

/3 /3therm As a good approximationI3histo I3therm holds andcan be usedfor practicalpurposesif the
exact 13 = /3therm is unknown, as is usually the case.Two deviationsfrom this simplerelation can be
noticedupon closeinspection.Oneis a slight underestimationof the true /3 when using /3hjsto for large
values of /3. The other is a slight deviation for small values of /3, which amountsto gaugingthe
experimentalresultsfor /3histo to find /3 with accuracy~/3 = 0.2. Thus, fig. 23 showsthat the proposed
spacingdistribution (4.1.6)can be usedover the whole rangeof physically relevant/3 values to obtain

~.o. P(s)

o./i.oL52.IoI2.5I3.~3.~

Fig. 21. The distributionP(s) for /3 = 2. Thetwo expressions(2.4.1) and (4.1.6)givea very similardependence(the discrepancyfor s= I doesnot
exceed0.7%) (after [1891).
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Fig. 22. Dependenceof theconstantsA (full line) and B (dashedline) of the spacingdistribution (4.1.6) upon/3 (after [s190j).

an approximationI3histo that describesthe physics behindthe spacingdistribution. It is interestingto
notethat it is alsopossibleto find anapproximationf3delta to the inversetemperature1 / T = /3 from the
spectralstiffness (measuredby 43 statistics)of the particle positions of the gas with the help of the
conjecture4~(L)-= /3_i ln(L) + const. (see [SI9O}).The approximation /3deIta is inferior to /3hjsto but
neverthelesscomparablein its deviationsfrom /3.

Before comparingthe proposedspacingdistribution (4.1.6)with the numericaldata for the model
(3.1.6) we shall discuss,in the next section,the structureof chaotic localizedeigenfunctions.This
structureis assumedto be closely relatedto the repulsionparameter/3 in (4.1.6).

4.2. Localizedchaotic eigenstates

Now we discussthe structureof EFs whenthe parameterk varieswhile classicalchaosis strongand
fixed (K = 5). Typical shapesof EFsaregivenin fig. 24, whereten randomlychosenEFs out of a total
numberN = 398 areplottedin the unperturbedbasis.For the convenienceof numericalcomputations,
a unitarymatrix U~mhasbeenusedwhichdescribesonly odd-paritystates(ç~,,= ~ This matrixcan

Table 2

/1 A A” ARMT (2I~r)B (2Iv~)BD

1 1.198 1.000 lirl.047 0.753 1.0
2 1.369 1.314 = 1.333 1.055 1.0
4 1.551 1.905 = 1.896 1.726 1.0
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Fig. 23. Relationbetween$0110’ obtainedfrom a minimum x’ fit of theexperimentalhistogram usingtheconjecturedspacingdistribution(4.1.6),
and /~lhorn, The barscorrespondto 1% confidencefitting (after [1S89,S190]).

be deducedin the sameway as the matrix (3.1.6), the only differencebeingthat the unperturbedbasis
is now takenin the form sin(nO),unlike (3.1.6), wherethe unperturbedbasisis exp(±inO).Therefore,
the even-paritystatescorrespondingto the basis cos(nO)areautomaticallydropped.This can be done
only whenthe model (3.1.6) hasparity conservation.In the sinerepresentationall componentsof the
EFs can be independent,comparedwith (3.1.6),wherewe get valuableinformationonly abouthalf of
the componentsof the EFs. The exact expressionof U~mfor 0~= 0 and y = 0 hasthe form [188,189]

2N-i- I

U~m= 2N + 1 e ~ {cos[(n’ — m’)21T1/(2N+ 1)1 — cos[(n’ + m’)21T11(2N+ 1)]}

x exp{—ik cos[2irl/(2N + 1)]) , (4.2.1)

wheren, m = 1, 2,. . . , N and N has the samesenseas N1 in (3.1.6). Herethe dimensionlessperiod is
r = 4lTr/(2N+ 1), in accordancewith the quantumresonanceconditionfor q = 2N + 1. The eigenvec-
tors p~(e)of the unitary matrix (4.2.1) representhalf of the componentsof the EFfor the full matrix
(3.1.6)with positive (or negative)valuesof the unperturbedmomentumn >0.

Two main featuresof the EFs can beeasilyobservedin fig. 24. The first is somesortof localization,
which meansthat a finite numberof unperturbedstates,lessthanN, are essentiallyoccupiedby each
EF (seefig. 24a). Unlike the commondefinition of the localizationlengthl~.from thedecayof tp~in the
tails (as n —~cc), in our model(3.1.6) theEF localizationis restrictedby thetotal numberof states,N.
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Fig. 24. Ten out of N = 398 eigenfunctionsin the unperturbedbasis, n, for the model (4.2.1) are shown.On the vertical axis the probability
w,, = I~,,p2;on thehorizontal axis thenumberof theunperturbedstate,n. The parametersare(a) K = 5, k = 10.6, r = 0.473,A =0.07; (b) K 5,
k~o’32.0,r0.158, A~o0.64.
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Fig. 25. The distribution of thecomponents~,, for theEFsof themodel (4.2.1) for theparametersof fig. 24b; X, =

Another featureis the moreor lessrandomcharacterof the amplitudesp~on a scalelessthanthe size
of the localization(especiallywhenthe localizationis large, seefig. 24b). Also, thereis clearevidence
of very strong fluctuations in the size of the localization both for A = 0.07 and A = 0.64. The latter
peculiarity seemsto reflect the specific form of the EF fluctuations; this will be discussedlater. To
comparewith the Gaussiandistributionof the componentsp~(seefigs. 18, 19) in the caseof complete
delocalization,the distribution of tp~is given in fig. 25 for the casewhen someof the EFs are not
completelyextended(the data correspondto thoseof fig. 24b). Sucha shapeof w(~~)with a deviation
from the Gaussiandistribution hasbeen alsoobservedin otherphysical models[SG84,MKZ88] and
seemsto be typical in the caseof quantumlocalization.

Onthe whole,numericaldatashowthat in the caseof strongclassicalchaosall EFs arecharacterized
by a finite size of localizationon which largefluctuationsof the EFcomponentsoccurs.In whatfollows
sucheigenstateswill be termed“localized chaoticeigenstates”.Then, the very importantproblemof
the quantitativedescriptionof such EFs arises.First, in spite of the strongfluctuationsfor the size of
the EF, it seemspossibleto introducesomequantity for the degreeof localization, which is restricted
by the maximalnumberof unperturbedstates.The secondquestionis how to describethe degreeof
chaosinsidean EF on the lengthof their localization. Also, it is of importanceto studythe fluctuation
propertiesof EFs. All thesequestionsappearalso in solid state physics in the investigationof the
localizationin a randompotential for finite samples.As in our caseof dynamicalchaos,for suchsolid
statemodelsthe parameterA playsa significant role in describingthe generalpropertiesof the systems.
The only (but principal) differenceis the differentmechanismsof the chaosin dynamicalandrandom
systems(see discussionin section2.3). It is reasonableto assumethat the chaotic propertiesof the
spectraandeigenfunctionsof dynamicalmodelsunderthe additionalconditionof strongclassicalchaos
are very close to thoseof pure randomsystems.For this reason,the studyof chaoticlocalizedEFs in
the model (3.1.6) [or (4.2.1)] seemsquite instructive.

We start now with the relatively simple questionof the definition of the localization length for
systemswith a finite numberof states(finite samples).It is desirableto definethelocalizationlength of
localizedchaoticstatesin such a way that it is equalto the total numberof statesN in the limit of
completelyextendedstates.Also, in suchan approachour definition is assumedto be relatedto the



F.M. Izrailev, Simplemodelsof quantumchaos: spectrumand eigenfunctions 371

chaoticstructureof the EFs.Accordingto [188,189], for eachN-dimensionaleigenvectorof the matrix
U~mwe introducethe information entropy

~N(u1,...,uN)~wfl~wfl, w~=u~, u~=Re~~,~u~=1, (4.2.2)

It is seenthat ‘~‘Nis essentiallythe logarithmof the numberof sitessignificantly populatedby the given
eigenstatep(s). If all sites were equally populated, then ~ would be ln N. If, instead,u,, were
exponentially localized around some site n0 with a localization length 1 4 14 N, then

= 1 + In 1 + 0(1/1). In general, the quantity exp(~’N)is proportional to the effective numberon
nonzerocomponentsu~of the EF and can be takenas somemeasureof localization.

This definition of localizationlength,1 = exp(~’N)hasalreadybeenusedbefore.Forexample,among
others,this quantity was studiedin the applicationto sometwo-dimensionalsolid statemodels[Y80].
For the quantumdynamicsof classicallychaoticsystemsthis definition hasbeenapplied, for the first
time, in [BS84,BS84a], where the quasienergyeigenfunctionsof the hydrogenatom under strong
microwaveperturbationwere investigated.

It is important to note that for chaotic statesthe above definition gives a value which is only
proportionalto the “actual” localization. For example,for the limiting caseof extendedchaoticstates
(A ~o 1) this definition gives =N/2 for the localizationlengthwhile the actualsize is N. Thus,to havea
morerigorouscorrespondence,we needsomefactorwhich takesinto accountthe chaoticstructureof
the EF. This factor was introducedin [188]in the following way. Let us considerthe limiting caseof
randommatrix statesof size N. As is known,thesestateshaveaninvariant distributionoverthe surface
of the N-sphereof radiusone,with the probability densityfor eachcomponentgiven by (3.3.6).As was
noted,in the large-Nlimit this distribution becomesGaussian,eq. (3.3.5), a signatureof the random
natureof the eigenvectors.The entropy (4.2.2)of such an eigenvectortakesthe averagevalue

~ a=4/exp(2—y)=0.96, (4.2.3)

where t,(i is the digammafunction and y is the Euler constant.Finally, we define the “entropy
localization length” if,

1H = Nexp(O~CN— ~‘) (4.2.4)

It is clear that with the normalization parameterexp(—~’~°’
2)this definition gives, on average,the

exactlimiting value ‘H = N for completelychaoticstates.
This quantity (4.2.4) has large fluctuations from one EF to another,in agreementwith numerous

observations,see, e.g., fig. 24. This remarkableproperty is well illustrated in fig. 26, where the
distributionof ‘H’ eq. (4.2.4), for an individual EF is given for three valuesof A, A 63, 0.3 and
7 x io~(k = 317, 21.1 and 3.3, respectively)with the horizontalscalebeingthe ratio of 1H to the total
numberof statesN. Here, the entropy localizationlength1H is computedfor the model(3.1.6)with u,,
beingthe real partof the EFonly, dueto the symmetryof the form Re ço~= Im ço~(seesection3.1). It
is seenthat the largestfluctuationscorrespondto the value (lH)1N 0.5. In this casethere are both
strongly localizedstates(l~4 N) andalmostextendedstates(lH = N). It is a very interestingproblem
to find anapproachto ananalyticalexplanationof thesefluctuations. This problemseemsto be closely
relatedto thatof the fluctuationsof the conductivityin finite sampleswith randompotentials(seealso
section4.4).
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Fig. 26. Threeexamplesof the distributionof the localizationlength l~of anEF for thematrix (4.2.1)with differentvaluesof k andthefixed value
K = 5. The right-hand sideof thedistribution(1,,,> N) is omitted.Herer = 4~rr/(2N+ 1) andtheotherparametersare(a) r = 1. k =317,A=63,
(IH)=0.95N, (b) r=15, k=21.1, .4=0.3. (lH)=0.5N; (c) r=95, k3.3, A7X10’, ~lH)~.o0.05N(after[1891).

To reducethe fluctuationswe passto a more appropriatequantity,namely, the meanlocalization
length d (‘H), which is computedby averagingover all eigenvectorsof the samematrix (or over an
ensembleof similar matrices),

GOE

(1H)=Nexp((Y{N)—~’N ). (4.2.5)

Here the averagingis performedfor the entropy ~N’ not for the localizationlength. Thereis another
possibility to definethe meanvalueof ‘H by averagingfor the localizationlength, (1H) = N(exp(~CN—

~GOE)) (see [187,188]). It turns out that the latter definition gives a slightly larger (about 5—10%)
value for the mean localization than (4.2.5). It is not clear which definition is more appropriate;
however, for our purposesof an approximatedescriptionit seemsnot important.The quantity (~~)
may be associatedwith the dimensionalityd ~ N of the subspaceof the N-dimensionalHilbert spacein
which all EFs arespanned.It turns out that, in spite of strong fluctuationsfor the localizationlength
(4.2.4), the averagequantity(~~)is quite good in describingthegeneralpropertiesof EFs.Indeed,the
dependenceof (I) on the quantumparameterk with the fixed value K = 5 hasa quite smoothform
(see fig. 27). It is interestingto comparethe entropy localization length (is) with the common
definition 1,, [see(2.3.9)] for small values 14 (is) 4N. Assuming an exponentialshapeof the EF,
~ we obtain from (4.2.4)

(‘H) = 21=e = 2.81~= 1.4k2, (4.2.6)
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Fig. 27. The mean entropylocalization length d = (lH) againstthequantum parameterk for fixed K = 5 is given. The inset showsthe region of
small lH ~ N with the linear dependence(IH) = 0.87k’, N = 398 (after [189]).

where1~is the localizationlength found from the stationarydistributionafterthe diffusion in the kicked
rotatormodel (2.2.1)hasstopped(seesection2.3). The insetin fig. 27 allows oneto estimatethe actual
proportionality, (1H) = 0.87k2,which can beusedto establishthe correspondencebetween(IH) and l~,,
in the region 1 ~ ‘H 4 N whereboth definitionsare valid. It should be noted that in (4.2.6) unknown
fluctuationsof I~are not takeninto account.Additional numericaldataarecertainlyneededto clarify
this problem.

It is important to note that our definition (4.2.4), (4.2.5) is in good agreementwith the common
meaningof localizationlengthas the effectvesize of the rangein which the main probability of the EF
in the given basis is concentrated.This is confirmed by the data in fig. 28, where the entropy
localizationlength (IH) is plottedagainst“the probability localizationlength”, i~.The latter hasbeen
computedas the numberof unperturbedstatescarryingmost (95%) of the normalizationof the EF.
Thereis agood correspondencebetweenthesetwo quantities,especiallywhenlargefluctuationsof the
individual EFs are takeninto account.

4.3. Relation betweenspectrumfluctuationsand localization

In the previoussectionsomecharacteristicof the degreeof localizationfor chaotic localizedstates
hasbeenintroduced.As is seenfrom numerousdata,when (lH) hasthemaximalvalueN, the spacing
distribution P(s) has the limiting form of the Wigner distribution (2.4.1) with the maximal repulsion
/3 = 1 (here, we discussthe symmetric caseonly, 0~= 0 and y = 0 in (3.1.6); other caseswill be
discussedlater). Also, when (1H) is muchsmallerthan N, the distributionP(s) approachesthe Poisson
law with vanishingrepulsion,/3 —+0. In [188,189] someconjecturehasbeen proposedaccordingto
which the relativelocalization of EFs is associatedwith the repulsionof quasienergystates.Namely,the
quantity/3 wasintroducedwhichis the ratio of the meanentropylocalizationlength to the totalnumber
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Fig. 28. Relationbetweenthemeanentropylocalizationlength d = (lH) andthemeanprobability localizationlength,l~.Thequantumparameterk
variesand theclassicaloneis fixed (K = 5). The size of thematrix is N = 398. The averagingis over all EFsof thesamematrix U,,,,(after [1891).

of states,

f3=(i~)IN. (4.3.1)

It is seenthat this quantity variesfrom zerofor completelylocalizedstatesto onefor fully extended
states.This conjectureallows one to relate, quantitatively, the statistical propertiesof spectrato the
chaoticstructureof eigenfunctions.Now we discusssomenumericaldata for the model(4.2.1) which
havebeengeneratedto checkthis conjecture.Again, we dealwith the situationcorrespondingto strong
classicalchaos,K ~ 1. This is assumedto providea chaoticstructureof the EFson a scalesmallerthan
the localization scale.

First, let us compareactualspacingdistributionsF(s) with the analyticaldependence(4.1.6), where
the parameter/3 is determinedby (4.3.1) through the meanlocalization length (4.2.5). For this, the
latter quantity (1H) IN and the spacingdistribution P(s) havebeen computedindependentlyover a
wide rangeof the quantumparameterk with fixed K = 5. To improve the statistics,the distributions
P(s) for a number(NG = 4) of matricesU~of size N = 398 havebeensummedwith slightly different
valuesof k(Ak4 k). As usual,the spacingss. — werefoundfrom theeigenvaluesA1 = exp(iE~,)
of the unitary matrix ~ Typical examplesof P(s) aregiven in fig. 29 for threevaluesof k. The full
lines correspondto the expression(4.1.6) with /3 computedin accordancewith the above definition
(4.3.1). Good agreementbetween the numerical data and (4.1.6) is clearly seen, which is also
supportedby the x

2 approach.Specifically, for A = 1.0, 0.28 and 0.05 (/3 = 0.76, 0.48 and 0.22,
respectively), the x2 values for 23 subintervalsare x~

3= 15.6, 27.2 and 28.5, which gives for the
confidencelevels 90%, 30% and 35%, respectively.

More dataare presentedin fig. 30, wherethe confidencelevelsfor differentvalues of /3 are shown
not only for /3 in (4.1.6) takenfrom the definition (4.3.1), but also for someotherrelations.Namely,
two differentexpressions,/3 = ((If) IN)

2 and /3 = ((if) IN)”2 havebeenexaminedto checkwhether
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smoothcurvesare relation(4.1.6) with /3 = dIN (d= (1,,)). Here s is measuredin units of themean spacing,LI = 1/N. (a) k = 39.8, /3 = 0.76,

= 15.6; (b) k=21.1, /3=0.48,x~, 27.2; (c) k 9.1, /30.22, x2
2

3 “28.5 (after [189]).
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confidence levelsare also shown(after [189]).

the linear dependence/3 = (1H) IN is the actualrelationbetween/3 and (‘H). It is seenfrom fig. 30 that
the linear relation can be easily distinguishedby the x2 approach.Therefore, the above conjecture
about the repulsionparameteras the ratio (4.3.1) is supportedby the data.

A moreaccuratecomparisonwas carriedout in thefollowing way. The expecteddependence(4.1.6)
hasbeenusedto fit all numericaldatafor P(s) by making use of the x2 approach.Then,the parameter
/3 found by the best fit was comparedwith the ratio (4.3.1). The result is given in fig. 31, wherethe
error bars for /3 correspondto the fitting of actual distributionsP(s) with 5% confidencelevel. As a
result, we can see that all the datafor P(s) are well describedby the linear relation /3 = (‘H) IN. It is
interestingto note that the spreadof /3 in fig. 31 decreaseswhen/3 —÷0.This meansthat the actuallevel
spacingdistributionbecomesmore sensitiveto the analyical form of F(s) when the repulsionis small
andF(s) approachesthe Poisson law.

All data discussedabove for intermediatestatisticswere obtainedfor not too small values of /3
(/3 ~ 0.2). It is of interestto studythe region of small /3. However,numericalsimulationsfor 13 4 1 are
quite difficult becauseit is necessaryto increasesignificantly the size of the matrix U~m.This is related
to the fact that the quantum parameterk hasto be large, k ~‘ 1, to provide a good semiclassical
condition. In otherwords, to treatEFs as randomon a scale~‘H’ the meanlocalization length (I~~)
needsto be large, (‘H) ~1.

It is very important that the definition of the repulsionparameteras the ratio of the meanentropy
localization lengthto the total numberof statescan be generalizedfor the modelswherethe maximal
valueof /3 is /~max= 2 or = 4. Thelatter casescorrespond,in thelimit of extendedchaoticstates,to
the CUE andCSE ensembles(seesection3.1). To generalizethemeaningof /3, we shouldnotethat the
maximal numberof independentelementsof eigenvectorsin the caseof unitary asymmetricrandom
matrices (CUE ensemble)is equal to 2N, due to the fact that the real and imaginary parts are
independent.Also, for symplecticmatriceseachEF has4N independentelements.

To extendour definition of /3 to other models,let us now discussthe model (3.1.6) with broken
parity conservationand broken time reversalinvariance(0~~ 0 and ‘y ~ 0). In this case,the unitary
matrix Unm has no symmetriesandits EFs havedifferent real andimaginaryparts.For this reason,the



F.M. Jzrailev,Simplemodelsof quantum chaos: spectrumand eigenfunctions 377

meanentropy localization length (if) for asymmetricmatricesU,~was definedin [189]in the same
way as in (4.3.l) with the only exceptionthatthe sumin (4.2.2) runs overboth the real andimaginary
partsof the EF. Correspondingly,the total numberof componentsin the sum (4.2.2) is equalto 2N,
with the normalization [189]

2N (Re~m)2,m=1,...,N,
w =1 w = (4.3.2)in 2

m=1 (Im~,,,
5), m=N+1,...,2N.

Therefore,the definition of (la) takesnow the form

(1~)=~exp((~)—~,ç),N—f3~N, (4.3.3)

where
13m standsfor the maximalvalueof /3 in the model accordingto its symmetry.As.a result, the

repulsionparameter/3 variesfor this model in the range0~ /3 <2. The most importantquestionwhich
arisesimmediatelyis whetherit is possibleto describethe level spacingdistribution F(s) by the same
expression(4.1.6) with /3 determinedfrom (4.3.3) and (4.3.1). A preliminary investigation[189]
indicatesthat the dependence(4.1.6) seemsto be still valid. One interestingconclusionthenfollows
from this result. Namely,it is clear that it is possibleto find a value of k suchthat it correspondsto
/3 1 while the maximumvalueof betais /3 = 2. Thismeansthatintermediatestatistics(with /3 = 1) in
such a model is expectedto be of the sameform as the limiting Wignerdistributionwhich occursin
modelswith /~max= 1 (GOE-like ensembles).A specialnumericalsimulation[189]hasbeenperformed
to clarify this question.The dataareshownin fig. 32 for the model (3.1.6)with /3 = 1, the total number
of spacingsbeing M = 1592. The full line gives the best fit for relation (4.1.6) while dashedlines
correspondto (4.1.6) with /3 giving a 1% confidencelevel according to the x2 approach.The fitting
values of /3 are in the range0.9~ /3 s1.2, with the bestvalue 1.06, while the value found from the
meanlocalizationlength (1H) is /3 = 1.15.

The aboveresultshowsthat the Wignerdistributionwith /3 = 1 can appearnot only as alimit caseof
random matrices but also in the intermediatesituationfor somesystemswith broken time reversal
invariance. However, this fact does not mean that all other statistical propertiesfor the chosen
parametersin the modelshouldalsocorrespondto the limit caseof unitary randommatriceswith /3 = 1.
For example,the ~ statisticshasbeencheckedfor thiscase,with a remarkableresult(seefig. 33). The
full line in this figure showsthe relationwhich arisesfor the CUE (or GUE) ensemble(see,e.g.. [P65,
M67]). This relation is known to appearalso in a numberof dynamicalmodelswith strongclassical
chaos,see,e.g., the reviews [E88,E88aj). Also, this behaviourholdsin the symmetricmodel (3.1.6)
with y = 00 = 0. From fig. 33 one can see that for relatively small L, L ~ 12, the data follow the
analyticalprediction(it shouldbe pointedout that for very smallL, L ‘= 1, this analyticaldependenceis
not correct).However, with increasingL the data start to deviatefrom the smooth analyticalcurve.
From the physical point of view, the absenceof a strongcorrespondencefor large L is not surprising.
Indeed,in general,the EFs are not fully extended;therefore,they do not completelyoverlap.This
resultsin the decayof correlationsfor largeL. For comparison,the straight line in fig. 33 corresponds
to uncorrelatedstatistics(Poissonlevel spacingdistribution). It is interestingto note that the deviation
of the numerical data for the 43 statisticsgoes in a direction which is oppositeto that known in
autonomoussystems.Namely, for the latter casethe numericaldata for large L areusuallybelowthe
theoreticalcurve;this effect is well explainedby Berry’s theory [B85a].



378 F.M. Jzrailev, Simplemodelsof quantumchaos: spectrumand eigenfunctions

C,.,

U., ‘ -

- ., , -

C’J

Q

Q

1.0 2.0 3.0

S

Fig. 32. Distribution F(s) for themodel (3.1.6) with nonzerovalues of 9~and y. The parameterswhichprovide intermediatestatisticswith )3 =

are: N = 404. r = 16,’r/N = 0.123, K =5, k= 40.7. Ten matricesU,,, havebeenexaminedwith different valuesof 0~and y.

Recently, the approachto determinethe meanentropy localizationlength (‘H) hasbeenappliedto
the generalizedkicked rotatormodel with spin 1/2 [S89a1.The unitarymatrix for this caseis simplectic,
resultingin 4Nelementsfor eachEF. Correspondingly,the definition of (1H) is modified to take into
accountthis peculiarity.

4.4. Scalingpropertiesof eigenfunctionsandspectra

In section4.2 a definition of the localization length ‘H has beenintroduced in such a way that it
appliesboth for localizedand completelydelocalizedeigenfunctions.The normalizationparameterin
(4.2.4) is chosento providethe correctlimit (IH) = N for fully extendedstatesby taking into account
the randomcharacterof EFs. In the otherlimit, for exponentiallylocalizedstates(1 “~ ‘H ~ N), the new
quantity ‘H is proportionalto the usualdefinition of localizationlength, ‘H = 5.6611,.It is interestingnow
to comparethe propertiesof 1F/ for our model(4.2.1)with someresultsknownin solid statephysicsfor
one-dimensionalmodelswith randompotentials.Indeed,aswas discussedabove,the kickedrotatorcan
be associatedwith some solid state model of the type (2.3.20) by making a special type of
transformationfrom t/j~ to u~.As a result, the model(2.3.20)hasbeenderived,which can betreatedas
some solid state model with real Hamiltonian determinedby the matrix elements Wr and c/I,,.

Correspondingly,all matrix elementsareassumedto be real, in contrastto the original model (2.2.10)
[or (4.2.1)]. Nevertheless,we may also regardour kicked rotatoras a solid statemodel, conjecturing



F.M. Izrailev, Simplemodelsof quantumchaos: spectrumand eigenfunctions 379

0

o , A

0

/ A

/ -

o

0

~1~
,...I ,5. 10. 15. 20. 25. 30.

L

Fig. 33. The LI, statisticsfor the parametersof fig. 32. The full curve is the theoreticalprediction of GOE for /3 = 1; the dashedstraight line
correspondsto uncorrelated(Poisson)statistics;squaresand trianglesare data for two matriceswith different valuesof O~and y.

that its statistical propertiesare of general form. In such an approach,the interaction between
neighbouring“atoms” is determinedby off-diagonalelementsU,,,,, with n ~ mandthe numberof atoms
involved in the direct interactionis given by thebandsize,which is approximatelyequalto =2k. Then,
we haveamodelin whichthe randomnessof the interactionis entirelyrelatedto theclassicalparameter
K, and the quantumparameterk determinesthe rangeof this interaction.Sincewe studyhereonly the
case with strong classical chaos,K ~‘ 1, the effective potential appearsto have strongly chaotic
properties.In view of this, we now briefly discusssomerecentnumericalresults[CGIS89],which may
be comparedwith thoseknown for tight-binding modelsof the solid state.

The conceptof localizationlengthin solid statephysicsis of greatimportancedueto its relevanceto
the conductivity. According to the well-known approach(see, e.g., [LR85, P86]), the localization
length in finite samplesis closely relatedto the residualconductanceof the samplesitself. Oneof the
most interestingresultsin this field is a scalingrelation of the localization length4N definedfor a finite
sample,to the localization length~ in the samesample whenN—÷ [P86],

~NIN=~~”(z), z=NI~,,. (4.4.1)

Here~N is definedby meansof thetransfermatrix formalism.It is a characteristiclengthof exponential
decayof EFs in a finite sampleof size N; therefore,~ ~ for N—~~.In the knownapproach[P86]
the aboveexpression(4.4.1)is equivalentto postulatingthe existenceof somefunction .~(z),whichcan
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be relatedto the scaling function g for the conductivity. Leaving apartthe problemof the relation
betweenthe localization length and the conductivity, we analysehere the possibility to relate this
scalingtheory to our model of the kicked rotatoron the torus.

Indeed,insteadof ~N we alsohavea definition of the localizationlength ‘H whichin the limit N -+ ~

is proportionalto ‘1~~The importantdifferencebetween~N and ‘H is that the latter is boundedby N,
unlike ~N’ which goesto infinity whenthe EF becomesa completelyextendedstate.Nevertheless,this
peculiarity seemsnot to be importantsinceit reflectsa specificchoice of normalization.As a result, in
our variablesa similar scalinglaw is assumed,with the form

/3 =f(D,,IN), D~=2i,, -= k2, /3 (‘H) IN, (4.4.2)

where the diffusion coefficient D,, standsinstead of I, due to expression(2.3.14). The important
differencewith (4.4.1) is that the scaling (4.4.1)was assumedto be valid only for stateswith a fixed
energy.Since in our caseall quasienergiesare determinedmodulo21T, thereis no smoothdependence
of the localizationlength ‘H on the quasienergy.In solid statemodelsthereis aparticulardependenceof

on the energycorrespondingto this state.For this reason,we use the averagelocalization length
(‘H), which is relatedto the parameter/3 (seeprevioussections).

In order to check this scaling behaviourfor /3, an extensivenumericalsimulation with the model
(4.2.1)hasbeenperformed[CGIS89].For this, the eigenfunctionsof the matrix ~ were computed
for several values of N and k in the ranges200 ~ N~ 860 and 1 < k<239. In all casesthe classical
parameterwas takenas K = 5, which impliesD,, = k212. Numericaldatafor /3 as a function of x k2IN
are shown in fig. 34, which also includes a magnification of the part correspondingto the localized
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Fig. 34. The parameter/3 versusthe variablex = k’IN for N = 400 (squares),N = 600 (triangles)andN = 800 (asterisks)is plotted for themodel
(4.2.1). In the inset amagnification of theregion of strong localization x 41 is shown.The dashedlines correspondto theanalytical expression
(4.2.6). The dotted curvegives the fit in the intermediateregionwhenpassingfrom localized to delocalizedstates.(After [CG1589].)
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states.In spite of very largefluctuationsof ‘H for individual EFs,all the data for /3 showa very good
scalingon average.To comparewith the localization length I,,, relation (4.2.6) is also given (dashed
line). It shouldbenoted that the deviationsfrom (4.2.6) for /3 4 1 havetwo explanations.First, relation
(4.2.6) is itself approximate,since it does not take into account the fluctuations of ‘H which are
unknown. Secondly,in the numericalsimulation the localizationlength ‘H decreases(l~—~1) when /3
approacheszero; therefore,the conditioni~,~‘ 1 breaksdown (seediscussionin section4.2).

Of special interest is the dependenceof /3 in the region where the assumptionof exponential
localization is no longer valid (/3 ~ 1). Until now, there is no analytical approachto describethis
dependencein the whole range0< /3 c1. Someattemptto fit the dependence/3(x) in the intermediate
region 0.5 ~ x <6.0hasbeenmadein [CGIS89],wherethe law /3 = 1 — 0.53(k2IN)~’2was found to be
in good agreementwith the numericaldata (see the dotted line in fig. 34). However, a theoretical
explanationfor such a dependencestill doesnot exist.

Anothervery importantregion,in view of the predictionof the scalingtheory for solid statemodels
(see[FPG89])is the region /3 ~ 1. To studythe characterof the approachof /3 to 1, it is convenientto
introducethe variables

ln[/3/(1 — /3)] in y, ln(k2IN) in x. ‘ (4.4.3)

Then, the asymptoticbehaviorof /3 can be seenmoreclearly in both its limits, /3 —~0 and/3 —÷ 1. The
datafor /3 closeto unity in the newvariables(4.4.3)areshown in fig. 35, where,in addition to the data
of fig. 34, additionalpointsaregiven, mainly for /3 < 1. Thesedataconfirmthe conjectureof the scaling
behaviour for /3, except, possibly, in a small region aroundx = 0.5. Here, the points have some
dispersion,showing a slight dependenceon N. The reasonfor such a strangebehaviouris not yet
understood.Onepossibleexplanationis the occurrencein this regionof achangein the typical shapeof
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Fig. 35. In y is plotted versuslnx [seeeqs. (4.4.3)] for themodel (4.2.1) with additionaldatacomparedto fig. 34. The sizeN of thematrix U
4,,,

varies in the range300~ N� 860; full circlesstandfor 300~ N ~ 350, open circles for 380~ N � 404, squaresfor 453~ N ~ 534, triangles for
575� N ~ 618, plussesfor 663 ~ N <711, asterisksfor 761 � N ~ 860. The arrows indicate the groupsof points correspondingto the values of
x=0.125 (1), 0.25 (2), 0.5 (3), 1.0 (4) and 2.0 (5).
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the EF, which is not takeninto accountin the definition of /3 (seesection4.2). This factmayberelated
to the specific form of EFs which aresymmetricaboutn = 0 due to parity conservationin the model
(4.2.1) (seefig. 4). It is interestingthat two very nearly linear dependencesln y ‘—j in x with a verygood
scalingbehaviourbelowandabovethe critical point x = 0.5 areclearlyseenin fig. 35. As an additional
check of the scaling behavior, five values of x (x=0.125, 0.25, 0.5, 1.0, 2.0) havebeencarefully
examinedwith different N andk (thesepoints areshown in fig. 35 by the arrows. For all valuesof x
(exceptx = 0.5) remarkableclusteringof /3 valueswas found, which supportsthe scalingconjecture.

It is importantto note thatscalingholdsevenfor extremelylargevaluesof /3 (/3 —+ 1), in the region
which is very closeto the region of unitary randommatrices.As is knownfrom solid statephysics,this
region is associatedwith the universallaw of conductivity fluctuations(see, e.g., [MP87,ZP88]) and
seemsto be very interestingto study. However, to describethe relation /3(x) in the region /3 —÷ 1
analytically, one needsto know the characterof the fluctuationsfor eigenstatesin the matriceswhich
areclose to random.

In the previoussectionthe possiblerelation betweenthe averagelocalization length KiM) and the
repulsionparameterin the spacingdistributionF(s) was discussed.Numericaldatagive good evidence
in favourof sucha relation.Therefore,it is naturalto expectsomesortof scalingbehaviouralsofor the
statisticalpropertiesof the quasienergyspectrum. Namely, we expectthat the distribution F(s) of
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nearest-levelspacingsis also a scalingfunction of the sameparameterx. To checkthis conjecture,P(s)
has beenstudiedfor different valuesof N andk in the model (4.2.1)with a fixed degreeof classical
chaos(K=5). In this study,the distributionsF(s) arecomparedfor the threevaluesN=200, 400 and
600 with different values of the quantumparameterk chosenin such a way that x is approximately
constant.To obtain a qualitative comparison,the fit of P(s) has been made taking (4.1.6) as the
analyticalrelation. In all cases,exceptthe small critical region aroundx = 0.5, quite good scalinghas
been found. As an example,numericaldata for F(s) are shown in fig. 36, togetherwith the fitting
curvesrepresentingthe bestfit andthefits with 1% deviationfor the x2 value.To improve the statistics,
the commonprocedurewas usedto sum F(s) for slightly different valuesof k.

The numericaldatashowthat the fit repulsionparameter/3 in relation (4.1.6) is approximatelythe
same for all casesof fig. 36. As a result, one can concludethat the level spacing distribution P(s)
appearsto dependonly on the ratio k2IN and not on the parametersN andk separately.Of course,
thesedatacannotbe treatedas a rigorousproofof the scalingbehaviourof F(s);however,theseresults
seemto be a good indication of the existenceof such a scaling.

To concludethis section,one shouldnoteagainthat all the dataconcernafixed andsufficiently large
value of the classical parameterK. Thenthe interestingproblemariseswhethersomesort of scaling
behaviourholds for K ~ 1 whenin the correspondingclassicalmodel large regionswith stablemotion
exist in phasespace.Anotherproblem,which seemsto be simpler, is to obtainsomeevidencethatthe
true scalingparameteris D,,IN and not k2IN. As was discussedabove,the diffusion coefficient D,, is
slightly dependenton the classicalparameterK (seesection2.1); therefore,additionalinvestigationis
neededwith the variation of K.

All theseresultsmay also be regardedas someindication that not only /3 and F(s) show scaling
behaviourbut that all statisticalpropertiesof intermediatequantumchaos(for K ~‘ 1) dependon the
scalingparameterD,,IN = 4i,,IN only.

4.5. Bandrandom matricesas a modelofintermediatequantum chaos

As was discussedabove,in the angularmomentumrepresentationthe unitarymatrix Unm giving the
time evolution of the kicked rotator (2.2.1)hasaband-likestructurewith aneffective size of the band
approximatelyequalto the strengthparameterof the perturbation,k. Outsideof the band,the matrix
elementsdecreaseexponentiallyfast while inside the band,under the additional condition of strong
classical chaos(K ~‘ 1), the matrix elementsseemto be close to randomnumbers.As follows from
numericalexperiments,the statisticalpropertiesof the spectraandEFs [the level spacingdistribution
F(s) and the scaled localization length of EFs, dIN] essentially dependon the scaling parameter
x = k2/N. This fact allows oneto assumethat the scalingpropertiesfound for the kicked rotatormodel
aregeneralfor randommatriceswith a bandstructure.Bandrandommatrices(BRM) maybe regarded
as good modelsfor quantumsystemswith a finite rangeof interactionbetweenthe unperturbedstates.
From this point of view, BRMs can be used to describethe statisticalpropertiesof real quantum
systemssuch as atoms,nuclei and solid statemodels(see, e.g., [C85, LGP82, FLP89]).

A particular caseof band matrices(so-called“borderedmatrices”) hasbeenconsideredby Wigner
[W55, W57]. The matrix elementsin this model are defined by integers—2, —1,0, 1,2,. . . for the
diagonalelementsand by the value±hfor matrix elementsinsidea band of size b, with the sign of h
chosenat random. In the tridiagonal casethe model appearsto havean analytical solution, with a
semicircular distribution of the eigenvaluesin the limit b and h s~1, with h2Ib finite. Other casesof
band-likestructureshave also been consideredin [SVZ85,FLP89], wherea smooth decreaseof the
off-diagonal elementsis assumedwhenmoving away from the diagonal.
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In this section we briefly discussthe statisticalpropertiesof BRMs in comparisonwith the above
numericalresultsfor the kicked rotatoron the torus [dM90]. We define a BRM ensembleas a setof
real symmetricN x N matriceswith randomelementsA,1 for i — j~<b, andA,1 = 0 outsidethe bandof
size b. Therefore, b = 1 for diagonalmatrices,b = 2 for tridiagonal matrices and b = N for GOE
(GaussianOrthogonalEnsemble).Due to the symmetry of the matrices,the numberof independent
elements in a BRM is given by F= b(2N—b + 1)/2. All matrix elements are assumedto be
independentrandomnumberswith meanequalto zero,and theprobability density for onematrixA in

the ensembleis definedas

= e~Tr A2 = e~ H e2~. (4.5.1)1=1 i<j

From this expressionone easilycomputesthe ensembleaverage(Tr A
2) = FI(2w), which determines

the varianceof the matrix elements.It is seenthatthe ensembleis fully characterizedby the parameters
N, b and tu. The last one, tu, doesnot affect the statisticalpropertiesof the spectraand eigenvectors
sinceit only changesthe scalefor all energylevelsas well as of eigenvectors.In numericalexperiments
this parameterw was specifiedby the relation (Tr A2) = N, which determines,in thelimit caseof GOE
(b = N), the range(—2, +2) for the distribution of eigenvalues.It is well knownthat this distribution
takesthe form of a semicirculardependencefor fully randommatrices.Our preliminarynumericaldata
showthat asemicirculardependencealsoholdsfor BRMs, in the limit of largeb ~ 1 andN ~ 1. In the
chosendefinition of w the radiusof this distribution is also equalto 2, independentlyof b andN. The
appearanceof the semicircularlaw in the caseof BRMs is far from trivial, althoughit seemsto be a
general feature of randommatrices [KPW88]. At present,no rigorous results concerningBRMs are
known. The main difficulty is the lack of rotational invariancefor BRM ensemblesunderorthogonal
transformations,unlike the commontheoryof fully randommatrices[P65,M671. The developmentof
BRM theory seemsto be a very interestingmathematicalproblem.

In analogywith the kicked rotator model, we introducethe parameter

= b2IN,

and investigatethe statisticalpropertiesof BRMs dependingon i We should note that the analogy
between~‘ for BRMs andx for the kicked rotator is meaningfulonly for not too large b (actually, for
b ~ N12), since b is boundedby N, unlike k, which can be arbitrarily large.

The main result of our study [CIM9O]concernsthe meanentropy localization length defined by
(4.2.5). As was shown for the kicked rotator (see section4.2), this quantity gives a measureof the
localization which appliesboth for localized and extendedchaotic states. The typical structureof
eigenvectorsof BRMs appearsto be similar to that for the kicked rotator. For example,in the two
extremecases 4 1 andi ~ 1 the eigenvectorsof BRMs look like the EFs in figs. 4 and 17 for the
kicked rotator (apart from the symmetry aroundn = 0). The dependenceof the quantity /3 dIN on
the parameter~‘ is given in figs. 37 and 38. To computed, the averageover all the eigenvectorsof a
numberof matriceswith agiven b andN hasbeentaken.The simulationwith N rangingbetween200
and 1000 showeda remarkablescalingbehaviourfor /3(i). Indeed,all pointsin fig. 37 fall on a smooth
curve to a high accuracy.To illustratethe scaling dependence,it is convenientto usethe variable

y = /3/(1 — /3), (4.5.3)
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Fig. 37. Thescaledlocalizationlength/3 = dIN versus = b’IN for N = 200 (plusses),N = 400 (triangles),N = 600 (circles), 1~’= 800 (asterisks)and
N = 1000 (squares).The dashedcurvecorrespondsto expression(4.5.4). (After lCIM9Ol.)

which was introducedin section4.4. In the variablesln y, ln ~, the behaviourof /3 can beanalysedboth
for i 4 1 andi ~ 1. Fromfig. 38, the linear dependenceis clearly seenovera very largerangei ~ 10.
A fit of the numericaldata in this rangeof i~’gives ln y = a In x + C with a = 1 and C = 0.35. For /3(i)
this correspondsto the relation

/3yiI(1+yi’), y1.4. (4.5.4)

This curve is also plottedin fig. 37, wherethe correspondenceof the numericaldata to the analytical
relation (4.5.4) is very impressive. It is important to stressthat for ~‘ 4 1 we have /3 = 1 .4i’, which
exactlycorrespondsto relation (4.2.6) for the kicked rotator (in fig. 35 the aboverelationcorresponds
to the rangex <0.5). This fact givesstrongevidencefor the similarity of the BRM model to the kicked
‘otator.

For I ~‘ 1 (1~ 10) the numericaldatadeviatefrom the straightline behaviour(seefig. 38); however,
they indicatethatthe scalingbehaviourstill holds.At present,thereis no approachto give atheoretical
descriptionof /3(2) in the limit 2—~x. It should be noted that the connectionof /3 scaling for BRMs
with the known results on the scaling behaviourof the localization lengthin solid statephysics(see,
e.g., [LR85, P86, FPG89I) is not clear. First, all thoseresults mainly dealwith tridiagonal matrices
(Andersonmodel or Lloyd model [FPG89]), unlike our model with a bandwidth b ~‘ 1. Also, the
relationof the meanentropy localizationlength d to that definedby meansof Thouless’formula [T72]
or by the transfermatrix method[PS81]is rathervaguein the limiting case/3 —~ 1.
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As was pointedout, for b ~ N12 the comparisonwith the kicked rotatormodel is not correct.The
numericaldata show that for this casethe scaling behaviourbreaksdown and the points in fig. 38
deviate more and more from the scaling curve when b approachesN. Also, in this region the
fluctuationsof ln y are very strongdueto small denominatorsin y.

To comparewith the kicked rotator model,spectralfluctuationshavealso beenstudiedfor BRMs.
Namely,the spacingdistributionF(s) for the eigenvaluesE, was analysedas a function of the parameter
2. Accordingto preliminary numericalresults,scalingalsoholdsfor P(s) in the sensethat P(s) hasthe
sameform whenthe size of thebandb andthe size of the matrixN arevaried,keeping2constant.This
is also consistentwith the result obtainedfor the kicked rotatoron the torus.

The two distinct regimesin the scalingbehaviourof /3 with 2 (fig. 38) mayhavea counterpartin the
so-called insulator and conductorregimesof solid statemodelswith disorder. It is intriguing that,
formally, the variable (4.5.3) is analogousto the electrical resistance,with /3 playing the role of the
transmissioncoefficient.

5. Concluding remarks

As onecan see from the abovediscussions,all the data presentedin this reviewaredealing with a
situationwhen in the classicallimit the behaviourof the systemis fully chaotic. In the kicked rotator
modelit correspondsto a relatively largevalue of the classicalparameterK. Therefore,the deviation
from maximalchaosin quantummodelsis entirely relatedto quantuminterferenceeffects only. It was
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shownthat the mechanismof such a “quantumsuppressionof classicalchaos”is the localizationof all
eigenfunctionsin the unperturbedmomentumspace, which is similar to the well-known Anderson
localization. This situationturns out to be much easierto study,unlike the generalcase,whenin the
classicalmodel (standardmapping)thereare regionswith quasiperiodic(stable)motion. In the latter
case, the statistical propertiesare not maximal for two reasons,both of a classical anda quantum
nature. In our model (2.2.1) this correspondsto a value K ~ 1, which, in this case,plays an essential
role in determiningthe size of stableregionsin phasespace.

An attempt to relatethe relative measureof stablemotion to the spectrumstatisticshasled to the
well-known Berry—Robnikdistribution[BR84] for the spacingsbetweenneighbouringlevels. However,
in the aboveapproachthe influenceof quantumeffects, like the localization of EFs, is not takeninto
account.Therefore, this approachseemsto be valid only in the deepsemiclassicalregion.From this
point of view, a very importantproblemarises,namely, the problemof a descriptionof the statistical
properties for the general situation when taking into account both the classical and quantum
peculiaritiesof the model. This meansthat both the classicalandthe quantumparameter,K andk, are
expectedto determinethe form of F(s). The first questionis: what arethe changesin P(s) whenthe
classicalparameterK changes,while the quantumparameteris constant?In somesense,this caseis
oppositeto the one discussedin this paper.So far, no numericalexperimentsfor the kicked rotator
modelwith constantk, but changingK havebeendone.

Anotherquestion,which seemsto be closelyrelatedto theaboveproblem,is thestructureof EFs as
a function of the classicalparameterK. As was mentionedin section2.3, for K ~ 1 the localization
length 1,, is proportionalto k, andnot to k2 asfor K ~‘ 1. Onemayalsoassumethat for K ~ 1 the degree
of randomnessin the length where the main probability of the EFs is concentrated,is strongly
dependenton the value of K with a more and more regular structurewhen K—40. Indeed,this is
qualitatively seenin numericalexperiments;however,no systematicstudiesof this questionhavebeen
made. One can say that the main influenceof the classicalparameterK on the structureof the EFs
seemsto determinethe degreeof chaosinsidethe EFs while the quantumparameterk is relatedto the
degreeof localization. This conjecturemay be the main subjectof furtherstudies.
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