
BOLTZMANN'S ENTROPY
AND TIME'S ARROW

Given that microscopic physical lows are reversible, why do all
macroscopic events have a preferred time direction? Doltzmann's
thoughts on this question have withstood the test of time.

Joel L. Lebowitz

Given the success of Ludwig Boltzmann's statistical ap-
proach in explaining the observed irreversible behavior
of macroscopic systems in a manner consistent with their
reversible microscopic dynamics, it is quite surprising
that there is still so much confusion about the problem
of irreversibility. (See figure 1.) I attribute this confu-
sion to the originality of Boltzmann's ideas: It made
them difficult for some of his contemporaries to grasp.
The controversies generated by the misunderstandings of
Ernst Zermelo and others have been perpetuated by
various authors. There is really no excuse for this,
considering the clarity of Boltzmann's later writings.1

Since next year, 1994, is the 150th anniversary of
Boltzmann's birth, this is a fitting moment to review his
ideas on the arrow of time. In Erwin Schrbdinger's
words, "Boltzmann's ideas really give an understanding"
of the origin of macroscopic behavior. All claims of
inconsistencies that I know of are, in my opinion, wrong;
I see no need for alternate explanations. For further
reading I highly recommend Boltzmann's works as well
as references 2-7. (See also PHYSICS TODAY, January
1992, page 44, for a marvelous description by Boltzmann
of his visit to California in 1906.)

Boltzmann's statistical theory of time-asymmetric,
irreversible nonequilibrium behavior assigns to each mi-
croscopic state of a macroscopic system, be it solid, liquid,
gas or otherwise, a number SB, the "Boltzmann entropy"
of that state. This entropy agrees (up to terms that are
negligible for a large system) with the macroscopic ther-
modynamic entropy of Rudolf Clausius, Seq, when the
system is in equilibrium. It then also coincides with the
Gibbs entropy SG, which is defined not for an individual
microstate but for a statistical ensemble (a collection of
independent systems, all with the same Hamiltonian,
distributed in different microscopic states consistent with
some specified macroscopic constraints). However, unlike
SG, which does not change in time even for ensembles
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describing (isolated) systems not in equilibrium, SB typi-
cally increases in a way that explains the evolution
toward equilibrium of such systems.

The superiority of SB over SG in this regard comes
from the fact that unlike SG, SB captures the separation
between microscopic and macroscopic scales. This sepa-
ration of scales, inherent in the very large number of
degrees of freedom within any macroscopic system, is
exactly what enables us to predict the evolution "typical"
of a particular macroscopic system—where, after all, we
actually observe irreversible behavior.6"8 The "typicality"
is very robust: We can expect to see unusual events,
such as gases unmixing themselves, only if we wait for
times inconceivably long compared with the age of the
universe. In addition, the essential features of the evo-
lution do not depend on specific dynamical properties
such as the positivity of Lyapunov exponents, ergodicity
or mixing (see my article with Oliver Penrose in PHYSICS
TODAY, February 1973, page 23), nor on assumptions
about the distribution of microstates, such as "equal
a priori probabilities," being strictly satisfied. Particular
ensembles with these properties, commonly used in sta-
tistical mechanics, are no more than mathematical tools
for describing the macroscopic behavior of typical indi-
vidual systems.

Macroscopic evolution is quantitatively described in
many cases by time-asymmetric equations of a hydrody-
namic variety, such as the diffusion equation. These
equations are derived (rigorously, in some cases) from
the (reversible) microscopic dynamics of a system by
utilization of the large ratio of macroscopic to microscopic
scales.78 They describe the time-asymmetric behavior of
individual macroscopic systems, not just that of ensemble
averages. This behavior should be distinguished from
the chaotic but time-symmetric behavior of systems with
a few degrees of freedom, such as two hard spheres in a
box. Given a sequence of photographs of a system of the
latter sort, there is no way to order them in time. To
call such behavior "irreversible" is, to say the least,
confusing.

On the other hand, instabilities induced by chaotic
microscopic behavior are responsible for the detailed
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Irreversibility of
macroscopic events:
"All the king's horses
and all the king's men /
Couldn't put Humpty
together again." But
why not? (Illustration
by H. Willebeck Le
Mair, from A. Moffat,
Our Old Nursery
Rhymes, Augener,
London, 1911.) Figure 1

features of the macroscopic evolution. An example is the
Lorentz gas, a macroscopically large number of noninter-
acting particles moving in a plane among a fixed, periodic
array of convex scatterers, arranged so that a particle
can travel no more than a specified distance between
collisions. The chaotic nature of the (reversible) micro-
scopic dynamics allows a simple deterministic description,
via a diffusion equation, of the macroscopic density profile
of this system to exist. This description is achieved in
the hydrodynamic scaling limit, in which the ratio of
macroscopic to microscopic scales goes to infinity.6'8 Such
a deterministic description also holds to a high accuracy
when this ratio is finite but very large; it is, however,
clearly impossible when the system contains only one or
a few particles. I use this example, despite its highly
idealized nature, because here all the mathematical i's
have been dotted. The Lorentz gas shows ipso facto, in
a way that should convince even (as Mark Kac put it) an
"unreasonable" person, not only that there is no conflict
between reversible microscopic and irreversible macro-
scopic behavior but also that the latter follows from the
former—in complete accord with Boltzmann's ideas.

Boltzmann's analysis was of course done in terms of
classical, Newtonian mechanics, and I shall also use that
framework. I believe, however, that his basic ideas carry
over to quantum mechanics without essential modification.
I do not agree with the viewpoint that in the quantum
universe, measurement is a new source of irreversibility;
rather, I believe that real measurements on quantum sys-
tems are time asymmetric because they involve, of necessity,
systems, such as measuring apparatus, with a very large
number of degrees of freedom. Quantum irreversibility
should and can be understood using Boltzmann's ideas. I
will discuss this briefly later.

I will, however, in this article completely ignore
relativity, special or general. The phenomenon we wish
to explain, namely the time-asymmetric behavior of spa-
tially localized macroscopic objects, is for all practical
purposes the same in the real, relativistic universe as in
a model, nonrelativistic one. For similar reasons I will

also ignore the violation of time invariance in the weak
interactions and focus on idealized versions of the prob-
lem of irreversibility, in the simplest contexts. The rea-
soning and conclusions will be the same whenever we
deal with systems containing a great many atoms or
molecules.

Microscopic reversibility
Consider an isolated macroscopic system evolving in time,
as in the (macroscopic) snapshots in figure 2. The blue
color represents, for example, ink; the white, a colorless
fluid; and the four frames are taken at different times
during the undisturbed evolution of the system. The
problem is to identify the time order in which the se-
quence of snapshots was taken.

The obvious answer, based on experience, is that time
increases from figure 2a to 2b to 2c to 2d—any other
order is clearly absurd. Now it would be very simple
and nice if this answer followed directly from the micro-
scopic laws of nature. But that is not the case: The
microscopic laws, as we know them, tell a different story.
If the sequence going from 2a to 2d is permissible, so is
the one going from 2d to 2a.

This is easiest seen in classical mechanics, where the
complete microscopic state of a system of N particles is
represented by a point X = (r1,v1,r2,v2, . . . , TTN,VN) in its
phase space F, r, and v, being the position and velocity
of the ith particle. The snapshots in figure 2 do not,
however, specify the microstate X of the system; rather,
each snapshot describes a macrostate, which we denote
by M = M(X). To each macrostate M there corresponds
a very large set of microstates making up a region TM in
the total phase space T. To specify the macrostate M we
could, say, divide the 1-liter box in figure 2 into a billion
little cubes and state, within some tolerance, the number
of particles of each type in each cube. To completely
specify M so that its further evolution can be predicted,
we would also need to state the total energy of the system
and any other macroscopically relevant constants of the
motion, also within some tolerance. While this specifi-
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cation of the macroscopic state clearly contains some
arbitrariness, this need not concern us too much, since
all the statements we are going to make about the
evolution of M are independent of its precise definition
as long as there is a large separation between the macro-
and microscales.

Let us consider now the time evolution of micro-
states underlying that of the macrostate M. The evo-
lution is governed by Hamiltonian dynamics, which
connects a microstate X(t0) at some time t0 to the
microstate X(t) at any other time t. Let X(t{)) and
X(tu + T), with T positive, be two such microstates. Re-
versing (physically or mathematically) all velocities at
time t0 + T, we obtain a new microstate. If we now
follow the evolution for another interval T we find that
the new microstate at time t0 + 2T is just the state X(t0)
with all velocities reversed. We shall call the micro-
state obtained from X by velocity reversal RX; that is,
RX = (r^-v^ro.-Va, . . . ,rN,-vN).

Returning now to the snapshots in figure 2, it is clear
that they would not change if we reversed the velocities
of all the particles; hence if X belongs to VM, then so does
RX. Now we see the problem with our definite assign-
ment of a time order to the snapshots in the figure: Going
from a macrostate Ma at time ta to another macrostate
Mb at time tb (th = ta + r, r > 0) means that there is a
microstate X in YM that gives rise to a microstate Y in
TM (at time tb); but then RY is also in TM , and following
the evolution of RY for a time r would produce the state
RX—which would then be in VM . Hence the snapshots
depicting Ma, Mb, Mc and MA in figure 2 could, as far
as the laws of nature go, correspond to a sequence of
times going in either direction.

So our judgment of the time order in figure 2 is not
based on the dynamical laws of evolution alone; these
permit either order. Rather, it is based on experience:

One direction is common and easily arranged; the other
is never seen. But why should this be so?

Boltzmann's answer
Boltzmann (depicted in figure 3) starts by associating
with each macroscopic state M—and thus with every
microscopic state X in ryU—an entropy, known now as
the Boltzmann entropy,

sB (M(X)) = k log i rM(Yl i (i)

where k is Boltzmann's constant and I ril; I is the phase
space volume associated with macrostate M. That is,
I VMI is the integral of the time-invariant Liouville vol-
ume element n fl Y d

3r, d3u, over VM. (SB is defined up to
additive constants.) Boltzmann's stroke of genius was,
first, to make a direct connection between this micro-
scopically defined function SB(M) and the thermodynamic
entropy of Clausius, SW|, which is a macroscopically de-
fined, operationally measurable (also up to additive con-
stants), extensive property of macroscopic systems in
equilibrium. For a system in equilibrium having a given
energy E (within some tolerance), volume V and particle
number N, Boltzmann showed that

where Meq(E,V,N) is the corresponding macrostate. By
the symbol "=" we mean that for large TV, such that the
system is really macroscopic, the equality holds up to
negligible terms when both sides of equation 2 are
divided by N and the additive constant is suitably fixed.
We require here that the size of the cells used to define
Meq, that is, the macroscale, be very large compared with
the microscale.

Boltzmann's second contribution was to use equation
1 to define entropy for nonequilibrium systems and thus
identify increases in Clausius (macroscopic) entropy with

How would you order this sequence of
"snapshots" in time? Each represents a

macroscopic state of a system containing, for
example, two fluids. Figure 2
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increases in the volume of the phase space region rMiX]-
This identification explains in a natural way the obser-
vation, embodied in the second law of thermodynamics,
that when a constraint is lifted from an isolated macro-
scopic system, it evolves toward a state with greater
entropy. To see how the explanation works, consider
what happens when a wall dividing the box in figure 2
is removed at time ta. The phase space volume available
to the system now becomes fantastically enlarged; for 1
mole of fluid in a 1-liter container the volume ratio of
the unconstrained region to the constrained one is of
order 2'v or 1010"". For the system in figure 2 this
corresponds roughly to the ratio I rA,/d I / I TMJ . We can
then expect that when the constraint is removed the
dynamical motion of the phase point X will with very
high "probability" move into the newly available regions
of phase space, for which I TMI is large. This will con-
tinue until X(t) reaches TM . After that time we can
expect to see only small fluctuations from equilibrium
unless we wait for times that are much larger than the
age of our universe. (Such times correspond roughly to
the Poincare recurrence time of an isolated macroscopic
system.)

Notions of probability
Boltzmann's analysis implies the existence of a relation
between phase space volume and probability. In particu-
lar, his explanation of the second law depends upon
identifying a small fraction of the phase space volume
with small probability. This is in the spirit of (but does
not require) the assumption that an isolated "aged" mac-
roscopic system should be found in different macroscopic
states M for fractions of time that equal the ratio of
irMl to the total phase space volume IFI having the
same energy. Unless there are reasons to the contrary
(such as extra additive constants of the motion), the
latter statement, a mild form of Boltzmann's ergodic
hypothesis, seems very plausible for all macroscopic
systems. Its application to "small fluctuations" from
equilibrium is consistent with observations.

Thus not only did Boltzmann's great insights give a
microscopic interpretation of the mysterious thermody-
namic entropy of Clausius; they also gave a natural
generalization of entropy to nonequilibrium macrostates
M, and with it an explanation of the second law of
thermodynamics—the formal expression of the time-
asymmetric evolution of macroscopic states occurring in
nature. In particular, Boltzmann realized that for a
macroscopic system the fraction of microstates for which
the evolution leads to macrostates with larger SB is so
close to 1, in terms of their phase space volume, that
such behavior is what should "always" happen. In mathe-
matical language, we say this behavior is "typical."

Boltzmann's ideas are, as David Ruelle5 says, at the
same time simple and rather subtle. They introduce into
the "laws of nature" notions of probability, which, cer-
tainly in Boltzmann's time, were quite alien to the sci-
entific outlook. Physical laws were supposed to hold
without any exceptions, not just "almost" always, and
indeed no exceptions to the second law were (or are)
known; nor should we expect any, as Richard Feynman2

rather conservatively says, "in a million years."

Initial conditions
Once we accept Boltzmann's explanation of why macro-
scopic systems evolve in a manner that makes SB increase
with time, there remains the nagging problem (of which
Boltzmann was well aware) of what we mean by "with
time." Since the microscopic dynamical laws are sym-
metric, the two directions of the time variable are a priori

Boltzmann lecturing, by a contemporary
Viennese cartoonist. (Courtesy of the
University of Vienna.) Figure 3

equivalent and thus must remain so a posteriori.9 Con-
sider a system with a nonuniform macroscopic density
profile, such as Mb, shown in figure 2b. If its microstate
at time tb is typical of rA/[ then almost surely its macro-
state at both times th + T and tb-r would be like Mc.
This is inevitable: Since the phase space volume corre-
sponding to Mh at some time th gives equal weight to
microstates X and RX, it must make the same prediction
for tb - T as for tb + r. Yet experience shows that the
assumption of typicality at time tb will give the correct
behavior only for times t > tb and not for times t < th. In
particular, given just Mh and Mn we have no hesitation
in ordering Mh before Mr.

If we think further about our ordering of Mh and Mc,
it seems to derive from our assumption that Mb is itself
so unlikely that it must have evolved from an initial state
of even lower entropy like M.r From such an initial state,
which can be readily created by an experimentalist hav-
ing a microstate typical of Ma, we get a monotonic be-
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havior of SB with the time ordering M.,, Mb, MK and MA. If,
by contrast, the system in figure 2 had been completely
isolated for a very long time compared with its hydrody-
namic relaxation time, then we would expect to see it in
its equilibrium state Md. Presented with the four pictures,
we would (in this very, very unlikely case) have no basis
for assigning an order to them; microscopic reversibility
assures that fluctuations from equilibrium are typically
symmetric about times at which there is a local minimum
of SB. In the absence of any knowledge about the history
of the system before and after the sequence, we use our
experience to conclude that the low-entropy state Ma must
have been an initial prepared state. In the words of Roger
Penrose,4 "The time-asymmetry comes merely from the fact
that the system has been started off'in a very special (i.e.,
low-entropy) state, and having so started the system, we
have watched it evolve in the future direction." The point
is that the microstate corresponding to Mb coming from Ma

must be atypical in some respects of points in Fw . This
is because, if we consider all microstates in Mh at time th

that were in Ma at time t.d, then by Liouville's theorem, the
set of all such phase points has a volume VM that is much
smaller than rM .

Origin of low-entropy stotes
The creation of low-entropy initial states poses no prob-
lem in laboratory situations such as the one depicted in
figure 2. Laboratory systems are prepared in states of

low Boltzmann entropy by experimentalists who are them-
selves in low-entropy states. Like other living beings, they
are born in such states and maintained there by eating
low-entropy foods, which in turn are produced by plants
using low-entropy radiation coming from the Sun, and so
on.4 In addition these experimentalists are able to prepare
systems in particular macrostates with low values ofSB(7W),
like our state Ma. Of course the total entropy SB, including
the entropy of the experimentalists and that of their instru-
ments, must always increase: There are no Maxwell de-
mons. But what are the origins of these complex creatures
the experimentalists? Or what about events in which there
is no human participation—for example, if instead of figure
2 we are given snapshots of a meteor and the Moon before
and after their collision? Surely the time direction is just
as obvious.

Trying to answer this question along the Boltzmann
chain of reasoning, we are led more or less inevitably to
cosmological considerations of an initial "state of the
universe" having a very small Boltzmann entropy. That
is, the universe is pictured to be born in an initial
macrostate M,, for which is a very small fraction
of the "total available" phase space volume. Roger Pen-
rose takes that initial state, the macrostate of the uni-
verse just after the Big Bang, to be one in which the
energy density is approximately spatially uniform. He
then estimates that if Mf is the macrostate of the final
"Big Crunch," having a phase space volume of ITM I,

Reversing time. PHYSICS TODAY cover from
November 1953 shows athletes on a

racetrack. At the first gunshot, they start
running; at the second, they reverse and run

back, ending up again in a line. The
drawing, by Kay Kaszas, refers to an article

by Erwin L. Hahn on the spin echo effect on
page 4 of that issue. Figure 4
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S = k log W is Boltzmann's epitaph. W is what we call
l r M l (see equation 1). Boltzmann killed himself on

5 September 1906. Some speculate (but I rather doubt)
that it was because of the hostility his ideas on statistical
mechanics met with from positivists like Ernst Mach and

formalists like Ernst Zermelo. Boltzmann is buried in
Vienna, the city of his birth in 1844. (Courtesy of the

University of Vienna.) Figure 5

then i r M o i / i r M f i= io- 1 0 1 2 3 .
The high value of IFMfl compared with I FM|| I comes

from the vast amount of phase space corresponding to
a universe collapsed into a black hole in the Big Crunch.
I do not know whether these initial and final states are
reasonable, but in any case one has to agree with Feynman's
statement'2 that "it is necessary to add to the physical laws
the hypothesis that in the past the universe was more
ordered, in the technical sense, than it is today . . . to make
an understanding of the irreversibility." "Technical sense"
clearly refers to the initial state Mo having a smaller SB

than M(. Once we accept such an initial macrostate Mo,
then the initial microstate can be assumed to be typical of
rMo. We can then apply our statistical reasoning to
the further evolution of this initial state, despite the fact
that it was a very unlikely one, and use phase-space-volume
arguments to predict the future behavior of macroscopic
systems—but not to determine the past.

Velocity reversal
The microscopic physical laws don't preclude having a
microstate X for which SB(M) would be decreasing as t
increased. An experimentalist could, in principle, re-
verse all velocities of the system in figure 2b (see also
figure 4) and then watch the system unmix itself. In
practice, however, it seems impossible: Even if he or she
managed to perfectly reverse the velocities, as was done
(imperfectly) in spin echo experiments,10 we would not
expect to see the system in figure 2 go from Mb to Ma.
This would require that both the velocity reversal and
the system isolation be absolutely perfect. We would
need such perfection now but did not need it before
because while the macroscopic behavior of a system with
microstate Y in the state Mb—that came from a micro-
state X typical of TM —is stable against perturbations
in its future evolution, it is very unstable as far as its
past is concerned. That is the same as saying that the
forward evolution of RY is unstable to perturbations.
This difference in stability is a consequence of the fact
that almost any perturbation of a microstate in TM will
tend to make it more typical of its macrostate Mb. ' Per-
turbation will thus not interfere with behavior typical of
TM . But the forward evolution of the unperturbed RY
is by construction heading toward a smaller phase space
volume and is thus untypical of TM^. Such an evolution
therefore requires "perfect aiming" and will be derailed
even by small imprecisions in the reversal or by tiny
outside influences. This situation is analogous to
pinball-machine-type puzzles where one is supposed to
get a small metal ball into a particular small region. You
have to do things just right to get it in, but almost
anything you do gets it out into larger regions. For the
macroscopic systems we are considering, the disparity
between the sizes of the comparable regions of the phase
space is unimaginably larger.

The behavior of all macroscopic systems, whether
ideally isolated or realistically subject to unavoidable
interactions with the outside world, can therefore be
confidently predicted to be in accordance with the second
law. Even if we deliberately create, say by velocity

reversal, a microstate that is very atypical of its macro-
state, we will find that after a very short time in which
SB decreases, the imperfections in the reversal and out-
side perturbations, as from a solar flare, a starquake in
a distant galaxy a long time ago or a butterfly beating
its wings,5 will make it increase again. The same thing
happens also in the usual computer simulations, where
velocity reversal is easy to accomplish but where roundoff
errors play the role of perturbations. It is possible,
however, to avoid this effect in simulations by the use of
discrete-time integer arithmetic and clearly see RY go to
RX (as in figure 4) following perfect velocity reversal in
the now truly isolated system.11

Boltzmann vs Gibbs entropies
The Boltzmannian focus on the evolution of a particular
macroscopic system is conceptually different from Gibbs's
approach, which focuses more on ensembles. This differ-
ence shows up strikingly when we compare Boltzmann's
entropy—defined for a microstate X of a macroscopic
system—with the more commonly used (and misused)
entropy of Gibbs, defined by

(3)

Here p(X) dX is the ensemble density, or the probability
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for the microscopic state of the system to be found in the
phase space volume element dX, and the integral is over
the total phase space r. Of course if we take piX) to be
the generalized microcanonical ensemble corresponding
to a macrostate M—that is, if pA7lVl = 1 / I rA/1 if X belongs
to FM, and pMlX) = 0 otherwise—then clearly,

SCSPM) = k log I FMI = SB(M) (4)

More generally, the two entropies agree with each other,
and with the generalized Clausius entropy, for systems
in which the particle density, energy density and momen-
tum density vary slowly on a microscopic scale and in
which we have local equilibrium. Note, however, that
unless the system is in complete equilibrium and there
is no further systematic change in M or p, the time
evolutions of SB and SG are very different. As is well
known, as long as X evolves according to the Hamiltonian
evolution (that is, p evolves according to the Liouville
equation), the volume of any phase space region remains
unchanged even though its shape changes, and SG(p)
never changes in time. SB(M) certainly does change.
Consider the situation in figure 2. At the initial time t,,
SG equals SB, but subsequently SB increases while SG

remains constant. SG therefore does not give any indi-
cation that the system is evolving toward equilibrium.
Thus the relevant entropy for understanding the time
evolution of macroscopic systems is SB and not SG. (This
great discovery of Boltzmann's is memorialized on his
tombstone; see figure 5.)

Quantum mechanics
The analysis given above in terms of classical mechanics
applies also to quantum mechanics if we take the micro-
state X to correspond to the wavefunction if/(r1, . . . ,rN);
the time evolution X(t), to the unitary Schrodinger evo-
lution ip(t); the velocity reversal RX, to the complex
conjugation \j); and the phase space volume of the macro-
state I TMI, to the dimension, that is, to the number of
linearly independent quantum states in the subspace
defined by M.

This correspondence preserves equation 2 as well as
the time symmetry of classical mechanics. It does not,
however, take into account the nonunitary, or "wavefunc-
tion collapse," part of quantum mechanics, which on the
face of it looks time asymmetric. It seems to me that
there is no necessity or room in quantum mechanics for
such an extra measurement postulate.12 Instead one
should be able to deduce everything from some single
time-symmetric theory describing the evolution of the
state of the system and its environment; together these
might encompass the whole universe.1213 The conven-
tional wavepacket reduction formalism should then arise
from the macroscopically large number of degrees of
freedom affecting the time evolution of a nonisolated
system. In fact, because of the intrinsically nonlocal
character of quantum mechanics,12 the whole notion of
conceptually isolating a system, which serves us so well
on the classical macroscopic level, requires much more
care on the microscopic quantum level (see the Reference
Frame column by David Mermin in PHYSICS TODAY, June
1990, page 9.)

Even aside from the standard quantum measurement
formalism, it has been argued14 that one should not
introduce, via a measurement postulate, a time-symmet-
ric element into the foundations of quantum mechanics.
Rather one should and can conceptually and usefully
separate the measurement formalism of conventional
quantum theory into two parts, a time-symmetric part
and a second-law-type asymmetric part. One can then,
using Boltzmann-type reasoning, trace the latter back to

the initial low-entropy state of the universe.
I believe the same is true of other arrows of time

such as the psychological one or that given by retarded
versus advanced electromagnetic potentials. Ultimately
all arrows of time and our being here to discuss them
are manifestations of our (very large, macroscopic) uni-
verse's having started in a very low-entropy state.

Typical vs averaged behavior
I conclude by emphasizing again that having results for
typical microstates rather than averages is not just a
mathematical nicety but is at the heart of understanding
the microscopic origin of observed macroscopic behavior:
We neither have nor do we need ensembles when we carry
out observations like those in figure 2. What we do need
and can expect to have is typical behavior. Ensembles
are merely mathematical tools, useful for computing typi-
cal behavior as long as the dispersion in the quantities
of interest is sufficiently small.

There is no such typicality with respect to ensembles
describing the time evolution of a system with only a few
degrees of freedom. This is an essential difference (un-
fortunately frequently overlooked or misunderstood) be-
tween the irreversible and the chaotic behavior of Hamil-
tonian systems. The latter, which can be observed
already in systems consisting of only a few particles, will
not have a unidirectional time behavior in any particular
realization. Thus if we had only a few hard spheres in
a box, we would get plenty of chaotic dynamics and very
good ergodic behavior, but we could not tell the time
order of any sequence of snapshots.

/ dedicate this article to my teachers, Peter Bergmann and Melba
Phillips, who taught me statistical mechanics and much, much
more. I want to thank Yakir Aharonov, Gregory Eyink, Oliver
Penrose and especially Shelly Goldstein, Herbert Spohn and
Eugene Speer for many very useful discussions.
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