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It was recently conjectured by D. Page that if a quantum system of Hilbert space dimension
nm is in a random pure state then the average entropy of a subsystem of dimensionm where
m # n is Sm,n 

°Pmn
kn11 1yk

¢
2 sm 2 1dy2n. In this Letter a simple proof of this conjecture is

given. [S0031-9007(96)00569-8]
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In a recent Letter Page [1] considered a systemAB with
Hilbert space dimensionmn. The system consisted of tw
subsystemsA andB of dimensionsm andn, respectively.
Page calculated the average

Sm,n  kSAl

of the entropySA over all pure statesr  j Cl kC j of the
total system whereSA  2TrrA lnrA andrA, the density
matrix of subsystemA, is obtained by taking the partia
trace of the full density matrixr over the other subsystem
that is,rA  TrBr.
The average was defined with respect to the unitary
invariant Haar measure on the space of unitary vectors
j Cl in the mn dimensional Hilbert space of the total
system. The quantity lnm 2 Smn was used to define the
average information of the subsystemA. It is a measure
of the information that is contained in them-subsystem
A regarding the fact that the entire systemAB is in a
pure mn state. Using earlier work [2,3] in this area,
Page was led to consider the probability distribution of
the eigenvalues ofrA for the random pure statesr of the
entire system. He used
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where pi was an eigenvalue ofrA and the normalization constant for this probability distribution was given only
implicitly by the requirement that the total probability integrated to unity. Page then showed that the average
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whereqi  rpi for i  1, . . . , m, r is positive [1], and

csmn 1 1d  2C 1
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C being Euler’s constant, and
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On the basis of evaluatingSm,n for m  2, 3, 4, 5 using
MATHEMATICA 2.0, Page conjectured that the exact res
for Sm,n was
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,

but was not able to prove that this was the case. In t
Letter, we will give a simple proof of this conjecture [4].

We first observe that the van der Monde determina
defined by

Dsq1, . . . , qmd ;
Y

1#j,i#m

sqi 2 qjd

may be written

Dsq1, . . . , qmd 
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...

. ..
...
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We next observe thatDsq1, . . . , qmd can be written as

Dsq1, . . . , qmd 

ØØØØØØØØØØ
p0sq1d · · · p0sqmd
p1sq1d · · · p1sqmd

...
. ..

...
pm21sq1d · · · pm21sqmd

ØØØØØØØØØØ
(2)

for any set of polynomialspksqd, k  0, . . . , m 2 1,
which have the property,p0sqd  1, and

pksqd  qk 1 Ck21qk21 1 · · · 1 C0 ,

k  1, . . . , m 2 1 .

This immediately follows from the fact that the value o
a determinant does not change if the multiple of any o
row is added to a different row.

We now choose polynomialspa
k sqd judiciously. We

introduce orthogonal polynomialspa
k sqd with the proper-

ties

pa
k sqd  qk 1 Ca

k21qk21 1 · · · 1 Ca
0 ,

pa
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a  n 2 m .

Polynomials with these properties are well known. Th
are the generalized Laguerre polynomials defined by [5

pa
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s21dk dk

dqk
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We also note, for later use, that [5]
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Z `

0
dq e2qqapa

k1
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k2
sqd

 Gsk1 1 1dGsk1 1 a 1 1ddk1,k2 , (4)

Z `

0
dq qa21e2qpb

k sqd  s1 2 a 1 bdkGsad s21dk , (5)

recalling that s1 2 a 1 bdk  s1 2 a 1 bd s1 2 a 1

b 1 1d · · · s1 2 a 1 b 1 k 2 1d. Writing Dsq1, . . . , qmd
in terms ofpa

k sqd as in Eq. (2), and using the orthogonal
property of these polynomials, it immediately follows
from Page’s proven result, Eq. (1), that
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We thus need to evaluate the integral
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We first introduce
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From the definition of the Laguerre polynomial given, it
follows that pasqd  pa11

k sqd 2 kpa11
k21 sqd. Using this

and Eq. (4), we get
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and we now note that
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Evaluating these two terms using Eqs. (3), (4), (5), and (6), we find
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where we use the fact thatcszd 
1

Gszd
dGszd
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This follows by examining the coefficient of1
r in
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The third expression in Eq. (7) above is
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since sr 2 k 2 1dk  0, for all r fi 0 and r fi 1, and
also csk 1 n 2 m 1 1d 2 csk 1 n 2 m 2 r 1 1d 
0 whenr  0. On substituting (8) and (9) back into (7)
we obtain
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as conjectured by Page.
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