PHYSICAL REVIEW LETTERS

VOLUME 77

1 JULY 1996

NUMBER 1

Average Entropy of a Quantum Subsystem

Siddhartha Sen*

School of Mathematics, University of Dublin, Trinity College, Dublin, Ireland (Received 24 January 1996)

It was recently conjectured by D. Page that if a quantum system of Hilbert space dimension nm is in a random pure state then the average entropy of a subsystem of dimension m where $m \le n$ is $S_{m,n} = (\sum_{k=n+1}^{mn} 1/k) - (m-1)/2n$. In this Letter a simple proof of this conjecture is given. [S0031-9007(96)00569-8]

PACS numbers: 03.65.Fd, 05.30.Ch, 65.50.+m

In a recent Letter Page [1] considered a system AB with Hilbert space dimension mn. The system consisted of two subsystems A and B of dimensions m and n, respectively. Page calculated the average

$$S_{m,n} = \langle S_A \rangle$$

of the entropy S_A over all pure states $\rho = |\Psi\rangle\langle\Psi|$ of the total system where $S_A = -\text{Tr}\rho_A \ln\rho_A$ and ρ_A , the density matrix of subsystem A, is obtained by taking the partial trace of the full density matrix ρ over the other subsystem, that is, $\rho_A = \text{Tr}_B \rho$.

The average was defined with respect to the unitary invariant Haar measure on the space of unitary vectors $|\Psi\rangle$ in the *mn* dimensional Hilbert space of the total system. The quantity $\ln m - S_{mn}$ was used to define the average information of the subsystem *A*. It is a measure of the information that is contained in the *m*-subsystem *A* regarding the fact that the entire system *AB* is in a pure *mn* state. Using earlier work [2,3] in this area, Page was led to consider the probability distribution of the eigenvalues of ρ_A for the random pure states ρ of the entire system. He used

$$P(p_1,...,p_m) dp_1...dp_m = N\delta \left(1 - \sum_{l=1}^m p_l\right) \prod_{1 \le i < j \le m} (p_i - p_j)^2 \prod_{k=1}^m p_k^{n-m} dp_k$$

where p_i was an eigenvalue of ρ_A and the normalization constant for this probability distribution was given only implicitly by the requirement that the total probability integrated to unity. Page then showed that the average

$$S_{m,n} = -\int \left(\sum_{i=1}^{m} p_i \ln p_i\right) P(p_1, \dots, p_m) \, dp_1 \cdots dp_m = \psi(mn+1) - \frac{\int (\sum_{i=1}^{m} q_i \ln q_i) \, Q \, dq_1 \cdots dq_m}{mn \int Q \, dq_1 \cdots dq_m}, \qquad (1)$$

where $q_i = rp_i$ for i = 1, ..., m, r is positive [1], and

$$\psi(mn + 1) = -C + \sum_{k=1}^{mn} \frac{1}{k},$$

C being Euler's constant, and

$$Q(q_1,...,q_m)dq_1\cdots dq_m = \prod_{1\leq i< j\leq m} (q_i - q_j)^2 \prod_{k=1}^m e^{-q_k} q_k^{n-m} dq_k.$$

On the basis of evaluating $S_{m,n}$ for m = 2, 3, 4, 5 using MATHEMATICA 2.0, Page conjectured that the exact result for $S_{m,n}$ was

$$S_{m,n} = \left(\sum_{k=n+1}^{mn} \frac{1}{k}\right) - \frac{m-1}{2n},$$

but was not able to prove that this was the case. In this Letter, we will give a simple proof of this conjecture [4].

We first observe that the van der Monde determinant defined by

$$\Delta(q_1,\ldots,q_m) \equiv \prod_{1 \le j < i \le m} (q_i - q_j)$$

may be written

$$\Delta(q_1, \dots, q_m) = \begin{vmatrix} 1 & \cdots & 1 \\ q_1 & \cdots & q_m \\ \vdots & \ddots & \vdots \\ q_1^{m-1} & \cdots & q_m^{m-1} \end{vmatrix}.$$

.

We next observe that $\Delta(q_1, \ldots, q_m)$ can be written as

$$\Delta(q_1, \dots, q_m) = \begin{vmatrix} p_0(q_1) & \cdots & p_0(q_m) \\ p_1(q_1) & \cdots & p_1(q_m) \\ \vdots & \ddots & \vdots \\ p_{m-1}(q_1) & \cdots & p_{m-1}(q_m) \end{vmatrix}$$
(2)

for any set of polynomials $p_k(q)$, k = 0, ..., m - 1, which have the property, $p_0(q) = 1$, and

$$p_k(q) = q^k + C_{k-1}q^{k-1} + \dots + C_0,$$

 $k = 1, \dots, m - 1.$

This immediately follows from the fact that the value of a determinant does not change if the multiple of any one row is added to a different row.

We now choose polynomials $p_k^{\alpha}(q)$ judiciously. We introduce orthogonal polynomials $p_k^{\alpha}(q)$ with the properties

$$p_{k}^{\alpha}(q) = q^{k} + C_{k-1}^{\alpha}q^{k-1} + \dots + C_{0}^{\alpha},$$

$$p_{0}^{\alpha}(q) = 1,$$

$$\int_{0}^{\infty} dq e^{-q}q^{\alpha}p_{k_{1}}^{\alpha}(q)p_{k_{2}}^{\alpha}(q) = h_{k_{1}}^{\alpha}\delta_{k_{1}k_{2}},$$

$$\alpha = n - m.$$

Polynomials with these properties are well known. They are the generalized Laguerre polynomials defined by [5]

$$p_k^{\alpha}(q) = \frac{e^q}{q^{\alpha}} (-1)^k \frac{d^k}{dq^k} (e^{-q} q^{k+\alpha}).$$

We also note, for later use, that [5]

$$p_k^{\alpha}(q) = \sum_{r=0}^k \binom{k}{r} (-1)^r \frac{\Gamma(k+\alpha+1)}{\Gamma(k+\alpha-r+1)} q^{k-r}, \quad (3)$$

$$\int_{0}^{\infty} dq \ e^{-q} q^{\alpha} p_{k_{1}}^{\alpha}(q) p_{k_{2}}^{\alpha}(q)$$

= $\Gamma(k_{1} + 1) \Gamma(k_{1} + \alpha + 1) \delta_{k_{1},k_{2}}, \quad (4)$

$$\int_0^\infty dq \, q^{a-1} e^{-q} p_k^b(q) = (1 - a + b)_k \Gamma(a) \, (-1)^k,$$
 (5)

recalling that $(1 - a + b)_k = (1 - a + b)(1 - a + b + 1)\cdots(1 - a + b + k - 1)$. Writing $\Delta(q_1, \ldots, q_m)$ in terms of $p_k^{\alpha}(q)$ as in Eq. (2), and using the orthogonal property of these polynomials, it immediately follows from Page's proven result, Eq. (1), that

$$S_{m,n} = \psi(mn + 1) - \frac{1}{mn} \sum_{k=0}^{m-1} \int_0^\infty \frac{e^{-q} (q \ln q) q^{n-m} [p_k^{n-m}(q)]^2 dq}{\Gamma(k+1) \Gamma(k+1+n-m)}.$$

We thus need to evaluate the integral

$$I_{n-m}^{k} = \int_{0}^{\infty} (q \ln q) q^{n-m} [p_{k}^{n-m}(q)]^{2} e^{-q} dq.$$

We first introduce

$$J^k(\alpha) = \int_0^\infty q^{\alpha+1} [p_k^\alpha(q)]^2 e^{-q} dq.$$

From the definition of the Laguerre polynomial given, it follows that $p^{\alpha}(q) = p_k^{\alpha+1}(q) - k p_{k-1}^{\alpha+1}(q)$. Using this and Eq. (4), we get

$$J^{k}(\alpha) = \Gamma(k+1)\Gamma(k+\alpha+2) + k^{2}\Gamma(k)\Gamma(k+\alpha+1)$$
(6)

and we now note that

$$I_{n-m}^{k} = \left[\frac{dJ^{k}(\alpha)}{d\alpha} - 2\int_{0}^{\infty} dq \ q^{\alpha+1}e^{-q}p_{k}^{\alpha}\frac{dp_{k}^{\alpha}}{d\alpha}\right]_{\alpha=n-m}.$$

Evaluating these two terms using Eqs. (3), (4), (5), and (6), we find

$$S_{m,n} = \psi(mn+1) - \frac{1}{mn} \sum_{k=0}^{m-1} [1 + (1+2k+n-m)\psi(1+k+n-m)] \\ + \frac{2}{mn} \sum_{k=0}^{m-1} \sum_{r=0}^{k} {k \choose r} (-1)^{k+r} \frac{\Gamma(k+n-m+1)}{\Gamma(k+n-m-r+1)} \\ \times [\psi(k+n-m+1) - \psi(k+n-m-r+1)] \frac{(r-k-1)_{k}\Gamma(k+n-m-r+2)}{\Gamma(k+1)\Gamma(k+n-m+1)}, \quad (7)$$

where we use the fact that $\psi(z) = \frac{1}{\Gamma(z)} \frac{d\Gamma(z)}{dz}$. We now observe that

$$\psi(mn+1) - \frac{1}{mn} \sum_{k=0}^{m-1} [1 + (1 + 2k + n - m)\psi(1 + k + n - m)] = \left(\sum_{k=n+1}^{mn} \frac{1}{k}\right) + \frac{m-1}{2n}.$$
 (8)

This follows by examining the coefficient of $\frac{1}{r}$ in

$$\sum_{k=0}^{m-1} (1 + 2k + n - m)\psi(1 + k + n - m)$$

after writing

$$\psi(1 + k + n - m) = -C + \sum_{r=1}^{k+n-m} \frac{1}{r}$$

The third expression in Eq. (7) above is

$$\frac{2}{mn} \sum_{k=0}^{m-1} \sum_{r=0}^{k} \binom{k}{r} (-1)^{k+r} \frac{\Gamma(k+n-m+1)}{\Gamma(k+n-m-r+1)} [\psi(k+n-m+1) - \psi(k+n-m-r+1)] \\ \times \frac{(r-k-1)_k \Gamma(k+n-m-r+2)}{\Gamma(k+1)\Gamma(k+n-m+1)} = \frac{2}{mn} \sum_{k=0}^{m-1} \binom{k}{1} (-1)^{2k+1} = -2 \frac{(m-1)}{2n}$$
(9)

since $(r - k - 1)_k = 0$, for all $r \neq 0$ and $r \neq 1$, and also $\psi(k + n - m + 1) - \psi(k + n - m - r + 1) =$ 0 when r = 0. On substituting (8) and (9) back into (7), we obtain

$$S_{m,n} = \left(\sum_{k=n+1}^{mn} \frac{1}{k}\right) - \frac{m-1}{2n},$$
 (10)

as conjectured by Page.

This work is part of project SC/218/94 supported by Forbairt.

*Electronic address: sen@maths.tcd.ie

- [1] D. N. Page, Phys. Rev. Lett. 71, 1291 (1993).
- [2] E. Lubkin, J. Math. Phys. 19, 1028 (1978).
- [3] S. Lloyd and H. Pagels, Ann. Phys. (N.Y.) 188, 186 (1988).
- [4] S.K. Foong and S. Kanno, Phys. Rev. Lett. 72, 1148 (1994); J. Sanchez-Ruiz, Phys. Rev. E 52, 5653 (1995).
- [5] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, *Integrals and Series Vol. 2* (Gordon and Breach, New York, 1988).