PhYsical ReVIEw
 LETTERS

Average Entropy of a Quantum Subsystem

Siddhartha Sen*
School of Mathematics, University of Dublin, Trinity College, Dublin, Ireland
(Received 24 January 1996)

It was recently conjectured by D. Page that if a quantum system of Hilbert space dimension $n m$ is in a random pure state then the average entropy of a subsystem of dimension m where $m \leq n$ is $S_{m, n}=\left(\sum_{k=n+1}^{m n} 1 / k\right)-(m-1) / 2 n$. In this Letter a simple proof of this conjecture is given. [S0031-9007(96)00569-8]

PACS numbers: $03.65 . \mathrm{Fd}, 05.30 . \mathrm{Ch}, 65.50 .+\mathrm{m}$

In a recent Letter Page [1] considered a system $A B$ with Hilbert space dimension $m n$. The system consisted of two subsystems A and B of dimensions m and n, respectively. Page calculated the average

$$
S_{m, n}=\left\langle S_{A}\right\rangle
$$

of the entropy S_{A} over all pure states $\rho=|\Psi\rangle\langle\Psi|$ of the total system where $S_{A}=-\operatorname{Tr} \rho_{A} \ln \rho_{A}$ and ρ_{A}, the density matrix of subsystem A, is obtained by taking the partial trace of the full density matrix ρ over the other subsystem, that is, $\rho_{A}=\operatorname{Tr}_{B} \rho$.

The average was defined with respect to the unitary invariant Haar measure on the space of unitary vectors $|\Psi\rangle$ in the $m n$ dimensional Hilbert space of the total system. The quantity $\ln m-S_{m n}$ was used to define the average information of the subsystem A. It is a measure of the information that is contained in the m-subsystem A regarding the fact that the entire system $A B$ is in a pure $m n$ state. Using earlier work [2,3] in this area, Page was led to consider the probability distribution of the eigenvalues of ρ_{A} for the random pure states ρ of the entire system. He used

$$
P\left(p_{1}, \ldots, p_{m}\right) d p_{1} \ldots d p_{m}=N \delta\left(1-\sum_{l=1}^{m} p_{l}\right) \prod_{1 \leq i<j \leq m}\left(p_{i}-p_{j}\right)^{2} \prod_{k=1}^{m} p_{k}^{n-m} d p_{k}
$$

where p_{i} was an eigenvalue of ρ_{A} and the normalization constant for this probability distribution was given only implicitly by the requirement that the total probability integrated to unity. Page then showed that the average

$$
\begin{equation*}
S_{m, n}=-\int\left(\sum_{i=1}^{m} p_{i} \ln p_{i}\right) P\left(p_{1}, \ldots, p_{m}\right) d p_{1} \cdots d p_{m}=\psi(m n+1)-\frac{\int\left(\sum_{i=1}^{m} q_{i} \ln q_{i}\right) Q d q_{1} \cdots d q_{m}}{m n \int Q d q_{1} \cdots d q_{m}} \tag{1}
\end{equation*}
$$

where $q_{i}=r p_{i}$ for $i=1, \ldots, m, r$ is positive [1], and

$$
\psi(m n+1)=-C+\sum_{k=1}^{m n} \frac{1}{k}
$$

C being Euler's constant, and

$$
Q\left(q_{1}, \ldots, q_{m}\right) d q_{1} \cdots d q_{m}=\prod_{1 \leq i<j \leq m}\left(q_{i}-q_{j}\right)^{2} \prod_{k=1}^{m} e^{-q_{k}} q_{k}^{n-m} d q_{k}
$$

On the basis of evaluating $S_{m, n}$ for $m=2,3,4,5$ using mathematica 2.0, Page conjectured that the exact result for $S_{m, n}$ was

$$
S_{m, n}=\left(\sum_{k=n+1}^{m n} \frac{1}{k}\right)-\frac{m-1}{2 n}
$$

but was not able to prove that this was the case. In this Letter, we will give a simple proof of this conjecture [4].

We first observe that the van der Monde determinant defined by

$$
\Delta\left(q_{1}, \ldots, q_{m}\right) \equiv \prod_{1 \leq j<i \leq m}\left(q_{i}-q_{j}\right)
$$

may be written

$$
\Delta\left(q_{1}, \ldots, q_{m}\right)=\left|\begin{array}{ccc}
1 & \cdots & 1 \\
q_{1} & \cdots & q_{m} \\
\vdots & \ddots & \vdots \\
q_{1}^{m-1} & \cdots & q_{m}^{m-1}
\end{array}\right|
$$

We next observe that $\Delta\left(q_{1}, \ldots, q_{m}\right)$ can be written as

$$
\Delta\left(q_{1}, \ldots, q_{m}\right)=\left|\begin{array}{ccc}
p_{0}\left(q_{1}\right) & \cdots & p_{0}\left(q_{m}\right) \tag{2}\\
p_{1}\left(q_{1}\right) & \cdots & p_{1}\left(q_{m}\right) \\
\vdots & \ddots & \vdots \\
p_{m-1}\left(q_{1}\right) & \cdots & p_{m-1}\left(q_{m}\right)
\end{array}\right|
$$

for any set of polynomials $p_{k}(q), k=0, \ldots, m-1$, which have the property, $p_{0}(q)=1$, and

$$
\begin{gathered}
p_{k}(q)=q^{k}+C_{k-1} q^{k-1}+\cdots+C_{0} \\
k=1, \ldots, m-1
\end{gathered}
$$

This immediately follows from the fact that the value of a determinant does not change if the multiple of any one row is added to a different row.

We now choose polynomials $p_{k}^{\alpha}(q)$ judiciously. We introduce orthogonal polynomials $p_{k}^{\alpha}(q)$ with the properties

$$
\begin{gathered}
p_{k}^{\alpha}(q)=q^{k}+C_{k-1}^{\alpha} q^{k-1}+\cdots+C_{0}^{\alpha} \\
p_{0}^{\alpha}(q)=1 \\
\int_{0}^{\infty} d q e^{-q} q^{\alpha} p_{k_{1}}^{\alpha}(q) p_{k_{2}}^{\alpha}(q)=h_{k_{1}}^{\alpha} \delta_{k_{1} k_{2}} \\
\alpha=n-m
\end{gathered}
$$

Polynomials with these properties are well known. They are the generalized Laguerre polynomials defined by [5]

$$
p_{k}^{\alpha}(q)=\frac{e^{q}}{q^{\alpha}}(-1)^{k} \frac{d^{k}}{d q^{k}}\left(e^{-q} q^{k+\alpha}\right)
$$

We also note, for later use, that [5]

$$
\begin{equation*}
p_{k}^{\alpha}(q)=\sum_{r=0}^{k}\binom{k}{r}(-1)^{r} \frac{\Gamma(k+\alpha+1)}{\Gamma(k+\alpha-r+1)} q^{k-r} \tag{3}
\end{equation*}
$$

$$
\begin{align*}
\int_{0}^{\infty} d q e^{-q} q^{\alpha} p_{k_{1}}^{\alpha} & (q) p_{k_{2}}^{\alpha}(q) \\
& =\Gamma\left(k_{1}+1\right) \Gamma\left(k_{1}+\alpha+1\right) \delta_{k_{1}, k_{2}} \tag{4}
\end{align*}
$$

$$
\begin{equation*}
\int_{0}^{\infty} d q q^{a-1} e^{-q} p_{k}^{b}(q)=(1-a+b)_{k} \Gamma(a)(-1)^{k} \tag{5}
\end{equation*}
$$

recalling that $(1-a+b)_{k}=(1-a+b)(1-a+$ $b+1) \cdots(1-a+b+k-1)$. Writing $\Delta\left(q_{1}, \ldots, q_{m}\right)$ in terms of $p_{k}^{\alpha}(q)$ as in Eq. (2), and using the orthogonal property of these polynomials, it immediately follows from Page's proven result, Eq. (1), that

$$
\begin{aligned}
S_{m, n}= & \psi(m n+1) \\
& -\frac{1}{m n} \sum_{k=0}^{m-1} \int_{0}^{\infty} \frac{e^{-q}(q \ln q) q^{n-m}\left[p_{k}^{n-m}(q)\right]^{2} d q}{\Gamma(k+1) \Gamma(k+1+n-m)}
\end{aligned}
$$

We thus need to evaluate the integral

$$
I_{n-m}^{k}=\int_{0}^{\infty}(q \ln q) q^{n-m}\left[p_{k}^{n-m}(q)\right]^{2} e^{-q} d q
$$

We first introduce

$$
J^{k}(\alpha)=\int_{0}^{\infty} q^{\alpha+1}\left[p_{k}^{\alpha}(q)\right]^{2} e^{-q} d q
$$

From the definition of the Laguerre polynomial given, it follows that $p^{\alpha}(q)=p_{k}^{\alpha+1}(q)-k p_{k-1}^{\alpha+1}(q)$. Using this and Eq. (4), we get

$$
\begin{align*}
J^{k}(\alpha)= & \Gamma(k+1) \Gamma(k+\alpha+2) \\
& +k^{2} \Gamma(k) \Gamma(k+\alpha+1) \tag{6}
\end{align*}
$$

and we now note that
$I_{n-m}^{k}=\left[\frac{d J^{k}(\alpha)}{d \alpha}-2 \int_{0}^{\infty} d q q^{\alpha+1} e^{-q} p_{k}^{\alpha} \frac{d p_{k}^{\alpha}}{d \alpha}\right]_{\alpha=n-m}$.

Evaluating these two terms using Eqs. (3), (4), (5), and (6), we find

$$
\begin{align*}
S_{m, n}= & \psi(m n+1)-\frac{1}{m n} \sum_{k=0}^{m-1}[1+(1+2 k+n-m) \psi(1+k+n-m)] \\
& +\frac{2}{m n} \sum_{k=0}^{m-1} \sum_{r=0}^{k}\binom{k}{r}(-1)^{k+r} \frac{\Gamma(k+n-m+1)}{\Gamma(k+n-m-r+1)} \\
& \times[\psi(k+n-m+1)-\psi(k+n-m-r+1)] \frac{(r-k-1)_{k} \Gamma(k+n-m-r+2)}{\Gamma(k+1) \Gamma(k+n-m+1)} \tag{7}
\end{align*}
$$

where we use the fact that $\psi(z)=\frac{1}{\Gamma(z)} \frac{d \Gamma(z)}{d z}$. We now observe that

$$
\begin{equation*}
\psi(m n+1)-\frac{1}{m n} \sum_{k=0}^{m-1}[1+(1+2 k+n-m) \psi(1+k+n-m)]=\left(\sum_{k=n+1}^{m n} \frac{1}{k}\right)+\frac{m-1}{2 n} \tag{8}
\end{equation*}
$$

This follows by examining the coefficient of $\frac{1}{r}$ in

$$
\sum_{k=0}^{m-1}(1+2 k+n-m) \psi(1+k+n-m)
$$

after writing

$$
\psi(1+k+n-m)=-C+\sum_{r=1}^{k+n-m} \frac{1}{r}
$$

The third expression in Eq. (7) above is

$$
\begin{align*}
\frac{2}{m n} \sum_{k=0}^{m-1} \sum_{r=0}^{k}\binom{k}{r}(-1)^{k+r} & \frac{\Gamma(k+n-m+1)}{\Gamma(k+n-m-r+1)}[\psi(k+n-m+1)-\psi(k+n-m-r+1)] \\
& \times \frac{(r-k-1)_{k} \Gamma(k+n-m-r+2)}{\Gamma(k+1) \Gamma(k+n-m+1)}=\frac{2}{m n} \sum_{k=0}^{m-1}\binom{k}{1}(-1)^{2 k+1}=-2 \frac{(m-1)}{2 n} \tag{9}
\end{align*}
$$

since $(r-k-1)_{k}=0$, for all $r \neq 0$ and $r \neq 1$, and also $\psi(k+n-m+1)-\psi(k+n-m-r+1)=$ 0 when $r=0$. On substituting (8) and (9) back into (7), we obtain

$$
\begin{equation*}
S_{m, n}=\left(\sum_{k=n+1}^{m n} \frac{1}{k}\right)-\frac{m-1}{2 n} \tag{10}
\end{equation*}
$$

as conjectured by Page.
This work is part of project SC/218/94 supported by Forbairt.
*Electronic address: sen@maths.tcd.ie
[1] D. N. Page, Phys. Rev. Lett. 71, 1291 (1993).
[2] E. Lubkin, J. Math. Phys. 19, 1028 (1978).
[3] S. Lloyd and H. Pagels, Ann. Phys. (N.Y.) 188, 186 (1988).
[4] S. K. Foong and S. Kanno, Phys. Rev. Lett. 72, 1148 (1994); J. Sanchez-Ruiz, Phys. Rev. E 52, 5653 (1995).
[5] A.P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series Vol. 2 (Gordon and Breach, New York, 1988).

