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ABSTRACT The results of extensive computations are
presented to accurately characterize transitions to chaos for the
Kuramoto-Sivashinsky equation. In particular we follow the
oscillatory dynamics in a window that supports a complete
sequence of period doubling bifurcations preceding chaos. As
many as 13 period doublings are followed and used to compute
the Feigenbaum number for the cascade and so enable an
accurate numerical evaluation of the theory of universal be-
havior of nonlinear systems, for an infinite dimensional dy-
namical system. Furthermore, the dynamics at the threshold of
chaos exhibit a self-similar behavior that is demonstrated and
used to compute a universal scaling factor, which arises also
from the theory of nonlinear maps and can enable continuation
of the solution into a chaotic regime. Aperiodic solutions
alternate with periodic ones after chaos sets in, and we show the
existence of a period six solution separated by chaotic regions.

1. Introduction

A central question in fluid dynamics that is attracting a
considerable research effort is the prediction of onset to
turbulence. A general theory encompassing the Navier-
Stokes equations of fluid motion, and consequently covering
a large class of physical phenomena, is not available at
present. As a result most contributions are focused on the
analysis of model equations derived from the Navier-Stokes
system by asymptotic methods, for example, or by finite-
dimensional truncations (1). In many cases this is a valid and
useful approach, especially in the light of Feigenbaum's
fascinating theory originally for one-dimensional nonlinear
maps (2-4), which predicts universal nonlinear behavior and
is believed to be applicable to many more complex nonlinear
systems such as ordinary and partial differential equations. A
brief review of Feigenbaum's theory for the quadratic map is
in order here, but the interested reader should refer to the
above mentioned articles (also ref. 5). The theory pertains to
one-parameter families of mappings ofan interval onto itself,
a representative example of which is

f (x) =4vx( - x), 0 <v-l, xE[, 1]. Ill

The flow is obtained by repeated application of Eq. 1. x = 0
is a fixed point of each member of the family (1). For 0 < v
< 1/4, x = 0 is the only fixed point and it is globally
attractive-i.e., the iterates of f, starting at any x in [0, 1],
converge to x = 0. For 1/4 < v < 1, another fixed point
appears at x = 1 - 1/4v, and it is globally attractive for 1/4
< v - 3/4. At v = 3/4 the fixed point becomes unstable and
bifurcates into two fixed points, x1l and x12, of the twice
iterated mapf(f(x)) =J2(x) withf(x1j) = x12 andf(x12) = x11.
This period 2 cycle is globally attractive for all sequences of

iterates in the range 3/4 < v < v2. At v2 the 2-cycle becomes
unstable, a 4-cycle consisting of fixed points off4 emerges
that is globally attractive in a range v2 < v < V3, and so ad
infinitum. The sequence of values v,, at which a period
doubling occurs tend to a limiting value v. < 1; for v. < v <
1, the flow is mostly chaotic. The rate at which the vn
approach v. is geometric, and the limiting ratio

vn -vn-l
8 = lim = 4.6692016 . . .

n-"o vn+-Vn
[2]

is the same for all one-parameter families of unimodal C2
mappings of [0, 1] whose maxima are nondegenerate-i.e.,f"
$ 0. The constant 8 is called the Feigenbaum number.
There is another universal constant we compute here. Take

a stable 2"+1 cycle and arrange its x coordinates in increasing
order: x1 <x2 < * * * < X2,+i. Consider now the lower half of
this sequence, Si say, with x1 <x2 < ... < X2, < x* where
x* is the unstable fixed point of Eq. 1. Rescale the upper half
of S1, S2 say, X2.-1+1 < ... <x2, to the same size as S1 by a

X2n -X1
factor a, = . Next rescale the lower halfofS2, 53

X2" - X2.-1 + 1

say, X2.-Il1 <... <X2n-1+2-2 to the same size as S2 by a factor
X2"- X2n-1+l

a2 = . Next, the upper half of S3, S4 say,
X2n-l+2n-2 X2n-l+l

X2.-l+2x-3+1 <... * <X2-1+2-2 is rescaled to the same size as S3
X2.1-1+2n-2 - X2.-1+1

by a factor a4 = and so on. Feigen-
X2,-1+2-2 X2n-1+2R-3+1

baum (2-4) has observed that for fixed n, the factors ai i =
1, . .. , n - 2 converge very rapidly, and as n -a 00, the
converged value is a = 2.502907875.... This constant too is
universal in the class of unimodal nondegenerate C2 maps of
[0, 1].
Feigenbaum predicted such universal behavior for contin-

uous time flows of infinite dimensional (continuum) systems.
He has (7) observed such self-similarity in experiments with
Rayleigh-Benard flows. In this paper we describe carefully
computed numerical solutions of the Kuramoto-Sivashinsky
equation that clearly display period doublings, as many as 13
ofthem, and universal behaviors: the continuum analogues of
both universal constants 8 and a, when computed from our
numerical data, agree with the values of the one-dimensional
theory to 3 decimals.
The equation studied, the Kuramoto-Sivashinsky equa-

tion, can be written in the form

ut + uUX + urX + vUxXXX = 0,

(x, t)ER1 X R+,

u(x, 0) = uo(x), u(x + 21r, t) = u(x, t),
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Table 1. Overview of the most attracting manifolds
Description of the

Window range attractors
1 < v < 00 Trivial solution

0.25 < v < 1 Steady state of period 2wr
0.0756 < v < 0.025 Steady state of period ir

0.06697 5 v < 0.0755 Steady state of period 2ir
0.05992 < v s 0.06695 Steady state of period 2ir/3
0.05516 s v < 0.05991 Time periodic attractor

0.0396227 s v < 0.05515 Steady state of period 2ir
0.03729 5 v < 0.0396226 Time periodic attractor

0.0346259 < v < 0.03728 Steady state of period ir/2
0.029969103484 < v < 0.0346258 Time periodic attractor

containing complete
period-doubling sequence

0.02922 _ v < 0.02969910348 Chaotic oscillations
0.02905 < v _ 0.02921 Time periodic attractor
0.02855 _ v _ 0.02904 Chaotic oscillations
0.02662 _ v _ 0.02854 Time periodic attractor
0.02525 < v _ 0.02661 Chaotic oscillations
0.02506 _ v < 0.02524 Time periodic attractor

0.0248607 _ v _ 0.02505 Chaotic oscillations
0.02445 _ v _ 0.0248606 Time periodic attractor

containing complete
period-doubling sequence

0.0242861 < v s 0.02445 Chaotic oscillations
0.02367 < v c 0.02438608 Time periodic attractor

containing complete
period-doubling sequence

0.0232 c v 5 0.02386 Chaotic oscillations
0.0229 < v < 0.0231 Time periodic attractor
0.0223 5 v < 0.0228 Chaotic oscillations
0.022 < v < 0.0222 Time periodic attractor

? v < 0.0219 Chaotic oscillations

Table 2. Computation of the Feigenbaum number
Subwindow Ratio of

Subwindow boundary v length lengths Time period
0.0346258 4.3083 x 10-3 - 0.44
0.03031749 2.6825 x 10-4 0.88
0.030049233 6.2786 x 10-5 16.061 1.76
0.029986446 1.3609 x 10-5 4.2724 3.52
0.0299728366 2.9330 x 10-6 4.6136 7.03
0.0299699036 6.288 x 10-7 4.6399 14.05
0.02996927484 1.3456 x 10-7 4.6644 28.1
0.02996914018 2.884 x 10-8 4.6657 56.2
0.02996911134 6.18 x 10-9 4.667 112.4
0.02996910516 1.32 x 10-9 4.68 224.8
0.029969103842 2.84 x 10-10 4.65 449.6
0.029969103558 6.0 x 10-11 4.7 899.1
0.029969103498 1.4 x 10-11 4. 1798.2
0.029969103484 00

2. Numerical solutions.

The results presented here were obtained by numerical
solution of the initial value problem (Eq. 3) with the initial
condition

uo(x) = -sin(x),

for all values of v. Since solutions of Eq. 3 are uniquely
determined by their initial data, a solution that is an odd
function ofx initially will remain so for all subsequent times.
The advantage of such a choice is that there exist analytical
results that give global bounds for u(x, t) and higher deriva-
tives in the odd-parity case (14); the bounds available in the
general case grow exponentially in t (15). The numerical
scheme is a Galerkin spectral method based on a sine series

where v > 0 is the viscosity of the system. This equation
arises in a variety of problems such as concentration waves

(8), flame propagation (9), free surface flows (10). A gener-
alized form, ofwhich Eq. 3 is a special case, has been derived
by an asymptotic analysis of the Navier-Stokes equations in
the context oftwo-phase flows in cylindrical geometries with
applications in lubricated pipe-lining (for the efficient trans-
port of crude oil) and oil recovery through porous media (11).
Much analytical and computational work has been completed
to describe the complicated nonlinear dynamics that Eq. 3
can produce as v varies and, in particular, when it achieves
fairly small values (see refs. 12 and 13).

Spai c-tinic profile of perilic alttractor
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FIG. 1. Spatio-temporal evolution at v =0.03. Solution has

undergone two period doublings and is en route to chaos.
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FIG. 2. The phase plane showing the first five period doublings.
The values of v are given on the figure as well as the time periods.
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a Minima of energy phase plane
0.01-

0.005-I

-0.0051-0.011 16 18

1/16 of minima 1/32 of minima
n ni

0.005-r

0

17.3 17.35

g 001 1/64 of minima

0005

0

-0005 j

17.345 17.35 17.355

00.01 1/256 of minima

0.005

0

-0.005

0117.351 17.352 17.353
v 0.0299691035

I -

-1
17.34 17.36 17.3E

1/128 of minima0.01 *: .*.

0.005

0

-0.005

-001
17.352 17.354 17.356

1/512 of minima
0U1

0.005

0

-0.005

-00117.352 17.353 17.35

Period= 1798.2564595

FIG. 3. Successive magnification of the energy minima of
212-cycle, showing the self-similar characteristics of the attracto

and is described in detail in ref. 12. The truncation order
the Galerkin approximation depends on the value of v
crude estimate that has proven practical shows that it suffik
to retain a few frequencies more than v-12, the number
linearly unstable ones around u = 0. Taking any me
frequencies does not change the computed solution; t
number is an upper bound on the dimension of the attract
In ref. 16 it was shown that'the Hausdorff dimension of
attractor does not exceed- const v-2/"0, which is larger tt
v112 by a factor of const v-1/40; the constant, however,
very large.

Since the Kuramoto-Sivashinsky equation (Eq. 3) is
conservative form, f? u(x, t)dx is a conserved quantity
has been proved that when v > 1, every solution whi
integral is zero initially tends to zero uniformly; this is bol
out by our numerical calculations. As we decrease v belo%
the zero solution becomes unstable, bifurcates, and tends
large t to a steady nonconstant state. When v decreases belt
1/4, u tends to a new linearly stable steady state whose spal
period is ir. Further decrease of v gives stable steady sta
of spatial period 2rand 21r/3. At v = 0.05991, atime-perio
attractor is found; a single period doubling occurs in t

f FIG. 4. Route to chaos and beyond for the minima of the energy
of the Kuramoto-Sivashinsky equation. Disorder sets in as the
viscosity v decreases from right to left. The v axis has been enlarged
by a factor of 100.

window (by window we mean intervals of v that attract
qualitatively similar solutions), but as v is decreased further,
the solutions are' attracted to steady states of spatial period
2ir. Next we find a new time-periodic window with two

h period doublings and one period halving. Further decrease of
v gives steady states with spatial period wr/2. Next we find a
third periodic window that contains a complete sequence of
period-doubling bifurcations (we could identify 13), which
lead to chaos, and so on (see Table 1).
A graphical view of the solutions at v = 0.03 is presented

in Fig. 1. The time period here-is 1.76168719, and we are in
the subwindow directly after the second period-doubling.
The spatial and temporal evolution of the profile are collec-
tively shown over a domain x E [0, 2Xr] with u on the vertical
axis and x on the horizontal axis. One hundred profiles are
plotted at time intervals of 0.036 and shifted vertically by a
distance of 8 units. The whole duration of the picture is 3.6
time units and contains approximately two time periods.
Computation of the Feigenbaum Number. Table 2 presents

our evidence that verifies Feigenbaum's universal theory for
the Kuramoto-Sivashinsky equation. These results were
generated by monitoring the evolution of the energy, E(t)-

the i.e., the L2-norm of the solution. Each entry in Table 2
ir. represents the beginning of successive subwindows, which

support solutions that undergo period doublings. The sharp
estimation of these borundaries-is necessary if an accurate

of computation of the Feigenbaum number is desired. In all
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FIG. 5. Enlargement of Fig. 4 route to chaos for the minima ofthe
energy of the Kuramoto-Sivashinsky equation. The 6-cycle solution
is seen between 2.992 and 2.993.
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results reported here, the, boundaries were estimated with
enough accuracy to yield the Feigenbaum number correct to
the number of significant figures shown. The first column
gives the value of v where the subwindow begins, the second
column gives' the subwindow length, the third column gives
the ratio of successive subwindow lengths according to Eq.
2, and the fourth column gives the time period of the
oscillation. Fig. 2 shows representative energy phase planes,
generated by plotting E(t) versus E(t), for the first five period
doublings. The overall limits of these phase planes (for
example, the maximum -and minimum ofE and E) do not vary
much beyond the second period doubling. Period doubling is
indicated by the appearance of more turns in the phase plane
(i.e., by an index change of the curves-the way in which the
phase plane gains more turns before the appearance of chaos
is quantified in the next subsection.
The Universal Limit of Multiple Period Doubflngs. Next we

present a set of numerical results that exhibit very clearly the
self-similar nature of period-doubling bifurcations. The ex-
periment we choose has a value of v ='0.0299691035 and lies
at the end of the third periodic window; at a value sof v =
0.029969103484-i.e., a decrease of 1.6 x 1011-chaotic
solutions are' observed. The time period of the solution is
1798.2564595 units and is the result of a sequence of 12 period
doublings (in Fig. 1 we show only the first 5). The energy E(t)
of this solution is a scalar-valued periodic function; because
of the 12 period doublings, it has 211 local minima in one
period. We arrange these in increasing order E1 < E2 < *
< E21i. In Fig. 3a, we picture these values by drawing a
vertical line through each E,, i = 1, .. , 21. In Fig. 3b-we
picture the upper half of these energy minima El,i = 210 + 1,
.. ., 21, rescaled to the same size by the factor a,

E21 -El
E=~~E, . In Fig. 3c we depict the lower half of the
E l-E~l~

sequence in Fig. 3b, E,, i = 210 + 1, . . . , 210 + 29, rescaled

to the same size by a factor a2=n Fig. 3d
E2o+20 - E21o+1

we picture the upper half of the sequence in Fig. 3c, E,, i =
210 + 28 + 1, ..., `0 + 29, rescaled by a factor a3

E210+2 - E2io+l
= E~io~~ - E~io~1 . We repeat this procedure noting the

E21o+29 - E21o+28+1
remaining enlargement factors a4, . . , a9. The self-similar
structure of the attractor is clearly seen from these-figures.
The scale factors a, converge very rapidly to the value 2.503,
in very good agreement with Feigenbaum's second universal
constant a = 2.502907875 ... . These results provide an-
other'instance of complete confirmation of Feigenbaum's
universal theory for the Kuramoto-Sivashinsky equation.
The route'through period doubling to chaos can be illus-

trated for the one-dimensional map Eq. 1 by plotting the
n-fold iterates x", say 2000 < n < 2500, as vertical coordi-
nates, with v as horizontal' coordinate (Fig. 4). The starting
xo is arbitrary; transients have been eliminated by starting

with the 2000th iterate. A 2-cycle at a parameter value v will
appear as two dots, a 4-cycle at a different value of v as four
dots and so on. The final picture produced is the locus of all
such points as v varies between 0 and 1.
For the Kuramoto-Sivashinsky equation an analogous

picture can be constructed, as follows. We begin with the first
subwindow where the solution first becomes periodic. For a
range of v we plot as vertical coordinates the minima of the
energy E(t) of the solution u(x,t) in the time interval, say 60
< t < 120, tq eliminate transients, with v as horizontal
coordinate. As v crosses subwindow boundaries and the
solution attains a period doubling, the number of minima
doubles. Chaos sets in as v decreases, and the solution is
clearly seen' to attain several period doublings before an
accumulation point is reached; below the accumulation point
chaos sets in and appears by the irregular positioning of the
minima (dots). Most interestingly, however, our computa-
tions show a region in the interval [2.99,2.995] X 10-2where
we observe 6-cycle solutions. An enlargement of this region
is given in Fig. 5. The alternating between aperiodic and
periodic attractors in the region beyond the accumulation
point is fairly typical of numerical experiments on one-
dimensional maps. Our results indicate that this behavior is
also supported by infinite-dimensional continuum systems.
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