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I describe an approach that helps students understand why the behavior of macroscopic systems
distinguishes between past and future, even though the underlying classical or quantum microscopic
equations are time-reversal invariant. This approach provides a qualitative understanding of
irreversibility by an explicit calculation of irreversible behavior for a simple, time-reversal-invariant
model system. The mathematics involved is accessible to upper-level undergraduate students.
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I. INTRODUCTION

When I was a student, I looked in vain for a clear expla-
nation of how irreversible behavior in the real world could
be compatible with the time-reversal-invariant equations of
motion I was taught in classical and quantum mechanics. The
literature I was referred to by my professors was mathemati-
cally intimidating, obscure, and not very illuminating.

This paper is an effort to help today’s students who have
similar questions. It proposes straightforward answers to the
questions I had as a student, which might not be the same
questions addressed by those who study the difficult math-
ematical problems associated with the field.

To begin with, the meaning of the term “irreversibility” is
not as simple as it might seem. Much of the confusion and
disagreement that has been associated with discussions of
irreversibility comes from conflicting ideas of what the word
means and what needs to be explained.1 The irreversible be-
havior I wanted to understand, and which I want to explain
to students, is what is observed. Every day we see that time
runs in only one direction in the real world. If I drop my
keys, they fall to the floor and stay there; keys lying on the
floor do not suddenly jump into my hand. This asymmetry of
time has seemed to many to be incompatible with the time-
reversal invariance of the fundamental equations of classical
and quantum physics.

The explanation of irreversibility given in this paper is
based on the fact that macroscopic systems contain more
than 1020 atoms, and that we have very limited information
about the microscopic state. We might know that the atoms
are in some sort of container, which restricts their positions,
and we might know something about the temperature or total
energy, which restricts their momenta. We might also have
made observations of the uniformity of the density. It is un-
likely that we have made more than a thousand measure-
ments, and certainly less than a million. Therefore, the only
reasonable description of our knowledge of the microscopic
state of a macroscopic system is by probabilities.

The approach I have taken uses a simple thought experi-
ment for which the microscopic equations of motion are
time-reversal invariant, but the macroscopic behavior is nev-
ertheless irreversible. The free expansion of a classical ideal
gas satisfies these criteria. Many students — and some pro-
fessors — are surprised that the ideal gas can exhibit irre-
versible behavior. After all, it has a number of constants of
the motion equal to the number of components of the mo-
mentum. This surprise has the advantage of getting the stu-
dents’ attention.

Using a classical model removes any confusion between
macroscopic irreversibility and the effects of quantum mea-
surement, which might also show an asymmetry in time. It
also simplifies the analysis. The mathematical solution for
the properties of the model is straightforward, using only
Fourier series expansions and Gaussian integrals.2,3 Upper-
level undergraduate students can do all the necessary calcu-
lations explicitly. Because the argument is transparent and
nothing is assumed, students have found it satisfying and
convincing.

The rest of the paper is organized in much the same order
that I use in teaching this material. The next three sections
will briefly review the history of the debate, discuss a trivial
form of irreversibility that might otherwise cause confusion,
and specify what I mean by the observation of equilibrium
behavior. The exact solution, due to Frisch,2 of the free ex-
pansion experiment is then given, followed by two sections
showing how Zermelo’s and Loschmidt’s arguments are re-
solved. The properties of the solution to the free expansion
experiment are then shown to suggest a generalization of the
statistical mechanical definition of equilibrium to bring it in
line with observations. The entropy is discussed, including a
way to construct a time-dependent entropy that obeys the
second law of thermodynamics. The paper ends with some
concluding comments.

II. BOLTZMANN, LOSCHMIDT, AND ZERMELO

The history of the debate on irreversibility has been con-
voluted with responses to Boltzmann’s famous H theorem.4

Although Loschmidt5 and Zermelo6,7 aimed their objections
at Boltzmann’s kinetic equation rather than the apparent
paradox itself, their objections represent aspects of the prob-
lem that must be addressed to give the students a complete
picture.

Boltzmann pioneered the idea of using probability theory
to understand the properties of materials. This use of prob-
ability theory was a very new idea in the 19th century, when
physics — including thermodynamics — was regarded as
describing phenomena that had no fundamental uncertainty.
That Boltzmann connected the use of probability theory with
the highly controversial idea of the existence of atoms made
it even more unpalatable to many leading scientists of the
day. Even Max Planck was initially an opponent of atomic
theory, changing his views only in 1900 with his work on
black body radiation.8

Boltzmann derived his equation for the time derivative of
the distribution of atoms in the six-dimensional space of po-
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sition and momentum by approximating the number of col-
lisions between atoms !“Stosszahlansatz”".4 This approxima-
tion had the effect of turning the macroscopic dynamics into
a Markov process, for which the development of the system
depended only on the current state, and not on its history.
Because Markov processes show irreversible behavior, Bolt-
zmann’s equation did also. In particular, Boltzmann showed
that a particular quantity which he called H could not in-
crease with time.

The first objection came from Boltzmann’s friend, Johann
Josef Loschmidt.5 He pointed out that if the momenta of all
the particles in an isolated system were to be instantaneously
reversed, the system must retrace its trajectory. In particular,
if Boltzmann’s H function had been decreasing for a particu-
lar microscopic state, the value of H for the time-reversed
system must increase, invalidating Boltzmann’s conclusions.
Loschmidt’s argument is usually referred to by the German
term “Umkehreinwand.”9

Although Loschmidt’s argument was aimed at Boltz-
mann’s H theorem, it is very close to the central paradox. If
every microscopic state on a trajectory that approaches equi-
librium corresponds to a time-reversed state which is on a
trajectory that moves away from equilibrium, shouldn’t the
two states be equally probable? The resolution of this appar-
ent contradiction will be clear from the example that we will
give.

Ernst Zermelo, a prominent mathematician who was not
on very good terms with Boltzmann, raised a different objec-
tion more than 20 years after Boltzmann’s original paper.6,7

His argument was based on a recently derived theorem by
Poincaré which required the behavior of any isolated classi-
cal system to be quasi-periodic.10 That is, the system must
return repeatedly to points that are arbitrarily close to its
original configuration. Such behavior is incompatible with
Boltzmann’s H theorem, which predicts that the system will
never leave equilibrium. Zermelo’s argument is referred to
by the German term “Wiederkehreinwand.”11

Zermelo’s Wiederkehreinwand is sometimes dismissed
with a comment about the recurrence time being far too long
to worry about. Some might find this argument sufficient, but
we will see that we can deal with Zermelo’s objection more
directly on the basis of the example of free expansion.

III. A TRIVIAL FORM OF IRREVERSIBILITY

There is a danger of confusing the irreversibility observed
in daily life with a trivial form of irreversibility that appears
only in infinite systems. Consider a particle moving in empty
space. At some time it is observed to be located in some
finite region. Because the particle is moving, it will eventu-
ally leave this region. If space is infinite, it will not return.
Therefore, we have found irreversible behavior, but of a
trivial sort. This trivial form of irreversibility is also present
in the propagation of sound waves away from a source in an
infinite harmonic crystal or the radiation of light from a star.
This irreversibility is quite general in infinite systems,
whether classical or quantum. An open system also displays
this trivial form of irreversibility, because it is really just a
part of an infinite system.

To avoid confusing trivial and non-trivial irreversibility, it
is important to restrict the discussion to an isolated, finite
system.

IV. EQUILIBRIUM AND FLUCTUATIONS

As mentioned in Sec. I, the only kind of irreversibility I
will discuss is that which is observed. Therefore, the concept
of equilibrium must also be defined by observation. As an
example, we might say that a glass of water has come to
equilibrium when there is no measurable deformation of the
water’s surface. Naturally, our measurements would have
limited resolution. We might be able to detect ripples with an
amplitude less than a millimeter, but not less than a micron.
Measurements of the wavelengths of ripples would be simi-
larly limited.

In general, we will measure the uniformity of the system
with a spatial resolution determined by our experimental
equipment. Each measurement would also have an uncer-
tainty determined by our equipment. When these imperfect
measurements yield unchanging values, we would say that
the system has come to equilibrium. No other type of irre-
versibility has ever been observed. Consequently, no other
type of irreversibility requires explanation.

It is important to keep in mind that the properties of a
system in equilibrium will fluctuate. The fluctuations of a
macroscopic system will almost always be far smaller than
the uncertainty of any measurement. However, there is al-
ways an extremely small, but non-zero probability of a very
large fluctuation.

It is interesting to speculate on the reaction of an observer
to the occurrence of a huge fluctuation, such as a set of keys,
once dropped, jumping back into someone’s hand. Because it
would be unreasonable to hope that the phenomenon might
be reproducible, it would certainly be regarded as either an
experimental error or a miracle, depending on personal be-
liefs.

V. FREE EXPANSION OF A CLASSICAL IDEAL GAS

The central example in this paper is the free expansion of
a classical ideal gas. Naturally, the magnitudes of the mo-
menta of the individual particles are constants of the motion
and do not change. However, the time development of the
local density exhibits irreversible behavior.

Consider a system containing N non-interacting particles
in a total volume V. Assume that the walls of the box are
perfectly reflecting and isolate the gas from the rest of the
universe. In the initial state, the gas is confined to a smaller
volume V0 by an inner wall. At time t=0, the confining wall
is removed. For convenience, consider a rectangular box and
align the coordinate axes with the sides. Let the inner wall
which confines the atoms to the subvolume V0 for t!0 be
perpendicular to the x direction and located at x=L0, and let
the length of the box in the x direction be L. The dependence
of the probability distribution on the y and z coordinates does
not change with time, so we need to consider only the x
dependence, and we are left with a one-dimensional prob-
lem.

At time t=0 the confining wall at L0 is removed, and the
particles are free to move in the interval 0"x"L. We now
have the advantage of being able to use an exact solution for
the time dependence of the probability distribution due to
Frisch.2

Following Frisch,2 we can map the problem onto a box of
length 2L with periodic boundary conditions. The particles
are then confined to the region −L0"x"L0 for t!0, and
−L"x"L for t#0. When a particle bounces off a wall in
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the original system, it corresponds to a particle passing be-
tween the positive and negative sides of the box without a
change of momentum.

As mentioned in Sec. I, I will make the key assumption
that we have very limited information about the initial mi-
croscopic state, so it must be described by a probability dis-
tribution. To be specific, assume that before the inner wall is
removed, all initial positions and momenta are independent,
and all particles have the same initial probability distribution.
Let the spatial probability distribution be uniform, and the
momenta have a Maxwell–Boltzmann distribution.

fN!%xj,pj&j = 1 . . . N',t = 0" = (
j=1

N

f!xj,pj,t = 0"

= (
j=1

N

g0!xj"h0!pj" , !1"

where

g0!xj" = )1/L0 !− L0 " x " L0"
0 !&x& $ L0"

. !2"

This initial probability distribution for the periodic system is
shown in Fig. 1. Note that this probability distribution is time
reversal invariant, so that there is no time asymmetry in the
initial conditions.

Because the particle probabilities are independent, we can
restrict our attention to the distribution function of a single
particle. The periodic boundary conditions then allow us to
make a Fourier series expansion of the initial conditions to
obtain

g!x" = g0 + *
n=1

%

gn cos+&n

L
x, , !3"

where no sine terms enter because of the symmetry of the
initial conditions.

We can find the coefficients gn by the standard procedure
of multiplying Eq. !3" by cos!&n!x /L" and integrating. The
result is

-
−L

L

g!x"cos+&n!
L

x,dx = -
−L

L

g0 cos+&n!
L

x,dx + *
n=1

%

gn

'-
−L

L

cos+&n

L
x,cos+&n!

L
x,dx .

!4"

For n!=0 Eq. !4" gives

g0 =
1
L

!5"

and for n!$1

gn! =
2

n!&L0
sin+n!&

L
L0, . !6"

The time development for a given momentum is now
simple.

f!x,p,t" = f+x −
pt

m
,p,0, !7a"

=h0!p".g0 + *
n=1

%

gn cos+n&

L
+x −

pt

m
,,/ . !7b"

Figure 2 shows the probability distribution at a time t#0.
The shaded areas, representing non-zero probabilities, tilt to
the right. As time goes on, the shaded areas become increas-
ingly flatter and closer together.

We have assumed that the initial probability distribution
for the momentum is given by the Maxwell–Boltzmann dis-
tribution.

h0!p" = + (

2&m
,1/2

exp.− (+ p2

2m
,/ , !8"

where T is the temperature, and (=1 /kBT. We substitute Eq.
!8" in Eq. !7a" and integrate over the momenta to calculate
the probability density as a function of position and time.

g!x,t" = -
−%

%

f!x,t"dp !9a"

=-
−%

%

h0!p"L−1dp + *
n=1

%

gn-
−%

%

h0!p"

'cos+n&

L
+x − + p

m
,t,,dp . !9b"

The first integral is trivial because h0!p" is normalized.

-
−%

%

h0!p"dp = 1. !10"

The integrals in the sum are a bit tedious, but not particularly
difficult if the identity cos )= !ei)+e−i)" /2 is used to write
them in the form

Fig. 1. The initial probability distribution at t=0. Fig. 2. The probability distribution for t#0.
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-
−%

%

exp.− (
p2

2m
*

n&

L
i

p

m
t/dp . !11"

We complete the square in the exponent and obtain

g!x,t" = L−1 +
2

&L0
*
n=1

%
1
n

sin+n&

L
L0,cos+n&

L
x,

'exp#− +n
2t2$ , !12"

where

+n
2 =

n2&2

2mL2(
=

n2&2

2mL2kBT . !13"

Because the temperature is related to the one-dimensional
root-mean-square velocity by

1
2

kBT =
1

2m
0p21 =

m

2
0v21 =

m

2
vrms

2 , !14"

Eq. !13" can be written as

+n
2 =

n2&2

2L2 vrms
2 . !15"

Equations !12"–!15" can also be expressed in terms of the
characteristic time for a particle traveling with the speed vrms
to cross the box.

, =
L

vrms
. !16"

In terms of , the time-dependent local probability density
becomes

g!x,t" = L−1.1 +
L

L0
*
n=1

% + 2
n&

,sin+n&

L
L0,cos+n&

L
x,

'exp.− +&2n2

2
,+ t2

,2,// . !17"

Because &!2 / n& "sin! n&
L L0"cos! n&

L x" & ! 2
n& for all x, the sum

converges rapidly for t#0. At t=,, the nth term in the sum is
less than !2 /n&"exp#−&2n2 /2$, and even the leading non-
constant term has a relative size of less than 0.005L /L0. The
rapidity of convergence is striking. The inclusion of interac-
tions in the model would actually slow down the approach to
equilibrium because it would involve diffusive processes
with characteristic times that grow as L2.

We can calculate the energy density as a function of posi-
tion and time by including a factor of p2 /2m in the integral
over the momentum.

U!x,t" = -
−%

%

f!x,p,t"
p2

2m
dp !18a"

=-
−%

%

h0!p"
p2

2m
L−1dp

+ *
n=1

%

gn-
−%

%

h0!p"
p2

2m
cos+n&

L
+x −

pt

m
,,dp .

!18b"

The integrals are more tedious than those in Eq. !9a", but not
particularly difficult. We find

U!x,t" =
1

2L(
− *

n=1

% +n2&2t2 − L2m(

L2L0mn&(2 ,
'sin+n&L0

L
,cos+n&x

L
,e−&2n2t2/2,2

. !19"

After the internal wall is removed, the energy distribution is
not uniform and not proportional to the particle density, be-
cause the faster particles move more rapidly into the region
that was originally vacuum. However, the energy density
converges rapidly to the expected constant, 1 /2L(=kBT /2L,
as t→%.

VI. ZERMELO’S WIEDERKEHREINWAND
REVISITED

Students usually find an explanation of Poincaré recur-
rences helpful in understanding the reconciliation of Zerme-
lo’s Wiederkehreinwand with the monotonic approach to
equilibrium shown by Eqs. !17" and !19". It is easy to see
how quasi-periodic behavior can arise in the ideal gas model.

First consider two particles with speeds v1 and v2. They
will each return to their original states with periods ,1
=2L /v1 and ,2=2L /v2, respectively. In general, the ratio
,1 /,2 will be irrational, but it can be approximated to arbi-
trary accuracy by a rational number, ,1 /,22n1 /n2, where n1
and n2 are integers. Therefore, after a time ,1,2=n2,12n1,2,
both particles will return to positions and velocities arbi-
trarily close to their initial states if sufficiently large integers
n1 and n2 are used in approximating the ratio ,1 /,2.

Now add a third particle with speed v3 and period ,3
=2L /v3. A rational approximation, ,1,2 /,32n1,2 /n3, will
give us an approximate recurrence after a time ,1,2,3=n3,1,2
2n1,2,3. Because n1, n2 and n3 will usually be large num-
bers, ,1,2,3 will usually be a long time. If we repeat this
procedure for 1023 particles, we will usually arrive at a re-
currence time that would be enormous even in comparison to
the age of the universe.12 It might be said that we are not
interested in such extremely long times, but it is interesting
that Eqs. !17" and !19" do not exhibit the quasi-periodic be-
havior that Poincaré recurrence might seem to require.

The resolution of the apparent contradiction lies in our
lack of knowledge of the exact initial velocities and the ex-
treme sensitivity of the Poincaré recurrence time to tiny
changes in initial velocities. Even with far more detailed in-
formation than we would ever obtain in a real experiment,
we would not be able to predict a Poincaré recurrence time
with an uncertainty of less than many ages of the universe.
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Because the solution for the free expansion of an ideal gas
is exact, Poincaré recurrences are automatically included.
Because we cannot predict them, they appear as extremely
rare large fluctuations. Because such large fluctuations are
always possible in equilibrium, there is no contradiction be-
tween the observed irreversible behavior and Poincaré recur-
rences.

VII. LOSCHMIDT’S UMKEHREINWAND
REVISITED

Loschmidt’s Umkehreinwand was directed against Boltz-
mann’s equation, which was not time-reversal invariant.
However, the exact solution to the free expansion of an ideal
gas retains the time-reversal properties of the microscopic
equations. If we reverse all velocities in the model some time
after the inner wall is removed, the particles return to their
original positions.

Under normal conditions, the reversal of molecular veloci-
ties is difficult. However, the reversal of spin precession,
known as the spin-echo effect,13 can be accomplished and is
fundamental to magnetic resonance imaging. After an initial
magnetic pulse aligns the spins in a sample, interactions be-
tween the spins and inhomogeneities in the sample cause the
spins to precess at different rates and lose the coherent align-
ment. If no further action is taken, the spins will not return to
a coherent aligned state. However, if a second magnetic
pulse is used to rotate the spins by 180° at a time t after the
first pulse, it effectively reverses the direction of precession
of the spins. The spins realign !or “refocus”" after a total
time 2t after the initial pulse. The reversal of the time devel-
opment of an “irreversible” process is therefore not a flaw in
the free-expansion model, but a reflection of the reality that
such experiments can be carried out in practice, at least to a
limited extent.

VIII. WHAT IS EQUILIBRIUM?

An interesting feature of the exact solution to the free-
expansion model can be seen in Fig. 2. Even though the
shaded regions, indicating non-zero probabilities, become
progressively thinner and closer together, the local probabil-
ity density at any point along the trajectory of the system
remains constant. This behavior of the probability density is
consistent with Liouville’s theorem which states that the total
time derivative of the probability distribution vanishes.14

This property of all isolated Hamiltonian systems has caused
difficulties for those who would like to define equilibrium in
terms of a smooth distribution in phase space. Although we
assumed that our model experiment started with a smooth
probability distribution given in Eqs. !1", !2", and !8", it will
certainly never evolve to one. The distribution will retain the
layered structure shown in Fig. 2 for arbitrarily long times
and will never become smooth.

The difficulty is due to a confusion about the direction of
inference. It has been amply demonstrated that a canonical
distribution accurately describes an equilibrium state. How-
ever, that does not imply that a system in equilibrium can
only be described by a canonical distribution. The probabil-
ity distribution for our model at long times will give the
same macroscopic predictions as the canonical distribution,
even though the two distributions are different.

To clarify this point, it can be useful to consider two suc-
cessive free expansion experiments. Begin with a gas con-

fined to a box of length L0 with a canonical distribution of
the momenta. At t=0, carry out a free expansion to a box of
length L1#L0. At a later time, t1#0, carry out a second free
expansion to a box of length L2#L1. At the beginning of the
second free expansion !t= t1", the probability distribution
function will look like Fig. 2, and the slope of the stripes will
be m / t1#0. As the probability distribution function develops
for t# t1, the slope of these stripes will continue to decrease
as m / t. However, they will be contained in an envelope of
similar stripes with a slope m / !t− t1"#0. Both of these
slopes will be positive and go to zero as t→%.

The macroscopic behavior of the second free expansion
will be essentially the same as that of a free expansion from
a canonical distribution. At the microscopic level, however,
the probability distribution will differ from both the canoni-
cal distribution and the distribution for a single free expan-
sion. A series of free expansions can create a probability
distribution with a complicated structure of stripes, but the
macroscopic approach to equilibrium would not be affected.

Students should be released from the notion that thermal
equilibrium corresponds to a unique distribution in phase
space and taught to understand it in terms of time-
independent macroscopic behavior. The free expansion of the
ideal gas is an excellent way for them to see the fundamental
issues.

IX. ENTROPY

Liouville’s theorem has also caused difficulties for the tra-
ditional textbook definition of the entropy as the logarithm of
a volume in phase space. The theorem requires that this vol-
ume remain constant, so the traditional expression for the
entropy cannot increase in an isolated system. This result
seems to violate the second law, but it is correct. The tradi-
tional definition of entropy is related to the total information
we have about the system — not the thermodynamic infor-
mation about the current and future behavior of the system.
The information that the system was initially confined to a
smaller volume is contained in the layered structure of the
probability density shown in Fig. 2. Because that information
does not change, the traditional entropy does not change. The
apparent violation of the second law arises because the tra-
ditional entropy does not correspond to the thermodynamic
entropy.

If we use Boltzmann’s definition of the thermodynamic
entropy in terms of the probability of a macroscopic state,4,15

we obtain an expression that increases with time as expected
for the thermodynamic entropy. The specific form of the en-
tropy depends on what we are measuring in the experiment.
Because we are interested in the time development of the
system as it approaches a uniform state, it would be reason-
able to observe its properties as a function of position. We
divide the system into M subsystems, each with length -L
=L /M, and measure the energy and density in each sub-
system. For convenience, assume that the first m subsystems
are inside the inner wall before the free expansion began, so
that L0=mL /M.

If M is large, we can assume that the energy and density
are uniform across a subsystem. The number of particles in
the jth subsystem, Nj!t", is given by -L times the expression
in Eq. !12", and the energy in the jth subsystem, Ej!t", is
given by -L times the expression in Eq. !19". If the sub-
systems are sufficiently large so that 1 /3Nj!t" is much
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smaller than the relative error in the experimental measure-
ments, they can be regarded as macroscopic systems. Their
individual entropies are then given by the equilibrium en-
tropy of a one-dimensional, classical ideal gas.

S!Ej!t",L/M,Nj!t"" = Nj!t"kBT.ln+ L/M
Nj!t"

,
+

1
2

ln+Ej!t"
Nj!t"

, + X/ , !20"

where X is a constant. The total time-dependent entropy of
the whole system is then given by

S!%Ej!t"',L,Nj!t",M" = *
j=1

M

S!Ej!t",L/M,Nj!t"" . !21"

Equation !21" has the properties that at t=0, it takes on the
value of the initial entropy before the inner wall was re-
moved,

S!%Ej!0"',L,Nj!0",M" = S!E,L0,N" , !22"

and as t→%, it goes rapidly to the equilibrium entropy of the
full system.

lim
t→%

S!%Ej!t"',L,Nj!t",M" = S!E,L,N" . !23"

These two properties are independent of the number M of
subsystems that are observed.

X. CONCLUSIONS

I have presented a way to explain how irreversible pro-
cesses seen in the real world are consistent with the time-
reversal-invariant equations that we teach. The mathematics
of the argument is at a level that an upper-level student
should be able to follow.

The explanation of irreversible phenomena is not com-
plete. I have restricted myself to the question of the apparent
conflict between microscopic and macroscopic laws, while
ignoring the effects of interactions. My experience is that
once students understand why there is no fundamental con-
tradiction between microscopic time-reversal invariance and
macroscopic irreversibility, they have no trouble understand-
ing how interactions lead to diffusion, dissipative phenom-

ena, and the establishment of the Maxwell-Boltzmann distri-
bution of momenta. Molecular dynamics simulations are
particularly good for helping students see how equilibration
takes place with interacting particles.

My hope is that this approach to teaching the origins of
observed irreversibility will help take the mystery out of the
subject. Students should be confident that the foundations of
statistical mechanics are solid and reliable for explaining ob-
served phenomena, including irreversible behavior.
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