
THEORY OF A WEAKLY TURBULENT PLASMA 

A. A. Vedenov 

§ 1. Plasmon - Particle Interactions 

A characteristic feature of a plasma is the existence of a spectrum of 
cOllective oscillations or plasma waves (plasmons). The frequency and velo­
city of propagation of these waves are determined by the wave vector and by 
the gross parameters of the plasma such as the density, the mean velocity 
spread, the magnetic field, etc., and this situation is a reflection of the fact 
that all of the particles in the plasma are involved in the plasma oscillations. 
The situation is different, however, when one examines the damping (or 
growth) of the oscillations. Damping (growth) is determined by the "fine de­
tails" of the particle distribution in phase space, for example, by the deriva­
tive of the velocity distribution function; this situation reflects the specific 
role played by resonance particles 0. e., particles for which the following con­
dition is satisfied: Wk - kv = nWH; n = D, 1, 2, ... ; here, wk and k are the 
frequency and wave vector that characterize the wave, v is the particle velo­
city, and wH = eH/ me), These particles are capable of exchanging energy 
with the waves and can thus amplify or damp it. 

The important role played by resonance particles in the damping of 
plasma waves is evident from the fact that the damping of a wave charac­
terized by frequency wand wave number k in a plasma in thermodynamic 
equilibrium is found to be proportional to the derivative of the electron dis­
tribution function f(v) taken at the point v = Wk/k; this result was first estab­
lished by Landau [1] through the use of the self-consistent field equations[2,3]. 

Many later authors have verified this result, i.e., that the damping rate 
(or growth rate) for waves in a low-density plasma is proportional to the de­
rivative of the distribution function for the resonance particles (d. [4]). 

A detailed physical analysis of the interaction of the plasma particles 
with plasma waves (as well as problems touching on the propagation of plasma 
waves) has been given by Bohm, Gross, and Pines [5], who have indicated the 
importance of resonance particles for a given wave mode. The importance of 
resonance particles in both absorption and growth of plasma waves may be re­
g arded as well established. 
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We shall also be concerned with the effect of plasma waves on transport 
processes in a low-density plasma. This question arises in connection with 
the problem of treating the "Coulomb logarithm" in the collision term that 
appears in the kinetic equation for a low-density plasma [3, 6]. Davydov [7] 
has estimated the contribution of plasma waves to the kinetic coefficients for 
a plasma close to a state of thermodynamic equilibrium and has shown that 
taking account of the emission and absorption of plasma waves by particles 
(in addition to the usual binary collisions between particles) can modify the 
value of the Coulomb logarithm substantially. * 

It is clear, however, that treating these two processes separately in a 
plasma close to thermodynamic equilibrium is not consistent with the avail­
able accuracy, since the exact values of the quantities that appear in the 
Coulomb logarithm remain unknown when this approach is used. In order to 
make a more consistent formal calculation [12], the kinetic coefficients as­
sociated with COllisions between particles and with the emission and absorp­
tion of waves by particles cannot be treated separately - they must be treated 
together. 

The situation is different, however, if one considers a weakly turbulent 
plasma in which the energy density contained in the waves (plasma oscilla­
tions) is small compared with the thermal energy density, but appreciably 
greater than the energy density associated with the equilibrium thermodynam­
ic plasma noise (this situation is frequently realized in low-density plasmas, 
cf. below). Under these conditions, one need not necessarily take account of 
collisions between particles at the outset; the plasma can be treated by means 
of the self-consistent field equations. It turns out that these equations can be 
replaced by the simpler equations of the quasi-linear theory [4, 13-15]: an 
equation for the rate of energy growth (damping) of the plasma waves, and a 
diffusion-like equation for the distribution function of the resonance particles 
in the plasma (the diffusion coefficient being proportional to the energy den­
sity of the waves in the turbulent plasma). 

It must be emphasized that this derivation of the quasi-linear equations 
from the self-consistent field equations can only be carried through when the 

*The ideas in [7] have been developed further by Galitskii and also by 
Romanov and FHippov [9], who have derived a system of kinetic equations 
for a system of electrons and plasma waves by analogy with the kinetic equa­
tions for electrons and phonons in a solid. Similar equations have been 
studied by SHin and Klimontovich [10] and by Pines and Schriffer [11]. 
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resonance particles comprise a small group which does not have an important 
effect on the "gross" characteristics of the plasma (density, temperature, etc,). 

The quasi-linear theory, which is described briefly below, describes the 
dynamics of the interaction between the resonance particles and the waves. A 
consistent derivation of the equations and an analysis of these processes can 
be carried out only when the energy contained in the collective degrees of 
freedom, i.e., the plasma oscillations, is much smaller than the energy asso­
ciated with the random motion of all the particles (but, at the same time, 
greater than the energy associated with the thermal noise in the collective de­
grees of freedom). 

The essence of the quasi -linear method lies in separating the distribu­
tion function for the resonance particles into a rapidly varying part and a slow­
ly varying part, and then taking account of the average quadratic effect of the 
rapidly varying part on the slowly varying part (the method is similar to the 
well-known method of Van der Pol used in nonlinear mechanics). When this 
is done, it turns out that the behavior of the slow part of the distribution func­
tion is described by a diffusion equation in phase space and that the rate of 
growth (or damping) of the fast oscillations (plasma waves) is determined by 
the formulas of the linear theory, with the nonoscillating part of the distribu­
tion function varying slowly in time. 

In a homogeneous low-density plasma in which collisions between par­
ticles are not important, there is a large degree of arbitrariness in the choice 
of the stationary velocity distribution function. The quasi-linear theory indi­
cates the existence of well-defined states to which the unstable plasma 
evolves as a result of the development of perturbations. 

These states are characterized by the fact that in certain regions of 
phase space the distribution function f becomes a constant (Le., a plateau ap­
pears on the function f); in the corresponding regions of wave-number space 
the plasma oscillations are present in the form of noise at a level appreciably 
greater than the thermal level. 

§ 2. Basic Equations of the Quasi-Linear Theory 

We shall first derive the basic equations for the quasi-linear theory as­
suming a fully ionized, low-density plasma. We assume that the distribution 
function fa for particles of species a with charge ea and mass rna obeys the 
self-consistent field equations 
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where the self-consistent fields E and H are determined by the distribution of 
plasma particles: 

~; =4n;~>aS fa do; VxE=-c- 1 8HI8t; I 
V X H = 4n:c-1 ~ea S vfadv + c-1 8EI8t. 

a 

The system of self-consistent field equations (1)-(2) yields a proper description 
of the plasma if the plasma is almost ideal,· Le., if the average amplitude of 
the Coulomb scattering eZ IT (where T is the mean kinetic energy of a par­
ticle) is much smaller than the mean distance between particles r R:l n -l/S 

(where n is the plasma density). Under these conditions, the number of par­
ticles in a Debye sphere ND R:l n(T IneZ)3/2 is appreciably greater than unity 
and the quantity Nif is a small parameter in terms of which one usually ex­
pands the exact equations of motion for the plasma particles; in the first ap­
proximation this procedure leads to the system (1)-(2) and in higher approxi­
mations to the appearance of a collision term on the right side of Eq. (1) [3]. 
However, if one is interested in the dynamics of such a plasma,t it turns out 
that the parameter NIf is not the only small parameter in a low-density 
plasma. A low-density plasma can exhibit plasma oscillations of various 
kinds. In the absence of a magnetic field, these are the electron plasma os­
cillations and the ion-acoustic oscillations; the frequencies and propagation 
velocities of these waves are determined by the gross properties of the plasma 
(the density, mean velocity spread, etc.>. The damping (or growth rate) for 
these waves depends on the fine details of the distribution function in phase 
space. The plasma particles experience the random effect of the electric 
fields associated with many waves and diffuse in phase space, and under these 
conditions changes occur in precisely those details of the distribution function 
which are responsible for the wave damping. On the other hand, the gross 
properties of this system are not changed in these processes; the wave energy 

·In addition we assume that quantum degeneracy effects are not important 
(this condition imposes a further limitation on the plasma density: degener­
acy effects can be neglected if A« r, where A F::I fi/mv is the mean wave­
length associated with the particle). 

tThis is in contrast with the case of an ideal plasma in thermodynamic equi­
librium in which the ratio of the mean scattering amplitude for binary colli­
sions to the mean distance between particles is the only small parameter, and 
in terms of which a consistent expansion procedure can be used to find the 
equation of state [17]. 
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is so small that there is no appreciable effect on the mean plasma density, on 
the various moments of the distribution function, etc. 

The particle diffusion rate in velocity space as a result of the waves is 
proportional to the energy density in the waves e. If the ratio e InT is appre­
ciably greater than Njjl, the effects due to "wave" diffusion are greater than 
those due to collisions between particles (which also cause diffusion in velo­
city space); in this case collisions between particles can be neglected in a 
first approximation. 

The ratio of the energy density in the nonequilibrium plasma oscilla­
tions to the kinetic energy density e InT represents the second small param­
eter in the dynamics of a low-density plasma. In what follows we assume 
that 

c -1 
1 » ----nT » N D , 

implying that the energy density in the collective degrees of freedom of the 
plasma-wave exceeds appreciably the density in the Coulomb interactions: 
e » nT IN;. At the same time, e is much smaller than the thermal energy 
nT. 

The equations of the quasi-linear theory are obtained by expanding the 
self-consistent field equations (1)-(2) in terms of the small parameter e InT, 
and taking account of terms that are quadratic in the amplitude of the plasma 
oscillations. 

To be definite, let us consider the case of longitudinal plasma oscilla­
tions in a plasma in the absence of a magnetic field. The point of departure 
is the self-consistent field equation for the electron distribution function 

and the equation 

411en J v f dv = -0£ fat. 

(Here, n is the equilibrium plasma density, so that J f odv = 1 at equilibrium.) 
As is well known from the linear theory, the harmonic (in time) solutions of 
(3) and (4) describe plasma oscillations; the damping rate for these oscilla­
tions in an equilibrium plasma is small compared to the frequency if the 

*To within an accuracy of order unity the quantity nT IND is equal to the 
familiar Debye correction to the free energy of a Coulomb particle system; 
the same quantity characterizes the energy density of the thermal plasma 
waves. 



234 A. A. VEDENOV 

wavelength is much greater than the Debye length. We can write the linea­
rized equations (3)-(4) in terms of Fourier space components 

and find [neglecting the vCaf I ax) term at long wavelengths] 

(j e E afo k=-m kav-; 

whence it follows that the longwave component of the field satisfies an oscil­
lator equation 

characterized by the plasma frequency wp = (4'/ltle2 1m) t. All of the plasma 
particles participate in these oscillations and the kinetic energy associated 
with the motion of all the particles in this wave is equal to the electrostatic 
energy (vidal theorem): 

liS 12 E~ 2 nm vGkdv = 8n: ' 

so that the total energy associated with the oscillations is Et/4'/1". OscillatiOns 
for which the wave number k is large are not damped if there are no particles 
characterized by velocities v ~ wp/k [under these conditions. we can neglect 
the term vaf I ax ..... kvGk as compared with afl at..... WpGk. as has been done 
in deriving Eq. (5)]. 

On the other hand, if the plasma does contain electrons whose velocity 
coincide:. with the phase velocity of any of the plasma waves wp/k. it then 
becomes possible to have an energy exchange between the waves and these 
"resonance" particles. We shall assume that the number of resonance particles 
is small and neglect any effect they may have on the dispersion properties of 
the plasma (the oscillation frequency, the phase VelOcity, and the group velo­
city - but not the damping:). In the case being considered here, this means 
that in the presence of the resonance electrons we still take the frequency of 
the plasma oscillations to be wp' 
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The interaction between the plasma oscillations and the resonance par­
ticles leads to two effects: first, there is a change in the mean energy of the 
plasma oscillators E~/ 4'/l"; second, there is a simultaneous change in the dis­
tribution of resonance electrons in velocity space. To derive equations that 
describe these processes we proceed as follows. 

We write the distribution function for the resonance particles F in the 

form of a sum of a rapidly oscillating term ~ F keikx and a slow-
k 

ly varying function F; in this case, the electric field E = 1; EkeikX is in 
k 

the form of a product of rapidly oscillating space-time functions multiplied 
into a slowly varying amplitude (we assume the mean field to be zero). The 
average taken over a time period much greater than the period of the plasma 
oscillations leads to zero values for the oscillating parts of the distribution 
function and the electric field: 

so that F represents the mean value of the total distribution function for the 
resonance electrons F. In the kinetic equation for the resonance electrons, 

we now take an average over space: 

of = _ eE dF = __ 0_ ~ '"' EtFk . 
at m DV DV m ~ 

k 

Subtracting Eq. (7a) from Eq. (6), and neglecting the difference* 
EOF lov - EOF lov, we find 

. eEk of 
F k + ikvF k = -- - - .. - . 

m "v 

From the kinetic equations for the nonresonance particles, we have 

Ok = _ eEk ~~. 
m ov' 

(6) 

(7 a) 

(7b) 

*In Eq. (7b) this difference would yield terms that are nonlinear in E, these 
terms representing the interaction of plasma waves with themselves. This 
effect can be neglected for weak excitation of the plasma. 
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so that the time derivative of the current density produced by all the plasma 
particles (except for the resonance particles) is 

J net 
ne vGk = ---,nEk • 

Making use of this relation and using the equation for the total current 
(4). we have 

We now integrate Eq. (7b) 

t 

Fdt) = Fk(O)e-ikvt- ~ 5 dt'Ek(t') aFa~') eikv(t-t') 
o 

(7c) 

and substitute this expression in Eq. (7c); multiplying both sides of the result­
ing relation by Ek and adding the complex conjugate. we have 

. + (.. 2) d (/ . /2 2 I 2 Ek Ek + WpEK + C. C. = dt Ek + Wp Ek I) = 

= 4:rtenEt S v dv {-ikVFk (0) e-ikvt _ eE~(t) a~~t) + 

+ ~ ikv J dt' Ek (i') a~~t') e-1kv(t-t')} + C. c. 
o 

Substituting the relation Ek(t) = -Ie k(t)e -iwpt in this expression. and tak­
ing the slowly varying functions ek and oF! ov outside the integral over t'. we 
obtain an equation for the square of the wave amplitude: 

d~ 2W~8k = -4:rtneiwp VB; j' V dv 5 r -ikoF k (0) e-ikvt + 
1 

+ ikv ~ -V 8k : S ei (CIlp-kv) (t-t') dt'} + c. c. 
o 

Now. going to the limit t - GO. we find that the first term in the curly 
brackets vanishes and that the second. in accordance With the formula 

lim (.{ e1a(t-t') di' + c. c.) = 21tt'> (a), 
t ... oo 0 
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yields 

i. e., the growth rate for the energy in a given harmonic 

( S) 

where 

(Sa) 

Thus, in the quasi-linear theory the rate of growth (or damping) of the energy 
of a given Fourier harmonic is determined by the formula of the linear theory 
except that the unperturbed "linear" distribution function in the expression for 
the growth rate (damping) is replaced by the averaged function F. 

The second equation in the quasi-linear theory is obtained by substitut­
ing the following expression in Eq. (7 a): 

t 

Fk (t) = Fk (0) e- ikvt - ~ Sdt' Ek (t') 
m 

o 

of (I ') 
du 

e-ikv(l-t') 

and adding the resulting expression to its complex conjugate: 

of = __ I_~ ~ ~ Et IFk(O)e-ikvt-
at 2 au m -+ ) 

t . 

--- : J dt' Ek (I') aFa~') e-ikv(t-n} + c. c. 

Replacing Ek(t) by ~e-iwkt as in the above, we now obtain the fol­
lowing equation for the averaged function describing the distribution of reso­
nance particles F: 
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Thus, the second equation is of the form [4, 14, 15] 

(9) 

where 

(9a) 

Equations (8) and (9) represent a closed - system of equations of the 
quasi-linear theory for the spectral density e k and the averaged distribution 
function F'(v). t Equation (9) is in the form of a diffusion equation in which 
the diffusion coefficient D is proportional [as follows from Eq. (9a)] to the 
energy density of the plasma waves which, in turn, depends on the distribution 
function. 

The system of quasi-linear equations (8)-(9) which has been obtained 
from the self-consistent field equations (3 )-(4) obviously contains less in­
formation than the original equations (for instance, we can only find the 
amplitudes .[ek and not the phases of the fast oscillations). Furthermore, the 
region of applicability of the quasi-linear theory is much narrower than that 
of the original system. However, these shortcomings are balanced by the rela­
tive simplicity of the equations of the quasi-linear theory. 

The system of quasi-linear equations (8)-(9) which describes the inter­
action of resonance panicles with plasma waves exhibits an energy integral. 
Let us consider the time derivative of the total energy of the system of reso­
nance particles and waves Q. The quantity Q is made up of the kinetic energy 
of the resonance electrons, the electrostatic energy in the plasma waves 

~ ~ and the kinetic energy of all the plasma electrons that participate 
~ 8n 

k 

in the oscillations; by the virial theorem the latter energy is equal to the .elec­
trostatic field energy. Thus, 

dQ d ( S mf)2 ~ Bk ) 
(it = ([[" n -2- F dv + -t 4n . 

-The dependence of wk on k is determined by the gross parameters of the 
plasma and is assumed to be known. 

tHereinafter the averaging symbol will be omitted over the distribution function. 



THEORY OF A WEAKLY TURBULENT PLASMA 239 

Substituting the value of of I at from Eq. (9) and the value of del dt from Eq. 
(8) and integrating by parts, we find 

dQ 
([t=O, 

i. e., the total energy of the plasmon-particle system is conserved. 

In order to understand the physical meaning of the quasi-linear theory, 
and in order to generalize the equations that have been obtained (8)-(9)], we 
view a plasma with highly excited collective degrees of freedom as a sys­
tem of two gases: a particle gas (fermions), which we will assume to be non­
degenerate, and a plasmon gas (bosons). 

We now consider the equation showing the balance in the number of 
particles and waves in phase space assuming that the system is homogeneous 
and that the condition Njj « e InT « 1 is satisfied (the density of the wave 
gas is considerably greater than the thermOdynamic equilibrium value). Since 
the particle- particle and w ave-wave interactions are unimportant, * to a 
first approximation we need only consider the interaction between particles 
and waves. 

The basic process which we wish to consider is the first-order radiation 
(Fig. 1 a) or absorption (Fig. Ib) of a plasmon q by a particle k. 

The process denoted a is the Cerenkov emission of a plasmon by an 
electron moving in the plasma with a velocity v which exceeds the phase 
velocity of the plasma wave wk/k: 

{J)k 1 v=-----· k cos {t , 

the inverse process b is the Cerenkov absorption of a plasmon by a particle. 

In the case we are considering, in which the density of waves in phase 
space Nq is large, the matrix elements for these processes are proportional to 

*It should be understood that the "waves" actually represent COllective oscil­
lations in which all of the plasma particles participate; however, here, by 
"particles" we mean only a small group of "resonance" particles which oc­
cupy a small volume in phase space, but which exhibit a strong interaction 
with the "waves. " 
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K K-q. K K+q, 

a b 

Fig. 1 

.fNq so that the probability for both processes W is the same, being given by 

As a result of the emission or absorption of a wave, the particle changes 
its momentum and is transferred to another point in phase space. 

The change in the number of particles at point k in phase space is made 
up of loss terms due to the absorption of plasmons 

- ~ F kN qWk, k+q6 (ek + hWq - ek+q) 
q 

and due to the emission of plasmons 

- ~ FkN qWk, k_q6 (ek - hWq - ek_q) 
q 

and of gain terms due to the absorption of plasmons 

+ ~ Fk_qN qWk-q, kf:J (ek_q + hWq - ek) 
q 

and the emission of plasmons 

+ ~ F k+qN qWk+q, k6 (8k+q - hWq - 10k)' 
q 

Here, Fk is the particle distribution function in phase space; e k is the kinetic 
energy of a particle with wave vector k; tiWq is the energy of the wave de­
noted by q. 

Summing the contributions of the various processes, we obtain the fol­
lowing equation for the particle distribution function F: 

aFklat = ~Nq(qrk+q,q- 'l'k,q,), 
q 

(9b) 
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where 

An equation for the wave distribution function Nq can be obtained in 
similar fashion. The change in Nq occurs as a result of the same processes of 
emission and absorption of plasmons by particles, so that in the spatially homo­
geneous case being considered here, 

(Sb) 

In order to obtain the equations for a low-density plasma [(S)-(9)] from 
Eqs. (Sb) and (9b), * we take account of the fact that the relative change in 
the momentum of a particle in the emission (absorption) of a wave in a low­
density plasma is always small (q/k - 0) and make use of the following for­
mulas for the probability wand the number of photons associated with the 
plasma oscillations Nq: 

Wk, k-q = 4,,2e2wo/q2; N q cc-= i E~ 1,4dlWo 

where Wo is the plasma frequency. Under these conditions, Eq. (9b) coincides 
with Eq. (9) and Eq. (Sb) becomes the formula for the growth rate (S). 

In practice it is easier to obtain the kinetic equation for the plasmon 
distribution function (for the spectral density of the noise) by solving the 
linearized kinetic equation with the self -consistent field and determining the 
growth rate (damping rate) y; in this case, the quantity y is a functional of 
the averaged resonance particle distribution function F against the background 
of which the small oscillations occur. Thus, in place of Eq. (Sb) we have 

(Sc) 

Equations (Sb) and (9b) describe the interaction between the plasmons 
and particles in a weakly turbulent plasma. 

Pro b 1 em 1. Derive Eqs. (Sb) and (9b) from the equations for the 
density matrix of the plasma [20]. 

Solution. As in the case of the classical plasma, we start from the 
equation with the self-consistent field cp; in this case we obtain the following 

* Equations (Sb) and (9b) can be derived from the equations for the density 
matrix of the plasma (cf. Problem 0. 
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expression for the density matrix in the Wigner representation: 

f xp = ~ e-t~P Q (x - -}, x + {- ) , 
~ 

where p (y, z) satisfies the equation * 

iaQ (y, z)/at = [-~y/2 + ~z/2 + erp (y) - erp (z)J Q (y, z) = 

where we have 

at;; = + f e-i~p [ V xV~ + erp (x + -} ) - erp ( x - + ) ] ~ ei~q txq = 

= -p a~: + + t: [erp (x + ~ ) - erp (x - ~ ) ] ei~(q-P)tXq. (A) 

Equation (A), together with POisson'st equation 

~xrp = 41tne (~fxp - 1) (B) 

in the quasi -linear plasma theory are replaced by a system of equations for the 
mean value of the quantum distribution function f~ = <fxp> and for the 
time oscillatory deviation of the distribution function fxp from its mean value 
(this deviation is assumed to be small). 

In Eqs. (A) and (B) we isolate the oscillatory terms and convert to 
Fourier space components 

m (x) - ~ mkelkX., f (f) ~ fl eikx 
't' "'-' 't' xp - xp = "'-' kp , 

k k 

*We take ti = m = 1 and, for simplicity. consider a quadratically isotropic 
spectrum 6 p = r1 /2. 

tFor reasons of simplicity we consider the case of longitudinal oscillations of 
an electron plasma with a positive space charge background. 
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thereby obtaining. for the spatially homogeneous case ('i7xr = 0) 

; qJ k = -4rrnek2 ~ f~p. (c) 
p 

On the other hand. carrying out an averaging over x in Eq. (A). we find 

af~ _ i ~ em+ [t i k _ tl k] 
7ft - k 'Y k k, p+ 2" k, p- 2" . 

(D) 

Substituting the solution of the ordinary differential equation (C) in (D). 
and introducing the notation 

4 2 2 W p_ p ' k2
1 qJ~ I 

wp. P'= n:e Ip_prI2' N k = 4rtWk ' Fp=f~, 

we have 

Similarly, we find that Nk obeys the equation 

§ 3. Relaxation of Plasma Oscillations 

We now wish to consider the damping of plasma oscillations within the 
framework of the quasi-linear theory. The linear theory predicts an exponen­
tial damping in a time of order 1/ y. But the damping rate for this case y is 
determined in the linear theory by a thermodynamic equilibrium (Maxwellian) 
distribution function. since it is assumed that the plasma is in thermodynamic 
equilibrium when the oscillations are excited. Thus. the infinitesimally small 
perturbation produced in the plasma decays gradually in accordance with the 
linear theory, and the system returns to the thermOdynamic equilibrium state. 

However. if the energy of the initial plasma oscillations is appreciably 
greater than the energy of the equilibrium thermal noise. the pro'Cess bywhich 
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the oscillations are damped is somewhat different. As long as the wave ener­
gy density e is much larger than the thermal energy density nT /HD. particle 
collisions are unimportant and the wave diffusion process equalizes the distribu­
tion function in the region of phase space that corresponds to resonance 
particle velocities. As a result of this equalization process particles from low­
velocity regions are transferred to regions of higher velocities and the damp­
ing of the plasma oscillations is accompanied by an increase in the kinetic 
energy of the particles {the quantity y is negative>; the total energy of the 
wave-particle system is conserved in the process. This quasi-linear absorption 
process is terminated when y becomes zero. Under these conditions. the ener­
gy of the plasma oscillations is finite and appreciably greater than the level 
of the thermal noise. At this point the oscillations are not longer damped. 
since y = 0 and the distribution function remains unchanged. Subsequently. 
because of particle collisions, there is a slow diffusion in velocity space which 
eventually leads to the establishment of a thermOdynamic equilibrium (Max­
wellian) distribution and the reduction of the oscillations to the thermal noise 
level; this second stage requires a time interv al much longer than the first. In 
the present section we only consider the first stage, the quasi-linear relaxation 
of the oscillations. 

Let us consider the simplest case of electron plasma oscillations. We 
assume that at an initial time t = 0 in a plasma in thermodynamic equilibri­
um (the electron velocity distribution is Maxwellian) uniformly in all space 
over some range of wave vectors k there are produced plasma waves with a 
spectral energy density ek(O) which is appreciably greater than the thermal 
noise. All the vectors k are assumed to be parallel to each other. i.e .• weare 
considering a one-dimensional problem. In this case the equations are simpli­
fied considerably and an analytic solution can be found. For the one-dimen­
sional spectrum and long wavelengths the velocity of the resonance particles 
is related uniquely to the wave vector by the simple expression 

v = (j)ofk, 

where Wo is the plasma frequency. The coefficient for wave diffusion is then 

D(v) = ~ IE~I 
2m2 v ' 

(11) 

while the damping (growth) is given by 
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where f is the normalized (J f dv = 1) average electron distribution function 
for the velocity component in the direction of the wave vector k. 

Thus the system of quasi-linear equations assumes the form 

aeHJt = Aeaflav; 

atfat = ~ (Be qr ) , 
ou ou 

(14) 

where e = Et 1871" and f is a function of time t and velocity v = Wo I k, while 
the coefficients A and B depend on the velocity but not time: 

(14a) 

The initial conditions for Eqs. (13) and (14) are the following: when 
t = 0 the quantity e = eo(O, v), f = fM(v); here the spectral density eo(O, v) is 

nonzero in a finite range of velocities vI < v < vz, while f M is the Maxwelli­
an distribution function. 

Under the effect of wave diffusion in the region VI < v < Vz the negative 
derivative of the distribution function is increased, i.e., the slope of the dis­
tribution function becomes steeper. At the same time, the waves are damped 
and the diffusion coefficient is reduced. If the initial spectral density of the 
noise e(O, v) is sufficiently large, the value of of lav becomes zero and the 
noise density e(ce, v) remains finite. Under these conditions, the system goes 
to a state in which of lav = 0 in the range VI < V < vz, while f = fM outside 
this velocity range. The diffusion coefficient D (and the energy density of the 
plasma waves) will be nonzero in the region VI < V < Vz and zero outside of 
this region. According to the quasi-linear theory, this state with a plateau in 
the distribution function should be stationary, since Eqs. (13)-(14) are satisfied 
in velocity space under these conditions. Actually, as we have already indi­
cated, particle collisions, which are not considered in Eqs. (13)-(14), lead to a 
slow panicle diffusion in velocity space and to the gradual establishment of 
thermodynamic equilibrium. Thus, the "plateau" distribution described here 
is quasi -stationary. If slow processes are neglected, however, it can be re­
garded as stationary. 

The equations of the quasi-linear theory (13)-(14) can be used to relate 
the spectral energy density of the plasma waves eCce, v) in the stationary state 
to the initial spectral density e(O, v). Substituting eaflav = A-10e/at from 
Eq. (13) in Eq. (14), we see that the quantity f - (a I av )BA -1 e is conserved in 
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the relaxation process: 

~ (f - _0_ BA-le I=--= 0. 
dt l dv J 

Hence, at any instant of time, 

In particular, in the final state (when t -+ co), 

f 0 BA-l - f a BA-l 
00 - at! eoo - M - at! eo. 

so that 

u 

e (CD, v) = e (0, v) - AB-l,) (fM - foo) du. 
v, 

Since the height of the plateau f co is a known constant (it is determined 
v, 

by the conservation of the total number of resonance particles· J (fM - fco) dv 
V· 

= 0, i.e., too = (V2 - V1)-1 J tM dv) the relation in (16) determines the 
v, 

spectral density of the wave energy in the final stationary state. 

The reduction in the wave energy as a result of the quasi-linear relaxa­
tion process is compensated by the growth in kinetic energy of the particles: 
as a result of diffusion in phase space there is a net particle transfer to regions 
of higher velocity. It follows from Eq. (16) that 

oo/V, 

J dk 
2 {e(O,v)-e(oo,v)\ 2" = 

oo/v. 

". 0' 

= S dv'nmv' S (1M - too) dv. 
V, 

• This relation follows from the conserv ation of the total number of particles: 
since the distribution function f(v) does not change for v < v1 or v > v2' the 
total number of resonance particles (V1 < v < V2) must be conserved. 
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Integrating the right side of this relation by parts we obtain the energy 
conservation relation: 

f dk 2 [8 (0, v) - 8 (co, v)l2jt = 

v, 

It can be shown that the initial energy of the waves is not sufficient to 
establish a plateau on the electron distribution [Eq. (16) leads to a meaning­
less negative expression for 10 00 ]. In this case, the stationary state is not. 
reached and the system goes to thermodynamic equilibrium in a time of the 
order of the mean time between binary particle collisions. 

Up to this point we have been considering a rarefied plasma in which 
particle collisions can be neglected. In general, the effect of collisions on 
particle motion will be comparable with the wave effect only when the wave 
is in equilibrium, i.e .• when the wave amplitude is not greater than the ampli­
tude of the corresponding mode in the thermal noise spectrum. For thermal 
noise, processes such as Cerenkov emission of a wave by the moving particle, 
emission in collisions, wave Landau damping and collisional absorption, are 
comparable. Indeed, the level of thermal noise of the plasma waves is deter­
mined by the balance between these phenomena. 

For high-amplitude waves (superthermal) the particle collisions can 
still be quite important in certain phenomena, for instance, resonance absorp­
tion. 

The effect of the wave is to produce a strong distortion of the distribu­
tion function in the region of the resonance particles. However, collisions 
partially restore the Maxwellian distribution function and establish the station­
ary wave absorption. All other effects due to cOllisions are negligibly small. 
Formally, the equation that describes the behavior of the averaged distribution 
function in time is obtained as the first term in an expansion of the exact 
kinetic equation in the quantity liND (the ratio of the thermal noise to the 
thermal energy of the plasma): 

where the last term describes the binary collisions of resonance particles with 
the other plasma particles. 

There are various ways of writing the collision term for a plasma. For 
example, this term can be written in the form given by Landau [3, 6J and 
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then linearized since the number of resonance particles is sm all: 

Sf = L _a_ v-s [vI + (v26'k - V.Vk - _T __ u_26-"i.:.:..k~3_U....:..iU....:.k=--) at ] 
au i ' " m u2 aUk' 

where L = AWt /n (here A is the Coulomb logarithm). 

However, if we are interested in the particle distribution for only one 
velocity component vII and integrate the cOllision term over the other com­
ponents, we find 

J a ( T at) st dvl.. = -~ -v vilt +--c;--- , 
(Ju ll m DUll 

(19a) 

where T is the electron temperature while JJ f'::j AwVnvfl is the collision fre­
quency. 

Binary collisions between particles lead to the gradual disappearance of 
the plateau on the distribution function and bring the system to the thermo­
dynamic equilibrium state. The characteristic time for the system to reach 
the Maxwellian distribution can be estimated as follows. The quasi-linear 
equation for the distribution function (taking account of diffusion due to emis­
sion and absorption of waves and binary collisions) is of the form 

-=--D--+--v vl1t+---· af a at a ( T at) 
at au 11 au 11 au II Tn au 11 

(20) 

We now integrate Eq. (20) in time, assuming that D(af/av) = A-l(aD/at), 
where A is given by Eq. (14a), thus obtaining (the subscript on vII isomitted) 

t 

( a aT) It a J t - au A-ID - au v m A-lInD 0 = au divvt· (20a) 
~ 0 

If we consider the case in which the change in the distribution function 
f 0 - f M is appreciably smaller than aDoA -1/ av, the first term on the left 
side can be neglected. Then we integrate Eq. (20a) With respect to v from 
-co to v, making use of the fact that the distribution function f is not changed 
appreciably in the damping process (this is obviously not true for the deriva­
tive of this function of /av); hence we can replace f under the integral sign 
on the right ~ide of Eq. (20a) by the thermodynamic equilibrium function f M 
= (2'1fT /m)-Z exp - (mv2 /2T). Carrying out this procedure, we obtain the fol­
lowing transcendental equation for D(t, v) which gives the time dependence 
of the diffusion coefficient D (or the wave energy e = B-1D): 

(-~D-InD) It = -A atM t. 
Tv 0 au 
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It is evident from this equatiol1 that the l10ise decays in linear fashion 
in the initial stage Do - D ~ t, and that the decay only becomes exponential 
In (Do ID) ~ t in the later stages of the process, when the noise level has be­
come small. 

For this reason, the feedback effect of the waves on the particles, which 
is introduced in the quasi-linear theory, leads to a sharp reduction il1 absorp­
tion: the reSOl1ance particles are redistributed aod a plateau is formed 011 the 
distribution function; however, the collisions gradually smooth the edge of 
the plateau and a stationary state is established in which 

vvl 
T . 

v-+D m 

The main effect due to wave feedback is to change the derivative of the dis­
tribution function rather than the distribution function itself, so that 

aIM at 
au I + A _k_ (_V_) 3 --;::::..."E,.,..- (ii) , 

t1k VT nT/ND 

where k is the mean wave number of the packet; f:::, k is the halfwid th; vT = 

-IT 1m; A F::J l. 

From Eqs. (13) and (21) we have 

aD = D arM 
at I + D ~ -a;-' 

Tv 

Integrating this ordinary differential equation for D(t) (the velocity v appears 
as a parameter), we obtain Eq. (20b). 

Substituting Eq. (21) in Eq. (8), we have (Fig. 2): 

I ae 
2y = e 7ft =oc . --ck=--(-V-)-. 3--E-- 2 Yo' 

I +- A IITl VT nTjND 
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Fig. 2 

When 0 « nT INb (here Nb is the number of particles in a sphere of 
radius v Iw), the quantity y -> Yo where Yo is obtained from the linear theory. 
When oinT R! 1, the quantity y = (yo/ND) R! v. Hence, the effective damp­
ing time for the packet is changed from a quantity of order l/yo, for waves 
below the thermal noise level, to a time of the order of the collision time, for 
high-amplitude waves. 

The factor that reduces the derivative a f lav is a consequence of the 
distortion of the distribution function and can be written in the form 

I+D~ Tv 

for a "monochromatic" wave (in which £:::"v f':j .J ecpo!m; E~£:::"k = E2) this factor 
is 

A'e2 £2 
1+ mTvk Ve!{Jo/m 

3/2 ' 
1 + A (e!o)_ 

VmTv').. 

where A and A' are approximately equal to l. 

Let us now consider the propagation, through a plasma layer, of plasma 
waves which are generated continuously at the boundary of the layer. • 

·In the framework of the quasi-linear theory we can only consider the propaga­
tion of a wave packet with some finite minimum width; this requirement 
arises since it is necessary to satisfy the condition £:::"(w Ik) > .J ecp / m, where 
cp is the mean amplitude of the potential associated with the waves. 
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The linear theory of small oscillations in a low-density plasma predicts 
a collisionless damping of waves that propagate in the plasma. In particular, 
a consequence of this collisionless damping is the attenuation of longitudinal 
plasma waves that are excited at the boundary of the plasma by an external 
electric field with frequency w > wo; these waves are assumed to propagate 
perpendicularly to the boundary. For plasma waves, which are the only ones 
we consider, the variation in wave amplitude with distance into the plasma is 
given by the expression [1]* 

4 
.-1 O£k :n: Wo m of 

£ --=-----
k ax 3 k 3 T du ' (24) 

where k = wjv is the wave vector; uJ = ulo + 3(T jm)k2; f is the electron dis­
tribution function for the velocity component parallel to the direction of wave 
propagation (perpendicular to the boundary). Thus, the linear theory, in 
which the energy of the wave packet is assumed to be infinitesimally small, 
leads to exponential damping of the wave packet as a function of distance. 
The damping factor is given by (24) with 

f = f M (0) = (2rr.T /m)-l/, exp ~ m02/2T. 

Actually, however, the wave energy is finite and the wave diffusion ef­
fect causes an equalization of the distribution function for the resonance elec­
trons with a consequent reduction in dam ping. If we take account of the fact 
that the parameter ND£ jnT (where £ is the energy density in the wave) is ap­
preciably greater than unity, and neglect collisions, the equations of the quasi­
linear theory then indicate that the waves will produce a plateau on the dis­
tribution function at some distance from the boundary: 

beyond this point is characterized by zero damping: 

f (0, x) = const; O;xk = O. 

In order to obtain a finite absorption it is then necessary to introduce a 
collision term in the equation for the particle distribution function 

of a of. 
o ax = Tv D iJu T Sf· 

*This expression (which only holds for distances of the order of several wave­
lengths away from the boundary) follows from Eq. (Sb) since 

oNq/ot -+ [Hq, N 1 = 3 -.!L~ aN 
q W m ax . 
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Equations (24) and (25) with the initial conditions do, v) = eo(v) and 
f(O, v) = fo(v) determine the spectral energy density of the wave and the dis­
tribution function as functions of distance. In order to simplify the calcula­
tion, however, we shall limit ourselves to the case of strong waves: 

e I 
-1' :» V .. n ND 

In this case the vof /ox term in Eq, (25) can be neglected. Then 

:; = - v ~ , (26) 

where the quantity (T /m)(of /ov) is negligibly small compared with vf in 
the velOcity region of interest. If the plasma wave packet is not very broad, 
the distribution function does not change appreciably (this remark obviously 
does not apply to the derivative of the distribution function, which can ex­
hibit a substantial change) and f in the right side of Eq. (26) can be replaced 
by the Maxwellian function f M. Substituting the value found for of /ov in 
Eq. (24), we then have 

iJek n: v v2 21 --ax = - Tk Tim nmv M, 

so that the energy of the wave packet decreases linearly with increasing dis­
tance from the boundary: 

while the characteristic damping length L is directly proportional to the wave 
energy at the bound ary, being of order 

L I eND 
.::::::: k ----;zr- (when V.::::::: VT)' 

Thus, the quantity L is appreciably greater than the damping length 
Llin given by the linear theory. For wavelengths of the order of the Debye 
radius we find L/Llin I':l eND/nT. 

The formula for the quasi-linear damping rate of a wave in an aniso­
tropic plasma is complicated, but its general structure is very much the same 
as that in Eqs. (22)-(23): 
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where ve is the electron collision frequency while v' is the reciprocal time 
for formation of the quasi-linear plateau. 

§4. Growth of Perturbations in an Unstable Plasma 

Using the quasi-linear theory we now wish to consider the development 
of a perturbation in an unstable low-density plasma. We shall first investigate 
the dynamics of a system which is unstable against the excitation of electron 
plasma oscillations. In order to simplify the problem we consider the case in 
which the wave vectors characteristic of the growing waves are parallel to 

each other and in which the wave spectrum is one-dimensional. * We assume 
that the initial electron distribution function f (0, v) exhibits a rising part in 
some small range of velocities (the mean velocity in this range is appreciably 
greater than the mean thermal velocity of the plasma electrons), so that 
df / dv is positive in this region. Under these conditions the plasma is unstable 
and the spectral energy density C.k in the corresponding range of wave num­
bers k =wo/v starts to grow in accordance with the relation 

The growing oscillations lead to an increased diffusiOn coefficient for 
the resonance particles that interact with the waves: 

e2 I E~ I 
D=~-v-. (28) 

Simultaneously, the distribution function is smoothed and the region of 
instability expands: 

~ __ a_D~ 
at - ov av' 

The wave growth and the diffusion of resonance electrons continue until 
a plateau is formed on the distribution function, i.e., a region in which of /ov 
= O. After this point the waves no longer grow and a stationary state is estab­
lished. The electron distribution in the final state f 00 (v) can be found from 

*This situation holds when a plasma exhibits a preferred direction (external 
magnetic field, axis of the plasma tube, etc.) and the growth rate is a maxi­
mum for wave vectors in this direction. 
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the conservation of the total number of resonance particles that have diffused 
to lower velocities in phase space in the establishment of the stationary state: 

VJ Oz 

J t(O, v)dv=S t(oo, v)dv. (30) 
v, v, 

The velocities vl,2 are determined by the boundaries of the plateau region and 
must be found simultaneously with f(eo, v) by solving Eq. (30) together with 
the relation 

this means that the area under the curves f (0, v) and f (eo, v) (Fig. 3) must be 
the same (the points Vl,2 are shown in the figure). 

The system of equations (30)-(31) determines uniquely the value of 
f (eo, v) in the plateau region and the boundaries of this region VI ,2; outside the 
plateau f (eo, v) = f (0, v). 

As in the quasi-linear relaxation of the plasma oscillations considered in 
the preceding section, the spectral density of the noise in the final state Ceo 

is related to the initial spectral density eo and the change in the distribution 
function f(O, v) - f(eo, v) by the expression 

v 
8(00, V)-8(0, v)=-AB-1S (fo-too)dv, 

v, 

where the functions A and B are determined by Eq. (14a). If the initial noise 
level in the system is thermal, the quantity e(O, v) can be neglected, so that 
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the spectrwn of plasma waves in the final state is determined only by the ini­
tial electron distribution in the vicinity of the growth region f 0 [14, 18]: 

v 

E (v, CD) = AB-1 J (too - fo) dv. (33) 
v, 

The energy density of the waves that are established at the termination 
of the diffusion process is of order 

£2 (00) 
--;8"'"""n---'-':::::: bn (mv~ - mvD. 

where vl,2 represent the plateau boundaries, while <5 n is the density of elec­
trons that move to regions of lower energy in velocity space. 

The time T required for excitation of waves and relaxation of the elec­
tron distribution (establishment of the plateau) can be estimated from the dif­
fusion time in velocity space by using the expression for the diffusion coeffi­
cient D"" in the final state: 

where v is the mean value of the velocity in the plateau region. 

The development of the instability means that the kinetic energy of the 
resonance particles is converted into electrostatic energy associated with the 
plasma waves and into the kinetic energy of all of the plasma electrons, which 
participate in these collective oscillations; the total energy of the plasma is 
obviously conserved. 

§ 5. Interaction of a Beam with Plasma 

It is well known that a system consisting of a plasma and a beam of 
charged particles that passes through the plasma can be unstable under certain 
conditions. This so-called electrostatic instability has been the subject of a 
large number of experimental and theoretical papers. According to the linear 
theory [4], the electrostatic instability is somewhat different in two limiting 
cases. When the beam is dense and mono-energetic, and moves with a high 
velocity with respect to the plasma, the plasma exhibits growing oscillations; 
the frequency and growth rate are determined by the parameters of the entire 
system. On the other hand, if the velocity and density of the beam are not 
very large, and if the velocity spread in the beam is not too small, the fre­
quency of oscillation is equal to the plasma frequency of the plasma and it is 
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only the growth rate that is determined by the properties of the overall system; 
this growth rate is then proportional to the velocity derivative of the com­
bined distribution function for the plasma electrons and the beam electrons 
(at the point v = w/k). 

The quasi-linear theory of the earlier sections can be used to investi­
gate the dynamics of a beam-plasma interaction in the second case only. 

In analyzing the interaction of a beam with the plasma, as in the pre­
ceding sections we shall limit ourselves to one-dimensional electron plasma 
waves. Assume that the beam moves through the plasma in the positive x di­
rection; at the point x = 0 we are given the distribution functions for the elec­
trons in the plasma and in the beam, as well as the spectral density of the 
noise e k = I E~I! 81r. If particles that are in resonance with the plasma waves 
(v = w/k) satisfy the condition a f /av > 0, the waves will grow. Simultane­
Ously there is a diffusion of the electrons in the beam and plasma in velocity 
space; this tends to smooth the distribution function in the region in which 
the wave diffusion coefficient is nonvanishing, thus reducing the growth rate, 
As the beam continues to move, the velocity derivative of the distribution 
function diminishes while the wave energy increases. At x - 00 the system is 
in the stationary state described above: there is a plateau on the electron dis­
tribution function for the beam - plasma system and there is a corresponding 
region of wave vectors in which there are undamped plasma waves. Since the 
energy density of these waves is larger than at the input to the system (x = 0), 
it is evident that the kinetic energy of the beam electrons has been reduced. 
As a result of the formation of a plateau on the electron distribution function, 
a group of particles has been displaced toward the origin of coordinates in 
velocity space, indicating a reduction of the kinetic energy of the beam (i.~., 
the beam is retarded), The quasi-linear theory can be used to find the energy 
loss of the beam and to determine the shape of the spectrum of plasma waves 
in the system. 

In the case at hand the quasi-linear equations assume the form-

Vg :; = Ae :~; I 
at a at 

v ax = a;-BeTv' 
(34) 

-These follow from the general equations (Sb) and (9b). However, it is sim­
pler to obtain them from Eqs. (S) and (9) by making the obvious substitutions 

a8 aOOk a8 a8 at a (p2/2m) at at 
at -+ ail ax = v g ax ; (it -+ a p ax = v ---ax . 
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where Vg is the group velocity of the plasma waves, while A and B, which are 
independent of the x coordinate, are given by Eq. (14a). The system of equa­
tions in (34) must be salved with the following boundary conditions: f (0, v) = 
f o(v), do, v) = eo(v). It may be assumed that the wave vector and the velo­
city of the resonance particles are related by the expression w = kv, where 
w = Wo + %k2 (TI mwo), while Wo is the electron-plasma frequency and T is 
the electron temperature. 

The level of the plateau formed on the distribution function can be de­
termined from the conservation of the total number of resonance electrons 

tJ2 V2 

J f(O, v)dv = S fcodv, 
v. 01 

so that 

vz 
f(co) = (V 2 -V1)-1 J f(O, v)dv. 

v, 

Here, vl,2 are points in velocity space which define the boundaries of the 
plateau; the values VI ,2 can be found simultaneously with f 00 by solving Eq. 
(35) together with the equation 

The spectral energy density of the plasma waves at x -- 00 can be deter­
mined as follows. The value of eaf lav from the first equation in (34) is used 
in the second, yielding 

_0_ (vf _ _ 0_ BA-1v 8) = 0 
Ox ou g , 

i.e. , 

v 
8 (v, co) = 8 (v, 0) + AB-1vg-1 J V (f co - fo) dv. (36) 

v, 

Thus, the development of the two-stream instability and the smearing 
of the peak in the electron velocity distribution cause some of the kinetic 
energy of the beam electrons to be converted into plasma wave energy. Ob­
viously the total energy flux remains constant; this can be shown as follows. 
Consider the case in which the noise level at the input to the system is therm­
al: dv, 0) = O. Multiplying both sides of Eq. (36) by 2vg' and integrating 
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with respect to wave number k = w lv, we find that the ep.ergy flux through 
the cross sections x = 0 and x = 00 are the same: 

~Vg2ek + S V mt (f .. - fo}dv = O. (37 ) 

k v, 

The limits of integration in Eq. (37) can be extended to infinity because the 
spectral density e(oo) is zero outside the range vl < v < v2' and the functions 
f 0 and f 00 are identical. 

In conclusion, we note that the theoretical conclusions concerning the 
relaxation of an unstable plasma toward a state with a plateau on the distribu­
tion function have been observed experimentally (Fig. 4) [16, 21, 25]. 

Pro b 1 em 2. Investigate the development of perturbations when the 
boundaries of the instability region are fixed (Fig. 5). 

Sol uti 0 n . Since 0 f I ov - -00 at two points v 0 :I: u (Fig. 5) these 
points represent the boundaries of the instability region and the distribution 
function can only change for -u < v -vo < u. If f(O, v), the initial electron 
distribution, is smooth in this region, it can be expanded in a series in which 
we limit ourselves to the first two terms: 

f (0, v) = const + Ao (v - Vll). 

It then follows from the conservation of the number of particles that the con­
stant in this expression is f (00). 
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It can be easily shown that Eqs. (13) and (14) have the solution 

F (v, t) = f (00) + A (t) (v - vol; 

u2 - (v - v o)2 
D (v, t) = 2 B (t), 

A (t) = Ao - Bo 

1 + ~o exp (Ao + Bo) t 
o 

B (t) = Ao + Bo - A (t). 
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Here, Ao = af (0, v) lav, while the quantity Eo is proportional to the amplitude 
of the initial noise. 

In the solution given here, the distribution functions remains linear 
throughout the entire process, while the spectrum is parabolic. 

Problem 3. Find the spectrum for ion-acoustic waves excited by 
an electric current in a weakly ionized plasma. 

Solution. In the stationary state the equation for the averaged elec­
tron distribution function in the resonance region of interest f is given by 

-eEo ~+~D~ +5[=0 
m av av au 

(A) 

f 

~--~----~--~---v 

Fig. 5 
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where Eo is the external electric field and Sf is the collision term. 

The equation for the waves reduces to an equality for the rate of pro­
duction of waves by electrons and the absorption due to collisions of ions with 
neutrals [4] 

(B) 

where m and M are the masses of the electron and ion, respectively; J) i is the 
ion-neutral collision frequency. and k is the wave number. The shape of the 
spectrum in the low-frequency region can be found as follows. Since 

(where Vg is the group velocity), and since (A) and (B) indicate that for small 
k 

it then follows that 

£1'" (v - Vg) k. (c) 

Substituting the expressions for v = Wk /k and Vg = dWk/dk in (B), we 
find the dispersion equation 

( ffik)2 (kRD)2 
0- = 1 + (kRv)2 
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where [l is the ion-plasma frequency and RD is the Debye radius; the noise 
density in the low-frequency region of the spectrum is then 

(w ~ Q), 

and the spectral density of the square of the potential is 

2 E~ w 
<p(o) ~ k2Vg "" Q . 

Thus, in the weakly turbulent state, the quantity 'PZu increases linearly 
with frequency w when w «[l (Fig. 6). 

At still higher frequencies, the quantity 'P~ reaches a peak and is then 
reduced, reaching zero when w = wI ~ [l. 

§ 6. Threshold for Wave Absorption in a Plasma 
and Turbulent Heating 

If one considers the propagation of a wave in a plasma at an amplitude 
exceeding some given threshold value (depending on the type of wave and its 
period), in certain cases the plasma can be unstable. When this happens, part 
of the ordered energy of the wave is converted into the energy associated with 
the spectrum of the nonequilibrium plasma oscillations. 

In order to illustrate the effect we consider the excitation of high-amp­
litude, one-dimensional, ion-acoustic waves in a plasma. It is assumed that 
the waves cause the electrons to acquire a mean velocity U (with respect to 
the ions which are at rest), and that this mean velocity is greater than the 
critical velocity Cs ~ .J Te/M. Under these conditions, the ion-acoustic 
waves grow, causing electron diffusion in velocity space by virtue of wave dif­
fusion. As a result of the equalization of the electron distribution function, the 
region of instability expands in velocity space and soon encompasses the en­
tire range of allowed values of phase velocities for the ion-acoustic waves 
Ci < v < Cs (q ~ {Ti/M). 

If a wave of sufficiently high amplitude propagates in the plasma the 
electron distribution periodically passes through the region -cs < v < Cs in 
which the ion-acoustic waves are excited; hence, the quasi-linear diffusion 
coefficient in velocity space D is different from zero. The electron distribu­
tion function will gradually be smoothed and will exhibit a plateau after a 
period of time (Fig. 7): 

f ( { too = cons t; 
00, 0) = to (v); 

(I v I < U); 

(101) U), 
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t 

Fig. 7 

where U is the maximum displacement of the electron distribution in velocity 
space caused by the external field (assuming that U » cs)' while foo = (1/ 2U) 

u 
X S to (v) do. The smoothing of the distribution function is described by 
-u 

the diffusion equation 

[with the bound ary condition (0 f / ov ) ± u = OJ. where k FOl w~ for U > cs; k = 0 
for U < cs; cs is the width of the region in which the superthermal noise is ex­
cited and w is the frequency of the external field. Thus, the smoothing time 
is given by T FOl (U2/k) F::j (1/ w)(U / cs'!-. 

Hence, an external field whose intensity is greater than the threshold value 
will displace electrons in velocity space and do work; by exciting collective 
oscillations of the plasma this field can provide "collisionless" heating of the 
electrons. 

Turbulent heating of electrons in an unstable plasma, in which the elec­
trons move with respect to the ions, is characterized by intense high-frequency 
oscillations in the plasma; the electrons then execute random motions in these 
high-frequency fields [23]. The presence of these oscillations tends to stabil­
ize the system: for example, assume that high-frequency oscillations are ex­
cited in a plasma consisting of a cold electron gas (at rest) and a moving cold 
ion gas; then the plasma will be stable if the random velocity of the electrons 
../ <v2> (due to the oscillations) is greater than the relative velocity of the ions 
with respect to the electrons Uo (cf. Problems 4-5). 

Pro b 1 em 4. Derive equations to describe slow processes in a plasma 
in which plasma waves are excited. 
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Sol uti 0 n. In the presence of the high-frequency waves the plasma 
particles are subject to a force 

(A) 

The slow (compared with the characteristic period of the high-frequency 
waves <1/ W » variations of the distribution function F are described by the 
following equation (in the absence of external forces): 

aF + v aF + _,_ ~ = o. 
at ax m au 

(B) 

The next equation we seek is the equation for the spectral energy density in 
the high-frequency waves; the variation in spectral density is given by the 

fOllowing equation for Nk = EI/ Wk: 

aN k + v eN k _ aOOk aN k = 0 
at g ax ax ok (e) 

(vg is the group velocity). 

Pro b 1 em 5. Investig ate the stability of an ion stream moving through 
a cold electron gas in which plasma waves are excited. 

Sol uti 0 n. We compute the first two moments of (B) in Problem 4, 
obtaining 

~+ anu =0' 
at ax ' 

(A) 

(B) 

where f is given by (A) of Problem 4. 

Linearizing the first of these two relations and (B) of Eq. (4), we find 
<'iNk' the change in the quantity Nk, in a plane wave in which all quantities 
are proportional to e-i[/t +iqx: 

·Q.!i.N -k' U ONk _ iqooo ~ aNk =0' 
- £.u k Lq ok 2 n ak ' 

- iQ6n + iqnU = 0, 
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The change in the spectral density of the high-frequency waves is 

6E~ = 6 (WkNk) = wk6Nk + Nk ( ~o 6: + kU) = 

= ~ (1 + 2..!:... ~) ( WoNk + ~ q aN k ) • 
n q Wo 2 Q ak 

Substituting this value of c5Et in (B) (considering, for simplicity, the 
case Ii = ~ kN k/~ N k = 0), we have 

k k 

(c) 

It is evident from (C) that the presence of the waves is equivalent to 
the presence of a thermal velocity spread for the electrons (i. e., an electron 
pressure): 

~ e2 2 <V2> = --E· 
4 2 2 k m Wo (D) 

k 

Hence, from the linear theory of stability of an ion stream moving with velo­
city Uo through an electron gas [4], we find that the plasma is stable when 

where <vz> is given by (D). 

§ 7. Plasmon - Plasmon Interactions 

Up to this point we have been considering a weakly turbulent plasma, 
assuming that the wave energy density is small enough so that interaction be­
tween waves could be neglected; in this case the important processes are the 
emission and absorption of collective plasmon oscillations by resonance par­
ticles. When the wave energy increases, the interaction between waves be­
comes important; since many waves are excited simultaneously in a turbulent 
plasma, and since their phases are random, the interaction between waves re­
duces to wave "collisions" and can be described on the basis of a kinetic equa-
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tion for the wave distribution function (plasmon equation) in phase space ... 

It is convenient to derive the wave kinetic equation starting with the 
Lagrangian expanded in powers of the amplitude of the cOllective plasma os­
cillations. The complete Lagrangian L for a plasma can be written in the fol­
lowing form (cf. [8]): 

L = ~ S S dx dv f v { mv (v ~ DvlJv)2 - evVo (x + Yv) -
v 

- ever (x + Yv) + ev (v + DvYv) (Ao (x + Yv) + a (x + Yv)) } + 
+ 81n; J dx \ (Eo + e)2 - (Bo + WI. (38) 

Here, yv(x, v, t), cp, and ex are variables in terms of which the variation is 
taken, while f v (x, v) is the stationary distribution function for particles of 
species v in the stationary fields Eo =-V'Vo and Bo = V' X Ao, which satisfy the 
Maxwell equations 

V'xEo=O; V'.Eo=~Jevfv(x, v)dv; 
v 

V'·Bo = 0; V'XBo = 4~.l::S evvfv(x, v)dv. 
v 

The operator Dv in Eq. (38) is the total time derivative along the tra­
jectory of particles of species v in the fields Eo and Eo: 

a a a 
Do,; = (f[ + v ax + aov Tv ' 

where 

a uv = ~vv { Eo (x) + +- X Bo (x) } . 

The quantities y, CPo and ex represent the displacement of the particles 
and the deviations of the scalar and vector potentials from equilibrium values 
in the stationary state. Expanding the Lagrangian L in powers of y. CP. and ex 
we obtain the Lagrangians for the zeroth. first. second. etc .• orders Lo. L1 • L2 • 

. . . . The zero-order Lagrangian Lo does not contain y. CP. and ex; the 

"The interaction between plasmons is analogous to the interaction between 
phonons in condensed media and the kinetic equations for the two cases are 
analogous. 
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Lagrangian 4 vanishes identically; the Lagrangian 4 describes the harmonic 
oscillations of the plasma [8]. The third- and fourth-order Lagrangians La 
and L4 describe the interaction between these harmonic oscillations (plasmons). 

For reasons of simplicity we shall first limit ourselves to the analysis of 
longitudinal waves in a uniform isotropic plasma (~ = Eo = 0); in this case, 
Eq. (38) yields 

La = - ~ e; f f dxdvtv(x, v)y~y~VaVf3fP; (42) 

v 

L4 = - ~ ~v ff dxdvfv(X, v) y~y~y~VaVf3VvfP. (43) 

v 

§ 8. Three-Plasmon Processes 

We shall first consider interactions between waves in which three plas­
mons participate. These processes are (a) decay of a single plasmon into two 
plasmons, and (b) combination of two plasmons into one (Fig. 8). 

In these processes we must satisfy frequency conserv ation w and wave­
vector conservation k (otherwise, the transition probability amplitude vanishes); 
for cases (a) and (b) these conservation relations are 

In an isotropic plasma in which there are two kinds of plasmons - the 
ion-acoustic plasmons (s) and the plasma (longitudinal) (0 oscillations (we as­
sume that the necessary condition of weakly damped ion-acoustic waves is 
satisfied; the electron pressure exceeds the ion pressure and only weakly 
damped longwave plasma oscillations are considered), the conservation rela-
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tions [(44)-(45)] allow only those three-plasmon processes in which two plas­
ma plasmons and one acoustic plasmon participate. The longwave I-plas­
mons have approximately the same frequency w ~ woe' so that a single Z­
plasmon cannot split into two; conversely, the two I-plasmons cannot com­
bine into one. The ion-acoustic oscillations cannot interact between them­
selves in a three-plasmon process because their spectrum is a "nondecay" 
type - the frequency of these oscillations w increases with wave number k at 
a slower rate than linear (cf. Problem 6). Finally, three-plasmon processes in 
which two s-plasmons and one I-plasmon participate are not possible in a 
plasma with a small ratio of electron mass m to ion mass M because the 
maximum possible frequency of the ion-acoustic wave is much smaller than 
the frequencies of the plasma waves and the frequency conservation relation 
cannot be satisfied. 

We then consider only the a1l0wed three-plasmon processes, in which 
one s-plasmon and two l -plasmons participate: we express the displacement 
ye in the Lagrangian in (42) in terms of the potential cp (the ion term in L3 
can be neglected since its contribution is small if m/M « I, in which case 
the ion velocity and displacement are small compared with the electron velo­
city and displacement): 

ye = ~ ; ik { (:V~2 + <P;2} e1kx, (46) 
k ~ 

where CPt and cp k are the spatial Fourier components of the potential in the 
ion-acoustic wave and plasma waves, respectively. Substituting this value of 
ye in Eq. (42), we obtain the following expression for the Lagrangian forthree­
plasmon processes in an isotropic plasma: 

L - ~ A mSm1ml 
3- ..:;.. p;qr"rp"rq"rr' 

p+q+r=O 

where 

e3 J {dv q., eq·, 
Ap; qr = 2T -( )2 --2- ~ -1-'- . 

m n·v 2wOe 

Starting with the classical Lagrangian (47) by introducing second quanti­
zation we can write a system of kinetic equations for the distribution functions 
for the I- and s-plasmons. For the distribution function of the l-plasmons nk 
we find 

171 = L W12 { - n1 (n3 + 1) (N2 + 1) + (nl + 1) n3N2 } + 

+ ~W21 {- n1 (n3 + 1)N2 + (n1 + 1)n3(N2 + I)}. (49) 
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where w12 is the probability for decay of an l-plasmon kl into an s-plasmon 
~ and an l-plasmon ka' while w21 is the probability for combination of an l­
plasmon kl and an s-plasmon k2 into another l -plasmon ka. The summation 
in Eq. (49) is taken over wave numbers ~ and ka, which satisfy the conserva­
tion relation (44) in the first collision integral and the conservation relation 
(45) in the second collision integral. 

The analogous equation for the distribution function for the s-plasmons 

Here, w21 is the probability for combination of an s-plasmon ~ and an Z-s 
plasmon kl into an l-plasmon ka. The second collision integral vanished in 
Eq. (50), since the decay of a low-frequency s-plasmon into two high-frequen­
cy l-plasmons is forbidden by the frequency conservation relation (as is the 
inverse process, combination of two l -plasmons into one s-plasmon). 

The probabilities w in (49) and (50) can be expressed in terms of the 
matrix elements of the Lagrangian (42): 

2:rt w12 = Ii I (n i • N 2• nal Lal n1 -1. N 2 + 1. na + 1 ) 12; 

w21 = 2: I(ni • N 2• naILaln1-1, N 2 -1, na+ 1)12; 

so that 

Here, cps and cpl are the matrix elements for the potential for the s and 
l waves: 

q>~ = + V 21tliwz (k) . 

Substituting the value of w21 (51) in the kinetic equation for the s­
plasmons, we have 

N 2 = f (~!)3 (~!)8 ~ (kl + k2 - k a) {, (WI + 002 - Wa) ~~ I A k .; ktkl X 

x 
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+ (N2 + 1) (nl + 1) n~}. 

1 
Writing nk = 1 Ek 12 In W 1 in this equation, we find the order of the char-

acteristic "collision frequency" of s-plasmons with 1 -plasmons 

N2 1£/12 

Ya = N 2 ~ (U3 -----nr- (55) 

[the expression for Y3 can conveniently be written in the form 

jig ~ (Us ( V; r, 
where v ~ is the random velocity of the electrons in the oscillations, while U 
is the phase (or group) velocity for waves characterized by k Z Ri)l]. 

The quantity Y 3 determines a number of the char acteristic features of a 
weakly turbulent plasma: for example, the characteristic decay length L of the 
ion - acoustic waves in a plasma with highly excited plasma oscillations is ap­
proximately equal to the mean free path for collisions of an s-plasmon with 
1 -plasmons, and is thus related to the collision frequency Y 3 by the expression 

(56) 

After substitution of the value of the transition probability w (51), the 
kinetic equation (50) for the distribution function of 1 -plasmons assumes the 
form 

(57) 

The system of equations in (54) and (57) determines completely the dy­
namics of a weakly turbulent isotropic plasma in the absence of resonance 
particles. When there are resonant particles, it is then necessary to use a sys-
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tern of equations for the waves and resonant particles which takes account of 
the interaction of the waves (plasmons) in the form of the collision integrals 
in (54) and (57). It should be noted that the structure of the collision integrals 
(54) and (57) is simplified to some extent in a classical plasma. Since the 
mean "population number w Nk is related to the spectral energy density of the 
oscillations Ok by Nk = Ok/l'iwk,* in a classical plasma (l'i - 0), in treating 
the collision integral we need only retain the highest-order terms in N or n; 
in this case, the collision integrals (54) and (57) are quadratic in Nand n: 

- n1 N 2 (na + 1) + (nl + 1) (N 2 + 1) na ~ - N 2nl + N 2na + nIna, (58) 

h~O 

- n1 (N 2 + 1) (na + 1) + (nl + 1) N 2na ~ - n 1 N 2 - n1 N 3 + N 2n3 (59) 

h~O 

and after the substitution Nk = Ok/Ii wk' Planck's constant disappears from 
(54) and (57).t 

·For example, for longwave plasma oscillations, 

2 £2 £2 £2 nmvk k k k 
Qk = -2-+ 8,..; = 4n:; N k = 4n:nwo 

tThe direct derivation of the classical (l'i = 0) collision integrals for plasmons 
using the hydrodynamic equations has been given in [27, 28]. 
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The kinetic equations that describe three-plasmon processes in an aniso­
tropic (and inhomogeneous) plasma can be obtained similarly by isolating 
third-order terms in the oscillation amplitude in the Lagrangian [Eq. (38)]. 
These three-plasmon processes are responsible for a number of important 
features of a turbulent plasma: in particular, the turbulent transport coeffi­
cients for matter, momentum, and energy. A knowledge of these coefficients 
is required to solve a number of problems: for instance, the structure of the 
turbulent front of a shock wave in a rarefied plasma [27, 28], or the evalua­
tion of the .. anom alous' diffusion coefficient (Problem 7), etc. 

Pro b 1 em 6. What functional relation w = w(k) must be displayed by 
the dispersion relation to satisfy the frequency and wave-number conservation 
relations for three-plasmon interactions between plasmons of one kind? 

Sol uti 0 n. For clarity we consider the case in which the frequency 
w depends only on the modulus of the two-dimensional wave vector k = 
{kx' ky}; in this case, the function k = kxky represents a surface of rotation 
about the w axis in (kxkyw) space (Fig. 9). 

The conserv ation relations allow three-plasmon processes if the equation 
w(k) + w(q) = w(k + q) has a solution, Le., if the w surface intersects a similar 
surface but drawn in a coordinate system whose origin lies on the w surface 
(Fig. 9a); if this condition is not satisfied, the three-plasmon processes are 
forbidden (Fig. 9b). It is evident from Fig. 9 that the three-plasmon interac­
tions are forbidden for spectra in which w increases more slowly than k. 

Problem 7. Estimate the value of the "anomalous" diffusion coeffi­
cient in a weakly inhomogeneous rarefied plasma in a magnetic field. 

Sol uti 0 n. The origin of the anomalous diffusion is the excitation of 
drift waves in the unstable inhomogeneous plasma [24]. These waves are 
emitted by electrons and absorbed by ions; as a result there is a transfer of 
momentum, Le., a frictional force between the electron and ion gases 

f ~ y'Nhk..L = vefnmU. (A) 

Here, N F::! nMv!'/nw is the density of the gas of drift waves; w and k..L are the 
characteristic frequency and wave vector, U is the drift velocity, y' is the fre­
quency of emission of waves by the electrons (the growth r ate in the linear 
theory). 

In the stationary turbulent state, the frequency of emission of waves y' 
must be equal to the frequency of collisions between waves in three-plasmon 
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processes; when k.LP i RI 1, 

(B) 

Taking the value of v~ from (B) and substituting in (A), we find the ef­
fect of collision frequency vef and the coefficient of anomalous diffusion 

D F:I~ cT ~~ cT 
a WWHl eH r::l M~ a eH· 

§ 9.. Higher-Order Processes 

In a number of cases the dispersion relation for the collective plasma 
oscillations is such that the three-plasmon interactions are forbidden by the 
frequency and wave-vector conservation relations. In this case it is necessary 
to consider processes in which four waves participate. 

The matrix elements for four-plasmon processes (consequently, the 
transition probabilities) can be obtained by means of the Lagrangians Ls and 
4 as in the three-plasmon processes (the contribution to the probability for 
four-plasmon processes is associated with matrix elements of first order in the 
perturbation theory in ~ and second-order in the perturbation theory in Ls). 

In the case of an isotropic plasma, which we consider below, the con­
servation relations forbid three-plasmon processes in which only plasma waves 
or ion-acoustic waves participate. For this reason the electron plasma waves 
excited in the plasma are described by an equation which considers the inter­
action of four plasma waves in addition to the three-plasmon processes con­
sidered above. However, if ion-acoustic waves are excited in the plasma, the 
kinetic situation is described by the interaction of four of these waves. 

In general, in the interaction of four plasmons, one can find the follow­
ing processes: (a) conversion of two plasmons into two other plasmons; (b) de­
cay of one plasmon into three plasmons; (c) combination of three plasmons 
into one (Fig. lOa, b, C). Hence, the kinetic equation for waves in which 
four-plasmon processes occur is 

d:/ = ~W'I,.'I, {(NI + I)(N'I, + 1) NsN4 -NIN'I,(Ns + I)(N4 + I)} + 

+ 1: WI,S {(NI + 1) N'I,NaN4 - Nl (N'I. + I) (Ns + 1) (N4 + I)} + 
+ ~ Wa,l {(NI + I)(NII + l)(Ns + 1) N4 -NINIINa (Nt + I)}. (60) 
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The summation in Eq. (60) is taken over the wave numbers k2' k3' ~, 
taking account of the conservation relations which, for the first, second, and 
third terms on the right side of Eq. (60) can be written as follows: 

b) kl = k2 -/- k3 -/- k4; (i)l = (i)2 -/- (i)3 -/- (i)4; 

c) k] + k2 -/- k3 = k4; (i)l -/- (i)2 -/- (i)3 = (i)4. 

The kinetic equation for the ion-acoustic waves only contains three 
terms; as far as the longwave electron plasma oscillations are concerned, we 
find that processes (b) and (c) are forbidden (since the frequency for these 
processes is approximately the same, woe), so that Eq. (60) assumes the form 

Thus, the collision integral for four-plasmon processes is 

(62) 

where ~ = kl + ~ - k3' and 

(63) 

Substituting Nk = E~/I1 wk from Eq. (62), we find the characteristic col­
lision frequency in the gas of plasma waves: 

IV ( £2 )2 
Y4=f[:::::::(i) ni ' (64) 
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where w f':j woe. while 4£2 = ~ EV4:rt is the energy density of the waves. 
n k 

An estimate of the collision frequency Y4 in the gas of these waves can be ob­
tained as follows. Since the collision integral is proportional to N3• the fre­
quency Y 4 must be proportional to N2 • i. e., the fourth power of the ratio ofthe 
random velocity of the electrons in the plasma waves to the phase (or group) 
velocity U for these waves (with wave number k < l/RD)' The coefficient of 
proportionality must be equal to the oscillation frequency (as follows from 
dimensional considerations), so that 

(0 )4 
Y4::::::: CO (; • 

Substituting v~ f':j eE/mw. U Rl ..f'FTrii, we obtain (64). 

The frequency Y 4 is responsible for a number of characteristic features 
of a turbulent plasma. The decay time for the turbulence spectrum of plasma 
waves is approximately Y i1 ; the frequency Y 4 (or the mean-free-path for 
plasma wave collisions) also determines the energy flux q in a gas of plasma 
waves; q Rl (v2T /Y4)VE2; the damping for a nonlinear plasma wave of finite 
amplitude is also of order Y 4' 

As we have noted above. the structure of the collision integral that de­
scribes ion waves COlliding with ion waves is more complicated than for the 
plasma waves; the frequency of collisions in a gas of ion-acoustic waves can 
be estimated from Eq. (65) by making the substitutions 

(66) 

It is possible to have situations in which the description of the physical 
effects in a weakly turbulent plasma requires higher-order processes than the 
emission and absorption of plasmons by particles or the three- and four-
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plasmon processes we have considered above. Some of the higher-order pro­
cesses are scattering of a plasmon by a particle (Fig. 11 a) and simultaneous 
absorption (Fig. lIb), or emission (Fig. llc), of two plasmons by a particle. 
The need for considering these processes can arise because the frequency and 
wave-vector conservation rules do not allow absorption or emission of a single 
plasmon by a particle [26]. 

The collision term for plasmons described by the diagram in Fig. 11 a is 
of the form 

(the summation is carried out taking account of the conservation of frequency 
and wave vector); in a rarefied plasma this yields the following expression for 
the relative change in the number of plasmons: 

Z~ = - L. W12; 34N 2 (f3 - f4)· 

Proceeding in similar fashion, we can find the contribution of this process in 
the particle-collision term. 

In treating the dynamics of a turbulent plasma, it may be necessary to 
sum the series in perturbation theory just as is done in solid-state theory; how­
ever, in most investigations of a weakly turbulent plasma, taking account of 
the emission or absorption of plasmons by electrons and ions and of three- and 
four-plasmon processes is sufficient. 

Thus, the quasi-linear equations (8)-(9) with the plasmon COllision inte­
grals (54), (57), (62), and (67), represent a closed system for the investigation 
of a weakly turbulent plasma. 

REFERENCES 

1. L. D. Landau, ZhETF (J. Exptl. Theoret. Phys. USSR) ~, 25 (1946). 
2. A. A. Vlasov, Many-Particle Theory, Gostekhizdat, Moscow, 1950. 
3. N. N. Bogolyubov, Dynamical Problems in Statistical Physics, 

Gostekhizdat, Moscow, 1946. 
4. Vedenov, Velikhov, and Sagdeev, Usp. Fiz. Nauk 73,701 (1961), 

Soviet Phys. Uspekhi,±, 332 (1962). 
5. Propagation of Waves in a Plasma (Russian translation), Problems of 



276 A. A. VEDENOV 

Contemporary Physics, Gostekhizdat, Moscow, 1952. 
6. L. D. Landau, ZhETF a. Exptl. Theoret. Phys. USSR) 2, 203 (1937). 
7. B. I. Dabydov, Plasma Physics and the Problem of Controlled Thermo­

nuclear Reactions (translated from the Russian), Pergamon Press, 
New York, 1959, Vol. I. 

8. F. E. Low, Proc. Roy. Soc. A248, 282 (1958). 
9. Yu. F. Romanov and G. Filippov, ZhETF 40, 123 (1961), Soviet Phys. 

JETP 13, 87 (1961). 
10. J. E. Drummond ed., Plasma Physics, McGraw-Hill, New York, 1960. 
11. D. Pines and R. Schrieffer, Phys. Rev. 125, 804 (1962). 
12. O. V. Konstantinov and V. 1. Perel', ZhETF 39, 861 (1960), Soviet 

Phys. JETP 12, 597 (1961). 
13. Vedenov, Velikhov, and Sagdeev, Nucl. Fusion!, 82 (1961). 
14. Vedenov, Velikhov, and Sagdeev, Nuclear Fusion, Supplement, 1962, 

Pan 2, p. 465. 
15. A. A. Vedenov,Atomnaya energiya 13, 5 (1962), Atomic Energy 

13, 591 (1963). 
16. 1. F. Kharchenko et. al., 1st International Conference on Plasma Physics 

and Controlled Thermonuclear Research, Salzburg, 1961. 
17. A. A. Vedenov and A. 1. Larkin, ZhETF 36,1133 (1959), Soviet Phys. 

JETP ~, 806 (1959). 
18. W. E. Drummond and D. Pines, Nuclear Fusion, Supplement, 1962, 

Pan 3, p. 1049. 
19. A. A. Vedenov and E. P. Velikhov, ZhETF 43, 963 (1962), Soviet 

Phys. JETP 16, 682 (1963). -
20. A. A. Vedenov, DAN 147, 334 (1962), Soviet Phys. Doklady 2, 

100 (1963). 
21. L. H. Putnam et al., Phys. Rev. Letters 2, 77 (1961). 
22. A. A. Vedenov and E. P. Velikhov, DAN 146, 65 (1962), Soviet Phys. 

Doklady 2, 801 (1963). 
23. E. K. Zavoiskii, Atomnaya energiya 14, 57 (1963), Atomic Energy 14, 5 

(1963). 
24. A. B. Mikhailovskii, Reviews of Plasma Physics (translated from the 

Russian), Consultants Bureau, New York, 1967, Vol. 3. 
25. C. Etievant and M. Perulli, Compt. Rend. 255, 855 (1962). 
26. K. Matsura and K. Ogawa, Progr. Theoret. Phys. (Japan) 28, 946 (1962). 
27. Camac et al., Nuclear Fusion, Supplement, 1962, Pan 2, p. 423. 
28. A. A. Galeev and V. I. Karpman, zhETF 44, 592 (1963), Soviet Phys. 

JETP 17, 403 (1963). 


