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Abstract. We investigate the effect of spatial disorder on the edge states localized at the interface between
two topologically different regions. Rotation disorder can localize the quantum walk if it is strong enough
to change the topology, otherwise the edge state is protected. Nonlinear spatial disorder, dependent on
the walker’s state, attracts the walk to the interface even for very large coupling, preserving the ballistic
transport characteristic of the clean regime.

1 Introduction

Thirty years ago Feynman devised quantum algorithms
using unitary transformations of an initial quantum
state [1]. In 1993, Aharonov et al. [2] introduced the no-
tion of quantum walk through a coin and a shift operator
in analogy with the classical random walk, and found that
information propagates at a ballistic rate instead of a dif-
fusive one. Also in the nineties, Meyer [3] defined quantum
cellular automata in one particle sector, and demonstrated
that its continuous limit leads to a Dirac equation in two
dimensions. The genealogy of quantum walks shows their
rich physical content, ranging for quantum information to
condensed matter [4–7].

Quantum walks are especially interesting because they
provide an original point of view of quantum systems
based on the properties of quantum states instead of the
more usual approach based on the energy levels and eigen-
states of a Hamiltonian. This point of view shed a new
light on the dynamics of quantum systems and the mech-
anisms by which they explore the available Hilbert space.
At variance to the standard definition of a quantum sys-
tem by its Hamiltonian, a quantum walk is defined by an
evolution unitary operator. In particular, the relationship
between the quantum state and information allows to re-
late concepts from quantum information theory to mate-
rial systems through the introduction of a quantum walk
effective Hamiltonian. We may also invert the reasoning
and ask whether it is possible to get some insight on the
behavior of quantum walks using concepts from condensed
matter.

Some classes of quantum walks possess remarkable
topological properties whose origin can be traced back
to the structure of their evolution operator which links
the particle’s spin (coin operator) with its momentum
(shift operator), akin to the spin-orbit coupling in solid
state, leading to nontrivial Berry phases, edge states and
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non vanishing Chern numbers [8–10]. Experiments [11–13]
show that in the presence of disorder, the quantum walk
losses its coherent interference pattern and, depending on
the nature of the noise, can localize or transit to a classical
diffusion regime. Noise also affects the topological phases
and the localization-delocalization properties of one di-
mensional [14] and two dimensional quantum walks [15].
In the absence of disorder, a one dimensional quantum
walk can still localize at the interface between two dis-
tinct topological regions [16]. These phenomena are also
characteristic of topological phases in condensed matter,
like quantum Hall [17] or spin Hall insulators [18] where
edge states appear. However, it is worth noting that such
bound states are protected against disorder. As a con-
sequence, the transport properties (quantization of the
conductance, for instance) are preserved as long as the
topology is not changed.

Our aim is to investigate the effect of spatial noise
on the edge states localized at the interface between two
regions differing in their topology.

2 Quantum walk topology and effective
Hamiltonian

We consider a discrete time quantum walk in a square lat-
tice, with nonzero Chern number [8]. The walker’s Hilbert
space is the set of spinors |ψ(t)〉 depending on time t. They
are given by the Kronecker product ⊗ of the walker’s po-
sition and spin state |x〉 ⊗ |s〉, where x = (x, y) ∈ Z

2 is a
lattice node (the lattice constant a = 1 is the length unit),
and s =↑, ↓ takes “up” and “down” values. The state evo-
lution is determined by a “coin” R operator acting in spin
space, and a “shift” T operator. At a given time step, the
motion direction depends on the spin orientation. At the
end of the walk, a measure of the position density proba-
bility distribution P (x, y, t), is performed.
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The initial state,

|ψ(0)〉 = |0〉 ⊗ 1√
2

(| ↑〉 + i| ↓〉), (1)

is a superposition of spin up ψ↑ and down ψ↑ amplitudes:

ψ↑ = 1/
√

2, ψ↓ = i/
√

2,

given equal probabilities of the spin orientation in the z
direction. The coin operator rotates the spin around the
y axis by an angle θ,

R(θ) = 1x ⊗ e−iθσy/2 = 1x ⊗
(

cos θ/2 − sin θ/2

sin θ/2 cos θ/2

)
, (2)

where 1x is the unit matrix in position space. The shift op-
erator moves the particle to a neighboring node according
to its spin projection:

T (p) =
∑

x

(|x + ep, ↑〉〈x, ↑ |

+ |x − ep, ↓〉〈x, ↓ |), p = x, y (3)

where ep is a unit vector in the p direction. One time step
is executed by the unitary operator,

U(θ, α) = T (x)R(θ)T (y)R(α)T (y)T (x)R(θ), (4)

where the product T (y)T (x) = T (x)T (y) shift the position
by ±1 on both directions (x, y) → (x ± 1, y ± 1).

According to the values of the rotation angles the fam-
ily of effective Hamiltonians,

H(θ, α) = i logU(θ, α),

is characterized by a Chern number taken the values
C = {−1, 0, 1}. The effective Hamiltonian is not uniquely
defined, its eigenvalues are determined modulo 2π (quasi-
energies). The topological properties of the walk related
to the symmetries of the effective Hamiltonian [8], depend
on the values of the two parameters (θ, α), as schemati-
cally represented in Figure 1. It is worth noting that the
topological classification of the quantum walks is richer
than the one inferred from the sole effective Hamiltonian
symmetries: taking into account the properties of the (one
period) evolution operator implies the existence of a pair
of topological invariants [19]. As a consequence, topolog-
ical protected edge states can appear at the interface of
two trivial effective Hamiltonian phases [9,15].

The explicit form of H is easily obtained using the
momentum representation k = (kx, ky) of the unitary
operator U , in the base of the Pauli matrices σ:

U(k) = T (kx)R(θ)T (ky)R(α)T (kx + ky)R(θ), (5)

where

R(θ) = cos θσ0 − i sin θσy , T (k) = cos kσ0 + i sinkσz

from which one readily obtains,

U(k) = d0σ0 − id · σ, d = (dx, dy, dz), (6)

Fig. 1. Phase diagram (θ, α), the triangular sectors corrspond
to different Chern numbers C (see Ref. [8]). Rotation angles for
x < 0 (red point, C = 1) and x > 0 (blue point, C = −1). The
circles represent the distribution of random angles for J = 0.1
(inner circle) and J = 0.2 (outer circle). In the second case the
noise may change the topology of the quantum walk.

or equivalently,

H(k) = E(k)n(k) · σ, (7)

where the energy spectrum is given by,

cosE(k) = cos
α

2
[
cos θ cos kx cos(kx + 2ky)

− sinkx sin(kx + 2ky)
]− sin

α

2
sin θ cos2 kx,

(8)

and the unit vector n(k) = d(k)/d(k), with

dx = sinkx

[
cos

α

2
sin θ cos(kx + 2ky)

− 2 sin
α

2
sin2 θ

2
cos kx

]
,

dy = sin
α

2
(
cos θ cos2 kx + sin2 kx

)
+ cos

α

2
sin θ cos kx cos(kx + 2ky),

dz = sin
α

2
sin θ sinkx cos kx

− cos
α

2
[
cos θ sin kx cos(kx + 2ky)

+ cos kx sin(kx + 2ky)
]
. (9)

A quantum walk with effective Hamiltonian (7) possesses
a nontrivial topology if the n vector (or equivalently d),
surrounds the origin when the k vector scans the Brillouin
zone [−π, π]2. In Figure 2 we represented two cases differ-
ing in their Chern number. We observe in the parametric
plot of the vector d over the Brillouin zone that depending
on the choice of the pair (θ, α), the origin is surrounded,
signaling a nontrivial topology, or it is not surrounded.
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Fig. 2. The topology of the effective Hamiltonian H =
E(k)d(k) · σ change when the vector d(k) vanishes. In the
top panel θ = π/2, α = 3π/7, the d vector surrounds the ori-
gin (black point), which corresponds to a nontrivial topology;
in the bottom panel θ =

√
2/2, α = (1 +

√
5)/2, the topology

is trivial. The two colors correspond to the inner and outer
surfaces.

The random walk thus defined possesses particle-hole
symmetry but not time-reversal symmetry. Indeed, from
the explicit form (7), we verify that under conjugation
(i → −i,k → −k) the effective Hamiltonian changes
sign: the one step operator (4) is real implying that the
walk has particle-hole symmetry. The walk defined by (4)
with particle-hole symmetry and broken time reversal
symmetry, is thus reminiscent to class D in the usual
classification [20].

To investigate the consequences of the nontrivial topol-
ogy, in particular the edge states, we perform a series of
numerical computations for different disorder types. We
use equation (4) to calculate the walker state evolution for
one time step, in a square lattice with periodic boundary
conditions. We split the lattice into two regions separated
by an interface at x = 0, differing in their Chern number:
for x ≤ 0 we take (θ, α) = (π/2, 3π/7)), and for x > 0,

Fig. 3. Position probability of a quantum walk with an in-
terface between two regions having distinct topology: P =
|ψ↓|2 + |ψ↑|2. The top panel (a) shows that the walker dis-
tribution at time t = 1000, is essentially concentrated along
the interface. The bottom panel (b) shows the same data in
a logarithmic scale to reveal the structure of the small ampli-
tudes (the wave folding due to the periodic boundary is not
visible in a linear scale).

(θ, α) = (−(1 +
√

5)/2,
√

2/2), with C = 1,−1, respec-
tively (Fig. 1). In the one dimensional case the presence
of an edge state at the origin leads to a localization of the
quantum walk [8,16]. In two dimensions one may expect
propagation along the edge state localized at the inter-
face. This is precisely what we observe, as demonstrated
in Figure 3 where a realization of the quantum walk (4) is
shown. The propagation along the interface is ballistic, as
in the case of a one dimensional quantum walk. This phe-
nomenon is observed for initial states having an overlap
with the edge bound state, otherwise the quantum walk
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Fig. 4. Random distribution of impurities for p = 0.01 (left)
and p = 0.1 (right) over a square lattice of size 201 × 201.

do not localize and explore the whole lattice with ballistic
speed.

3 Spatial disorder

In order to investigate the effect of disorder we consider
a set of randomly distributed sites I, we call impurities,
where the coin operator change. The spatial concentration
of impurities is given by the probability p for a site to be
occupied by an impurity. In Figure 4 we show two of such
distributions with p = 1% and p = 10%. In such sites the
simplest modification of the coin rule (2) is to make the
angles θ(x) position dependent,

θ → θ(x) = θ + Jδθ(x), δθ ∼ U(0, 2π)

with x ∈ I the set of impurity sites, and U the uniform
probability distribution in the given interval (i.e. rotation
disorder). The parameter J measures the strength of the
disorder. For J small enough to let the system’s topol-
ogy unchanged, one may expect the edge state protected;
in the opposite case one expects localization (or diffusive
spreading in same special cases [15]) of the quantum walk
(Fig. 1).

It is important to emphasize that the introduction of
spatial disorder do not change the unitary evolution of the
walker, nor the symmetries of the coin operator; however it
modifies in a nontrivial manner the physics of the system
by breaking the translational invariance, only preserved
in a statistical sense, and by introducing new correlations
between different sites that should change the walk inter-
ference patterns and hence its spreading properties. The
effects of spatial noise in quantum walks are well studied,
especially in one dimension; they can localize the walker
or change its spreading rate [11,21,22]. A more subtle be-
havior appears in topologically nontrivial walks, where lo-
calized zero energy modes may coexist with delocalized
nonzero energy modes [23]. We investigate in the case of
two dimensions effects alike to this one.

We show a numerical computation of the random ro-
tation quantum walk in Figure 5, to compare the weak
and strong noise cases with the clean system of Figure 3.
The presence of the interface introduces an anisotropy;
actually, the evolution of the initial condition leads to an

asymptotically inhomogeneous distribution of the position
probability of the walker with different spreading proper-
ties on the interface and in the bulk. We find that the
known general picture is confirmed, expectedly a localiza-
tion transition is observed at a finite value of the disorder
strength, as occurs in the one dimensional split-step quan-
tum walk [14]. The point is that in two dimensions, even if
the interference pattern of the walk is lost away form the
interface and the bulk distribution is localized or spread
slowly, the ballistic transport along the edge is not affected
for weak enough disorder.

To quantify the effect of noise on the walker spreading,
we measure the width of the probability density:

P (x, t) = |ψ↑(x, t)|2 + |ψ↓(x, t)|2 (10)

using the definition

w(t) =
∑

x

|x|2P (x, t) −
(∑

x

xP (x, t)

)2

(11)

which gives stdr(t) =
√
w(t), and an analogous definition

for stdy0(t) for the width on the interface x = 0:

stdy0(t) =

[∑
y y

2P (0, y, t)∑
y P (0, y, t)

]1/2

(12)

(note the time dependent normalization and the absence of
mean term in order to catch running away distributions).

Figure 6 shows the width for different values of the
disorder strength J . Moreover we plot the probability
to stay in a neighborhood of the origin P (x = 0, y ∈
[−100, 100], t) for weak and strong disorder. The measure
of the isotropic width shows that the presence of disor-
der destroys the ballistic regime. However, the edge state
transport remains ballistic for weak enough disorder. The
width of the position distribution at the interface (x = 0),
increases linearly with time only for weak disorder. Con-
comitantly, the probability to find the walker near the ori-
gin tends to zero, in contrast to the persistence observed
for stronger disorder. The deviation of stdr(t) to a straight
line together with the linear stdy0(t) is a manifestation of
the underlying anisotropy of the walk in the weak noise
regime, which tends to localize in the bulk and to propa-
gate at the interface.

4 Nonlinear spatial disorder

It is interesting to investigate the effect of disorder un-
der a more complex setting, in particular generalizing the
walk to take into account nonlinear (many-body) interac-
tions [24–27]. Pursuing our analogy with matter systems,
we may think the impurities as being fixed spins whose
interaction with the itinerant spin of the walker is of the
exchange type. This “magnetic disorder” would introduce
into the coin operator a phase factor φ

SJ (φ) = e−iJφ(x,t)σz ,
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Fig. 5. Position probability distribution at t = 1000 for p = 0.03 and J = 0.05 (a) and (b) and J = 0.2 (c) and (d). The
coupling J = 0.2 is strong enough to change the topology (c.f. 1); as a consequence the edge state is no longer protected and
the walk localizes. Comparison with Figure 3 shows that in the low noise case J = 0.05, the edge state is protected, but it is
wider than in the clean case, and moreover, diffusion destroys the walk ballistic spreading outside the interface.

where x ∈ I and J the coupling constant, which leads to
the redefinition

R(θ) → RJ(θ, φ) = SJ (φ)R(θ). (13)

The simplest choice is to take φ as a random angle, uni-
formly distributed on the circle [15] (i.e. phase disorder).
However, if we assume that the orientation of the fixed
spin is determined by the orientation of the itinerant one
(its z spin component), φ will be related to the walker’s
state, φ = πs(x, t):

s(x, t) = |ψ↑(x, t)|2 − |ψ↓(x, t)|2x ∈ I (14)

leading to a nonlinear coupling. The coin operator
RJ (θ, φ) replaces R in (4); it is now a composition of a
rotation around the y axis (with a uniform angle in each
region) followed by a rotation around the z axis at the
occupied sites of the lattice. The spatial distribution of
the defects remains random and we refer to the choice
(Eqs. (13) and (14)) as “nonlinear disorder”. However, the
values of φ at different sites are correlated by (14) with
the walker’s state, making the nonlinear disorder essen-
tially different to the rotation or magnetic disorder types.

One important consequence of the introduction of the
coin operator (13) with respect to the random rotation one

of the previous section, is that the form RJ (θ, φ) breaks
the so-called particle-hole symmetry. The unitary opera-
tor of the walker is no longer real: the rotation spin axis
has now a z component. As a matter of fact, the coin op-
erator can be put in a form of a rotation around an axis
depending on φ of angle also depending on φ. This is true
even if the angle φ is taken randomly instead of being re-
lated to the walker’s state, although the implications on
the existence of edge states in both cases, nonlinear dis-
order and random phases, can in principle strongly differ.
The breaking of the particle-hole symmetry change the
topological properties of the quantum walk putting it in
the same class as the integer quantum Hall system (see
Ref. [8], Appendix B).

To highlight the specific properties of the nonlinear
walk, we chose the coupling parameter and the concentra-
tion in a range about J ∼ 1–100, and p ∼ 0.1, respectively.
These large values of J are justified because the spin den-
sity is of the order of p and decreases at a given site at least
as 1/t because of the probability spreading over the lattice
(this is the scaling corresponding to the ballistic transport
over the interface, supposing no spreading in the trans-
verse direction). Significant results are obtained for values
with J > 1/p; the probability density on the interface
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Fig. 6. Quantum walk in the presence of rotation disorder.
Width of the density distribution along the interface (a) as a
function of time, for J = 0.05 (blue lines) and J = 0.2 (red
lines), and p = 0.03 (solid lines) and p = 0.01 (dotted lines);
the upper black line corresponds to the clean case. (b) Ra-
dial (black line) and at the interface spreading in logarithmic
scale; J = 0.05 (blue, scaled by a factor 0.4 to fit inside the
frame), J = 0.2 (red). The dashed lines correspond to the fit-
ting exponents 1 and 1/2. For weak disorder the propagation
is ballistic (exponent 1), and approaches diffusion for strong
disorder (exponent 1/2). (c) Probability to be on the interface
in a neighborhood of the origin, x = 0 and y ∈ (−100, 100),
J = 0.05 (lower blue line), and J = 0.2 (upper red line).

Fig. 7. Nonlinear and phase disorder quantum walk. Prob-
ability distribution of the nonlinear walk, (a) for J = 1 and
(b) J = 10, (p = 0.1, t = 1000). In (a) superposed to the non-
linear walk (in gray), we show the random phase walk using the
same parameters, localized near the origin (in red). (c) Width
in the y direction for x = 0, at the interface, showing ballis-
tic propagation for J = 0 (dotted line), J = 1 (blue dashed
line), and J = 10 (blue solid line), in the nonlinear case; one
can compare with the random phase disorder (red dashed line)
J = 0.1 and (red solid line) J = 1, showing diffusive spreading.
Note the similar distribution in (a) with the one of the clean
state (Fig. 3).

scales as P ∼ 1/t in the ballistic regime. It is a remark-
able fact that smaller values do not give a big difference
with the clean case, for times up to t = 1000.

The most striking observation is that the ballistic
transport is fully preserved, even in the direction perpen-
dicular to the interface. As shown in Figure 7, where we
plot the density and walk width at the interface in the
case of nonlinear disorder, we observe ballistic spreading
proportional to t; though not shown in the figure, we find
in particular that the isotropic width, after an initial tran-
sient, is also linear in time.

Merely for extreme values of the coupling constant
J � 1/p, the well structured interference pattern of the
clean walk tends to loss its organization. This starts to
be visible on the small scale amplitudes as shown on the
three panels of Figure 8, where we compare the spin den-
sity for the clean case with the nonlinear walk for two
values of J . For smaller values of J the nonlinear walk
behavior remains close to the clean one, for the same ini-
tial condition starting at the interface. In sharp contrast
with the ballistic transport of the nonlinear walk, if we
replace the self-consistent phases φ = φ(ψ) in (13) by ran-
dom angles φ ∼ U(0, 2π), we numerically observe that the
edge channel is broken and the walk cannot spread at a
ballistic rate (Fig. 7c). This can be understood as a conse-
quence of the random phase shifts in the z direction that
for strong enough disorder lead to spin flips hence chang-
ing locally the walker’s direction. By the way of compari-
son we remark the special behavior of the system governed
by the nonlinear coin in which the edge states appear
to be robust. Therefore, the nonlinear disorder restores
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Fig. 8. Zoom on the small scales of the spin density distribution s × 106, s = |ψ↑| − |ψ↓|2, for J = 0 (a), J = 10 (b), and
J = 100 (c) (p = 0.1, t = 750). In the nonlinear case (b-c), spin up and down waves are present on both sides of the interface.

the ballistic behavior lost for random phases, even for
much larger values of the coupling constant.

In fact, the edge state not only provides a channel to
transport the information, it is also an attractor to the
nonlinear walk. Indeed, if in the absence of disorder one
starts with an initial state that does not overlap with the
edge state, for instance at x = −10, the quantum walk
propagates freely on the whole lattice. However, adding
the nonlinear interaction, the walk is partially trapped at
the interface where it propagates at a ballistic rate, in spite
of the spatial disorder (Figs. 9 and 10). In Figure 9 we com-
pare at t = 200 the density distribution at the interface,
and in Figure 10 the distribution over the lattice. The ini-
tial particle position is chosen in the left region (x = −10
at t = 0), and the spin set up, to favor the propagation
towards the right, allowing the walker encounter the in-
terface. Figure 10 clearly shows the difference between the
clean case (a), the random rotation angles (b) and phases
(c) disordered cases, and finally the nonlinear walk (d).
The anisotropy is a consequence of the choice of the ini-
tial state (spin up). Only in the nonlinear case an accumu-
lation of probability density on the interface is observed.
This behavior, for which the interface edge states act as
an attractor, is reminiscent to a generalization to two di-
mensions, of the observed phenomenon of localization at
a topological defect in one dimension [27]. This is related
to the fact that at low energy and for small values of the
rotation angle, the one dimensional walk limits to the non-
linear Dirac equation that has soliton solutions [26].

Indeed, using the explicit expression of the evolution
operator in momentum space, it is easy to obtain its “hy-
drodynamic” limit k → 0, U ≈ u0 + uxikx + uyiky:

u0 = R
(
θ +

α

2

)
,

ux = 2 cos
θ + α

2

(
− sin

θ

2
σx + cos

θ

2
σz

)

uy = 2 cos
θ

2
σz (15)

which leads, using a crude approximation for small angles

u0 ≈ σ0 − i
(
θ +

α

2

)
σy, ux ≈ 2σz − θ

2
σx, uz ≈ 2σz,

Fig. 9. Short time (t = 200) position distribution of a quan-
tum walk for an initial condition at x = −10, in the spin up
state. (a) Clean case, the walk freely propagates on the lattice;
(b) with rotation disorder it is localized (J = 0.2, p = 0.03),
and (c) with nonlinear disorder it is partially trapped at the
interface restoring the ballistic propagation (J = 100, p = 0.1).
Only the nonlinear quantum walk is trapped at the interface.

and adding the nonlinear term in J as a smooth mean-
field,

s(x, t) = 〈ψ†|σz|ψ〉,
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Fig. 10. Position distribution for a walk started at x = −10, outside the interface, in a spin up state (thus, mainly propagating
towards the right); (a) clean, (b) rotation disorder (p = 0.03, J = 0.2), (c) phase disorder (p = 0.03, J = 0.2), and (d) nonlinear
disorder (p = 0.1, J = 100).

(averaged spin distribution) to the Dirac like equation in
2 + 1 dimensions:[
∂

∂t
− 2σz

(
∂

∂x
+

∂

∂y

)
+ θσx

∂

∂x

]
ψ(x, t)

+ i
[(
θ +

α

2

)
σy + gs(x, t)σz

]
ψ(x, t) = 0, (16)

where ψ is the position representation of the spinor, and
g = 3πpJ the effective coupling constant (cf. Refs. [26,28]
for a more formal calculation in the one dimensional case).
In addition to the “mass” term which gives the boundary
separating two different topologies (the mass vanishes for
α + 2θ = 0, in the present approximation for small an-
gles). The effective coupling constant is of the order of
pJ , which justifies the choice of J ∼ 1/p as the order of
magnitude of the nonlinear noise in the numerical compu-
tations. The term in θ∂x is the lowest order term showing

the anisotropy of the walk, the “velocity” θ being smaller
than the “light velocity” c = 2 in the diagonal direction.
We note that the nonlinearity appears as a self-consistent
gauge field. The nonlinear term, being proportional to iσz ,
adds naturally to the first order spatial derivatives also
proportional to σz , in a way similar to a “vector” poten-
tial [29]. This is somewhat different to the more usual
nonlinear Gross-Neveu model in which the nonlinear term
adds to the mass term [26], or the state dependent ro-
tation of reference [27] which preserves the particle-hole
symmetry.

5 Conclusion

In conclusion, we investigated the effect of spatial dis-
order in a two dimensional discrete quantum walk. We
demonstrated the ballistic propagation along the edge
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Eur. Phys. J. B (2017) 90: 41 Page 9 of 9

state localized at the interface between two distinct topo-
logical phases. This edge state is robust against quenched
disorder, provided it cannot change the system’s topol-
ogy. In particular, we found an anisotropic state with a
bulk localized density distribution coexisting with ballis-
tic propagation at the interface.

In the case of a coin operator depending on nonlinear
phases randomly distributed in space, the ballistic prop-
agation of the information, mostly as in the absence of
disorder, is preserved even for very strong couplings. This
is also in contrast with the behavior of a walk perturbed
by random phases breaking the particle-hole symmetry,
in which case the ballistic propagation is no longer possi-
ble. In addition a new phenomenon arises, the walk can
be trapped at the interface. The nonlinear walk can be
mapped to a Dirac equation in the continuous limit with a
mass term depending on the rotation angles and a nonlin-
ear term proportional to the smoothed spin density, known
to possess propagating localized solutions along the inter-
face (the transverse direction being localized).

We focused here on the rich and striking phenomenol-
ogy of quantum walks and their topological edge states;
the analysis of the mechanisms behind the observed ef-
fects of disorder, especially in the nonlinear case, deserves
further consideration.

We benefited from useful discussions with Laurent Raymond
and Thomas Krajewski. We thank Giuseppe di Molfetta for
his interest and thorough comments. This work was partially
supported by CNRS UMR 7332, and Université de Toulon.

References

1. R.P. Feynman, Fondations of Physics 16, 507 (1986), orig-
inally appeared in the February 1985 issue of Optics News

2. Y. Aharonov, L. Davidovich, N. Zagury, Phys. Rev. A 48,
1687 (1993)

3. D.A. Meyer, J. Stat. Phys. 85, 551 (1996)
4. J. Kempe, Contemporary Phys. 44, 307 (2003)
5. S.E. Venegas-Andraca, Quantum Information Processing

11, 1015 (2012)

6. T. Kitagawa, Quantum Information Processing 11, 1107
(2012)

7. G. Bianconi, Europhys. Lett. 111, 56001 (2015)
8. T. Kitagawa, M.S. Rudner, E. Berg, E. Demler, Phys. Rev.

A 82, 033429 (2010)
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12. J. Svoziĺık, J., R.d.J. León-Montiel, J.P. Torres, Phys. Rev.

A 86, 052327 (2012)
13. P. Xue, R. Zhang, Z. Bian, X. Zhan, H. Qin, B.C. Sanders,

Phys. Rev. A 92, 042316 (2015)
14. T. Rakovszky, J.K. Asboth, Phys. Rev. A 92, 052311

(2015)
15. J.M. Edge, J.K. Asboth, Phys. Rev. B 91, 104202 (2015)
16. T. Kitagawa, M.A. Broome, A. Fedrizzi, M.S. Rudner,

E. Berg, I. Kassal, A. Aspuru-Guzik, E. Demler, A.G.
White, Nat. Commun. 3, 882 (2012)

17. R. Prange, S. Girvin, A. Chang, F. Duncan, R. Laughlin,
A. Pruisken, D. Thouless, The Quantum Hall Effect,
Graduate Texts in Contemporary Physics, 2nd edn.
(Springer, New York, 1990)

18. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)
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