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 RANDOM MATRICES IN PHYSICS*

 EUGENE P. WIGNERt

 Introduction. It has been observed repeatedly that von iNeumann made im-

 portant contributions to almost all parts of mathematics with the exception of
 number theory. He had a particular interest in those parts of mathematics which

 formed cornerstones of other, more empirical sciences, such as physics or eco-
 nomics. A whole new discipline grew out of his theory of games, and it is hard to

 conjure up a picture of modern United States industry without the computing
 machines which he espoused. The subject about which I wish to talk to you today

 is at the crossroads of two of von Neumann's principal interests: it deals with

 matrices of very large dimensions in which he became interested in connection

 with his development of computers, and it resembles statistical mechanics, to
 which he contributed most among the physical theories. This closeness of my
 subject to von Neumann's interests is also the reason for my choosing it for

 today's discussion. This discussion will contain very little that is new. As for

 earlier reviews, there are at least two very good ones: one by Charles Porter,
 forming an introduction and summary to a collection of papers on the role of
 random matrices in physics [1], the second a more elaborate one by M. L. Mehta,

 based on his lectures at the Indian Institute of Technology in Kanpur [2].
 There is another reason for my choice of subject. The theory of random

 matrices, though initiated by mathematicians and in particular statisticians

 [3], [4], [5], [6], [7], has made large strides in the hands of physicists. The names of
 Mehta, Gaudin and Dyson come to one's mind most easily. Reading these papers
 gave me much pleasure-they contain beautiful, though old-fashioned, mathe-
 matics. I would like to share some of this pleasure with you. Second, however, a
 number of problems has turned up, apparently too difficult for us amateur mathe-

 maticians. I would like to share these problems with you also.
 Origin of the problem. For reasons which I hope will become evident in the

 course of the discussion, I will proceed in my review pretty much in the anti-
 historic order. However, the reason for the interest of physicists in random
 matrices should be stated first. This was articulated, most eloquently, by
 Dyson [8]:

 "Recent theoretical analyses have had impressive success in interpreting
 the detailed structure of the low-lying excited states of complex nuclei.
 Still, there must come a point beyond which such analyses of individual
 levels cannot usefully go. For example, observations of levels of heavy
 nuclei in the neutron-capture region give precise information concerning

 a stretch of levels from number N to number (N + n), where N is an integer
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 2 EUGENE P. WIGNER

 of the order of 106. It is improbable that level assignments based on shell
 structure and collective or individual-particle quantum numbers can ever
 be pushed as far as the millionth level. It is therefore reasonable to inquire
 whether the highly excited states may be understood from the diametrically

 opposite point of view, assuming as a working hypothesis that all shell
 structure is washed out and that no quantum numbers other than spin and
 parity remain good. The result of such an inquiry will be a statistical theory
 of energy levels. The statistical theory will not predict the detailed se-
 quence of levels in any one nucleus, but it will describe the general appear-

 ance and the degree of irregularity of the level structure that is expected
 to occur in any nucleus which is too complicated to be understood in detail.

 "In ordinary statistical mechanics a comparable renunciation of exact

 knowledge is made. By assuming all states of a very large ensemble to be

 equally probable, one obtains useful information about the over-all behavior
 of a complex system, when the observation of the state of the system in all
 its detail is impossible. This type of statistical mechanics is clearly inade-
 quate for the discussion of nuclear energy levels. We wish to make statements
 about the fine detail of the level structure, and such statements cannot

 be made in terms of an ensemble of states. What is here required is a new
 kind of statistical mechanics, in which we renounce exact knowledge not of
 the state of a system but of the nature of the system itself. We picture a

 complex nucleus as a "black box" in which a large number of particles are
 interacting according to unknown laws. The problem then is to define in a
 mathematically precise way an ensemble of systems in which all possible
 laws of interaction are equally probable."
 This last point can, perhaps, bear some elaboration. A system in quantum

 mechanics can be characterized by a self-adjoint linear operator in Hilbert space,
 its Hamilton operator. We think of this as a hermitian matrix of infinitely many

 dimensions, having somehow introduced a coordinate system in Hilbert space.
 Hence, the ensemble of systems can be thought of as an ensemble of hermitian
 matrices, and we think of matrices of very high dimensionality rather than
 infinite matrices. To this point I will return later. However, as Dyson said, the
 problem is still with us what ensemble of such matrices to consider. In this regard,
 there is a profound difference between the ensembles of statistical mechanics and
 our ensembles. In statistical mechanics one considers a system: that is, particles
 with definite masses, and forces acting between them. The state of such a system

 can be specified, in classical mechanics, by the coordinates qi and momenta pi
 of the particles, all functions of time. One then asks for the time average of con-
 tinuous functions of the coordinates and momenta,

 I rt+T
 (1) lim - f(qilr), q2(T), pl(T), P2(T), * * *) dr.

 T??C Tt

 Since the coordinates and momenta are, by Newton's equations of motion, com-
 pletely determined as functions of time by their initial values, the averaging
 process is an entirely definite one. That, apart from rare exceptions, the average
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 RANDOM MATRICES 3

 exists, that it is a function only of the constants of motion, such as energy, but
 independent of the other initial conditions, is a theorem first proved by von

 Neumann, Koopman and G. D. Birkhoff [9], [10], [11], [12], [13]. What I wish
 to emphasize, however, is only that the averaging process is entirely definite;
 it is a time average, and equal time intervals have equal weights.

 In contrast to this, the averaging process in the physical applications of the

 theory of random processes is not defined. One again deals with a specific system,

 with its proper (though in many cases unknown) Hamiltonian, yet pretends
 that one deals with a multitude of systems, all with their own Hamiltonians,
 and averages over the properties of these systems. Evidently, such a procedure
 can be meaningful only if it turns out that the properties in which one is inter-
 ested are the same for the vast majority of the admissible Hamiltonians. The

 first question, then, is what are the admissible Hamiltonians, and what is the
 proper measure in the ensemble of these Hamiltonians. The second question
 is, of course, whether, given the ensemble of admissible Hamiltonians with a
 proper measure, the properties in which we are interested are common for the
 vast majority of them.

 The experimental situation which prompted the interest of physicists in
 random matrices is illustrated in Figs. 1 and 2. The first of these shows the

 situation which did not prompt it. This is a level scheme of three nuclei with

 mass number 10. The horizontal lines represent stationary states, the vertical
 position is the characteristic value of the Hamilton operator to which the charac-
 teristic vector belongs. It is the energy of the stationary state. As the figure
 shows, some of the energy values are common to all three nuclei; some are
 present only in the Hamiltonian of one of the nuclei, that at the center. J is
 the angular momentum quantum number of the state. The diagram of Fig. 1
 was obtained experimentally; a physicist interested in these matters knows
 most of the numbers of this table, and their relations to each other, by heart.
 The diagram, to repeat it, shows the low, i.e., small, characteristic values of
 the three Hamiltonians, those of Be'0, B'0 and C'0. The energy difference between
 the two lowest states of B10 is 0.717 Mev.

 Fig. 2 is the level diagram of another nucleus, U239, in the energy interval

 J

 J J

 2+ 2- 2+
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 between 4.7834 Mev from the lowest level and 4.7835 Mev therefrom. Some
 physicists, myself included, know a few of these energy values by heart because
 they happen to play an important role in nuclear chain reactors. However, no
 one is familiar with the levels in the next interval of the same width. As Dyson
 said in the passage quoted above, only the statistical properties of these levels
 are of interest.

 What are these statistical properties? First, one would like to know how many
 energy levels there are per unit energy interval, that is, the density of the char-
 acteristic values of the Hamiltonian. Second, one would like to be able to de-
 scribe what might be called subtleties of the arrangement of the characteristic
 values: the probability of a given distance to the nearest neighbor, the prob-
 ability of two consecutive distances to assume definite values, and so on. Third,
 though this is not suggested by the diagram, one would like to obtain the prob-
 ability of a transition rate to assume a definite value. The most important
 transition is the emission of a neutron by the nucleus, and it is on this that
 experimental data are available most abundantly. Altogether, the choice of
 questions is strongly influenced by the possibility of experimental study-a
 situation not unusual in physics. However, at least the first two questions, the
 average spacing of the characteristic values as function of the characteristic
 value itself and the distribution of the spacings around their average, are ques-
 tions which everyone would naturally ask. The three questions now will be
 considered in succession.

 The density of characteristic values. It must be admitted at the outset that
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 RANDOM MATRICES '5

 it is in this case that the independence of the result from the ensemble of Hamil-
 tonians, and from the measure chosen therefor, is most nearly demonstrated, and
 that it is also the case in which the conclusion is least satisfactory, that is, agrees
 least with experimental observation.

 It seems to be firmly established that the Hamiltonians of physics are, in the
 usual coordinate systems in Hilbert space, real. Hence, the admissible Hamil-
 tonians are real symmetric matrices. An N-dimensional real symmetric matrix

 can be characterized by N(N - 1)/2 real numbers Hik with i < k, and the
 measure in ensemble space is, therefore, a positive real-valued function of these
 variables,

 (2) P(HLi, IH12, H13, I, H22,I H23, * I* I HNN),

 which gives the number of matrices in the ensemble, of which the matrix ele-
 ments are within the unit interval around the corresponding argument of P. This
 P function, therefore, defines the ensemble, and every positive-real-valued P func-
 tion defines an ensemble. Needless to say, the problem of spectral density has
 not been solved for the general ensemble, characterized by an arbitrary P.
 Rather, in every case the independence of the distribution of some of the vari-

 ables of P is assumed. If these variables are the matrix elements Hi1, H12,
 H13, * of H themselves, P assumes the form

 (3) P(Hi1, H12,* , H22, H23, * * *, HNN) - T pik(Hik).
 i ?k

 In this case, and if the average values of all Hik are zero, their second moments
 equal

 (4) Pik(H')H' dH' = 0 and f pik(H')H'2 dH' -V

 and all higher moments exist, the density of the characteristic values for very
 large N is given by the so-called semicircle law [14], [15],

 (4Nv _X2 if 2 < 4Nv2

 (5) of (X) = 47rV2
 0 if X2 > 4NV2.

 This distribution is very different from that of the real roots of an algebraic
 equation of order N. The ensemble in this case is obtained by considering the
 coefficients to be components of a vector of definite length which has equal
 probabilities for directions within equal solid angles [16]. Fig. 3 is a histogram
 of o(X), due to N. Rosenzweig, obtained by diagonalizing 20 by 20 matrices,
 selected at random from an ensemble which I will discuss later. Not very sur-
 prisingly, the distribution approached a semiellipse-semicircle is actually a
 misnomer; the two axes do not even have the same dimension.

 What is distressing about this distribution is that it shows no similarity to
 the observed distribution in spectra. The behavior at large positive X is not
 relevant-what is known and what could be hoped to be reproduced by the
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 ensemble is the distribution in the neighborhood of the lowest energy level.
 This appears to show, in nuclei, an exponential increase with energy. The
 density in the neighborhood of the lowest state is such that there are few levels

 per million electron volts. Around 5 Mev, on the other hand, there were several
 levels in an interval of 100 ev. At any rate, the density of the levels, as function

 of the energy, is convex from below, whereas the semicircle or semiellipse is
 concave. It could be surmised that the convex distribution applies only in the
 neighborhood of the lower range of the asymptotic formula, in the region where
 the asymptotic formula does not hold. The density in the range of the semicircle
 law is proportional to v'N, the square root of the dimension of the random

 matrix. If it were proportional to a lower power of N outside the ellipse, this
 would not show in the asymptotic law but might explain the region in which,
 in actual nuclei, the density of levels increases fast. Hence, this region was more

 closely investigated by B. Bronk [17] for the so-called Wishart ensemble. These
 are eiisembles in which the matrix elements are independent of each other and
 each shows a Gaussian distribution. Bronk found, much to the dismay of every-

 one, that the semicircle law is too accurate: there are, on the average, only
 about two levels outside its range.

 Bronk's calculation applies only for the Wishart ensemble-that is, for a
 Gaussian distribution of the matrix elements-but, as we shall see, there are
 good reasons for preferring that distribution among all those in which the
 distributions of the various matrix elements are uncorrelated. Quite apart from
 this, it is clear that the existence of a reasonably large region in which the

 second energy-derivative of the density of levels is positive does not follow from
 the assumptions which we have made.

 This, then, raises the problem of the proper ensemble of matrices to give a

 density of characteristic values approximating the observed distribution of these
 in nuclear spectra. Evidently, the ensemble that appears to be simplest from the

 mathematical point of view does not satisfy this criterion, and some further
 reference to the physical problem is needed.
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 RANDOMI MATRICES 7

 There are two characteristics of the ensemble suggested by physical considera-

 tions which I wish to mention even though recourse to them alone has Inot

 proved successful. The first is the postulate that the matrix ensemble be in-

 variant with respect to orthogonal transformations in Hilbert space. This is not
 a necessary postulate, but it appears to be a reasonable one. Incidentally, if
 this postulate is added to those made earlier, one is led to the Wishart-like

 ensemble in which every matrix element has the same Gaussian distribution

 around 0. This was known to statisticians Hsu [18], Nanda [19], and perhaps

 others,' but was rediscovered by the physicists Porter and Rosenzweig [20].
 Hence, if one adopts this invariance, the assumption of the statistical inde-
 pendence of the matrix elements must be abandoned. On the other hand, simply

 omitting this postulate will not do: if an ensemble is invariant under orthogonal
 transformations, the frequency of matrices can yet be multiplied with any
 function

 f(trace H, trace H2, trace H3, * .

 By a proper choice of this function, any desired density distribution of the levels
 can be obtained.

 In order to reduce the freedom in the choice of the ensemble, one may recall
 that the Hamiltonian operator is unbounded above but bounded from below.
 This is the second characteristic I referred to. If the spectrum of the Hamil-

 tonian were not bounded from below, there would be no lowest characteristic
 value. It should not matter much where the lower bound is; if it is assumed at
 zero, one is tempted to substitute

 (6) H = AtA, A real, Wishart distributed.

 The last statement means that there are no statistical correlations between the

 matrix elements of A and that they all have the same Gaussian distribution.
 However, the ma-trix elements of H are not statistically independent in this
 case. Unfortunately, it turns out that the characteristic values of this ensemble,
 all positive, are distributed according to a quarter-circle law so that the density
 is quite large at the lower bound. I mention this unsuccessful attempt because
 the use of the aforementioned distribution is suggestive and because I do not
 recall having read an evaluation thereof before. Bronk has considered a similar
 problem and obtained the density of levels as function of energy-it was grossly

 unsatisfactory also [17].
 This is a disappointing situation. However, perhaps we should not have

 expected otherwise. Operators in Hilbert space have properties which no finite-
 dimensional matrix has-in particular, a continuous spectrum. The true Hamil-
 tonians all have a continuous spectrum, in addition to the discrete one, but the
 Hamiltonians considered in the theory of virtual levels are modified and have

 only a discrete spectrum. Somehow, these properties should play a role in the
 ensemble one chooses: this should contain only matrices which converge, in the

 1 Mehta [27] quotes S. N. Roy, Sankhya (Dec. 1943), but without further details.
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 8 EUGENE P. WIGNER

 limit of infinite dimensionality, to operators with discrete spectra. It is not
 known what the spectrum of the infinite Wishart matrices is; it is not even
 known whether the self-adjoint operators with only discrete spectra form a
 manifold of zero measure. Von Neumann [21] has proved that there is, in any
 neighborhood of an operator with a continuous spectrum, an operator with a
 purely discrete spectrum, whereas the opposite is not true. However, this does
 not decide the question of which is the more "natural" situation: that of a dis-
 crete or that of a continuous spectrum. My guess goes for the continuous one
 and, if this should be correct, the ensembles which we have considered cannot
 be the right ones.

 In order to avoid a misunderstanding, I should like to state that there is a
 model which does give the observed energy dependence of the level density. In
 fact, the exponential formula was obtained originally less from experiment than
 on the basis of this model [22], [23]. The model Hamiltonian is part of the Kro-
 necker product of a large number of identical Hamiltonians; and it is true that
 the details of the common spectra of these are not very important as long as the
 common spectrum is a point spectrum and is bounded from below. The part of
 the Kronecker product that is considered is the antisymmetric one. The model
 is, in the language of the physicist, an independent particle model, or a model
 with small interactions. I would hesitate to call the resulting matrices random,
 but they do give an energy dependence of the level density which is at least
 similar to the observed one. What I hope is that there are more truly random
 ensembles which give a similar density of levels-the independent particle model
 was always considered to be a very special one.

 Let me state, finally, before leaving the subject of level densities, that physi-
 cists have contributed to our mathematical knowledge of level densities more
 than I have just reviewed. First, the analogue of Wishart distributions was
 considered not only for real symmetric, but also for general hermitian matrices
 and for real, complex and quaternion matrices without any symmetry restric-
 tion. By quaternion matrices we mean matrices the elements of which are real
 quaternions. I wish to draw particular attention to the problem of the density
 of the characteristic values of complex matrices without symmetry. The solu-
 tion of this problem by Ginibre [24] contains a number of shortcuts which I
 found fascinating. The result is, for very large N, a constant density in the
 complex plane within a circle of radius (2N) 122v centered at the origin, zero
 density outside. N is the dimension of the matrix, v the mean root square of the
 real and of the imaginary parts of its matrix elements.

 Second, the results, as far as the Wishart-like distributions are concerned,
 were obtained by first calculating the joint distribution function of all charac-
 teristic values, i.e., the probability P(X1, . . , XN) that the characteristic values
 be in unit intervals at X1, X2, * * *, XN . In the case of complex matrices without
 symmetry, the probabilities refer to unit area in the complex plane. For Wishart-
 like distributions, these joint distribution functions all had the form

 (7) CI (Xi - x)' e-XXi212v2,
 '>j
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 RANDOM MATRICES 9

 where the characteristic values are supposed to be ordered in increasing magni-

 tude; A = 1 for real symmetric matrices, A = 2 for general hermitian matrices,

 A = 4 for symmetric quaternion matrices; A = 2 also for unrestricted complex
 matrices, but in this case the absolute value of X2 appears in the exponent and

 the absolute values of the differences I Xi-Xj I appear as factors. C is a nor-
 malizing constant. From the joint distribution function the density of the
 characteristic values can be obtained by integration over all variables but one.
 The more general, not necessarily Wishartian, case was not handled in this way

 but by calculating the moments of the level density as function of energy [14],
 [15].

 Statistics of spacings. This is the second problem raised by the appearance of
 the spectra at high energies, such as that of U239. It is the problem which stimu-
 lated the most interesting, the most elegant, and the most successful work on the

 theory of random matrices, particularly in the hands of Mehta, Gaudin, and
 Dyson. The specific question which was in the foreground right from the start

 concerned the probability of a succession of spacings SI, S2, * **, ST between
 adjacent energy levels or, synonymously, adjacent characteristic values of a
 random matrix. These functions, which we shall denote by

 (8) Tl(Sl), T2(Sl , S2), T3(Sl , S2 , S3), ...

 can all be obtained by integration with respect to the last variable from the
 next one of the series and can also be obtained by repeated integration from

 the joint distribution function (7) of all the characteristic values. However, as
 we well know from the similar problem in classical statistical mechanics, this is
 by no means an easy procedure. The most important among the spacing func-
 tions is the first one, probably because it requires least data to check it. All
 experimental and most theoretical work is directed toward the determination of
 this function, T' .

 It was assumed, from the beginning, that the aforementioned distributions

 depend only on a crude characterization of the underlying matrix ensemble,
 that it will be the same for all "reasonable" ensembles of real symmetric ma-
 trices. It will also be the same for all reasonable ensembles of general hermitian
 matrices, though the T for these will be different from the T for ensembles of
 real symmetric matrices. When Dyson drew attention to quaternion matrices,
 it was natural to assume the same for these. Similarly, it was assumed that, if

 the actual spacings are measured in units of the average spacing, the distribu-
 tion will be independent of the average spacing. In this sense, the functions

 FtI, 'F2, ... for real symmetric matrices are definite functions, and the same
 applies for these functions for hermitian matrices, and so on. One can probably
 even define such functions for the real, complex, and quaternion matrix ensem-
 bles without symmetry restrictions, except that the variables S should be com-
 plex numbers.

 The postulate of the existence of an average spacing already implies that
 the energy range in which the average spacing of the levels is essentially con-
 stant is much larger than the average spacing itself. The same applies to the
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 10 EUGENE P. WIGNER

 reciprocal of the average spacing, the density. We have seen before that, in all
 ensembles considered, the deiisity is proportional to the square root of the
 dimension of the matrix wherever the density is not zero. Since the logarithmic
 derivative of the spacing or of the density is inversely proportional to this
 square root, the condition of the existence of an average spacing will be satisfied
 for ensembles of matrices of high dimensionality wherever the density of the
 levels is not zero. The assumption mentioned then implies also that the T are
 independent of energy if their variables are measured in terms of the local
 average spacing.

 What is the evidence for the uniqueness of the functions T? Certainly, the
 independence of T' from the matrix ensemble chosen has not been proved for
 ensembles of as great generality as the semicircle law. The most general result,
 outside of the realm of AWishart-like distributions, refers to the boundary condi-
 tion of the truncated Hamiltonian and shows, indeed, that T' is invariant with
 respect to this boundary condition even though all characteristic values are
 changed by replacing the most usual boundary condition-zero derivative of
 the wave function at the nuclear surface by postulating an arbitrary but fixed
 real ratio be-tween the value and the derivative of the wave function [25]. This
 theorem, as stated, applied to a one-dimensional problem but it can be gener-
 alized to many dimensions by introducing a closed surface in Schr6dinger's
 configuration space. On this surface, one can introduce a complete orthonormal
 set xv and specify boundary conditions for each of them:

 (9) (xv, ,o) = a, (xv, gradn (0).

 If these equations are valid with constant (that is, energy independent) a,,
 then p satisfies the boundary conditions. The usual boundary conditions set all
 a, = 0o, but the statistical distribution TI1(S) of the spacings can be shown, by
 a slight extension of an argument given before, to be independent of the a, .
 This applies, at sufficiently high energy, to any continuously differentiable
 closed surface and almost any orthogonal set Xv thereupon.

 This is a rather suggestive result but comes nowhere near in generality to
 what one would like to have. I believe that it has, in fact, little to do with the
 conviction that, for instance, T' for ensembles of real symmetric matrices is
 unique. I think the argument which is in our minds is that the joint distribution
 function for all characteristic values necessarily contains a factor I Xi - Xj I
 corresponding to each pair (i, j) of characteristic values. This follows from the
 fact, also due at least partially to von Neumann [26], that two real constraints
 must be satisfied for two characteristic values of a real symmetric matrix to
 coincide.2 It is believed that the other factors in the expression for the joint
 distribution function vary slowly with the distance of two roots, which is- as
 long as this distance remains in the interesting region-inversely proportional to

 2 Incidentally, the exponents of I xi-xj i in the expressions for the joint distribution
 of the roots of hermitian and quaternion matrices can be understood in the same way:
 three real constraints must be satisfied for two roots of a general hermitian matrix to coiIn-
 cide, and five such constraints in the case of a quaternion matrix.
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 VN, hence very small. In fact, Dyson [8] replaced the ensemble of real sym-
 metric matrices with the ensemble of unitary symmetric matrices. In itself, this
 appears harmless because a one-to-one correspondence can be established be-
 tween real symmetric and unitary symmetric matrices S. However, he also

 assumed that the eiisemble is invariant under the transformation S -*> WTSW
 (the T denotes transpose), where W is any unitary matrix. This condition, if
 translated into a measure for the real symmetric matrices, is not the most
 natural one. Nevertheless, his joint distribution function for all roots is so
 similar to that of the Wishart-like ensemble that it can surely substitute for
 the latter.

 Before embarking on a more serious discussion of the calculation of T1, let us
 first make a crude guess. If the location of the roots were independent, the prob-
 ability v that there is no root within the distance S from a given root would
 obey the equation

 (10) v(S + h) = v(S) - v(S)hc

 for very small h, where c is the probability of a root in the unit interval. This

 leads to the differential equation

 (I Oa) dv = -cv,

 and hence v exp (-cS) from which TJ = -dvIdS = c exp (-cS), i.e., the
 simple exponential law would follow. Actually, we know that the probability of
 a root right next to another one is proportional to the distance therefrom. This
 suggests, instead of (10),

 (11) v(S + h) = v(S) - v(S)hcS

 or

 dv -S/ (Ila) - = -cSv V =e
 dS

 From this, T1 could be obtained again by differentiation. This gives

 WrS -,,S2/4D2
 (12) e1(S) = e

 2D

 where c was expressed in terms of the mean spacing D = f TI(S)S dS.

 The preceding surmise for T1-a Gaussian multiplied by S-was made by me
 when asked, in the course of a meeting, to "guess" T1. Not much later, the
 calculation of the slope at S = 0 of the real T' convinced me that the guess (12)
 was incorrect: the slope, ir2/6D, of the real T1 is, at S = 0, larger than that of
 (12) by a factor 7r/3. It was, therefore, quite surprising when, years later, M\rehta
 [27] and Gaudiii [28] succeeded in calculating T' for the Wishart-like ensemble.
 They found that it differed so little from (12) that this was, after all, usable for
 practical coinparisons. This is illustrated in Fig. 4. This shows, in additionl to
 (12) and the true T, calculated by Mehta and Gaudin, also the function (4/D2)S
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 exp (-2S/D), demonstrating that a function which is proportional to S at
 small S and whose first moment is D can differ considerably from TJ . The sub-
 sequent comparisons are all made with the inaccurate guess rather than Gaudin's
 accurate T1 function.

 Fig. 5 shows the comparison between the empirical distribution for a
 Wishart-like ensemble and the approximate formula. The agreement is not
 surprising because the calculation was made with the ensemble underlying the
 work of Mehta and Gaudin. This does not, however, apply to the calculation
 illustrated in Fig. 6: the ensemble consisted here of matrices all the elements of
 which had random signs but the same absolute value. The semicircle law for
 the density of this ensemble has been proved, but it has not been proved that
 the spacing statistics is identical with that of the Wishart ensemble. This,
 nevertheless, seems to be true, confirming the surmise concerning the generality
 of the distribution of spacings. The calculations of the level spacing distribution
 which form the basis for these figures are due to N. Rosenzweig; they were
 done on a computing machine.

 Calculation of the joint distribution function. Before turning to our last subject,
 the statistical distribution of matrix elements, it may be worth while to carry
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 out two of the important calculations concerning level spacings in detail. The
 present one concerns the joint distribution function of the roots of real symmetric
 matrices of high dimensionality. The ensemble considered is the same in the

 present and the next calculation: the probability function P of (2) is

 (13) P(Hi, IH12* HNN) = C exp 5- , H 5 H} dHik.
 i<k i?k

 We shall not calculate constant factors such as the normalization constant C in
 intermediate expressions, because the final result can be normalized by the re-
 quirement that the integral over a probability function is 1.

 The calculation of the joint distribution function of the characteristic values

 consists in introducing these, and some other variables, instead of the Hik, into
 P and integrating over the "other variables". We start from

 (14) Hik SXjRjiRjk.

 Here the Xj are the characteristic values, which should be assumed to be ordered,
 X1< ? -2 ... ?< XN, and R is a real orthogonal matrix. This is supposed to be
 specified by N(N - 1)/2 parameters p over which we will want to integrate.
 We first note that, because of Hik = Hki,

 (15) 2~~2 22i#k 2 1 2 X2 (15) H2i + E Hi2k =- 2 +- Hi2k =- i2k=_ 2
 2 i i<k 2 i 2 i 3k 2 2

 so that the exponent in (13) does not depend on R or the parameters p. Hence,
 all we have to do is to calculate the Jacobian

 (16) J = a(Hfl, H12, , .H1N, H22, H23, ,HNN)
 6 (X(1, X2, ... , XN, Pl, P2, *. * * PN(N-1)/2)

 and integrate it over the p. We shall see, however, that J is a product,
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 14 EUGENE P. WIGNER

 (17) J = rI (XT - Xk)j(pl* PN(N-1)/2),
 i>k

 so that integration over the variables p need not be carried out since it only
 gives a constant factor.

 The first N rows of the Jacobian matrix have the form

 (18) Jtk;j = RjiRjk

 and are independent of the X. The last N(N - 1)/2 rows consist of

 ( 1a) Jik; E Z RJk +)

 They are linear in the X. The Jacobian determinant is, therefore, a homogeneous

 polynomial of the X, of order N(N - 1)/2. In order to prove that it has the
 product form given before, we have to show only that it vanishes if any two X

 coincide. We shall show that it vanishes for X, = X2. Before proceeding with
 the calculation, we note that such vanishing is independent of the choice of the
 parameters p in the region in which both sets are unique, because the transition
 from one set of parameters to a new set merely multiplies J with the Jacobian

 of the old parameters with respect to the new ones. Hence, we can choose for
 one of the parameters, pi, the angle of the rotation in the plane of the first two
 coordinates, such that multiplication of R with this rotation renders R12 = 0.

 If we denote this rotation by R12(pl), the rotation R will assume the form

 (19) R 12 -p) C12(P2 , P3 , * * * , PN(N-1) /2) -

 The parameters P2 , p3 , , PN(N-1)/2 label the cosets of the subgroup of rota-
 tions in the 1-2 plane. Since, however, for X, = X2, the H,k become independent
 of pi, the row in which the derivatives with respect to pi appear becomes 0 and
 the determinant vanishes. This shows that the Jacobian determinant contains

 a factor X, - X2, and one can show in a similar way that it contains
 all N(N - 1)/2 factors X, - Xk Since it is only of order N(N - 1)/2, the
 whole X dependence of the Jacobian is given by U1>k (X- - Xk), and the joint
 probability function P in terms of the parameters X, p becomes

 (20) P = e2X,2I2 II (X - Xk)j pl, , pN/2-1).
 i>k

 Integration over the p now gives the joint distributioni function of the roots
 except for its normalization factor C:

 (21) PX(X1,X2, * XN) = C H (X, - Xk)e , X ? 12 <2 ? * * < XN
 i>k

 Naturally, the same result can be obtained also by direct calculation.
 Calculation of the probability T4(S) that the spacing between adjacent levels

 is in the unit interval at S. As has been mentioned before, the function Ti(S)
 can be calculated from the joint distribution function Px by calculating the prob-
 ability v(S) that there be no root within an interval S beyond a given root;

 [,(S) is, then, the negative derivative of this function. However, in order to
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 obtain v(S), one has to carry out many integrations, and such multiple integra-
 tions are quite difficult. It was, therefore, a considerable accomplishment on the

 part of M\Iehta [27] and Gaudin [28] to calculate T'i. Actually, their calculation

 proceeds by evaluating, first, the probability p(z9) that there is no root between
 -z9 and z9. They assume that this is also the probability that there is no root
 in an interval of the length 2z9 centered at random. The connection between TI
 and p then can be obtained from the observation that an interval S between
 two roots does not permit any interval of length 26 to be free of roots if S < 2z9;
 it gives an interval S - 2z9 for the center of a root-free interval of length 2z9,

 if S > 2z9. Since the number of intervals between S and S + dS in a long stretch
 L is LoT41(S) dS, where o- is the density of the roots, we have

 (22) Lo 10 '(S)(S-2t9) dS = Lp(t).

 Differentiating this twice with respect to t9 one obtains

 (22a) 4o4T'(2z0) = p"(?Y),

 so that the calculation of p(z9) gives T, rather directly.
 In order to calculate p(z9), Mehta and Gaudin first calculate the functional

 of u,

 (23) Pu - f P,(X, , XN) U l(Xi) dXj ... dX.

 We shall assume that u is an even function of X. Evidently, for the function

 u(X) = 1 if X > o,

 (23a) u(X) = 0 if X1 < ,

 the functional pu = p(z9)-
 The product in the expression (21) for Px is the Vandermonde determinant,

 so that the integrand can be written as a determinant:

 PX(Xl .. * *,XN) U(Xi) = q(Xi) 1 -< ? 2 ? * ? X N
 (24)

 q,(X) =- (X)A

 In fact, by multiplying the determinant I q,(Xi) I on the left by a numerical
 nonsingular matrix (which introduces only a constant factor), the Xv can be
 replaced by polynomials a^, so that we can also write, instead of (24),

 (24a) q (X) =e-X2/2u(X)a (X)

 where the ao, a1, a2, . *, aN-1 are any N linearly independent polynomials of
 degree not higher than N - 1. We shall make use of this possibility, but the a,
 will remain even or odd depending on whether v is even or odd.

 The difficulty of integrating the determinant (24) is caused by the form

 Xl < X2 <_ . -< XN of the domain of integration. It would be much easier if

This content downloaded from 139.124.126.14 on Fri, 20 Jan 2017 09:42:16 UTC
All use subject to http://about.jstor.org/terms



 16 EUGENE P. WIGNER

 the integration could be extended over all values of the variables. This would

 be possible if Px were a symmetric function of its variables, but it is not.
 Mehta and Gaudin overcome this difficulty by first integrating over all odd

 variables in the proper interval. The first such integration, over Xi, must be
 extended from - oo to X2 , and if we write

 (25) QV(X) = f q (Xi/) dXi,

 it simply replaces the qj(X1) of the first column by Q,(X2). Integration over X3
 will replace the q,(X3) of the third column by Q (X4) - Q (X2)-the limits of
 integration are X2 and X4. Adding the first column to this gives Q,(X4). Simi-
 larly, the (2j - 1)th column will change, as a result of the integration over X2j-1,
 into a column of Q (X2j). One avoids some unessential complications by assum-
 ing that the dimension of the original matrix, N = 2m, is even. Then, the inte-
 grand becomes, after integration over Xi, X3 , * 2m-1 ,

 Q0(X2) qO(X2) QO(X4) qO(X4) ... qO(X2m)

 (26) cl S Q1(X2) ql(X2) Q1(X4) ql(X4) ... ql(X2m)

 Q2m-1 (X2) q2m-1 (X2) Q2n-1 (X4) q2m-1 (X4) ... q2m-1 (X2m)

 The integrand is now symmetric in the remaining variables and the integration
 can be extended over all of them from - o to co if one also divides by m !

 Let us now look at the integral of the subdeterminants of the first two columns:

 (27) I= [QA(X2)qv(X2) -Qv(X2)q,(X2)]dX2.
 coo

 If , and v are both odd, Q, and Qv will be even, and since q, and qv are odd,
 I, will vanish. The same is true, however, also if 4 and v are both even: in this
 case we can write

 Ql(X) = i, + Q,O(X),

 (27a) qi, = | (X) dX, QA0 (X) = f (X) dX'.

 00~~~~~~~~~~~~

 QAo and the similar Qvo are odd. Hence, for even,u and v,
 00O 00

 I., = f iuqv(X) - ivqs(X) dX + f [Q,o(X)qv(X) - Qvo(X)q,(X)] dX.
 _00 _oo

 The last integral vanishes because the Q therein are odd, the q even. The first

 integral is iy2iv - i2i = 0. Hence, I, is different from zero only if ,u is even, v
 odd, or conversely. Since, furthermore, I, = -IV, we can restrict ourselves
 to the case that the first index is odd, the second even. We note, finally, that in
 the only interesting case, in which one of the indices is even, the other odd, the
 two terms for I in (27) are equal: since qA(X) = Q,,'(X), we have

 f Q,Qv' dX = --f Q,LQv dX Qvq- df.
 _00 _00 _oo
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 RANDOM MATRICES 17

 The integrated term vanishes because either Q, or Q, is even and thus vanishes
 not only for X = -co but also for X =o* co. We can write, therefore,

 00

 (28) Iv = 2f QI(X)qv(X) dX (A odd,veven).
 _00

 Since 4 is odd, Q, is even.
 Let us return now to integrating (26). The determinant of (26) can be ex-

 panded into a sum of products of subdeterminants of two successive columns,

 and the integral of each of the subdeterminants gives a factor I". Hence, the
 whole integral will be a sum of terms

 (29) I, 'M1,I A2V2 ... mvm

 with the same coefficients but with appropriate signs. In these terms, the A are
 all possible permutations of the numbers 1, 3, 5, ... , 2m - 1, the v are all
 permutations of the numbers 0, 2, 4, ... , 2m - 2. This looks like an m X m
 determinant with rows labeled with the odd, columns with the even, numbers.
 One can check the signs and verify that it is a determinant. One finds, therefore,
 that

 PX(XI, X2, * )2m,) tiu(Xi) A,l .. * d2..
 _oo_ i

 I1o I12 Il 2m-2

 (30) =0C1 I30 I32 ... 13 2m2

 2mn-1 0 12m-1 2 * 2m-1 2m-2

 We shall carry the calculation one step further, restricting ourselves from now
 on explicitly to the u(X) of (23a). For this purpose, we have to make a choice
 of the polynomials a,(X) which appear in (24a). The simplest choice is

 ao(X) = 1,

 (31) e-X2I2a(A) = (-)ah'. (X) for v > 1
 where the prime denotes differentiation and hv is the vth Hermite orthogonal
 function [29]

 (31a) hv (X) = e [v 1 2)v!]1I2 dxi e

 Then

 qv(X) = (-)vu(X)h2_i(X) for v > 1,

 (32) qo(X) =e-"2 2UW I

 Q,(X) = (-)Ahs,-(X) for ,u odd, I XI

 Q, need not be calculated for even , because we have an expression (28) for
 I, in which only Q with an odd index appears. Similarly, Q,(X) need not be
 calculated for I X I < a because all qv are zero between -a and d; actually
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 18 EUGENE P. WIGNER

 (-)MQM(X) = hji(t) = h,_(-). One sees that q, is indeed an even function
 for even v and an odd for odd v.

 The integration in (28) can be replaced by integration from v~ to oo, so that

 (33) IA, = 4(-) /? I h_-l(X)h'-l(X) dX

 (, odd, v even), except that I>o = 26,1 o . This last integral can be decomposed
 into one, Io ,from 0 to oo from which the integral Ilv from 0 to v~ must be sub-
 tracted: I,> = IoV- I',. The former integral is a well-known one:

 (33a) I, = -4 f h,-,(X)h'-l(X) dX = 212(a,M_1(,-1)1/2- )

 The corresponding part of (30) is

 2 -21I2 0 0 0
 112 1/2 0 4 -6 0 ... 0

 II1%1 = Ci 0 0 81/2 10112 *.. o

 0 0 0 0 * (4m 4)112

 The determinant of this gives the integral of Px over all values of the variables
 X. Since this is 1, we have

 (30a) CG = 2-m[(m-1 ) ]-112.

 For the evaluation of the second part of the integral in (33), extending from

 0 to Z~, it is good to recall that the distance of the next root approaches 0 as
 N-112 or M-112 as N and m become very large. Hence, the z? of interest approaches
 0 in the same manner. This should make it permissible to use the expression for
 h which is valid in the neighborhood of X = 0. Such an expression can be derived
 by omitting in the differential equation for h,

 (34) -hv, + X2h, = (2P + 1)hv,

 the X2hv term. This makes h,1 and h'1 proportional to cos (2,u - 1) 112X and
 cos (2V _ 1) 112X, respectively, the proportionality constant to be determined
 from h,s_(0) and h'_1(0). Since, furthermore, all the terms additional to (33a),
 resulting from the integral between 0 and z~, are small, they matter only in the
 aggregate, and one can use, for h,_1 and h>1 , the expressions valid for large
 ,u and v. This is important only in the proportionality constants of the afore-
 mentioned cosines. One thus obtains for the part of Igp additional to (33a)

 '1 =4 _ (?+v-1)12 v 114 sin ? sin t

 (33b) s = (2,u- 1)1/2 + (2v - 1) 12,

 t = (2g - 1)1/2 - (2v - 1)112.

 Since I s-1 sin s t < z~, the part of I,, represented by i1v is indeed very small
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 as long as T '- N-112. Their aggregate effect is, of course, large nevertheless.
 Mehta and Gaudin evaluate the determinant by first subtracting suitable

 multiples of every column from the next one so as to render 1,I diagonal,
 then multiplying the rows or columns with the corresponding factors of C1 so

 that 11 I', 11 is replaced by the unit matrix. These operations also alter 11 I',
 However, Gaudin succeeded in diagonalizing the modified P, If its charac-
 teristic values are denoted by qi, the value of the determinant (30) becomes

 (35) fPx(Xl, X,2m) flu(Xi) dX1 dXN = (1 - ?i)X

 This was evaluated numerically and TJ obtained by (22a). This is the origin
 of the curve in Fig. 4 which is so close to that given by (12).

 I have perhaps described the calculation of T, in unnecessarily much detail.
 However, I do consider it a major accomplishment. At the same time, it is

 evident that there are several steps in the calculation which are not carried out
 in rigorous detail. For this reason, at least, one would like to see a simpler der-

 ivation.

 We nlow turni to the last of our three items, the statistical distribution of the
 matrix elements.

 Matrix elements. Mathematically, the calculation of the statistics of the
 matrix elements is the easiest of our three problems-in fact, it is an easy prob-
 lem-but inhibitions prevented its discovery longer than now appears reasonable.

 It was, therefore, a major breakthrough when Scott [30] and Porter and Thomas
 [31] proposed the now generally accepted rule, the "Porter-Thomas distribution",
 actually essentially without any proof. According to this, the matrix elements
 in complex spectra show a Gaussian distribution. This is also well confirmed
 experimentally.

 We have to do here with two self-adjoint operators, the Hamiltonian H, which
 defines the coordinate system, and the other operator M representing the physical
 quantity, such as dipole moment, in the matrix elements of which one is inter-
 ested. We shall assume, first, that both are real. This means, more precisely, that
 there is a coordinate system in which all permissible operators of the physical
 quantity in which we are interested have real matrix elements. If we choose the
 coordinate axes in such a way that the states represented by them are time-
 inversion invariant, the matrix elements of the Hamiltonian will be real. As to
 the physical quantity in which we are interested, the matrix elements of its
 operator will also be real if the quantity-such as electric dipole moment-is also
 time-inversion invariant. This means that it retains its value if all the velocities
 are reversed. Most physically important quantities do have this property, or the
 opposite one, of reversing their signs if the directions of all the velocities are
 reversed. The operator of these is, naturally, also hermitian but purely imaginary

 and hence skew-symmetric. The operator of the magnetic moment is of this
 nature. However, though this will not be explained in detail, the calculation of
 the distribution finction of the matrix elements of time-reversal invariant opera-
 tors can be modified so as to be applicable for anti-invariant operators also.
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 Hence, the same distribution function can be expected for the matrix elements of

 these as for real, time-inversion invariant operators. It will be assumed, further,

 that the density of the characteristic values of the physical quantity in question
 is an even function of the characteristic value-a condition naturally fulfilled

 for operators which are anti-invariant with respect to time inversion. However,

 all known time-inversion invariant transition operators also share this property.

 The following calculation uses the coordinate system whose axes are the char-

 acteristic functions of M, rather than of H. The characteristic values of this will

 be denoted by M. The matrix element in question is, then,

 (36) m = Z pixiyi,

 where xi and yi are the coordinates of the states between which the matrix ele-
 ment is taken. These are characteristic vectors of H, hence xi and yi can be
 assumed to be real and m is real. The problem is to calculate the distribution
 of m for the Hamiltonians of the ensemble chosen. If this is rotationally invariant
 in Hilbert space, it amounts to calculating the distribution of the above expres-
 sion for m when the vectors x and y move over a sphere but remain perpendicu-
 lar to each other:

 (36a) Ex2 1, Zyi2=1, yxiy = O.

 This calculation can be carried out in detail, but since the individual terms of

 m are of the order I X I/N, where N is the dimension of the space of the matrices,
 and since they have similar orders of magnitude and alternate in sign, one can
 infer already from the central limit theorem that the distribution is Gaussian:

 (2r2) -e/2 CM2/2;
 If one introduces the transition rate, F = in2, one obtains for this the Porter-
 Thomas distribution

 2-7)(2r; )-1/2e-rP2;;2

 Fig. 7 shows that this is quite well confirmed experimentally in the case of
 neutron emission. It has also been applied to various moments, not in nuclear
 but in atomic physics, and the agreement is satisfactory in these cases also.
 (Porter's book [1] contains articles applying the Porter-Thomas distribution to
 various types of transition rates.)

 It may be worthwhile to add a few words about the basis and limitations of
 this formula. First, there is, of course, the same reservation which we had to
 make in all other cases: we used a finite-dimensional space, though a space of
 high dimensionality, rather than a Hilbert space. It appears that this problem
 is not quite as serious in this case as in the case of level densities, and Rosen-
 zweig made it at least plausible that the replacement of Hilbert space by a
 space of high dimensionality is justified in this case [32].

 The other assumption, that of the real nature of the matrices considered, is,
 however, relevant. If we had chosen an ensemble of complex hermitean rather
 than real symmetric matrices, the result would have been, for the transition
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 probability r (which is proportional to the absolute square of the matrix ele-
 ment),

 (38) (>jy1PI2I2

 This would be easily distinguishable from the former distribution. One can

 derive the latter formula by decomposing H into a real symmetric and an imagi-
 nary skew-symmetric part. Both, separately, give a Porter-Thomas distribu-
 tion, and the distribution for the sum of these is as given above.

 This last point is, I believe, significant. There are experiments which indicate

 that the actual Hamiltonian is not strictly time-inversion invariant, that it has
 a small anti-invariant part. Nowhere would this manifest itself in the character
 of the wave functions as strongly as in the region where the levels are close to
 each other. Hence, an experimental check on the Porter-Thomas distribution
 may give an indication of the magnitude, or at least an upper limit, of the not-
 time-inversion invariant part of the Hamiltonian. Of course, the physical opera-
 tor M, the matrix elements of which we consider, must be carefully chosen,
 and it must be ascertained that the observed transitions are due entirely either

 to an invariant or to an anti-invariant operator with respect to time inversion.
 I might have mentioned that there is an effect in the level-spacing distribution
 similar to the one discussed here: the not-time-inversion invariant part of the
 Hamiltonian would manifest itself in this case in an added repulsion of the
 levels.

 This last observation will conclude the review of the recent contributions of
 physicists to the theory of random matrices and of the role of random matrices
 in the statistical theory of spectra. There remains, in the solution of almost

 every problem which we have tackled, a good deal that should be clarified, and
 almost all our derivations should be made more precise. More important than
 this would be the clarification of a number of rather general questions, some of
 which I wish to enumerate.
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 22 EUGENE P. WIGNER

 (a) Is the many-dimensional space as we use it a fair approximation to the
 Hilbert space? In particular, can one claim that, for any reasonable measure

 for the operators in Hilbert space, most operators have a pure continuous spec-
 trum, or do they have a pure discrete spectrum?

 (b) In all ensembles of matrices considered so far, the distributions of the
 matrix elements of some basic matrix are independent, i.e., there are no correla-
 tions between these matrix elements. Can one define more general ensembles,
 in particular ensembles of operators in Hilbert space rather than of many-

 dimensional matrices? Of particular interest would be ensembles of operators
 with a lower bound but with no upper bound.

 (c) Under what conditions does the so-called semicircle law for the density
 of the characteristic values hold? Are there simple ensembles for which it is not
 valid and the second derivative of the density with respect to the characteristic
 value is positive over a range containing many characteristic values?

 (d) What are the conditions for the validity of the Mehta-Gaudin distribution
 law for spacings? It has been derived, so far, only for the Wishart ensemble
 but seems to be valid much more generally.

 I hope that mathematicians will help to clear up at least the more conceptual
 problems-von Neumann's example shows that the investigation of the exact
 foundation of the bases of physical theories can be fruitful for both the physical
 and the mathematical disciplines.
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