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This review gives a pedagogical introduction to the eigenstate thermalization hypothesis (ETH),

its basis, and its implications to statistical mechanics and thermodynamics. In the first part, ETH is
introduced as a natural extension of ideas from quantum chaos and random matrix theory. To this

end, we present a brief overview of classical and quantum chaos, as well as random matrix theory and
some of its most important predictions. The latter include the statistics of energy levels, eigenstate

components, and matrix elements of observables. Building on these, we introduce the ETH and show

that it allows one to describe thermalization in isolated chaotic systems without invoking the notion
of an external bath. We examine numerical evidence of eigenstate thermalization from studies of

many-body lattice systems. We also introduce the concept of a quench as a means of taking isolated

systems out of equilibrium, and discuss results of numerical experiments on quantum quenches. The
second part of the review explores the implications of quantum chaos and ETH to thermodynamics.

Basic thermodynamic relations are derived, including the second law of thermodynamics, the funda-

mental thermodynamic relation, fluctuation theorems, the fluctuation-dissipation relation, and the
Einstein and Onsager relations. In particular, it is shown that quantum chaos allows one to prove

these relations for individual Hamiltonian eigenstates and thus extend them to arbitrary stationary

statistical ensembles. In some cases, it is possible to extend their regimes of applicability beyond
the standard thermal equilibrium domain. We then show how one can use these relations to obtain

nontrivial universal energy distributions in continuously driven systems. At the end of the review,

we briefly discuss the relaxation dynamics and description after relaxation of integrable quantum
systems, for which ETH is violated. We present results from numerical experiments and analytical

studies of quantum quenches at integrability. We introduce the concept of the generalized Gibbs
ensemble, and discuss its connection with ideas of prethermalization in weakly interacting systems.

Keywords: quantum statistical mechanics; eigenstate thermalization; quantum chaos; random

matrix theory; quantum quench; quantum thermodynamics; generalized Gibbs ensemble.

Verily at the first Chaos came to be,

but next wide-bosomed Earth,
the ever-sure foundations of all. . .

Hesiod, Theogony
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1. Introduction

Despite the huge success of statistical mechanics in describing the macroscopic behavior of
physical systems [1, 2], its relation to the underlying microscopic dynamics has remained
a subject of debate since the foundations were laid [3, 4]. One of the most controversial
topics has been the reconciliation of the time reversibility of most microscopic laws of
nature and the apparent irreversibility of the laws of thermodynamics.

Let us first consider an isolated classical system subject to some macroscopic con-
straints (such as conservation of the total energy and confinement to a container). To
derive its equilibrium properties, within statistical mechanics, one takes a fictitious en-
semble of systems evolving under the same Hamiltonian and subject to the same macro-
scopic constraints. Then, a probability is assigned to each member of the ensemble, and
the macroscopic behavior of the system is computed by averaging over the fictitious en-
semble [5]. For an isolated system, the ensemble is typically chosen to be the microcanon-
ical one. To ensure that the probability of each configuration in phase space does not
change in time under the Hamiltonian dynamics, as required by equilibrium, the ensem-
ble includes, with equal probability, all configurations compatible with the macroscopic
constraints. The correctness of the procedure used in statistical mechanics to describe
real systems is, however, far from obvious. In actual experiments, there is generally no
ensemble of systems – there is one system – and the relation between the calculation just
outlined and the measurable outcome of the underlying microscopic dynamics is often
unclear. To address this issue, two major lines of thought have been offered.

In the first line of thought, which is found in most textbooks, one invokes the ergodic
hypothesis [6] (refinements such as mixing are also invoked [7]). This hypothesis states
that during its time evolution an ergodic system visits every region in phase space (sub-
jected to the macroscopic constraints) and that, in the long-time limit, the time spent
in each region is proportional to its volume. Time averages can then be said to be equal
to ensemble averages, and the latter are the ones that are ultimately computed [6]. The
ergodic hypothesis essentially implies that the “equal probability” assumption used to
build the microcanonical ensemble is the necessary ingredient to capture the long-time
average of observables. This hypothesis has been proved for a few systems, such as the
Sinai billiard [8, 9], the Bunimovich stadium [10], and systems with more than two hard
spheres on a d-dimensional torus (d ≥ 2) [11].

Proving that there are systems that are ergodic is an important step towards having
a mathematical foundation of statistical mechanics. However, a few words of caution are
necessary. First, the time scales needed for a system to explore phase space are expo-
nentially large in the number of degrees of freedom, that is, they are irrelevant to what
one observes in macroscopic systems. Second, the ergodic hypothesis implies thermal-
ization only in a weak sense. Weak refers to the fact that the ergodic hypothesis deals
with long-time averages of observables and not with the values of the observables at long
times. These two can be very different. Ideally, one would like to prove thermalization
in a strong sense, namely, that instantaneous values of observables approach the equilib-
rium value predicted by the microcanonical ensemble and remain close to it at almost
all subsequent times. This is what is seen in most experiments involving macroscopic
systems. Within the strong thermalization scenario, the instantaneous values of observ-
ables are nevertheless expected to deviate, at some rare times, from their typical value.
For a system that starts its dynamics with a non-typical value of an observable, this is,
in fact, guaranteed by the Poincaré recurrence theorem [12]. This theorem states that
during its time evolution any finite system eventually returns arbitrarily close to the
initial state. However, the Poincaré recurrence time is exponentially long in the num-
ber of degrees of freedom and is not relevant to observations in macroscopic systems.
Moreover, such recurrences are not at odds with statistical mechanics, which allows for
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atypical configurations to occur with exponentially small probabilities. We should stress
that, while the ergodic hypothesis is expected to hold for most interacting systems, there
are notable exceptions, particularly in low dimensions. For example, in one dimension,
there are many known examples of (integrable or near integrable1) systems that do not
thermalize, not even in the weak sense [13]. A famous example is the Fermi-Pasta-Ulam
numerical experiment in a chain of anharmonic oscillators, for which the most recent
results show no (or extremely slow) thermalization [14, 15]. This problem had a major
impact in the field of nonlinear physics and classical chaos (see, e.g., Ref. [16]). Relax-
ation towards equilibrium can also be extremely slow in turbulent systems [17] and in
glassy systems [18].

In the second, perhaps more appealing, line of thought one notes that macroscopic
observables essentially exhibit the same values in almost all configurations in phase space
that are compatible with a given set of macroscopic constraints. In other words, almost
all the configurations are equivalent from the point of view of macroscopic observables.
For example, the number of configurations in which the particles are divided equally (up
to non-extensive corrections) between two halves of a container is exponentially larger
than configurations in which this is not the case. Noting that “typical” configurations
vastly outnumber “atypical” ones and that, under chaotic dynamics each configuration
is reached with equal probability, it follows that “atypical” configurations quickly evolve
into “typical” ones, which almost never evolve back into “atypical” configurations. Within
this line of thought, thermalization boils down to reaching a “typical” configuration. This
happens much faster than any relevant exploration of phase space required by ergodicity.
Note that this approach only applies when the measured quantity is macroscopic (such
as the particle number mentioned in the example considered above). If one asks for
the probability of being in a specific microscopic configuration, there is no meaning in
separating “typical” from “atypical” configurations and the predictive power of this line
of reasoning is lost. As appealing as this line of reasoning is, it lacks rigorous support.

Taking the second point of view, it is worth noting that while most configurations
in phase space are “typical”, such configurations are difficult to create using external
perturbations. For example, imagine a piston is moved to compress air in a container. If
the piston is not moved slowly enough, the gas inside the container will not have time
to equilibrate and, as a result, during the piston’s motion (and right after the piston
stops) its density will not be uniform, that is, the system is not in a “typical” state. In a
similar fashion, by applying a radiation pulse to a system, one will typically excite some
degrees of freedom resonantly, for example, phonons directly coupled to the radiation. As
a result, right after the pulse ends, the system is in an atypical state. Considering a wide
range of experimental protocols, one can actually convince oneself that it is generally
difficult to create “typical” configurations if one does not follow a very slow protocol or
without letting the system evolve by itself.

At this point, a comment about time-reversal symmetry is in order. While the micro-
scopic laws of physics usually exhibit time-reversal symmetry, notable exceptions include
systems with external magnetic fields, the resulting macroscopic equations used to de-
scribe thermodynamic systems do not exhibit such a symmetry. This can be justified
using the second line of reasoning – it is exponentially rare for a system to evolve into
an “atypical” state by itself. Numerical experiments have been done (using integer arith-
metic) in which a system was started in an atypical configuration, was left to evolve,
and, after some time, the velocities of all particles were reversed. In those experiments,
the system was seen to return to the initial (atypical) configuration [19]. Two essential
points to be highlighted from these numerical simulations are: (i) after reaching the ini-

1We briefly discuss classical integrability and chaos in Sec. 2 and quantum integrability in Sec. 8
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tial configuration, the system continued its evolution towards typical configurations (as
expected, in a time-symmetric fashion) and (ii) the time-reversal transformation needed
to be carried out with exquisite accuracy to observe a return to the initial (atypical) con-
figuration (hence, the need of integer arithmetic). The difficulty in achieving the return
increases dramatically with increasing system size and with the time one waits before
applying the time-reversal transformation. It is now well understood, in the context of
fluctuation theorems [20, 21], that violations of the second law (i.e., evolution from typi-
cal to atypical configurations) can occur with a probability that decreases exponentially
with the number of degrees of freedom in the system. These have been confirmed exper-
imentally (see, e.g., Ref. [22]). As part of this review, we derive fluctuation theorems in
the context of quantum mechanics [23–25].

Remarkably, a recent breakthrough [26–28] has put the understanding of thermaliza-
tion in quantum systems on more solid foundations than the one discussed so far for
classical systems. This breakthrough falls under the title of the eigenstate thermalization
hypothesis (ETH). This hypothesis can be formulated as a mathematical ansatz with
strong predictive powers [29]. ETH and its implications for statistical mechanics and
thermodynamics are the subject of the review. As we discuss, ETH combines ideas of
chaos and typical configurations in a clear mathematical form that is unparalleled in clas-
sical systems. This is remarkable considering that, in some sense, the relation between
microscopic dynamics and statistical mechanics is more subtle in quantum mechanics
than in classical mechanics. In fact, in quantum mechanics one usually does not use
the notion of phase space as one cannot measure the positions and momenta of par-
ticles simultaneously. The equation dictating the dynamics (Schrödinger’s equation) is
linear which implies that the key ingredient leading to chaos in classical systems, that is,
nonlinear equations of motion, is absent in quantum systems.

As already noted by von Neumann in 1929, when discussing thermalization in isolated
quantum systems one should focus on physical observables as opposed to wave functions
or density matrices describing the entire system [30]. This approach is similar to the
one described above for classical systems, in which the focus is put on macroscopic ob-
servables and “typical” configurations. In this spirit, ETH states that the eigenstates of
generic quantum Hamiltonians are “typical” in the sense that the statistical properties
of physical observables2 are the same as those predicted by the microcanonical ensemble.
As we will discuss, ETH implies that the expectation values of such observables as well
as their fluctuations in isolated quantum systems far from equilibrium relax to (nearly)
time-independent results that can be described using traditional statistical mechanics
ensembles [26–28]. This has been verified in several quantum lattice systems and, ac-
cording to ETH, should occur in generic many-body quantum systems. We also discuss
how ETH is related to quantum chaos in many-body systems, a subject pioneered by
Wigner in the context of Nuclear Physics [31]. Furthermore, we argue that one can build
on ETH not only to understand the emergence of a statistical mechanics description
in isolated quantum systems, but also to derive basic thermodynamic relations, linear
response relations, and fluctuation theorems.

When thinking about the topics discussed in this review some may complain about the
fact that, unless the entire universe is considered, there is no such thing as an isolated
system, i.e., that any description of a system of interest should involve a bath of some
sort. While this observation is, strictly speaking, correct, it is sometimes experimentally
irrelevant. The time scales dictating internal equilibration in “well-isolated” systems can
be much faster than the time scales introduced by the coupling to the “outside world”.
It then makes sense to question whether, in experiments with well-isolated systems, ob-

2We will explain what we mean by physical observables when discussing the ETH ansatz.
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servables can be described using statistical mechanics on time scales much shorter than
those introduced by the coupling to the outside world. This question is of relevance to
current experiments with a wide variety of systems. For example, in ultracold quantum
gases that are trapped in ultrahigh vacuum by means of (up to a good approximation)
conservative potentials [32, 33]. The near unitary dynamics of such systems has been
observed in beautiful experiments on collapse and revival phenomena of bosonic [34–36]
and fermionic [37] fields, lack of relaxation to the predictions of traditional ensembles
of statistical mechanics [38–40], and dynamics in optical lattices that were found to be
in very good agreement with numerical predictions for unitary dynamics [41]. In optical
lattice experiments, the energy conservation constraint, imposed by the fact that the sys-
tem are “isolated”, has also allowed the observation of counterintuitive phenomena such
as the formation of stable repulsive bound atom pairs [42] and quantum distillation [43]
in ultracold bosonic systems. Other examples of nearly isolated systems include nuclear
spins in diamond [44], pump-probe experiments in correlated materials in which dynam-
ics of electrons and holes are probed on time scales much faster than the relaxation time
associated with electron-phonon interactions [45, 46], and ensembles of ultra-relativistic
particles generated in high-energy collisions [47].

This review can naturally be separated in two parts, and an addendum. In the first
part, Secs. 2–4, we briefly introduce the concept of quantum chaos, discuss its relation
to random matrix theory (RMT), and calculate its implications to observables. We then
introduce ETH, which is a natural extension of RMT, and discuss its implications to
thermalization in isolated systems, that is, relaxation of observables to the thermal equi-
librium predictions. We illustrate these ideas with multiple numerical examples. In the
second part, Secs. 5–7, we extend our discussion of the implications of quantum chaos and
ETH to dynamical processes. We show how one can use quantum chaos and ETH to derive
various thermodynamic relations (such as fluctuation theorems, fluctuation-dissipation
relations, Onsager relations, and Einstein relations), determine leading finite-size correc-
tions to those relations, and, in some cases, generalize them (e.g., the Onsager relation)
beyond equilibrium. Finally, in the addendum (Sec. 8), we discuss the relaxation dynam-
ics and description after relaxation of integrable systems after a quench. We introduce
the generalized Gibbs ensemble (GGE), and, using time-dependent perturbation theory,
show how it can be used to derive kinetic equations. We note that some of these topics
have been discussed in other recent reviews [48–53] and special journal issues [54, 55].

2. Chaos and Random Matrix Theory (RMT)

2.1. Classical Chaos

In this section, we very briefly discuss chaotic dynamics in classical systems. We refer the
readers to Refs. [56, 57], and the literature therein, for further information about this
topic. As the focus of this review is on quantum chaos and the eigenstate thermalization
hypothesis, we will not attempt to bridge classical chaos and thermalization. This has
been a subject of continuous controversies.

While there is no universally accepted rigorous definition of chaos, a system is usually
considered chaotic if it exhibits a strong (exponential) sensitivity of phase-space trajec-
tories to small perturbations. Although chaotic dynamics are generic, there is a class of
systems for which dynamics are not chaotic. They are known as integrable systems [58].
Specifically, a classical system whose Hamiltonian is H(p,q), with canonical coordinates
q = (q1, · · · , qN ) and momenta p = (p1, · · · , pN ), is said to be integrable if it has as many
functionally independent conserved quantities I = (I1, · · · , IN ) in involution as degrees

6
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Figure 1. Examples of trajectories of a particle bouncing in a cavity: (a) non-chaotic circular and (b) chaotic

Bunimovich stadium. The images were taken from scholarpedia [60].

of freedom N :

{Ij , H} = 0, {Ij , Ik} = 0, where {f, g} =
∑

j=1,N

∂f

∂qj

∂g

∂pj
− ∂f

∂pj

∂g

∂qj
. (1)

From Liouville’s integrability theorem [59], it follows that there is a canonical trans-
formation (p, q) → (I,Θ) (where I,Θ are called action-angle variables) such that
H(p, q) = H(I) [58]. As a result, the solutions of the equations of motion for the action-
angle variables are trivial: Ij(t) = I0

j = constant, and Θj(t) = Ωjt + Θj(0). For obvious
reasons, the motion is referred to as taking place on an N -dimensional torus, and it is
not chaotic.

To get a feeling for the differences between integrable and chaotic systems, in Fig. 1,
we illustrate the motion of a particle in both an integrable and a chaotic two-dimensional
cavity [60]. Figure 1(a) illustrates the trajectory of a particle in an integrable circular
cavity. It is visually apparent that the trajectory is a superposition of two periodic mo-
tions along the radial and angular directions. This is a result of the system having two
conserved quantities, energy and angular momentum [61]. Clearly, the long-time aver-
age of the particle density does not correspond to a uniform probability which covers
phase space. Figure 1(b), on the other hand, shows a trajectory of a particle in a chaotic
Bunimovich stadium [10], which looks completely random. If one compares two trajec-
tories that are initially very close to each other in phase space one finds that, after a
few bounces against the walls, they become uncorrelated both in terms of positions and
directions of motion. This is a consequence of chaotic dynamics.

There are many examples of dynamical systems that exhibit chaotic behavior. A nec-
essary, and often sufficient, condition for chaotic motion to occur is that the number of
functionally independent conserved quantities (integrals of motion), which are in involu-
tion, is smaller than the number of degrees of freedom. Otherwise, as mentioned before,
the system is integrable and the dynamics is “simple”. This criterion immediately tells us
that the motion of one particle, without internal degrees of freedom, in a one-dimensional
system, described by a static Hamiltonian, is integrable. The energy provides a unique
(up to a sign) relation between the coordinate and the momentum of the particle. In two
dimensions, energy conservation is not sufficient to constrain the two components of the
momentum at a given position in space, and chaos is possible. However, if an additional
conservation law is present, e.g., angular momentum in the example of Fig. 1(a), then
the motion is regular. As a generalization of the above, a many-particle system is usu-
ally considered chaotic if it does not have an extensive number of conserved quantities.

7
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For example, an ensemble of noninteracting particles in high-dimensional systems is not
chaotic in this sense, even if each particle exhibits chaotic motion in the part of phase
space associated with its own degrees of freedom. This due to the fact that the energy
of each particle is separately conserved. However, one expects that interactions between
the particles will lead to chaotic motion.

It is natural to ask what happens to an integrable system in the presence of a small
integrability breaking perturbation. The KAM theorem (after Kolmogorov, Arnold, and
Moser [62–64]) states that, under quite general conditions and for systems with a finite
number of degrees of freedom, most of the tori that foliate phase space in the integrable
limit persist under small perturbations [59]. This means that, in finite systems, there is
a crossover between regular and chaotic dynamics.

It is instructive to see how chaos emerges in simple system. The easiest way to do
this is to study one particle in one dimension and remove the energy conservation by
applying a time-dependent protocol. Very well-studied examples of such driven systems
(usually exhibiting a coexistence of chaotic and regular motion in different parts of phase
space) include the Fermi-Ulam model [65], the Kapitza pendulum [66], and the kicked
rotor [67, 68]. The latter example provides, perhaps, the simplest realization of a chaotic
system. As an illustration, we discuss it in detail in Appendix A.

2.2. Random Matrix Theory

A focus of this review is on eigenstate thermalization which, as we argue in the following,
is closely related to quantum chaos (see, e.g., Refs.[69, 70], for numerical studies that
discuss it). In this section, we review results from quantum chaos that will be needed
later. We refer the readers to more complete reviews on quantum chaos and RMT for
further details [71–74].

From the early days of quantum mechanics, it was clear that the classical notion
of chaos does not directly apply to quantum-mechanical systems. The main reason is
that Schrödinger’s equation is linear and therefore cannot have exponentially departing
trajectories for the wave functions. As a matter of fact, the overlap between two different
quantum states, evolved with the same Hamiltonian, is constant in time. Also, while
quantum mechanics can be formulated in a phase-space language, for example, using the
Wigner-Weyl quantization [75, 76], one still does not have the notion of a trajectory (and
thus its sensitivity to small perturbations) since coordinates and momenta of particles
cannot be defined simultaneously due to the uncertainty principle. It is then natural to
ask what is the analogue of chaotic motion in quantum systems.

To better understand this question, let us first consider the single-particle classical
limit. For integrable systems, the physics was understood in the early days of quan-
tum mechanics, based on Bohr’s initial insight. Along allowed trajectories, the classical
reduced action satisfies the quantization condition:

˛
pdq ≈ 2π~n . (2)

Namely, the classical action is quantized in units of ~. In 1926, this conjecture was
formalized by what is now known as the WKB (after Wentzel, Kramers, and Brillouin)
approximation [77]. Essentially, the WKB quantization implies that, in the semi-classical
limit, one has to discretize (quantize) classical trajectories. In chaotic systems, the situa-
tion remained unclear for a very long time. In particular, it was not clear how to quantize
classical chaotic trajectories, which are not closed (in phase space). Initial attempts to
resolve these issues go back to Einstein who wrote a paper about them already in 1917
(see Ref. [78] for details). However, the question was largely ignored until the 1970s when,
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after a pioneering work by Gutzwiller [79], it became the focus of much research broadly
falling under the title of quantum chaos. To this day many questions remain unresolved,
including the precise definition of quantum chaos [80].

A set of crucial results on which quantum chaos builds came from works of Wigner [31,
81, 82] who, followed by Dyson [83] and others, developed a theory for understanding
the spectra of complex atomic nuclei. This theory is now known as RMT [73]. RMT
became one of the cornerstones of modern physics and, as we explain later, underlies
our understanding of eigenstate thermalization. Wigner’s original idea was that it is
hopeless to try to predict the exact energy levels and corresponding eigenstates of complex
quantum-mechanical systems such as large nuclei. Instead, one should focus on their
statistical properties. His second insight was that, if one looks into a small energy window
where the density of states is constant, then the Hamiltonian, in a non fine-tuned basis,
will look essentially like a random matrix. Therefore, by studying statistical properties
of random matrices (subject to the symmetries of the Hamiltonian of interest, such as
time-reversal symmetry), one can gain insights on the statistical properties of energy
levels and eigenstates of complex systems. This latter insight was very revolutionary
and counterintuitive. It should be noted that whenever we attempt to diagonalize many-
body physical Hamiltonians, we usually write them in special bases in which the resulting
matrices are very sparse and the nonzero matrix elements are anything but random. This,
however, does not contradict Wigner’s idea which deals with “generic” bases.

The main ideas of RMT and the statistics of the energy levels (known as Wigner-Dyson
statistics) can be understood using 2×2 Hamiltonians whose entries are random numbers
taken from a Gaussian distribution [71–74]:

Ĥ
.

=

[
ε1

V√
2

V ∗√
2
ε2

]
. (3)

Here the factor 1/
√

2 in the off-diagonal matrix elements is introduced since, as it will
become clear soon, this choice leaves the form of the Hamiltonian invariant under basis
rotations. The Hamiltonian in Eq. (3) can be easily diagonalized and the eigenvalues are

E1,2 =
ε1 + ε2

2
± 1

2

√
(ε1 − ε2)2 + 2|V |2. (4)

If the system is invariant under time reversal (e.g., there is no external magnetic field)
then the Hamiltonian can be written as a real matrix, so V = V ∗. For simplicity, we
draw ε1, ε2, and V from a Gaussian distribution with zero mean and variance σ. Using
Eq. (4) one can compute the statistics of the level separations P (E1 − E2 = ω) ≡ P (ω)
(here and in what follows, unless otherwise specified, we set ~ to unity):

P (ω) =
1

(2π)3/2σ3

ˆ
dε1

ˆ
dε2

ˆ
dV δ

(√
(ε1 − ε2)2 + 2V 2 − ω

)
exp

(
−ε

2
1 + ε2

2 + V 2

2σ2

)
.

(5)
Before evaluating the integral over ε1, we make a change of variables ε2 = ε1 +

√
2ξ.

Then, integrating over ε1, which is a Gaussian integral, we are left with

P (ω) =
1

2πσ2

ˆ ˆ
dξdV δ

(√
2ξ2 + 2V 2 − ω

)
exp

(
−ξ

2 + V 2

2σ2

)
. (6)

The latter integrals can be evaluated using cylindrical coordinates, V = r cos(x), ξ =

9
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r sin(x), and one finds:

P (ω) =
ω

2σ2
exp

[
− ω2

4σ2

]
. (7)

In the absence of time-reversal symmetry, <[V ] and =[V ] can be treated as independent
random variables and, carrying out a similar calculation using spherical coordinates,
leads to:

P (ω) =
ω2

2
√
π (σ2)3/2

exp

[
− ω2

4σ2

]
. (8)

These distributions exhibit some remarkable (generic) properties: (i) there is level
repulsion since the probability P (ω) of having energy separation ω vanishes as ω →
0 and (ii) the probability decays as a Gaussian at large energy separation. The two
distributions (7) and (8) can be written as

P (ω) = Aβ ω
β exp[−Bβω2], (9)

where β = 1 in systems with time-reversal symmetry and β = 2 in systems that do not
have time-reversal symmetry. The coefficients Aβ and Bβ are found by normalizing P (ω)
and fixing the mean level spacing. The normalized distributions, with an average level
spacing set to one, are given by

P1(ω) =
π

2
ω exp

[
−π

4
ω2
]
, P2(ω) =

32

π2
ω2 exp

[
− 4

π
ω2

]
. (10)

It turns out that the features described above are not unique to the 2 × 2 Hamilto-
nian (3). In fact, this simple example can be generalized to larger matrices. In particular,
one can define an ensemble of matrices drawn from a random Gaussian distribution [72]:

P (Ĥ) ∝ exp

[
− β

2a2
Tr(Ĥ2)

]
≡ exp


− β

2a2

∑

ij

HijHji


 , (11)

where a sets the overall energy scale and, as before, β = 1 refers to systems with time-
reversal symmetry where all entries in the Hamiltonian are real and satisfy Hij = Hji,
that is, the so-called Gaussian orthogonal ensemble (GOE), and β = 2 refers to systems
without time-reversal symmetry, where the entities are complex and satisfy Hij = H∗ji,
that is, the so-called Gaussian unitary ensemble (GUE).3 Note that the factor of

√
2 in

Eq. (3) ensures that the Hamiltonian is described by the distribution (11).
The choice of the ensemble in Eq. (11) is a natural one. The ensemble must be invari-

ant under any orthogonal (GOE) or unitary (GUE) transformation, so the probability

distribution can only depend on the invariant Tr(Ĥ2). It is Gaussian because Tr(Ĥ2) is
a sum of many independent contributions and should therefore satisfy the central limit
theorem. We will not discuss the details of the derivations of the level statistics for such
random ensembles, which can be found in Refs. [71–74, 84]. We only point out that the
exact level spacing distributions (known as Wigner-Dyson distributions) do not have a

3There is a third ensemble, corresponding to β = 4, known as the Gaussian simplectic ensemble (GSE). We will

not discuss here.
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closed analytic form. However, they are qualitatively (and quantitatively) close to the
Wigner Surmise (9).

Following Wigner’s ideas, it was possible to explain the statistical properties of the
spectra of complex nuclei. However, for a long time it was not clear which are the “com-
plex systems” for which RMT is generally applicable. In 1984, Bohigas, Giannoni, and
Schmit, studying a single particle placed in an infinite potential well with the shape of a
Sinai billiard, found that at high energies (i.e., in the semi-classical limit), and provided
that one looks at a sufficiently narrow energy window, the level statistics is described
by the Wigner-Dyson distribution [85]. Based on this discovery, they conjecture that the
level statistics of quantum systems that have a classically chaotic counterpart are de-
scribed by RMT (this is known as the BGS conjecture). This conjecture has been tested
and confirmed in many different setups (we will show some of them in the next section).
To date, only non-generic counterexamples, such as arithmetic billiards, are known to
violate this conjecture [86]. Therefore, the emergence of Wigner-Dyson statistics for the
level spacings is often considered as a defining property of quantum chaotic systems,
whether such systems have a classical counterpart or not.

2.2.1. Chaotic Eigenfunctions

RMT allows one to make an important statement about the eigenvectors of random
matrices. The joint probability distribution of components of eigenvectors can be written
as [72, 87]

PGOE(ψ1, ψ2, . . . , ψN ) ∝ δ


∑

j

ψ2
j − 1


 , PGUE(ψ1, ψ2, . . . , ψN ) ∝ δ


∑

j

|ψj |2 − 1


 ,

(12)
where ψj are the components of the wave functions in some fixed basis. This form follows
from the fact that, because of the orthogonal (unitary) invariance of the random matrix

ensemble, the distribution can depend only on the norm
√∑

j ψ
2
j

(√∑
j |ψ2

j |
)

of the

eigenvector, and must be proportional to the δ-functions in Eq. (12) because of the
normalization [87]. Essentially, Eq. (12) states that the eigenvectors of random matrices
are random unit vectors, which are either real (in the GOE) or complex (in the GUE).
Of course, different eigenvectors are not completely independent since they need to be
orthogonal to each other. However, because two uncorrelated random vectors in a large-
dimensional space are, in any case, nearly orthogonal, in many instances the correlations
due to this orthogonality condition can be ignored.

One may wonder about the classical limit of quantum eigenvectors. The latter are
stationary states of the system and should therefore correspond to stationary (time-
averaged) trajectories in the classical limit. In integrable systems with a classical limit,
the quantum eigenstates factorize into a product of WKB-like states describing the sta-
tionary phase-space probability distribution of a particle corresponding to one of the
trajectories [77]. However, if the system is chaotic, the classical limit of the quantum
eigenstates is ill-defined. In particular, in the classical limit, there is no smooth (dif-
ferentiable) analytic function that can describe the eigenstates of chaotic systems. This
conclusion follows from the BGS conjecture, which implies that the eigenstates of a
chaotic Hamiltonian in non-fine-tuned bases, including the real space basis, are essen-
tially random vectors with no structure.

Let us address a point that often generates confusion. Any given (Hermitian) Hamil-
tonian, whether it is drawn from a random matrix ensemble or not, can be diagonalized
and its eigenvectors form a basis. In this basis, the Hamiltonian is diagonal and RMT

11
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specifies the statistics of the eigenvalues. The statistical properties of the eigenstates are
specified for an ensemble of random Hamiltonians in a fixed basis. If we fix the basis
to be that of the eigenkets of the first random Hamiltonian we diagonalize, that basis
will not be special for other randomly drawn Hamiltonians. Therefore, all statements
made will hold for the ensemble even if they fail for one of the Hamiltonians. The issue
of the basis becomes more subtle when one deals with physical Hamiltonians. Here, one
can ask what happens if we diagonalize a physical Hamiltonian and use the eigenvectors
obtained as a basis to write a slightly modified version of the same Hamiltonian (which
is obtained, say, by slightly changing the strength of the interactions between particles).
As we discuss below (see also Ref. [72]), especially in the context of many-body systems,
the eigenstates of chaotic quantum Hamiltonians [which are away from the edge(s) of
the spectrum]4 are very sensitive to small perturbations. Hence, one expects that the
perturbed Hamiltonian will look like a random matrix when written in the unperturbed
basis. In that sense, writing a Hamiltonian in its own basis can be considered to be a
fine-tuning of the basis. It is in this spirit that one should take Wigner’s insight. The
sensitivity just mentioned in chaotic quantum systems is very similar to the sensitivity of
classical chaotic trajectories to either initial conditions or the details of the Hamiltonian.

2.2.2. The Structure of the Matrix Elements of Operators

Let us now analyze the structure of matrix elements of Hermitian operators

Ô =
∑

i

Oi|i〉〈i|, where Ô|i〉 = Oi|i〉, (13)

within RMT. For any given random Hamiltonian, for which the eigenkets are denoted
by |m〉 and |n〉,

Omn ≡ 〈m|Ô|n〉 =
∑

i

Oi〈m|i〉〈i|n〉 =
∑

i

Oi(ψ
m
i )∗ψni . (14)

Here, ψmi ≡ 〈i|m〉 and similarly for ψni . Recall that the eigenstates of random matrices
in any basis are essentially random orthogonal unit vectors. Therefore, to leading order
in 1/D, where D is the dimension of the Hilbert space, we have

(ψmi )∗(ψnj ) =
1

D δmnδij , (15)

where the average (ψmi )∗(ψnj ) is over random eigenkets |m〉 and |n〉. This implies that one
has very different expectation values for the diagonal and off-diagonal matrix elements
of Ô. Indeed, using Eqs. (14) and (15), we find

Omm =
1

D
∑

i

Oi ≡ Ō, (16)

and

Omn = 0, for m 6= n. (17)

4That one needs to be away from the edges of the spectrum can already be inferred from the fact that BGS found
that the Wigner-Dyson distribution occurs only at sufficiently high energies [85]. We will discuss this point in

detail when presenting results for many-body quantum systems.
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Moreover, the fluctuations of the diagonal and off-diagonal matrix elements are sup-
pressed by the size of the Hilbert space. For the diagonal matrix elements

O2
mm −Omm

2
=
∑

i,j

OiOj(ψmi )∗ψmi (ψmj )∗ψmj −
∑

i,j

OiOj(ψmi )∗ψmi (ψmj )∗ψmj

=
∑

i

O2
i

(
|ψmi |4 − (|ψmi |2)2

)
=

3− β
D2

∑

i

O2
i ≡

3− β
D O2, (18)

where, as before, β = 1 for the GOE and β = 2 for the GUE. For the GOE (ψmi are real

numbers), we used the relation (ψmi )4 = 3[(ψmi )2]2, while for the GUE (ψmi are complex

numbers), we used the relation |ψmi |4 = 2(|ψmi |2)2. These results are a direct consequence
of the Gaussian distribution of the components of the random vector ψmi . Assuming that
none of the eigenvalues Oi scales with the size of the Hilbert space, as is the case for
physical observables, we see that the fluctuations of the diagonal matrix elements of Ô
are inversely proportional to the square root of the size of the Hilbert space.

Likewise, for the absolute value of the off-diagonal matrix elements, we have

|Omn|2 −
∣∣Omn

∣∣2 =
∑

i

O2
i |ψmi |2|ψni |2 =

1

DO
2. (19)

Combining these expressions, we see that, to leading order in 1/D, the matrix elements
of any operator can be written as

Omn ≈ Ōδmn +

√
O2

D Rmn, (20)

where Rmn is a random variable (which is real for the GOE and complex for the GUE)
with zero mean and unit variance (for the GOE, the variance of the diagonal components
Rmm is 2). It is straightforward to check that the ansatz (20) indeed correctly reproduces

the mean and the variance of the matrix elements of Ô given by Eqs. (16)–(19).
In deriving Eqs. (16)–(19), we averaged over a fictitious ensemble of random Hamilto-

nians. However, from Eq. (20), it is clear that for large D the fluctuations of operators
are small and thus one can use the ansatz (20) for a given fixed Hamiltonian.

2.3. Berry-Tabor Conjecture

In classical systems, an indicator of whether they are integrable or chaotic is the tem-
poral behavior of nearby trajectories. In quantum systems, the role of such an indicator
is played by the energy level statistics. In particular, for chaotic systems, as we dis-
cussed before, the energy levels follow the Wigner-Dyson distribution. For quantum in-
tegrable systems, the question of level statistics was first addressed by Berry and Tabor
in 1977 [88]. For a particle in one dimension, which we already said exhibits non-chaotic
classical dynamics if the Hamiltonian is time independent, we know that if we place it in
a harmonic potential all levels are equidistant, while if we place it in an infinite well the
spacing between levels increases as the energy of the levels increases. Hence, the statistics
of the level spacings strongly depends on the details of the potential considered. This
is unique to one particle in one dimension. It changes if one considers systems whose
classical counterparts have more than one degree of freedom, for example, one particle in
higher dimensional potentials, or many particles in one dimension. A very simple example
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of a non-ergodic system, with many degrees of freedom, would be an array of indepen-
dent harmonic oscillators with incommensurate frequencies. These can be, for example,
the normal modes in a harmonic chain. Because these oscillators can be diagonalized
independently, the many-body energy levels of such a system can be computed as

E =
∑

j

njωj , (21)

where nj are the occupation numbers and ωj are the mode frequencies. If we look into
high energies, E, when the occupation numbers are large, nearby energy levels (which
are very closely spaced) can come from very different sets of {nj}. This means that the
energy levels E are effectively uncorrelated with each other and can be treated as random
numbers. Their distribution then should be described by Poisson statistics, that is, the
probability of having n energy levels in a particular interval [E,E + δE] will be

Pn =
λn

n!
exp[−λ], (22)

where λ is the average number of levels in that interval. Poisson and Wigner-Dyson statis-
tics are very different in that, in the former there is no level repulsion. For systems with
Poisson statistics, the distribution of energy level separations ω (with mean separation
set to one) is

P0(ω) = exp[−ω], (23)

which is very different from the Wigner Surmise (10). The statement that, for quantum
systems whose corresponding classical counterpart is integrable, the energy eigenvalues
generically behave like a sequence of independent random variables, that is, exhibit Pois-
son statistics, is now known as the Berry-Tabor conjecture [88]. While this conjecture
describes what is seen in many quantum systems whose classical counterpart is integrable,
and integrable quantum systems without a classical counterpart, there are examples for
which it fails (such as the single particle in the harmonic potential described above and
other harmonic systems [89]). Deviations from Poisson statistics are usually the result
of having symmetries in the Hamiltonian that lead to extra degeneracies resulting in
commensurability of the spectra.

The ideas discussed above are now regularly used when dealing with many-particle
systems. The statistics of the energy levels of many-body Hamiltonians serves as one of
the main indicators of quantum chaos or, conversely, of quantum integrability. As the
energy levels become denser, the level statistics asymptotically approaches either the
Wigner-Dyson or the Poisson distribution. It is interesting to note that in few-particle
systems, like a particle in a billiard, the spectra become denser by going to the semi-
classical limit by either increasing the energy or decreasing Planck’s constant, while in
many-particle systems one can achieve this by going to the thermodynamic limit. This
means that the level statistics indicators can be used to characterize whether a quantum
system is chaotic or not even when it does not have a classical limit. This is the case,
for example, for lattice systems consisting of spins 1/2 or interacting fermions described
within the one-band approximation.

Finally, as we discuss later, the applicability of RMT requires that the energy levels
analyzed are far from the edges of the spectrum and that the density of states as a
function of energy is accounted for. The first implies that one needs to exclude, say, the
ground state and low-lying excited states and the states with the highest energies (if
the spectrum is bounded from above). It is plausible that in generic systems only states
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within subextensive energy windows near the edges of the spectrum are not described
by RMT.

2.4. The Semi-Classical Limit and Berry’s Conjecture

One of the most remarkable connections between the structure of the eigenstates
of chaotic systems in the semi-classical limit and classical chaos was formulated by
Berry [90], and is currently known as Berry’s conjecture. (In this section, we return
~ to our equations since it will be important for taking the classical limit ~→ 0.)

In order to discuss Berry’s conjecture, we need to introduce the Wigner function
W (x,p), which is defined as the Wigner-Weyl transform of the density matrix ρ̂ [75, 76].
For a pure state, ρ̂ ≡ |ψ〉〈ψ|, one has

W (x,p) =
1

(2π~)3N

ˆ
d3Nξ ψ∗

(
x +

ξ

2

)
ψ

(
x− ξ

2

)
exp

[
−ipξ

~

]
, (24)

where x, p are the coordinates and momenta of N -particles spanning a 6N -dimensional
phase space. For a mixed state one replaces the product

ψ∗
(

x +
ξ

2

)
ψ

(
x− ξ

2

)
→
〈

x− ξ
2

∣∣∣∣ ρ̂
∣∣∣∣x +

ξ

2

〉
≡ ρ

(
x− ξ

2
,x +

ξ

2

)
, (25)

where ρ̂ is the density matrix. One can check that, similarly, the Wigner function can be
defined by integrating over momentum

W (x,p) =
1

(2π~)3N

ˆ
d3Nη φ∗

(
p +

η

2

)
φ
(
p− η

2

)
exp

[
i
xη

~

]
, (26)

where φ(p) is the Fourier transform of ψ(x). From either of the two representations it
immediately follows that

ˆ
d3NpW (x,p) = |ψ(x)|2 and

ˆ
d3NxW (x,p) = |φ(p)|2 . (27)

The Wigner function is uniquely defined for any wave function (or density matrix) and
plays the role of a quasi-probability distribution in phase space. In particular, it allows
one to compute an expectation value of any observable Ô as a standard average [75, 76]:

〈Ô〉 =

ˆ
d3Nx d3NpOW (x,p)W (x,p), (28)

where OW (x,p) is the Weyl symbol of the operator Ô

OW (x,p) =
1

(2π~)3N

ˆ
d3Nξ

〈
x− ξ

2

∣∣∣∣ Ô
∣∣∣∣x +

ξ

2

〉
exp

[
−ipξ

~

]
. (29)

We note that instead of the coordinate and momentum phase-space variables one can,
for example, use coherent state variables to represent electromagnetic or matter waves,
angular momentum variables to represent spin systems, or any other set of canonically
conjugate variables [76].
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Berry’s conjecture postulates that, in the semi-classical limit of a quantum system
whose classical counterpart is chaotic, the Wigner function of energy eigenstates (aver-
aged over a vanishingly small phase space) reduces to the microcanonical distribution.
More precisely, define

W (X,P) =

ˆ
∆Ω1

dx1dp1

(2π~)
. . .

ˆ
∆ΩN

dxNdpN
(2π~)

W (x,p), (30)

where ∆Ωj is a small phase-space volume centered around the point Xj , Pj . This volume
is chosen such that, as ~ → 0, ∆Ωj → 0 and at the same time ~/∆Ωj → 0. Berry’s
conjecture then states that, as ~→ 0,

W (X,P) =
1´

d3NXd3NP δ[E −H(X,P)]
δ[E −H(X,P)], (31)

where H(X,P) is the classical Hamiltonian describing the system, and δ[. . . ] is a one-
dimensional Dirac delta function. In Berry’s words, “ψ(x) is a Gaussian random function

of x whose spectrum at x is simply the local average of the Wigner function W (x,p)”.
Berry also considered quantum systems whose classical counterpart is integrable. He
conjectured that the structure of the energy eigenstates of such systems is very different
[90].

It follows from Berry’s conjecture, see Eqs. (28) and (31), that the energy eigenstate
expectation value of any observable in the semi-classical limit (of a quantum system
whose classical counterpart is chaotic) is the same as a microcanonical average.

For a dilute gas of hard spheres, this was studied by Srednicki in 1994 [27]. Let us
analyze the latter example in detail. Srednicki argued that the eigenstate corresponding
to a high-energy eigenvalue En can chosen to be real and written as

ψn(x) = Nn
ˆ
d3NpAn(p)δ(p2 − 2mEn) exp[ipx/~], (32)

where Nn is a normalization constant, and A∗n(p) = An(−p). In other words the energy
eigenstates with energy En are given by a superposition of plane-waves with momentum
p such that En = p2/(2m). Assuming Berry’s conjecture applies, An(p) was taken to be
a Gaussian random variable satisfying

〈Am(p)An(p′)〉EE = δmn
δ3N (p + p′)
δ(|p|2 − |p′|2)

. (33)

Here the average should be understood as over a fictitious “eigenstate ensemble” of
energy eigenstates of the system indicated by “EE”. This replaces the average over a
small phase-space volume used by Berry. The denominator in this expression is needed
for proper normalization.

From these assumptions, it follows that

〈φ∗m(p)φn(p′)〉EE = δmnN
2
n (2π~)3Nδ(p2 − 2mEn)δ3N

V (p− p′), (34)

where φn(p) is the 3N -dimensional Fourier transform of ψn(x), and δV (p) ≡
(2π~)−3N

´
V d

3Nx exp[ipx/~] and V = L3 is the volume of the system. It is straight-
forward to check, using Eqs. (34) and (26), that the Wigner function averaged over the
eigenstate ensemble is indeed equivalent to the microcanonical distribution [Eq. (31)].
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Using Eqs. (32)–(34) one can compute observables of interest in the eigenstates of
the Hamiltonian. For example, substituting δV (0)→ [L/(2π~)]3N , one can calculate the
momentum distribution function of particles in the eigenstate ensemble

〈φnn(p1)〉EE ≡
ˆ
d3p2 . . . d

3pN 〈φ∗n(p)φn(p)〉EE = N2
n L

3N

ˆ
d3p2 . . . d

3pNδ(p
2−2mEn).

(35)
Finally, using the fact that IN (A) ≡

´
dNpδ(p2 − A) = (πA)N/2/[Γ(N/2)A], which

through the normalization of φn(p) allows one to determine N−2
n = L3NI3N (2mEn),

one obtains

〈φnn(p1)〉EE =
I3N−3(2mEn − p2

1)

I3N (2mEn)
=

Γ(3N/2)

Γ[3(N − 1)/2]

(
1

2πmEn

) 3

2
(

1− p2
1

2mEn

) (3N−5)

2

.

(36)
Defining a microcanonical temperature using En = 3NkBTn/2, where kB is the Boltz-
mann constant, and taking the limit N →∞ one gets

〈φnn(p1)〉EE =

(
1

2πmkBTn

) 3

2

exp

(
− p2

1

2mkBTn

)
, (37)

where we used that limN→∞ Γ(N + B)/[Γ(N)NB] = 1, which is valid for B ∈ R. We
immediately see that the result obtained for 〈φnn(p1)〉EE is the Maxwell-Boltzmann
distribution of momenta in a thermal gas.

One can go a step further and show that the fluctuations of φnn(p1) about 〈φnn(p1)〉EE
are exponentially small in the number of particles [27]. Furthermore, it can be shown that
if one requires the wave function ψn(x) to be completely symmetric or completely anti-
symmetric one obtains, instead of the Maxwell-Boltzmann distribution in Eq. (37), the
(canonical) Bose-Einstein or Fermi-Dirac distributions, respectively [27]. An approach
rooted in RMT was also used by Flambaum and Izrailev to obtain, starting from sta-
tistical properties of the structure of chaotic eigenstates, the Fermi-Dirac distribution
function in interacting fermionic systems [91, 92]. These ideas underlie the eigenstate
thermalization hypothesis, which is the focus of this review.

In closing this section, let us note that formulating a slightly modified conjecture one
can also recover the classical limit from the eigenstates. Namely, one can define a different
coarse-graining procedure for the Wigner function:

〈W (x,p)〉 =
1

NδE

∑

m∈Em±δE
Wm(x,p), (38)

where the sum is taken over all, NδE , eigenstates in a window δE, which vanishes in the
limit ~ → 0 but contains an exponential (in the number of degrees of freedom) number
of levels. We anticipate that in the limit ~ → 0 the function 〈W (x,p)〉 also reduces to
the right-hand-side (RHS) of Eq. (30), that is,

〈W (x,p)〉 =
1´

d3NXd3NP δ[E −H(X,P)]
δ[E −H(X,P)]. (39)

However, this result does not require the system to be ergodic. While this conjecture
has little to do with chaos and ergodicity, it suggests a rigorous way of defining classi-
cal microcanonical ensembles from quantum eigenstates. This is opposed to individual
quantum states, which as we discussed do not have a well-defined classical counterpart.
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3. Quantum Chaos in Physical Systems

3.1. Examples of Wigner-Dyson and Poisson Statistics

Random matrix statistics has found many applications since its introduction by Wigner.
They extend far beyond the framework of the original motivation, and have been inten-
sively explored in many fields (for a recent comprehensive review, see Ref. [93]). Examples
of quantum systems whose spectra exhibit Wigner-Dyson statistics are: (i) heavy nuclei
[94], (ii) Sinai billiards (square or rectangular cavities with circular potential barriers in
the center) [85], which are classically chaotic as the Bunimovich stadium in Fig. 1, (iii)
highly excited levels5 of the hydrogen atom in a strong magnetic field [95], (iv) Spin-1/2
systems and spin-polarized fermions in one-dimensional lattices [69, 70]. Interestingly, the
Wigner-Dyson statistics is also the distribution of spacings between zeros of the Riemann
zeta function, which is directly related to prime numbers. In turn, these zeros can be
interpreted as Fisher zeros of the partition function of a particular system of free bosons
(see Appendix B). In this section, we discuss in more detail some examples originating
from over 30 years of research.
Heavy nuclei - Perhaps the most famous example demonstrating the Wigner-Dyson
statistics is shown in Fig. 2. That figure depicts the cumulative data of the level spacing
distribution obtained from slow neutron resonance data and proton resonance data of
around 30 different heavy nuclei [71, 96]. All spacings are normalized by the mean level
spacing. The data are shown as a histogram and the two solid lines depict the (GOE)
Wigner-Dyson distribution and the Poisson distribution. One can see that the Wigner-
Dyson distribution works very well, confirming Wigner’s original idea.

Figure 2. Nearest neighbor spacing distribution for the “Nuclear Data Ensemble” comprising 1726 spacings

(histogram) versus normalized (to the mean) level spacing. The two lines represent predictions of the random
matrix GOE ensemble and the Poisson distribution. Taken from Ref. [96]. See also Ref. [71].

Single particle in a cavity - Next, let us consider a much simpler setup, namely, the
energy spectrum of a single particle in a cavity. Here, we can contrast the Berry-Tabor
and BGS conjectures. To this end, in Fig. 3, we show the distribution of level spacings
for two cavities: (left panel) an integrable rectangular cavity with sides a and b such
that a/b = 4

√
5 and ab = 4π and (right panel) a chaotic cavity constructed from two

circular arcs and two line segments (see inset) [80]. These two plots beautifully confirm
the two conjectures. The distribution on the left panel, as expected from the Berry-Tabor
conjecture, is very well described by the Poisson distribution. This occurs despite the fact

5The low-energy spectra of this system exhibits Poissonian level statistics. This is understandable as, at low

energies, the motion of the equivalent classical system is regular [95]. See also Fig. 4.
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Figure 1. One of the regions proven by Sinai to
be classically chaotic is this region Ω
constructed from line segments and circular
arcs.

Traditionally, analysis of the spectrum recovers
information such as the total area of the billiard,
from the asymptotics of the counting function
N(λ) = #{λn ≤ λ}: As λ → ∞, N(λ) ∼ area

4π
λ

(Weyl’s law). Quantum chaos provides completely
different information: The claim is that we should
be able to recover the coarse nature of the dynam-
ics of the classical system, such as whether they
are very regular (“integrable”) or “chaotic”. The
term integrable can mean a variety of things, the
least of which is that, in two degrees of freedom,
there is another conserved quantity besides ener-
gy, and ideally that the equations of motion can be
explicitly solved by quadratures. Examples are the
rectangular billiard, where the magnitudes of the
momenta along the rectangle’s axes are conserved,
or billiards in an ellipse, where the product of an-
gular momenta about the two foci is conserved,
and each billiard trajectory repeatedly touches a
conic confocal with the ellipse. The term chaotic
indicates an exponential sensitivity to changes
of initial condition, as well as ergodicity of the
motion. One example is Sinai’s billiard, a square
billiard with a central disk removed; another class
of shapes investigated by Sinai, and proved by him
to be classically chaotic, includes the odd region
shown in Figure 1. Figure 2 gives some idea of how
ergodicity arises. There are many mixed systems
where chaos and integrability coexist, such as the
mushroom billiard—a semicircle atop a rectangu-
lar foot (featured on the cover of the March 2006
issue of the Notices to accompany an article by
Mason Porter and Steven Lansel).

Figure 2. This figure gives some idea of how
classical ergodicity arises in Ω.
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Figure 3. It is conjectured that the distribution
of eigenvalues π2(m2/a2 + n2/b2) of a
rectangle with sufficiently incommensurable
sides a, b is that of a Poisson process. The
mean is 4π/ab by simple geometric reasoning,
in conformity with Weyl’s asymptotic formula.
Here are plotted the statistics of the gaps
λi+1 − λi found for the first 250,000
eigenvalues of a rectangle with side/bottom
ratio 4
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0.1, compared to the expected probability
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Figure 4. Plotted here are the normalized gaps
between roughly 50,000 sorted eigenvalues

for the domain Ω, computed by Alex Barnett,
compared to the distribution of the

normalized gaps between successive
eigenvalues of a large random real symmetric
matrix picked from the “Gaussian Orthogonal

Ensemble”, where the matrix entries are
independent (save for the symmetry

requirement) and the probability distribution
is invariant under orthogonal transformations.

One way to see the effect of the classical dy-
namics is to study local statistics of the energy
spectrum, such as the level spacing distribution
P(s), which is the distribution function of nearest-
neighbor spacings λn+1 − λn as we run over all
levels. In other words, the asymptotic propor-
tion of such spacings below a given bound x is∫ x
−∞ P(s)ds. A dramatic insight of quantum chaos

is given by the universality conjectures for P(s):
• If the classical dynamics is integrable, then

P(s) coincides with the corresponding quantity for
a sequence of uncorrelated levels (the Poisson en-
semble) with the same mean spacing: P(s) = ce−cs ,
c = area/4π (Berry and Tabor, 1977).
• If the classical dynamics is chaotic, then P(s)

coincides with the corresponding quantity for the
eigenvalues of a suitable ensemble of random
matrices (Bohigas, Giannoni, and Schmit, 1984).
Remarkably, a related distribution is observed for
the zeros of Riemann’s zeta function.

Not a single instance of these conjectures is
known, in fact there are counterexamples, but
the conjectures are expected to hold “generically”,
that is unless we have a good reason to think oth-
erwise. A counterexample in the integrable case
is the square billiard, where due to multiplici-

ties in the spectrum, P(s) collapses to a point
mass at the origin. Deviations are also seen in the
chaotic case in arithmetic examples. Nonetheless,
empirical studies offer tantalizing evidence for
the “generic” truth of the conjectures, as Figures
3 and 4 show.

Some progress on the Berry-Tabor conjecture in
the case of the rectangle billiard has been achieved
by Sarnak, by Eskin, Margulis, and Mozes, and by
Marklof. However, we are still far from the goal
even there. For instance, an implication of the
conjecture is that there should be arbitrarily large
gaps in the spectrum. Can you prove this for
rectangles with aspect ratio 4

√
5?

The behavior of P(s) is governed by the statis-
tics of the number N(λ, L) of levels in windows
whose location λ is chosen at random, and whose
length L is of the order of the mean spacing
between levels. Statistics for larger windows also
offer information about the classical dynamics and
are often easier to study. An important example
is the variance of N(λ, L), whose growth rate is
believed to distinguish integrability from chaos [1]
(in “generic” cases; there are arithmetic counterex-
amples). Another example is the value distribution
ofN(λ, L), normalized to have mean zero and vari-
ance unity. It is believed that in the chaotic case
the distribution is Gaussian. In the integrable case
it has radically different behavior: For large L, it
is a system-dependent, non-Gaussian distribution
[2]. For smaller L, less is understood: In the case
of the rectangle billiard, the distribution becomes
Gaussian, as was proved recently by Hughes and
Rudnick, and by Wigman.
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Figure 3. (Left panel) Distribution of 250,000 single-particle energy level spacings in a rectangular two-

dimensional box with sides a and b such that a/b = 4
√

5 and ab = 4π. (Right panel) Distribution of 50,000

single-particle energy level spacings in a chaotic cavity consisting of two arcs and two line segments (see inset).
The solid lines show the Poisson (left panel) and the GOE (right panel) distributions. From Ref. [80].

that the corresponding classical system has only two degrees of freedoms [recall that in
the argument used to justify the Berry-Tabor conjecture, Eqs. (21)–(23), we relied on
having many degrees of freedom]. The right panel depicts a level distribution that is in
perfect agreement with the GOE, in accordance with the BGS conjecture.
Hydrogen atom in a magnetic field - A demonstration of a crossover between Pois-
son statistics and Wigner-Dyson statistics can be seen in another single-particle system
– a hydrogen atom in a magnetic field. The latter breaks the rotational symmetry of the
Coulomb potential and hence there is no conservation of the total angular momentum. As
a result, the classical system has coexistence of regions with both regular (occurring at
lower energies) and chaotic (occurring at higher energies) motion [98]. Results of numeri-
cal simulations (see Fig. 4) show a clear interpolation between Poisson and Wigner-Dyson

level statistics as the dimensionless energy (denoted by Ê) increases [95]. Note that at
intermediate energies the statistics is neither Poissonian nor Wigner-Dyson, suggesting

Figure 4. The level spacing distribution of a hydrogen atom in a magnetic field. Different plots correspond to

different mean dimensionless energies Ê, measured in natural energy units proportional to B2/3, where B is the
magnetic field. As the energy increases one observes a crossover between Poisson and Wigner-Dyson statistics.
The numerical results are fitted to a Brody distribution (solid lines) [87], and to a semi-classical formula due to

Berry and Robnik (dashed lines) [97]. From Ref. [95].
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that the structure of the energy levels in this range is richer. In the plots shown, the
numerical results are fitted to a Brody distribution (solid lines) [87], which interpolates
between the Poisson distribution and the GOE Wigner surmise, and to a semi-classical
formula due to Berry and Robnik (dashed lines) [97]. We are not aware of a universal
description of Hamiltonian ensembles corresponding to the intermediate distribution.
Lattice models - As we briefly mentioned earlier, RMT theory and the Berry-Tabor
conjecture also apply to interacting many-particle systems that do not have a classical
counterpart. There are several models in one-dimensional lattices that fall in this cate-
gory. They allow one to study the crossover between integrable and nonintegrable regimes
by tuning parameters of the Hamiltonian [33]. A few of these models have been studied
in great detail in recent years [69, 70, 99–104]. Here, we show results for a prototypical
lattice model of spinless (spin-polarized) fermions with nearest and next-nearest neigh-
bor hoppings (with matrix elements J and J ′, respectively) and nearest and next-nearest
neighbor interactions (with strengths V and V ′, respectively) [69]. The Hamiltonian can
be written as

Ĥ =

L∑

j=1

[
−J

(
f̂ †j f̂j+1 + H.c.

)
+ V

(
n̂j −

1

2

)(
n̂j+1 −

1

2

)

−J ′
(
f̂ †j f̂j+2 + H.c.

)
+ V ′

(
n̂j −

1

2

)(
n̂j+2 −

1

2

)]
, (40)

where f̂j and f̂ †j are fermionic annihilation and creation operators at site j, n̂j = f̂ †j f̂j is
the occupation operator at site j, and L is the number of lattice sites. Periodic boundary
conditions are applied, which means that f̂L+1 ≡ f̂1 and f̂L+2 ≡ f̂2. A classical limit
for this model can be obtained at very low fillings and sufficiently high energies. In
the simulations presented below, the filling (N/L) has been fixed to 1/3. Therefore,
quantum effects are important at any value of the energy. In this example, we approach
a dense energy spectrum, and quantum chaos, by increasing the system size L. The
Hamiltonian (40) is integrable when J ′ = V ′ = 0, and can be mapped (up to a possible
boundary term) onto the well-known spin-1/2 XXZ chain [33].

It is important to stress that Hamiltonian (40) is translationally invariant. This means
that when diagonalized in quasi-momentum space, different total quasi-momentum sec-
tors (labeled by k in what follows) are decoupled. In addition, some of those sectors
can have extra space symmetries, for example, k = 0 has reflection symmetry. Finally,
if J ′ = 0, this model exhibits particle-hole symmetry at half-filling. Whenever carrying
out an analysis of the level spacing distribution, all those discrete symmetries need to
be accounted for, that is, one needs to look at sectors of the Hamiltonian that are free
of them. If one fails to do so, a quantum chaotic system may appear to be integrable
as there is no level repulsion between levels in different symmetry sectors. All results
reported in this review for models with discrete symmetries are obtained after properly
taking them into account.

In Fig. 5(a)–5(g), we show the level spacing distribution P (ω) of a system described by
the Hamiltonian (40), with L = 24 (see Ref. [69] for further details), as the strength of
the integrability breaking terms is increased. Two features are immediately apparent in
the plots: (i) for J ′ = V ′ = 0, i.e., at the integrable point, P (ω) is almost indistinguish-
able from the Poisson distribution and (ii) for large values of the integrability breaking
perturbation, P (ω) is almost indistinguishable from a Wigner-Dyson distribution [GOE
in this case, as Eq. (40) is time-reversal invariant]. In between, as in Fig. 4, there is a
crossover regime in which the distribution is neither Poisson nor Wigner-Dyson. How-
ever, as made apparent by the results in panel (h), as the system size increases the level
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Figure 5. (a)–(g) Level spacing distribution of spinless fermions in a one-dimensional lattice with Hamiltonian

(40). They are the average over the level spacing distributions of all k-sectors (see text) with no additional
symmetries (see Ref. [69] for details). Results are reported for L = 24, N = L/3, J = V = 1 (unit of energy), and

J ′ = V ′ (shown in the panels) vs the normalized level spacing ω. The smooth continuous lines are the Poisson
and Wigner-Dyson (GOE) distributions. (h) Position of the maximum of P (ω), denoted as ωmax, vs J ′ = V ′, for

three lattice sizes. The horizontal dashed line is the GOE prediction. Adapted from Ref. [69].

spacing statistics becomes indistinguishable of the RMT prediction at smaller values of
the integrability breaking parameters. This suggests that, at least for this class of mod-
els, an infinitesimal integrability breaking perturbation is sufficient to generate quantum
chaos in the thermodynamic limit. Recent numerical studies have attempted to quantify
how the strength of the integrability breaking terms should scale with the system size
for the GOE predictions to hold in one dimension [105, 106]. These works suggest that
the strength needs to be ∝ L−3 for this to happen, but the origin of such a scaling
is not understood. Moreover, it is unclear how generic these results are. In particular,
in disordered systems that exhibit many-body localization, it has been argued that the
transition from the Poisson to the Wigner-Dyson statistics occurs at a finite value of the
interaction strength. This corresponds to a finite threshold of the integrability breaking
perturbation even in the thermodynamic limit (see Ref. [51] and references therein).

3.2. The Structure of Many-Body Eigenstates

As we discussed in Sec. 2, RMT makes important predictions about the random nature of
eigenstates in chaotic systems. According to Eq. (12), any eigenvector of a matrix belong-
ing to random matrix ensembles is a random unit vector, meaning that each eigenvectors
is evenly distributed over all basis states. However, as we show here, in real systems the
eigenstates have more structure. As a measure of delocalization of the eigenstates over a
given fixed basis one can use the information entropy:

Sm ≡ −
∑

i

|cim|2 ln |cim|2, (41)

where

|m〉 =
∑

i

cim|i〉 (42)

is the expansion of the eigenstate |m〉 over some fixed basis |i〉. For the GOE, this entropy,
irrespective of the choice of basis, should be SGOE = ln(0.48D) + O(1/D) [93], where
D is the dimensionality of the Hilbert space. However, numerical analyses of various
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Figure 6. Information entropy (normalized using the GOE prediction) of the eigenstates of spinless fermions in a

one-dimensional lattice with Hamiltonian (40). Results are reported for L = 18, 21, and 24, N = L/3, J = V = 1
(unit of energy), and J ′ = V ′ (reported in the panels) vs the energy of the eigenstates. The information entropy

is calculated in the basis of the eigenstates of the integrable Hamiltonian (J = V = 1 and J ′ = V ′ = 0), and in
the k = 2 quasi-momentum sector (D is the number of states in that sector). See also Ref. [69].

physical systems indicate that Sm is only generically bounded from above by the RMT
prediction [69, 102, 107]. This situation is characteristic of both few-particle and many-
particle systems. For concreteness, we will illustrate this using the eigenstates of the
Hamiltonian (40) (see Ref. [69] for details). For the fixed basis |i〉, we use the eigenstates
of the integrable limit of this Hamiltonian, corresponding to J ′ = V ′ = 0. The results
of the numerical simulations for the normalized Shannon entropy Sm/SGOE are shown
in Fig. 6 [we note that Sm and SGOE were computed within a single quasi-momentum
sector of the translationally invariant Hamiltonian (40)]. It is clear from the figure that
the entropy of the states in the middle of the spectrum approaches the RMT prediction as
the strength of the integrability breaking perturbation and the system size increase, while
the states near the edges of the spectrum remain “localized”. The latter, namely, that the
lowest and highest (if the spectrum is bounded) energy states are usually non-chaotic, is
a generic feature of physical systems with few-body interactions and no randomness.

Another implication of RMT is that the eigenstates of different Hamiltonians are es-
sentially uncorrelated random vectors. This, of course, cannot be literary true in physical
systems. Indeed, let us consider a family of Hamiltonians characterized by some continu-
ous parameters like Ĥ(J ′, V ′) in Eq. (40). If we change J ′ → J ′+δJ ′ and V ′ → V ′+δV ′,
then, obviously, for sufficiently small changes, δJ ′ and δV ′, the eigenstates of the Hamil-
tonians Ĥ(J ′, V ′) and Ĥ(J ′ + δJ ′, V ′ + δV ′) will be almost the same. However, one can
anticipate that a very small parameter change, likely vanishing exponentially with the
system size, is sufficient to mix different eigenstates of the original Hamiltonian with
nearby energies such that new eigenstates look essentially random in the old basis. This
is indeed what is seen in the numerical simulations. In Fig. 7(a), we show the scaled

information entropy S/SGOE of the eigenstates of Ĥ(J ′ + δJ ′, V + δV ′) in the basis of

Ĥ(J ′, V ′) as a function of δJ ′ = δV ′. These results show that at fixed values of δJ ′ and
δV ′, the information entropy rapidly increases with the system size. In Fig. 7(b), we show
the same entropy plot vs the integrability breaking perturbation, but now scaled by a
power of the mean level spacing δJ ′/(δε)α = δV ′/(δε)α. We found numerically that there
is good data collapse for α ≈ 0.43. While it is necessary to study much larger system sizes
to determine the exponent α accurately, for the system sizes available to us it is already
apparent that the relevant strength of the integrability breaking perturbation needed
for a complete randomization of the energy levels is exponentially small in the system
size. Indeed δε ∝ exp[−S(E)], where S(E) is the thermodynamic entropy of the system,
which scales linearly in the system size, and E is the average energy of the eigenstates
for which the information entropy is computed.
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Figure 7. Average information entropy (normalized using the GOE prediction) of the eigenstates of spinless
fermions in a one-dimensional lattice with Hamiltonian (41). The average is computed over the central 10% of

the energy spectrum. Results are reported for L = 18, 21, and 24, N = L/3, J = V = 1 (unit of energy),

and J ′ = V ′ as one departs from J ′ = V ′ = 0.5. The information entropy is calculated in the basis of the
eigenstates of the nonintegrable Hamiltonian with J = V = 1 and J ′ = V ′ = 0.5, and in the k = 2 quasi-

momentum sector (D is the number of states in that sector). (a) The average information entropy is reported as

a function of δJ ′ ≡ J ′ − 0.5 = δV ′ ≡ V ′ − 0.5. (b) The average information entropy is reported as a function of
δJ ′/(δε)0.43 = δV ′/(δε)0.43, where δε is the average level spacing between the eigenstates used to compute the

average entropy.

3.3. Quantum Chaos and Entanglement

So far, we have discussed manifestations of quantum chaos in the statistics of level spac-
ings and in the properties of many-body Hamiltonian eigenstates. At the same time,
as we discussed in Sec. 2, classical chaotic systems do not have a well-defined analogue
of stationary eigenstates because they do not have closed stationary orbits. Chaos in
classical systems is usually defined as the exponential divergence in time of nearby tra-
jectories. But this language does not apply to quantum systems, which do not have a
well-defined notion of a trajectory. So, it seems that there is a fundamental discrepancy
between the quantum and classical ways of defining chaos. Nevertheless, this discrepancy
is somewhat superficial and one can treat quantum and classical chaos on the same foot-
ing by analyzing delocalization of the system either in phase space or in energy space,
and using appropriate entropy measures to characterize this delocalization. Using such
measures, it is possible to smoothly interpolate between quantum and classical regimes
in chaotic systems and analyze various quantum to classical crossovers. However, some
care is needed in defining such measures. To this end, here we first discuss the problem
for classical systems and then extend the ideas to quantum systems.

Let us consider a setup in which the system is prepared in some initial state and
is allowed to evolve according to some time-independent Hamiltonian Ĥ. If the initial
state is a stationary state (namely, a stationary probability distribution) of some initial

Hamiltonian Ĥ0 6= Ĥ then this is what is usually called a quench. For example, one can
consider a gas of particles in thermal equilibrium in a recipient with a given volume, and
then one suddenly doubles the volume of the recipient, for example, by moving a piston.
Alternatively, one can consider an equilibrium system of spins (classical or quantum) in
which one suddenly changes a magnetic field or the coupling between the spins. A strong
physical manifestation of chaos in classical systems is delocalization in the available phase
space after the quench. A standard measure of this delocalization is the entropy, which
is defined in phase space as

S = −
ˆ ˆ

dxdp

(2π~)D
ρ(x,p) ln[ρ(x,p)], (43)

where ρ(x,p) is the classical probability distribution, D is the dimensionality of the phase
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space, and the usual factor of (2π~)D is introduced to make the integration measure
dimensionless. This entropy is maximized when ρ(x,p) is uniform in the available phase
space. If the system is isolated, then according to Liouville’s theorem the entropy (43)
is conserved in time [108]. This is a consequence of the incompressibility of classical
trajectories, which implies that the phase-space volume occupied by any closed system
does not change in time. Liouville’s theorem and the lack of the entropy increase was a
topic of controversy for a long time, since Boltzmann introduced his H-theorem.

To circumvent this problem and use entropy as a measure of delocalization in the
available phase space, one can analyze the reduced probability distribution ofNA particles
obtained by averaging over the positions and momenta of the remaining N−NA particles,

ρA(x1, . . . ,xNA ,p1, . . . ,pNA , t)

=

ˆ ˆ
dxNA+1dpNA+1 . . . dxNdpN ρ(x1, . . . ,xN ,p1, . . . ,pN , t) , (44)

and compute the entropy of this reduced probability distribution. This entropy is not
restricted by Liouville’s theorem and after a quench, for sufficiently large subsystems of
an ergodic system (and for NA � N), it is expected to increase in time to the maximum
value given by the Gibbs distribution.

In quantum systems, the situation is remarkably similar. Instead of a probability dis-
tribution one deals with a density matrix ρ̂. A direct analogue of the classical (Liouville)
entropy (43) is the von Neumann entropy:

Svn = −Tr[ρ̂ ln ρ̂]. (45)

Similar to classical systems, the von Neumann entropy is conserved in time for isolated
systems, which is a simple consequence of unitary evolution. Hence, extending the analogy
to classical systems, we can define the reduced density matrix of a quantum system using
a partial trace (typically, one traces over a region in real space):

ρ̂A = TrB[ρ̂] =
∑

nA,n′A

|nA〉〈n′A|
∑

nB

〈nA, nB|ρ̂|n′A, nB〉, (46)

where |nA〉 and |nB〉 are the complete basis states of the subsystems A and B, respec-
tively. One can then define the von Neumann entropy of the reduced density matrix

SAvn = −TrA[ρ̂A ln ρ̂A]. (47)

If the full density matrix is that of a pure state, that is, ρ̂ = |ψ〉〈ψ|, then this entropy
SAvn is also called the entanglement entropy. The entanglement entropy has been studied
in the context of quenches and thermalization in clean interacting systems [109–113], as
well as in disordered systems in the context of many-body localization following quantum
quenches and in the presence of a periodic drive [114–118].

These ideas were recently tested in experiments with small systems involving super-
conducting qubits [119] and ultracold atoms [120]. We will discuss the superconducting
qubit experiment in the next section. Here, we review the results of the ultracold atom
experiment. There, the authors prepared two identical chains each with six sites. The
Hamiltonian describing the system is

Ĥ =
U

2

∑

ij

n̂i,j(n̂i,j − 1)− Jx
∑

i,j

(â†i,j âi+1,j + H.c.)− Jy
∑

i

(â†i,1âi,2 + H.c.), (48)
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1. When ↵ = 1, the solution is N⇤
A = nLA, regard-

less of f . Thus, the von Neumann entropy always
probes the system at its given filling, even when f
is finite. Further analysis shows that Eq. 27 holds
generally when f < 1

2 .

2. When the system is at half filling (n = 1
2 ), the

solution is N⇤
A = 1

2LA, regardless of f or ↵.

3. When ↵ > 1, 0 < f < 1
2 , and n 6= 1

2 , the filling
fraction N⇤

A/LA probed by the Renyi entropy S↵
actually depends on f . As a result, the Renyi en-
tropies for a given LA depend on f . This can be
contrasted with the von Neumann entropy, which is
independent of f as long as f < 1

2 . The right panel
of Fig. 1 illustrates this nicely: the analytical f ! 0
prediction for the von Neumann entropy (Eq. 27)
matches the corresponding numerical result quite
well, but the Renyi entropies differ significantly be-
cause f = 4/27 is finite.

We expect that analogous features hold true also for the
model that conserves only energy, which we will discuss
in the later sections.

B. Subsystem energy variance

Let us also consider the average subsystem filling vari-
ance of the particle-number conserving system given by
Eq. 22 at infinite temperature. While the average subsys-
tem filling is given by hNAi = nLA = Nf , the variance in
this quantity for a single eigenstate with f ⌘ LA/L < 1

2
is given by

⌦
(NA � hNAi)2

↵
= LA(1 � f)(1 � n)

L

L � 1
. (29)

Although both the filling and its variance are propor-
tional to LA as expected, the variance includes an ad-
ditional factor (1 � f), which causes it to be suppressed
compared with the grand canonical ensemble when f is
finite. In Sec. VII we will witness a similar suppres-
sion of the subsystem energy variance when the condition
LA/L ! 0 is relaxed.

IV. MODEL HAMILTONIAN WITH ONLY
ENERGY CONSERVATION

To develop some understanding of the questions posed
in the introduction, we study a finite 1D quantum spin-
1/2 chain with the following Hamiltonian:

H =

LX

i=1

�
�z

i �
z
i+1 + hx�

x
i + hz�

z
i

�
(30)

We set hx = 0.9045 and hz = 0.8090 such that the model
is far away from any integrable point, and is expected to

satisfy ETH in the sense of Eq. 1 as shown in Ref. 62.
We use periodic boundary conditions throughout.

We diagonalized the Hamiltonian in Eq. 30 for system
sizes up to L = 21, obtaining all eigenvalues and eigen-
states. As hinted earlier, to each eigenstate we assigned a
temperature ��1 by finding the value � for which the en-
ergy expectation value in the canonical ensemble matches
the energy of the eigenstate:

h |H| i
h | i =

tr
�
He��H

�

tr (e��H)
. (31)

By definition, � = +1 for the ground state and � = �1
for the highest excited state. In practice, the range of
available � values on a finite size system is much smaller.
With L = 21, for instance, the first excited state has
� ⇡ 4.0, and the second-to-highest excited state has
� ⇡ �0.6 (as determined from Eq. 31). It follows that
eigenstates outside the range 4.0 & � & �0.6 will not
appear fully thermal due to the large thermal correla-
tion length expected at low temperatures. (This can be
seen for instance in Fig. 3, where the finite size correc-
tions to the linear scaling of the entanglement entropy
become more prominent as temperature decreases.) An-
other thing to consider is that the infinite temperature
eigenstate | i�=0 is completely random and contains no
information about the Hamiltonian. In a finite size sys-
tem, states near infinite temperature will also contain
little information about the Hamiltonian and will there-
fore be unable to predict properties of the system at other
energy densities. As a result of these finite size consid-
erations, we typically study values of � between 0.2 and
0.5 in the remainder of this paper.

Figure 3: Scaling of the von Neumann entanglement entropy
S1 with subsystem size for the L = 20 system given in Eq. 30.
Up to � = 0.5, the scaling is linear for small LA, suggesting
that the states are volume-law and are thus likely to satisfy
ETH. The � = 1.0 eigenstate, on the other hand, is clearly
not linear, and is too close to the ground state at this system
size to exhibit ETH.

Figure 8. (Left panel) Second Renyi entanglement entropy vs subsystem size LA for a six-site Bose-Hubbard

chain measured at long times after a quench (red symbols) and in the ground state (blue symbols). Red and
blue lines following the data points depict the theoretical predictions, while the gray (straight) line depicts the

theoretical prediction for the Renyi entropy of the system in thermal equilibrium. From Ref. [120]. (Right panel)

Entanglement entropy as a function of a subsystem size for different representative eigenstates of the spin-1/2
Hamiltonian (50) for L = 20. The inverse temperature β in both panels is obtained by matching the energies to

those of systems in thermal equilibrium. The entanglement entropy grows linearly with LA, when LA and β are

small, and coincides with the equilibrium entropy of the Gibbs ensemble. From Ref. [123].

where i = 1, . . . , 6 is the site coordinate along the x-direction and j = 1, 2 is the site

coordinate along the y-direction. As usual, â†i,j and âi,j are the boson creation and anni-

hilation operators, respectively, and n̂i,j = â†i,j âi,j is the site occupation number.
The system was initialized in a Fock state with exactly one particle per site and both

Jx and Jy being essentially equal to zero. At time t = 0, the tunneling along the x-
direction (Jx) was quenched to Jx/U ≈ 0.64, with Jy remaining negligible. The system
was then allowed to evolve. This way, two identical copies of a many-body state were
created. Implementing a swap operation [121, 122], it was possible to measure the second
Renyi entanglement entropy for each chain:

SA2 = − ln
[
Trρ̂2

A

]
. (49)

The latter is very similar to the von Neumann entanglement entropy. If the system
is quantum chaotic, SA2 is expected to coincide with the corresponding entropy in the
thermal ensemble for LA/L < 1/2 (up to finite-size corrections). We note that, in general,
SAvn bounds SA2 from above. The two entropies are equal for (maximally entangled) infinite
temperature states and (non-entangled) product states.

In the left panel in Figure 8, we show the measured long-time result of the second
Renyi entanglement entropy after the quench as a function of the subsystem size. It is
remarkable that, even for such a small system, SA2 is very close to the entropy of a Gibbs
ensemble with the same mean energy for the smallest subsystem sizes. This experiment
shows that, even in small quantum systems, one can see clear signatures of quantum
chaotic behavior.

Next, it is important to discuss theoretical predictions that closely follow the exper-
imental findings. We focus on results for the spin-1/2 transverse field Ising chain, with
Hamiltonian:

Ĥ =

L∑

j=1

gσ̂xj +

L−1∑

j=2

hσ̂zj + (h− J)(σ̂z1 + σ̂zL) + J

L−1∑

j=1

σ̂zj σ̂
z
j+1. (50)

This model exhibits quantum chaos in the parameter range studied in Figs. 8 (right
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2

spin in the bulk, from the applied longitudinal field and
its interactions with its neighbors, is 2h or 4J ± 2h. To
keep the end sites similar in this respect to the bulk, we
reduce the strength of the longitudinal field on the end
spins by J . This is to avoid having some slow low-energy
modes near the ends that introduced small additional
finite-size e↵ects when we applied the same magnitude of
longitudinal field also to the end spins.

This Hamiltonian has one symmetry, namely inverting
the chain about its center. We always work with even
L, so the center of the chain is on the bond between
sites L/2 and (L/2) + 1. This symmetry allows us to
separate the system’s state space into sectors that are
even and odd under this parity symmetry, and diagonal-
ize within each sector separately. Any mixed parity state
can be obtained from a linear combination of even and
odd parity states. The statistics of energy level spacings
within each parity sector of this nonintegrable Hamilto-
nian should follow Gaussian orthogonal ensemble (GOE)
statistics [19]. There are 32896 energy levels in the even
sector for L = 16, the largest system we have diagonal-
ized. Their level spacing statistics is in excellent agree-
ment with the “r test” introduced in Ref. [20] and the
Wigner-like surmise described in Ref. [21], as expected,
indicating that this is indeed a robustly nonintegrable
model with no extra symmetries (see Supplement).

First, we consider the time evolution of the bipar-
tite entanglement across the central bond between the
two halves of the chain. We quantify the entangle-
ment entropy in bits using the von Neumann entropy
S(t) = �tr [⇢A(t) log2 ⇢A(t)] = �tr [⇢B(t) log2 ⇢B(t)] of
the probability operators (as known as reduced density
matrices) at time t of either the left half (A) or the right
half (B) of the chain. As initial states, we consider ran-
dom product states (with thus zero initial entanglement),
| (0)i = |s1i|s2i...|sLi, where each spin at site i initially
points in a random direction on its Bloch sphere,

|sii = cos

✓
✓i

2

◆
| "ii + ei�i sin

✓
✓i

2

◆
| #ii , (2)

where ✓i 2 [0,⇡) and �i 2 [0, 2⇡). Such an initial state
is in general neither even nor odd, and thus explores the
entire Hilbert space of the pure states as it evolves with
unitary Hamiltonian dynamics. This ensemble of initial
states maximizes the thermodynamic entropy and thus
corresponds to infinite temperature. For each time t,
we generate 200 random initial product states, let them
evolve to time t, compute S(t) for each initial state, and
then average. By doing so, the standard error at each
time is uncorrelated. The results are shown in Fig. 1.
Ballistic linear growth of S(t) at early time is clearly seen,
and the growth rate before the saturation is independent
of L. [Note, there is an even earlier time regime at t ⌧ 1
where the entanglement initially grows as ⇠ t2| log t|; this
regime is just the initial development of some entangle-
ment between the two spins immediately adjacent to the
central bond.]

In the long time limit, the time evolved state, on aver-

FIG. 1: (color online) (a) Spreading of entanglement entropy
S(t) for chains of length L. Initially the entanglement grows
linearly with time for all cases, with the same speed v ⇠=
0.70. Then the entanglement saturates at long time. This
saturation begins earlier for smaller L, as expected. The linear
fit function is f(t) = 0.70t. Standard error is less than 0.04
for all points and thus the error bars are only visible at early
times. (b) Same data scaled by the infinite-time entropy for
each L. Note that we use logarithmic scales both here and in
Fig. 2.

age, should behave like a random pure state (a random
linear combination of product states) [22]. In Ref. [23],
it is shown that the average of the entanglement entropy
of random pure states is

SR = log2 m � m

2n ln 2
� O

✓
1

mn

◆
. (3)

where m and n are the dimension of the Hilbert space in
each subsystem, with m  n. Since m = n = 2L/2 in our
case, SR ' L

2 in the large L limit. This limiting value
indicates that the entanglement spreads over the entire
subsystem of length L/2. Therefore, before saturation
begins, we can interpret S(t) (in bits) as a measure of
the distance over which entanglement has spread, and
its growth rate thus as the speed of the ballistic entan-
glement spreading. It is clear from figure 1(a) that at
long time (t > 20 ⇠ 100 depending on the system size)

Figure 9. von Neumann’s entropy of the reduced density matrix obtained after tracing one half of a spin-1/2

chain as a function of time (see text for details). The initial state corresponds to a product state of randomly

polarized spins. The entropy grows linearly in time and saturates at a value which is very close to the maximum,
corresponding to the infinite temperature state: Smax = L ln 2/2− 1/2. From Ref. [112].

panel) and 9: h = (
√

5 + 1)/4, g = (
√

5 + 5)/8, and J = 1.
In the right panel in Fig. 8, we show the entanglement entropy for representative eigen-

states of the Hamiltonian (50) as a function of the subsystem size [123]. Different curves
are labeled according to the temperature of the Gibbs ensemble that has the same mean
energy as the eigenstate. For small subsystem sizes, the entanglement entropy is clearly
a linear function of the subsystem size (as in the experimental results for the second
Renyi entanglement entropy shown in the left panel). Moreover, the slope is identical to
the slope of the equilibrium entropy. As the subsystem size increases, the entanglement
entropy deviates from the equilibrium result and the deviation increases as the effective
temperature decreases. In Ref. [123], those deviations were argued to be subextensive in
L for any fixed ratio LA/L < 1/2. This means that, in the thermodynamic limit and
for any nonvanishing effective temperature, the entanglement entropy of eigenstates in
quantum chaotic systems is expected to have a triangular shape as a function of LA/L,
with a cusp at LA/L = 1/2. This is a result of the eigenstate thermalization phenomenon
that we discuss in Sec. 4.

More directly related to the experiments in Ref. [120], in Fig. 9 we show the temporal
evolution of the entanglement entropy obtained numerically after tracing out one half
of the lattice in the transverse field Ising model (50). The initial state corresponds to
a product of spins with random orientations. Such a state has zero initial entropy. As
seen in Fig. 9, the entropy SAvn grows linearly in time and then saturates (as expected)
close to that of a random pure state [124]: S∗ = L ln 2/2− 1/2. This is exactly the result
obtained in the right panel in Fig. 8 for β = 0. Following the findings in Fig. 9, one can
anticipate that if one studies a classical ergodic spin chain, instead of a quantum spin
chain, and begins the dynamics from a factorized probability distribution one would get
a similar increase of the Liouville entropy of one half of the system.

3.4. Quantum Chaos and Delocalization in Energy Space

Another way to reveal delocalization of classical systems in available phase space is to
study the time-averaged probability distribution over a time interval t0

ρt0(x,p) =
1

t0

ˆ t0

0
ρ(x,p, t) (51)
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and compute the entropy of this distribution. Because the negative logarithm is a convex
function, using Jensen’s inequality, it is straightforward to see that such an entropy can
only increase as a function of t0. For ergodic systems, it is expected that this entropy will
increase to its maximally allowed value, that is, to the microcanonical entropy, because
the system on average visits all points in phase space with equal probability. For non-
ergodic systems, conversely, the system is expected to remain more localized in phase
space even after time averaging, so that the entropy never reaches the microcanonical
value.

Continuing the analogy with classical systems, a second possibility to use entropy to
quantify quantum delocalization is to study the entropy of the time-averaged density
matrix. Assuming that there are no degeneracies, the off-diagonal matrix elements of the
density matrix in the basis of the Hamiltonian oscillate in time according to [77]:

ρmn(t) = ρmn(t0) exp[−i(Em − En)(t− t0)] (52)

Therefore, in the quantum language, time averaging is equivalent to projecting the initial
density matrix onto the diagonal subspace of the Hamiltonian, leading to what is known
as the diagonal ensemble6 density matrix [28]:

ρ̂DE ≡ ¯̂ρ ≡ lim
t0→∞

1

t0

ˆ t0

0
ρ̂(t)dt =

∑

m

ρmm|m〉〈m|. (53)

Thus studying delocalization of the classical probability distribution in phase space at
long times is equivalent, in the quantum language, to studying the spreading of the initial
density matrix in the basis of the eigenstates of the Hamiltonian, or, simply, in energy
space. From the discussion in Sec. 3.2, one can expect that the diagonal density matrix
will generically be delocalized for quantum chaotic systems. For integrable systems, on
the other hand, the diagonal density matrix can be more (or less) localized depending
on the initial state.

The analogy between delocalization in energy space and classical chaos was recently
explored experimentally in a system of three coupled superconducting qubits [119], which
effectively represent three 1/2 spins. The experiment was carried out in the sector where
the effective total spin is S = 3/2, and focused on periodic kicks with:

Ĥ(t) =
π

2
Ŝy +

κ

2S
Ŝ2
z

∑

n

δ(t− n), (54)

where Ŝy and Ŝz are spin operators. Like the kicked rotor model, this system in the
S → ∞ classical limit has a mixed phase space with both chaotic and regular trajecto-
ries. In the experiment, the quantum system was initialized in a coherent state centered
around some point in the two-dimensional phase space. The system was then allowed to
evolve under kicks and, after long times, both the entanglement entropy (of one qubit)
and the diagonal entropy (the entropy of the time-averaged density matrix) were mea-
sured through quantum tomography. The results were contrasted with the phase-space
dynamics of the S →∞ classical limit.

In Fig. 10, we show the dynamics of the entanglement entropy (left panels) and the
entropy of the density matrix averaged over several periods, which is equivalent to the
Floquet diagonal entropy (middle panels). The entropies are reported (in a color scale)
for different initial coherent states centered around spherical angles (θ0, φ0). The right

6The diagonal ensemble will play a crucial role throughout this review.
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Figure 10. Left panels: entanglement entropy averaged over three different qubits after a different number of kicks
N . In the color scale used, red signals a small entropy and blue signals the maximum entropy [ln(2)]. Different

points on each panel correspond to different initial conditions, which are coherent states centered around the

phase-space point (θ0, φ0). Middle panels: Floquet diagonal entropy, which was computed as the entropy of the
full density matrix averaged over 20 kicks (top) and 10 kicks (bottom). Right panels: phase-space portrait of the

classical system. The top and bottom panels depict results for different kick strengths: κ = 0.5 and κ = 2.5,

respectively. From Ref. [119].

panels show the phase space portraits of the corresponding classical systems. Both the
entanglement entropy and the Floquet diagonal entropy show strong correlations with
classical regions of chaotic and non-chaotic motion, with higher entropy corresponding
to more chaotic behavior. Interestingly, these correlations persist deep in the quantum
regime (S = 3/2 is not particularly large). This experiment illustrates the ideas discussed
in this and the previous section, namely, that quantum chaos results in delocalization of
either the reduced density matrix of subsystems or the time-averaged density matrix of
the full system.

To illustrate delocalization of an initial wave function among energy eigenstates in a
larger quantum chaotic system, we follow Ref. [125], which reported results for quan-
tum quenches in one-dimensional periodic chains of interacting spinless fermions with
Hamiltonian (40), and hard-core bosons with Hamiltonian

Ĥ =

L∑

j=1

[
−J

(
b̂†j b̂j+1 + H.c.

)
+ V

(
n̂j −

1

2

)(
n̂j+1 −

1

2

)

−J ′
(
b̂†j b̂j+2 + H.c.

)
+ V ′

(
n̂j −

1

2

)(
n̂j+2 −

1

2

)]
, (55)

where b̂j and b̂†j are hard-core bosons annihilation and creation operators at site j, n̂j =

b̂†j b̂j is the occupation operator at site j, and L is the number of lattice sites. Hard-
core bosons satisfy the same commutation relations as bosons but have the constraints

b̂2j = (b̂†j)
2 = 0, which preclude multiple occupancy of the lattice sites [33]. For J ′ = 0, the

hard-core boson Hamiltonian (55) can be mapped onto the spinless fermion Hamiltonian
(40), up to a possible boundary term [33]. Like the spinless fermion Hamiltonian (40),
the hard-core boson one (55) is integrable for J ′ = V ′ = 0 and nonintegrable otherwise.

In Fig. 11, we show the normalized energy distribution

P (E) =
∑

m

pmδ(E − Em), (56)
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Figure 11. Normalized energy distribution function P (E), see Eq. (56), after quenches in hard-core boson chains.

Results are presented for two different initial states |ψI〉 corresponding to eigenstates of Hamiltonian (55) with JI =
0.5, VI = 2 (top panels) and JI = 2, VI = 0.5 (bottom panels). The final parameters of the Hamiltonian are J =

V = 1. J ′ = V ′ remain unchanged during the quench. Their values are indicated in the figure. Smooth solid lines:

best Gaussian fit to (
√

2πa)−1 exp[−(E−b)2/(2a2)] for the parameters a and b; dashed lines: (
√

2πδE)−1 exp[−(E−
E)2/(2δE2)], where E = 〈ψI |Ĥ|ψI〉 and δE2 = 〈ψI |Ĥ2|ψI〉− 〈ψI |Ĥ|ψI〉2 is the energy variance after the quench.

From Ref. [125].

where

pm = |〈m|ψI〉|2, (57)

and 〈m|ψI〉 is the projection of the initial state |ψI〉 on eigenstate |m〉. The results
presented are for quenches in the hard-core boson chain. The top and bottom panels
correspond to different initial states. The parameters of the final Hamiltonian are J =
V = 1, and J ′ = V ′ with the values indicated in the figure (increasing from left to
right). Those plots make apparent that as the system becomes more quantum chaotic
(larger J ′ = V ′), the energy distribution becomes less sparse, which means that the initial
state becomes more delocalized among the eigenstates of the final Hamiltonian. Another
visible feature of the energy distribution is that in chaotic systems it rapidly approaches
a Gaussian centered around the mean energy E = 〈ψI |Ĥ|ψI〉 and the width given by the

variance of the energy in the initial state δE2 = 〈ψI |Ĥ2|ψI〉−〈ψI |Ĥ|ψI〉2. Similar results
were obtained for quenches in the spinless fermion chain [125] and in other many-body
Hamiltonians [101, 102, 126].

For states that are eigenstates of some Hamiltonian ĤI and are decomposed in the
eigenstates of a new Hamiltonian ĤF (as we did above), the normalized energy distri-

bution is also known as the strength function [101, 102, 127–129]. If ĤF is taken to be

ĤI plus a perturbation, it has been shown that the normalized energy distribution (the
strength function) evolves from a Breit-Wigner form to a Gaussian form as the strength
of the perturbation is increased [101, 102, 129]. The transition between those distribu-

tions, say, for a given state |i〉 (an eigenstate of ĤI), has been argued to occur as the

average value of the nonzero off-diagonal matrix elements |〈i|ĤF |j〉| becomes of the same
order of (or larger than) the average level spacing of the states |j〉 (also eigenstates of

ĤI) for which |〈i|ĤF |j〉| 6= 0 [101]. Hence, if ĤF is quantum chaotic one expects that,
provided that the system is large enough (the density of states increases exponentially
fast with increasing system size), the normalized energy distribution will have a smooth

Gaussian form after a quench independent of the nature of ĤI . It has been recently shown
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Figure 12. Entropies in hard-core boson chains with L = 24 (main panels) and L = 21 (insets). Results are

reported for the diagonal entropy (Sd), the microcanonical entropy (Sm), and the canonical entropy (Sc), after
quenches as those described in Fig. 11, for initial states corresponding to eigenstates of Hamiltonian (55) with

JI = 0.5, VI = 2 (a) and JI = 2, VI = 0.5 (b). The final parameters of the Hamiltonian are J = V = 1. J ′ = V ′

remain unchanged in the quench and their values are depicted in the x-axis. Thin lines joining the points are
drawn to guide the eye. See also Ref. [125].

that this is not the case in generic (experimentally relevant) quenches to integrability.

Namely, if ĤF is integrable, the distribution of pm [see Eq. (57)] ends up being sparse
even in quenches whose initial states are thermal states of nonintegrable Hamiltonians
[130] (see Sec. 8.3). The sparseness of pm at integrability is apparent in Fig. 11 and, for
much larger system sizes, has also been explicitly shown in Refs. [131–133].

To quantify the level of delocalization one can use the von Neumann entropy of the
diagonal ensemble,7 which is known as the diagonal entropy [125, 134]:

Sd = −
∑

m

pm ln pm. (58)

This entropy is the same as the information entropy of the initial state in the basis of
the Hamiltonian governing the evolution, which we analyzed in Fig. 7. In particular, the
entropy plotted in that figure is the diagonal entropy of the eigenstates of the Hamiltonian
H(J ′+δJ ′, V ′+δV ′) in the basis of the Hamiltonian H(J ′, V ′), averaged over eigenstates.

In Fig. 12, we plot the diagonal entropy vs J ′ = V ′ for quenches as those in
Fig. 11, and systems with L = 21 and L = 24. We also plot the microcanonical
entropy Sm = ln[Ω(Ē)δE], and the canonical entropy Sc = −Tr[ρ̂CE ln ρ̂CE], where

ρ̂CE = exp(−βĤ)/Tr[exp(−βĤ)] and the inverse temperature β is fixed such that

Tr(Ĥρ̂CE) = E. In all the quenches in Figs. 11 and 12, the initial state was selected
such that β−1 ≈ 3J . Figure 12 shows that, as one departs from the integrable point
(J ′ = V ′ = 0), the diagonal entropy becomes almost the same as the microcanonical
entropy. This is up to finite-size effects, whose relevance to the results presented is made
apparent by the differences between Sm and Sc. As the system size increases, Sm/L and
Sc/L must approach each other as they are equal up to subextensive corrections. Nu-
merical evidence that the diagonal entropy after a quench and the thermal equilibrium
entropy are identical in nonintegrable systems in the thermodynamic limit has been ob-
tained in numerical linked cluster expansion studies [130, 135]. We will explain why Sd/L

7One could also use the inverse participation ratio: IPR = (
∑

m p2m)−1, with pm defined as in Eq. (57). IPR = 1
if only one state is occupied and it is maximized when all states are occupied with equal probability: IPR = D,

where D is the dimension of the available Hilbert space.
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agrees with the entropy in thermal equilibrium in Sec. 5.3.1, when we discuss the funda-
mental thermodynamic relation. On the other hand, in many numerical and analytical
works it has been established that, in integrable systems, extensive differences generally
occur between the diagonal entropy and the thermal entropy [125, 130, 135–140] (see
Sec. 8.3). In the spirit of our current discussion, this implies that integrable systems
generally remain more localized in energy space.

4. Eigenstate Thermalization

4.1. Thermalization in Quantum Systems

In 1929, von Neumann wrote a remarkable paper in which he discussed how statistical
mechanics behavior could emerge in quantum-mechanical systems evolving under unitary
dynamics [30]. As mentioned in the Introduction, one of von Neumann’s crucial insights
was to focus on macroscopic observables, as opposed to focusing on the wave function or
the density matrix of the entire system. He proved what he named the quantum ergodic
theorem, which has been recently discussed in detail by Goldstein et al. in Ref. [141].
In the words of the latter authors, the quantum ergodic theorem (or “normal typical-
ity”)8 states that “for a typical finite family of commuting macroscopic observables, every
initial wave function from a microcanonical energy shell evolves so that for most times
in the long run, the joint probability distribution of these observables obtained from the
unitarily time-evolved wave function is close to their microcanonical distribution”. This
theorem was a very important first step in the study of thermalization in quantum sys-
tems. However, some shortcomings are immediately apparent given our discussion so far.
For example, the theorem makes no distinction between integrable and nonintegrable
systems, as such, it leaves one wondering about the role of integrability. Also, typical
observables in von Neumann’s sense need not be relevant to experiments. As we discuss
in Sec. 4.2.2, von Neumann’s theorem is related to RMT. Hidden in it is the seed for
eigenstate thermalization [145], which is the topic of this section.

In the spirit of von Neumann’s theorem, in this review thermalization refers to observ-
ables and is defined in a strong sense. Suppose that one prepares an isolated system in
a nonstationary state with a well-defined mean energy, and subextensive energy fluctu-
ations. An observable is said to thermalize if, during the time evolution of the system,
it relaxes to the microcanonical prediction and remains close to it at most later times.
Whether the isolated system is in a pure or mixed state is immaterial to the question of
thermalization.

To understand the essential ingredients needed for thermalization to occur, let us con-
sider a simple setup in which an isolated system is initially prepared in a pure state |ψI〉9
and evolves under a time-independent Hamiltonian Ĥ. We assume that the Hamiltonian
has eigenvectors |m〉 and eigenvalues Em, that is, Ĥ|m〉 = Em|m〉. The time-evolving
wave function can be written as

|ψ(t)〉 =
∑

m

Cme−iEmt|m〉, (59)

where Cm = 〈m|ψI〉 (notice that we set ~→ 1); and we are interested in t ≥ 0. Obviously,

8Not to be confused with canonical typicality [142–144], which makes statements about the reduced density
matrix of typical states in the microcanonical energy shell. As discussed in the introduction, experimental out-

of-equilibrium states are atypical as a result of the way they are created. Canonical typicality does not tell how

typical states can be reached.
9Everything we discuss in what follows can be straightforwardly generalized to mixed states.
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the density matrix of the system will remain that of a pure state at all times [ρ(t)2 = ρ(t)],
that is, it can never become a mixed (thermal) density matrix. Now, let us look at the time

evolution of some observable Ô, which in the basis of the eigenstates of the Hamiltonian
can be written as

O(t) ≡ 〈ψ(t)|Ô|ψ(t)〉 =
∑

m,n

C∗mCne
i(Em−En)tOmn

=
∑

m

|Cm|2Omm +
∑

m,n 6=m
C∗mCne

i(Em−En)tOmn (60)

where Omn = 〈m|Ô|n〉. As stated before, we say that the observable Ô thermalizes if: (i)
after some relaxation time, the average expectation value of this observable agrees with
the microcanonical expectation value and (ii) temporal fluctuations of the expectation
value about the microcanonical prediction are small at most later times. This implies
that the long-time average accurately describes the expectation value of Ô at almost all
times and agrees with the microcanonical prediction.

The initial difficulties in reconciling these requirements with Eq. (60) are obvious. In
the long-time average, the second sum in Eq. (60) averages to zero (provided there are
no degeneracies, or that there is a nonextensive number of them) and we are left with the

sum of the diagonal elements of Ô weighted by |Cm|2. Some of the natural questions one
can ask are: (i) Since the probabilities |Cm|2 are conserved in time, how is it possible for∑

m |Cm|2Omm to agree with the microcanonical average? (ii) Moreover, in many-body
systems, the eigenenergies are exponentially close to each other and therefore, to make
sure that the second sum in Eq. (60) averages to zero, one could potentially need to
wait an exponentially (in system size) long time. Such a time, even for moderately small
systems, could exceed the age of our universe, and therefore cannot be reconciled with
the experimental observation that even large systems thermalize over much shorter time
scales than the age of the universe (we observe them thermalize).

Remarkably, if the Hamiltonian Ĥ was a true random matrix, then using the RMT
prediction for observables [namely that Omm is independent of m and that Omn for m 6= n
is exponentially small in the system size, see Eq. (20)] one finds that the observables
thermalize in the sense specified above. This is because the first sum in Eq. (60) becomes
independent of the initial state

∑

m

|Cm|2Omm ≈ Ō
∑

m

|Cm|2 = Ō, (61)

that is, it agrees with the microcanonical result. Note that within RMT, the microcanon-
ical ensemble has no energy dependence and is thus formally equivalent to the infinite
temperature ensemble. It also becomes clear that exponentially long times may not be
needed for relaxation. The off-diagonal matrix elements of Ô are exponentially small so,
by destroying phase coherence between a finite fraction of the eigenstates with a signif-
icant contribution to the expectation value, it is possible to approach the infinite-time
prediction with high accuracy in a time much shorter than the inverse (many-body) level
spacing, which is required to destroy coherence between all eigenstates. We will come
back to this later. The relevance of RMT for understanding thermalization in many-body
quantum systems was discussed by Deutsch in a seminal paper in the early 1990s [26].
There, he essentially extended Berry’s conjecture to arbitrary quantum systems assuming
that the eigenstates of ergodic Hamiltonians are essentially uncorrelated random vectors.

In order to describe observables in experiments, however, one needs to go beyond the
RMT prediction. This because, in contrast to random matrices, in real systems: (i) ther-
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mal expectation values of observables depend on the energy density (temperature) of
the system10 and (ii) relaxation times are observable dependent. Hence, there is infor-
mation in the diagonal and off-diagonal matrix elements of observables in real systems
that cannot be found in RMT. In groundbreaking works throughout the 1990s, Srednicki
provided the generalization of the RMT prediction that is needed to describe observables
in physical systems [27, 29, 146]. Srednicki’s ansatz is known as the ETH. It was first
shown to apply to realistic quantum systems, where thermalization was observed for a
strikingly small number of particles (5 bosons in 21 lattice sites), by Rigol et al. [28]. We
should mention that, in a remarkable discussion of numerical experiments with 7 spins,
Jensen and Shankar [147] advanced part of ETH [the first term on the RHS of Eq. (62)].
The smallness of the system they studied precluded them from observing a qualitatively
different behavior between nonintegrable and integrable systems.

4.2. The Eigenstate Thermalization Hypothesis (ETH)

ETH can be formulated as an ansatz for the matrix elements of observables in the basis
of the eigenstates of a Hamiltonian [29]:

Omn = O
(
Ē
)
δmn + e−S(Ē)/2fO

(
Ē, ω

)
Rmn, (62)

where Ē ≡ (Em+En)/2, ω ≡ En−Em, and S(E) is the thermodynamic entropy at energy
E. Crucially, O

(
Ē
)

and fO
(
Ē, ω

)
are smooth functions of their arguments, the value

O
(
Ē
)

is identical to the expectation value of the microcanonical ensemble at energy
Ē and Rmn is a random real or complex variable with zero mean and unit variance
(R2

mn = 1 or |Rmn|2 = 1, respectively). While there is no rigorous understanding of
which observables satisfy ETH and which do not, it is generally expected that Eq. (62)
holds for all physical observables, namely, observables for which statistical mechanics
applies (see, e.g., discussion in Ref. [108]). Specifically, ETH has been numerically verified
for few-body observables in a variety of lattice models, no matter whether they are
local or not (see Sec. 4.3.1). By few-body observables we mean n-body observables with
n � N , where N is the number of particles, spins, etc, in the system. This is the class
of observables that can be experimentally studied in macroscopic systems. Projection
operators to the eigenstates of the many-body Hamiltonian, P̂m = |m〉〈m|, are operators
for which Eq. (62), as well as the predictions of statistical mechanics, do not hold. In
a recent study of lattice systems, Garrison and Grover argued that ETH can hold for
observables with support in up to 1/2 of the system size [123].

The matrix elements of observables can be real or complex depending on the sym-
metries of the Hamiltonian and the basis used to diagonalize it. If the system obeys
time-reversal symmetry, the eigenstates of the Hamiltonian can be chosen to be real and
so will be the matrix elements of observables (Hermitian operators). This is not possible
if the system does not obey time-reversal symmetry. By taking the Hermitian conjugate
of Eq. (62), we see that the function fO(Ē, ω) and the random numbers Rmn must satisfy
the following relations

Rnm = Rmn, fO(Ē,−ω) = fO(Ē, ω) (real matrix elements)
R∗nm = Rmn, f∗O(Ē,−ω) = fO(Ē, ω) (complex matrix elements).

(63)

Srednicki’s ansatz (62) is similar to the RMT result in Eq. (20). The differences are:

10For simplicity, we assume that the energy is the only conserved quantity in the system. If there are other

conserved quantities, they have to be treated in a similar fashion.
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(i) The diagonal matrix elements of observables O(Ē) are not the same in all eigenstates.
Rather, they are smooth functions of the energy of the eigenstates. (ii) For the off-
diagonal matrix elements, on top of the small Gaussian fluctuations, there is an envelope
function fO(Ē, ω) that depends on the mean energy and the energy difference between the
eigenstates involved. This ansatz is consistent with results obtained in the semi-classical
limit of quantum systems whose classical counterpart is chaotic [26, 27, 148–152].

The ETH ansatz reduces to the RMT prediction if one focuses on a very narrow energy
window where the function fO(Ē, ω) is constant. In single-particle diffusive systems, this
scale is given by the Thouless energy (see, e.g., Ref. [93]), which is essentially equal to
Planck’s constant divided by the diffusion time [153]:

ET =
~D
L2

, (64)

where D is the diffusion constant and L is the linear size of the system. As we discuss in
Sec. 4.3.1, the same appears to be true in generic diffusive many-body quantum systems.
Namely, that if one focuses on an energy shell of width ω < ET then fO(E,ω) ≈ const,
so that the ETH ansatz is identical to RMT. In other words, there is no structure in the
eigenstates of ergodic Hamiltonians in an energy window narrower than the Thouless
energy. As this window vanishes in the thermodynamic limit, RMT has a very limited
range of applicability. Note, however, that the level spacing vanishes much faster with
the system size. Therefore, there is still an exponentially large number of energy levels
in the region where RMT applies. The situation can be more subtle in systems with
subdiffusive, for example, glassy dynamics. One can anticipate that f(ω) will saturate
at ω < ~/τ∗, where τ∗ is the slowest physical time scale in the system. As long as the
corresponding energy window contains exponentially many energy levels, one expects
that RMT will apply in this window.11 Conversely, the ETH ansatz does not have these
RMT limitations and is believed to apply to arbitrary energies with the exception of the
edges of the spectrum. As we will see later, in Sec. 6.8, the dependence of fO(E,ω) on
ω determines the decay of nonequal-time correlation functions. It also determines the
relaxation time following a small perturbation about equilibrium (in the linear response
regime) [29, 154]. In ergodic systems, it is expected that the diffusive time gives the
slowest time scale in the system [155]. Within ETH, this follows from the fact that the
function fO(E,ω) becomes structureless (constant) for ω < ET .

4.2.1. ETH and Thermalization

The ETH ansatz (62) has immediate implications for understanding thermalization in
many-body quantum systems. First, let us focus on the long-time average of observables.
If there are no degeneracies in the energy spectrum, which is a reasonable assumption for
generic quantum systems after removing all trivial symmetries, we obtain [using Eq. (60)]

O ≡ lim
t0→∞

1

t0

ˆ t0

0
dtO(t) =

∑

m

|Cm|2Omm = Tr
[
ρ̂DEÔ

]
, (65)

11In a very recent work by Luitz and Bar Lev [arXiv:1607.01012], the Gaussian ansatz for the off-diagonal matrix
elements was found to hold for diffusive spin chains. At the same time it was found that, in sub-diffusive disordered

chains, the distribution of off-diagonal matrix elements becomes non-Gaussian (it acquires long tails).
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where ρDE is the density matrix of the diagonal ensemble, defined in Eq. (53). On the
other hand, statistical mechanics predicts

OME = Tr
[
ρ̂MEÔ

]
, (66)

where ρ̂ME is the density matrix of the microcanonical ensemble (due to ensemble equiv-
alence one can, of course, use a canonical, or any other equilibrium, density matrix
instead). We then see that, independent of the actual values of Cm, so long as energy
fluctuations in the diagonal ensemble

δE ≡
√
〈ψI |Ĥ2|ψI〉 − 〈ψI |Ĥ|ψI〉2 (67)

are sufficiently small (e.g., behaving like in traditional statistical mechanics ensembles),
O will agree (to leading order) with the statistical mechanics prediction OME, provided

that Tr
[
ρ̂MEĤ

]
= 〈ψI |Ĥ|ψI〉 ≡ 〈E〉. This is because, using the ETH ansatz (62), one

can rewrite Eqs. (65) and (66) as

O ' O(〈E〉) ' OME. (68)

Furthermore, given Eq. (62), one can quantify the difference between the two ensembles
due to the fact that δE is finite. Indeed, expanding the smooth function O(E) into a
Taylor series around the mean energy 〈E〉

Omm ≈ O(〈E〉) + (Em − 〈E〉)
dO

dE

∣∣∣∣
〈E〉

+
1

2
(Em − 〈E〉)2 d

2O

dE2

∣∣∣∣
〈E〉

, (69)

and substituting this expansion into Eq. (65), we find

O ≈ O(〈E〉) +
1

2
(δE)2O′′(〈E〉) ≈ OME +

1

2

[
(δE)2 − (δEME)2

]
O′′(〈E〉), (70)

where δEME are the energy fluctuations of the microcanonical ensemble, which are subex-
tensive. If the energy fluctuations δE in the time-evolving system are subextensive, which
is generically the case in systems described by local Hamiltonians (see, e.g., the discus-
sion in Sec. 4.3.2), then the second term is a small subextensive correction to OME, which
is negligible for large system sizes. Moreover, the same Eq. (70) describes the difference

between the equilibrium canonical and microcanonical expectation values of Ô if instead
of δE2 one uses energy fluctuations of the canonical ensemble. It is remarkable that,
using ETH, one can show that O ' OME without the need of making any assumption
about the distribution of Cm, beyond the fact that it is narrow. This is to be contrasted
with the standard statistical mechanics statement about equivalence of ensembles, for
which it is essential that the energy distributions are smooth functions of the energy.12

Using the ETH ansatz, one can also calculate the long-time average of the temporal

12The energy distributions after quenches to nonintegrable Hamiltonians are expected to be smooth, see Sec. 3.4.
However, because of ETH, thermalization in nonintegrable systems occurs independently of whether the energy

distributions are smooth or not.

35



August 2, 2016 Advances in Physics Review

fluctuations of the expectation value of the observable Ô

σ2
O ≡ lim

t0→∞
1

t0

ˆ t0

0
dt [O(t)]2 − (O)2

= lim
t0→∞

1

t0

ˆ t0

0
dt

∑

m,n,p,q

OmnOpqC
∗
mCnC

∗
pCqe

i(Em−En+Ep−Eq)t − (O)2 (71)

=
∑

m,n 6=m
|Cm|2|Cn|2|Omn|2 ≤ max |Omn|2

∑

m,n

|Cm|2|Cn|2 = max |Omn|2 ∝ exp[−S(Ē)].

Thus, the time fluctuations of the expectation value of the observable are exponentially
small in the system size. These fluctuations should not be confused with the fluctu-
ations of the observable that are actually measured in experiments, which are never
exponentially small [28, 29]. Instead, Eq. (71) tells us that at almost any point in time

the expectation value of an observable Ô is the same as its diagonal ensemble expec-
tation value. Thus the ETH ansatz implies ergodicity in the strong sense, that is, no
time averaging is needed. In Sec. 6.8, we show that ETH implies that temporal fluctu-
ations of extensive observables satisfy standard fluctuation-dissipation relations. Let us
point in passing that the results discussed so far are not restricted to pure states. They
all straightforwardly generalize to mixed states by using the following substitutions in
Eqs. (60), (65), and (53): C∗mCn → ρmn and |Cm|2 → ρmm, where ρmn are the matrix
elements of the initial density matrix in the basis of the eigenstates of the Hamiltonian.

To contrast Eq. (71) with the fluctuations of Ô seen in experiments, let us also show
the expression for the latter:

δO2 = lim
t0→∞

1

t0

ˆ t0

0
dt 〈ψ(t)|(Ô −O)2|ψ(t)〉 =

∑

m

|Cm|2(O2)mm −O2
. (72)

This quantity is nonzero even if the initial state is an eigenstate of the Hamiltonian
(|ψI〉 = |m〉), while σO is zero in that case. Assuming that δE is sufficiently small, and

using the ETH ansatz for Ô2, we find

δO2 ≈ δO2
ME +

1

2

[
O2′′(〈E〉)− 2O(〈E〉)O′′(〈E〉)

] [
δE2 − (δEME)2

]
. (73)

And we see that the fluctuations of Ô scale as the equilibrium statistical fluctuations of Ô.
However, in this case, there is a second term which can be of the same order. We note that
Eq. (73) describes the difference between the canonical and microcanonical fluctuations

of Ô if instead of δE2 one uses energy fluctuations of the canonical ensemble, that is,
same order corrections to fluctuations also occur in equilibrium statistical mechanics. In
generic cases, for example, for extensive observables in systems away from critical points,√
δO2/O '

√
δO2

ME/OME ' 1/
√
V , where V is the volume of the system.

An important question that we leave unaddressed here is that of relaxation times.
Namely, how long it takes for an observable to reach the diagonal ensemble result. The
answer to this question depends on the observable, the initial state selected, and the
specifics of the Hamiltonian driving the dynamics. As we will show when discussing
results from numerical experiments, the relaxation times of observables of interest in
lattice systems are not exponentially large. They actually need not even increase with
increasing system size.

Summarizing our discussion so far, we see that the language used to describe ther-
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malization in isolated quantum systems is quite different from that in classical systems.
Chaos, ergodicity, and thermalization are hidden in the nature of the Hamiltonian eigen-
states. Relaxation of observables to their equilibrium values is nothing but the result
of dephasing, as follows from the second term (in the last line) in Eq. (60). Thus, the
information about the eventual thermal state is encoded in the system from the very
beginning, the time evolution simply reveals it. In classical systems, one usually thinks
of thermalization in very different terms using the language of particle collisions and
energy redistribution between different degrees of freedom. It is important to realize that
both approaches describe exactly the same processes. In Sec. 8.4, we will briefly discuss
how one can understand relaxation in weakly nonintegrable quantum systems through
the language of quantum kinetic equations. Kinetic equations, when justified, provide a
unified framework to describe relaxation in both quantum and classical systems.

4.2.2. ETH and the Quantum Ergodic Theorem

Now that we have formulated ETH and seen its consequences for the dynamics of isolated
quantum systems, let us come back to von Neumann’s ergodic theorem and discuss how
it relates to ETH (or, more precisely, to RMT) [145]. As said before, von Neumann
was interested in understanding what happens to observables during the unitary time
evolution of all possible states drawn from the microcanonical shell. His theorem was
then about the behavior of typical observables at most times. To state it, we follow the
discussion by Goldstein et al. in Ref. [141]. For a recent generalization of this theorem,
see Ref. [156].

von Neumann considered a Hamiltonian Ĥ with eigenstates |m〉 and eigenvalues

Em, that is, Ĥ|m〉 = Em|m〉, and focused on a microcanonical energy window of
width δE around an energy E. This microcanonical energy window defines a Hilbert
space H of dimension D, which is spanned by D energy eigenstates |m〉 with ener-
gies Em ∈ (E − δE/2, E + δE/2). For example, every state in the microcanonical en-
ergy window can be decomposed as |ψ〉 =

∑
m∈H Cm|m〉, where Cm = 〈m|ψ〉. The

Hilbert space H is then decomposed into mutually orthogonal subspaces Hν of di-
mensions dν , such that H =

⊕
ν Hν and D =

∑
ν dν . Finally, the observables in

H are written as Ô =
∑

ν OνP̂ν , where P̂ν is the projector onto Hν . Here, both D
and dν are assumed to be large. By definition, the expectation value of the observ-
able at time t is O(t) = 〈ψ| exp[iĤt]Ô exp[−iĤt]|ψ〉 while its microcanonical average is

〈Ô〉ME =
∑

m∈H 〈m|Ô|m〉/D. von Neumann’s quantum ergodic theorem states that: In

the absence of resonances in Ĥ, namely, if Em − En 6= E′m − E′n unless m = m′ and
n = n′, or m = n and m′ = n′, and provided that, for any ν,

max
m

(
〈m|P̂ν |m〉 −

dν
D

)2

+ max
m6=n
|〈m|P̂ν |n〉|2 is exponentially small, (74)

then

|O(t)− 〈Ô〉ME|2 < ε〈Ô2〉ME (75)

for all but a fraction δ of times t, where ε and δ are small numbers. It is easy to see that
condition (74) guarantees that the eigenstate expectation value of Ô is identical to the
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microcanonical prediction [145]. In fact:

〈m|Ô|m〉 =
∑

ν

Oν〈m|P̂ν |m〉 ≈
∑

ν

Oν
dν
D

=
∑

m∈H ,ν

Oν
〈m|P̂ν |m〉
D =

∑

m∈H

〈m|Ô|m〉
D ≡ 〈Ô〉ME (76)

where the second equality holds up to exponentially small corrections, see Eq. (74), and

we have used that
∑

m∈H 〈m|P̂ν |m〉 = dν . Next, we have that

〈m|Ô|n〉 =
∑

ν

Oν〈m|P̂ν |n〉, (77)

which is exponentially small if 〈m|P̂ν |n〉 is exponentially small [as required in Eq. (74)]
and if Oν is not exponential in system size (as expected for physical observables).

We then see that Eqs. (76) and (77) are nothing but the RMT predictions summarized
in Eq. (20), or, equivalently, the ETH ansatz restricted to the Thouless energy window
δE ∼ ET = ~D/L2, where the function f(Ē, ω) is approximately constant. Without this
condition, Eq. (74) cannot be satisfied. Ultimately, Eqs. (20), (62) and (74) rely on the
fact that the overlap between the energy eigenstates and eigenstates of the observables is
exponentially small [145]. It is important to note that RMT provides a wealth of infor-
mation about the statistics of the level spacings and of the eigenstate components, which
we have connected to quantum chaotic Hamiltonians, that was absent in von Neumann’s
(much earlier) theorem. ETH goes beyond RMT (and the quantum ergodic theorem), as
we mentioned before, because it addresses what happens outside the featureless Thouless
energy shell.

4.3. Numerical Experiments in Lattice Systems

4.3.1. Eigenstate Thermalization

Numerical evidence of the occurrence of eigenstate thermalization has been found in a
number of strongly correlated nonintegrable lattice models in fields ranging from con-
densed matter to ultracold quantum gases. Such an evidence was first reported for a
two-dimensional system of hard-core bosons [28], and, since then, among others, it has
been reported for a variety of models of hard-core bosons and interacting spin chains
[70, 99, 154, 157–164], spinless and spinful fermions [126, 158, 165, 166], soft-core bosons
[160, 164, 167–169], and the transverse field Ising model in two dimensions [170]. Below,
we discuss the evidence for ETH separately for the diagonal and the off-diagonal matrix
elements.

4.3.1.1. Diagonal matrix elements. We begin by illustrating the behavior of the diag-
onal matrix elements of observables in the lattice hard-core boson model in Eq. (55),
which transitions between the integrable limit and the chaotic regime as J ′ = V ′ departs
from zero (see Sec. 3.4) [69].

In Fig. (13), we show in panels (a)–(c) the energy eigenstate expectation values of the
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Figure 13. Eigenstate expectation values of the occupation of the zero momentum mode [(a)–(c)] and the kinetic
energy per site [(d)–(f)] of hard-core bosons as a function of the energy per site of each eigenstate in the entire

spectrum, that is, the results for all k-sectors are included. We report results for three system sizes (L = 18, 21,

and 24), a total number of particles N = L/3, and for two values of J ′ = V ′ [J ′ = V ′ = 0.16 in panels (b) and (e)
and J ′ = V ′ = 0.64 in panels (c) and (f)] as one departs from the integrable point [J ′ = V ′ = 0 in panels (a) and

(d)]. In all cases J = V = 1 (unit of energy). See also Ref. [157].

zero momentum mode occupation

m̂(k) =
1

L

∑

i,j

eik(i−j)b̂†i b̂j . (78)

In panels (d)–(f), we show the kinetic energy per site

K̂ =
1

L

L∑

j=1

[
−J

(
b̂†j b̂j+1 + H.c.

)
− J ′

(
b̂†j b̂j+2 + H.c.

)]
. (79)

Eigenstate expectation values are plotted as a function of the eigenenergies per site
(Ep/L), for three different system sizes as one increases J ′ = V ′. The qualitative behavior
of mpp(k = 0) and Kpp vs Ep/L, depicted in Fig. (13), has been observed in other few-
body observables and models studied in the literature, and, as such, is expected to
be generic. The main features to be highlighted are: (i) At integrability, mpp(k = 0)
and Kpp can have quite different expectation values [see, particularly, mpp(k = 0)] in
eigenstates of the Hamiltonian with very close energies. Moreover, the spread does not
change with increasing system size and the variance (not shown) decreases as a power
law of the system size. Similar results have been obtained in other integrable models
for larger system sizes than those available from direct full exact diagonalization of the
Hamiltonian [131–133, 171, 172]. (ii) As one departs from J ′ = V ′, or as one increases
the system size for any given value of J ′ = V ′ 6= 0, the spread (or maximal differences)
between the eigenstate expectation values in eigenstates with very close energies decrease.
This is true provided that the eigenstates are not too close to the edges of the spectrum.

Recently, Kim et al. [161] studied the eigenstate-to-eigenstate fluctuations rp =
Op+1p+1 − Opp of both the x-component of the magnetization in a nonintegrable trans-
verse Ising chain with a longitudinal field and of the nearest neighbor density-density
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Figure 14. The first, second, fourth, and eighth largest values of rp in the central half of the spectrum, as well as

its mean value, are shown from top to bottom in both panels. (a) Results for the x-component of the magnetization
in a nonintegrable transverse Ising Hamiltonian. (b) Results for the nearest neighbor density-density correlations

in a nonintegrable hard-core boson Hamiltonian. From Ref. [161].

correlations in the nonintegrable hard-core boson model (55). The results for the average
value of |rp|, and for some of the largest values of rp (in the central half of the spectrum),
are shown in Fig. 14 as a function of the system size. They support the ETH expectation
that eigenstate-to-eigenstate fluctuations decrease exponentially fast with increasing sys-
tem size (similar results were obtained in Ref. [170] for the transverse field Ising model in
two dimensions). Evidence that the variance of the eigenstate-to-eigenstate fluctuations
of various observables decreases exponentially fast with increasing system size has also
been presented in Refs. [159, 160, 170].

The results discussed so far suggest that, away from the edges of the spectrum and
for sufficiently large system sizes, any strength of an integrability breaking perturbation
ensures that the first term in Eq. (62) describes the diagonal matrix elements of physical
observables. By sufficiently large system sizes, we mean the same conditions that were
discussed for the onset of quantum chaotic behavior in Sec. 3. Systems that exhibit a
many-body localization transition do not conform with this expectation [51].

4.3.1.2. Off-diagonal matrix elements. In Fig. 15, we show the matrix elements of the
zero momentum mode occupation m̂(k = 0) between the 100 eigenstates whose energy is
closest to the energy of the canonical ensemble with temperature13 T = 3. Figure 15(a)
and 15(b) illustrates some of the most important properties of the off-diagonal matrix
elements of few-body observables in integrable and nonintegrable systems. They have
been discussed in Refs. [28, 70, 158] for various lattice models in one and two dimensions
and, recently, systematically studied in Refs. [154, 159, 164]. The first obvious property,
seen in Fig. 15(a) and 15(b), is that no matter whether the system is integrable or not,
the average value of the off-diagonal matrix elements is much smaller than the average
value of the diagonal ones. In the integrable regime, Fig. 15(a), a few off-diagonal matrix
elements can be seen to be relatively large, while many are seen to be zero [154, 164].
In the nonintegrable regime, Fig. 15(b), the (small) values of the off-diagonal matrix
elements appear to have a more uniform distribution. Note that, in contrast to the
integrable limit, no relatively large outliers can be identified among the off-diagonal
matrix elements in the nonintegrable regime. In the latter regime, the values of the off-
diagonal matrix elements have been shown to exhibit a nearly Gaussian distribution with
zero mean [159, 164], and to be exponentially small in system size [164].

A better quantitative understanding of the behavior of the off-diagonal matrix elements
of observables can be gained by plotting them as a function of Ep−Eq for a small window

13T = 3 was selected so that the eigenstates considered are not too close to the ground state and do not correspond

to infinite temperature either. These results are relevant to the quenches discussed in Sec. 4.3.2.
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Figure 15. Off-diagonal matrix elements of m̂(k = 0) in the eigenstates of the Hamiltonian for a system with
L = 24, N = L/3, and J = V = 1 (unit of energy). (a) J ′ = V ′ = 0 and (b) J ′ = V ′ = 0.32. Results are shown for

the matrix elements between the 100 eigenstates with energy closest to (a) E/L = −0.16 and (b) E/L = −0.19.

Those energies were selected from canonical ensembles with T = 3 in both systems. See also Ref. [158].

of values (Ep + Eq)/2. This is done in Fig. 16 for a one-dimensional model of hard-core
bosons with the Hamiltonian [154]

Ĥ = −J
L−1∑

j=1

(
b̂†j b̂j+1 + H.c.

)
+ V

∑

j<l

n̂jn̂l
|j − l|3 + g

∑

j

x2
j n̂j . (80)

The number of bosons was set to be L/3. The three terms in this Hamiltonian describe,
from left to right, hopping (J = 1 sets the energy scale), dipolar interactions, and a
harmonic potential (xj is the distance of site j from the center of the trap). We note that

Ĥ in Eq. (80) is not translationally invariant so that the thermodynamic limit needs to
be taken with care [33]. For V = 0, this model is integrable (mappable to noninteracting
spinless fermions) irrespective of the value of J and g.

In Fig. 16(a), we show results at integrability (V = 0 and g 6= 0), while, in Fig. 16(b),
we show results away from integrability (V = 2 and g 6= 0). For both cases, results
are reported for two observables, the site occupation at the center of the trap and the
zero momentum mode occupation. The off-diagonal matrix elements of both observables
are qualitatively different in the integrable and nonintegrable regimes. In the integrable
model, there is a small fraction of large outliers among the matrix elements (whose
absolute value is orders of magnitude larger than that of the median of the nonvanishing
absolute values). In addition, there is a large fraction of matrix elements that vanish. As
a matter of fact, one can see in Fig. 16(a) that only a few off-diagonal matrix elements of
the site occupation are nonzero (this observable is the same for hard-core bosons and for
the noninteracting fermions to which they can be mapped [33]). For the zero momentum
mode occupation (which is not the same for hard-core bosons and noninteracting fermions
[33]), the histogram of the differences between the absolute values and their running
average [inset in Fig. 16(a)] makes apparent that there is also a large fraction (increasing
with system size [154]) of vanishing matrix elements. This demonstrates that, in the
integrable model and for the observables shown, the off-diagonal matrix elements are
not described by the ETH ansatz. In contrast, one does not find large outliers among
the off-diagonal matrix elements in the nonintegrable model. In addition, the near flat
histogram in the inset in Fig. 16(b) shows that there is no large fraction of them that
vanish as in the integrable case. One can then conclude that the running average of
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Figure 16. Absolute value of the off-diagonal matrix elements of the site occupation in the center of the system

[n̂(x = 0)] and of the zero momentum mode occupation [m̂(k = 0)] in the eigenenergy basis vs the eigenenergy

difference Ep − Eq , for a small window of energies (Ep + Eq)/2 (the center of the window was selected to be
the energy of a canonical ensemble with T = 5). Results are shown for an integrable (a) and a nonintegrable (b)

system with L = 18. Lines are running averages (|Opq |avg) for the matrix elements of m̂(k = 0). The insets show

histograms of the relative differences between the matrix elements of m̂(k = 0) and the running averages. The
relative difference is defined as (|Opq | − |Opq |avg)/|Opq |avg. The running averages were computed over 50 matrix

elements for L = 15 and over 200 matrix elements for L = 18. Adapted from Ref. [154].

the off-diagonal matrix elements, that is, the absolute value of the function fO(E,ω) in
Eq. (62), is a well-defined quantity in nonintegrable systems.

This function is studied in detail in Fig. 17 for the occupation at the center of the
trap (see figure caption for a precise definition of the observable). Results are reported
for the same system described above but with L/2 bosons. By selecting a narrow energy
window in the center of the spectrum, and by comparing results for two different system
sizes (including the largest we are able to solve numerically), it is possible to identify
three qualitatively different regimes at large, intermediate, and small energy separation
ω = Ep − Eq [in what follows, we drop “E” from fO(E,ω), keeping in mind that E
is that in the center of the spectrum]. These three regimes are shown in panels (a),
(b), and (c). (a) For ω � 1, the function |fO(ω)| decays exponentially and the curves
corresponding to different system sizes show an excellent collapse supporting the ETH
ansatz (62). (b) At intermediate ω, |fO(ω)| is proportional to L1/2 and, around the point
marked with a vertical dashed line, one can see a broad peak whose position scales with
L−1. (c) For ω � 1, |fO(ω)| exhibits a plateau. Our results suggest that |fO(ω)| in the
plateau is proportional to L1/2, and that its width is proportional to L−2. The results
in panel (c) are noisier than in panels (a) and (b) because of poor statistics, which is
the result of having only few pairs of eigenstates in the center of the spectrum such that
ω = Ep − Eq � 1.

The three regimes identified above, for large, intermediate, and small values of ω, de-
termine what happens to the observable at short, intermediate, and long times during the
dynamics (c.f., Sec. 6.8). In the fast, high-frequency, regime |fO(ω)| is an exponentially
decaying function independent of the system size. In Sec. 6.8, we show that |fO(ω)|2 is

related to the spectral function of the observable Ô and to the dissipative part of the
linear response susceptibility. Its exponential decay at high frequencies is expected on
general grounds from perturbation theory, at least for systems with a bounded spec-
trum.14 Such a high-frequency exponential tail was discussed, for example, in Ref. [173]

for the conductivity, corresponding to the case where the observable Ô is the current op-

14When the energy spectrum is bounded, in order to absorb energy ω � 1, many-body processes are required.
These processes appear only in high orders of perturbation theory, which leads to an exponential suppression of

|fO(ω)| for ω � 1.
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Figure 17. Plot of the function |fO(ω)| vs the eigenenergy difference ω = Ep − Eq for a system of L/2 bosons

described by the Hamiltonian (80) with parameters J = 1, U = 1 and g = 16/(L − 1)2. The observable Ô is

the occupation at the center of the trap (more precisely, the average of the occupation of the two central sites,
as the calculations were done in the even sector when taking into account reflection symmetry and the center of

the trap is in the middle of two sites) and the function |fO(ω)| is obtained in a small energy window centered

around the middle of the spectrum. (a) At large ω, |fO(ω)| decays exponentially. (b) At intermediate ω, |fO(ω)|
is proportional to L1/2 and has a broad peak whose position scales as L−1. (c) At small ω, |fO(ω)| exhibits a

plateau. |fO(ω)| in the plateau is proportional to L1/2, and the extension of the plateau is proportional to L−2.

erator. (ii) At intermediate times, the independence of |fO(ω)| vs ωL on the system size
indicates the existence of ballistic dynamics. (iii) At long times, the approximate collapse
of |fO(ω)| vs ωL2 for different system sizes indicates diffusive dynamics. Remarkably, at
frequencies smaller than a characteristic frequency ωc ∼ 1/L2 (corresponding to times
longer than the diffusive time tc ∼ L2), the function |fO(ω)| saturates at a constant value
proportional to L1/2. It is in this regime that the ETH ansatz (62) becomes equivalent
to the RMT ansatz.15 As the diffusive time is the longest relaxation time scale in the
system, one expects that in this regime physical observables do not evolve. The fact that
|fO(ω)| at the plateau is proportional to L1/2 can be understood as follow. The function

|fO(ω)|2 is related to the nonequal-time correlation function of the observable Ô, see
Sec. 6.8. In particular, when evaluated at ω = 0, we have

|fO(ω = 0)|2 ∝
ˆ tc

0
dt 〈Ô(t)Ô(0) + Ô(0)Ô(t)〉c ∝

ˆ tc

0

dt√
t
∝
√
tc ∝ L, (81)

where we have used that the diffusive time scale tc sets an upper bound for the time
integral, and that, assuming diffusive behavior, the nonequal-time correlation function
of Ô is expected to be ∝ t−1/2. It then follows that fO(ω = 0) ∝

√
L. Remarkably,

our results suggests that the scaling of fO(ω) with L1/2 is also valid at the intermediate
frequencies that are relevant to ballistic transport [see Fig. 17(b)].

4.3.2. Quantum Quenches and Thermalization in Lattice Systems

Now, let us see what happens when systems such as those studied in Sec. 4.3.1 are
taken out of equilibrium. Among the most common protocols for taking systems out
of equilibrium are the so-called sudden quenches or, simply, quenches. As explained
in Sec. 3.4, in a quench the system is assumed to be initially in equilibrium and then
suddenly some parameter(s) is (are) changed. The dynamics proceeds without any further
changes of parameters. For example, in ultracold gases experiments in optical lattices,
one can suddenly change the depth of the optical lattice [34–37, 41], displace the center
of the trapping potential [174–176], or turn off a trapping potential while keeping the
optical lattice on [43, 177, 178]. Theoretically, one can think of a quench as a protocol
in which one starts with a stationary state of a given Hamiltonian, often the ground
state, and then suddenly changes some Hamiltonian parameter(s). The initial state is

15It is likely that tc ≈ L2/D, where D is the diffusion constant.
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not stationary in the new (time-independent) Hamiltonian, as a result of which it has a
nontrivial unitary dynamics. Quenches in which one changes parameters throughout the
system are called global quenches, while quenches in which parameters are only changed
in a finite region are called local quenches. In the former class of quenches, one generally
adds an extensive amount of the energy to the system, while, in the latter class, the
change in energy is subextensive.

A remarkable property of quantum quenches involving local Hamiltonians is that one
can actually prove, under very general conditions, that the width δE of the energy
distribution after a quench scales with the square root of the volume (or of the number
of particles) [28]. This behavior is expected from thermodynamics, and is essentially a
consequence of the central limit theorem. This width sets the effective “microcanonical
window” of the equivalent thermodynamic ensemble. It depends on the details of the
initial state and the quench protocol.

To prove that after a global quench δE ∼
√
V , we consider, for concreteness, a lattice

system prepared in an initial state |ψI〉 which is an eigenstate (not necessarily the ground

state) of the initial Hamiltonian Ĥ0. After the quench, the Hamiltonian is Ĥ = Ĥ0 + Ĥ1,

where Ĥ1 is a sum of local operators Ĥ1 =
∑

j ĥj . One can then write [28]

δE ≡
√
〈ψI |Ĥ2|ψI〉 − 〈ψI |Ĥ|ψI〉2 =

√
〈ψI |Ĥ2

1 |ψI〉 − 〈ψI |Ĥ1|ψI〉2

=

√∑

j1,j2

[
〈ψI |ĥj1 ĥj2 |ψI〉 − 〈ψI |ĥj1 |ψI〉〈ψI |ĥj2 |ψI〉

]
. (82)

From the expression above, one concludes that, in the absence of long-range connected
correlations between ĥj in the initial state, and if all matrix elements are finite,16 the
width δE scales at most as the square root of the number of lattice sites in the system,
that is, δE ∼

√
V . Because the energy itself is extensive in the volume of the system, we

see that the relative energy fluctuations are inversely proportional to the square root of
the volume δE/E ∼ 1/

√
V as expected from equilibrium thermodynamics. This result is

a consequence of the locality of the Hamiltonian and, hence, is unrelated to whether the
system is integrable or nonintegrable. This scaling of energy fluctuations, in combination
with eigenstate thermalization, ensures that in generic systems with local interactions
thermalization occurs after a quench. Generalizing this proof to continuous systems is
straightforward.

Next, we address two important questions whose precise answer depends on the
specifics of the system and of the observable of interest, but whose qualitative answer
has been found to be quite similar for several strongly correlated lattice models and
observables studied. The first question is how long it takes for experimentally relevant
observables to relax to the diagonal ensemble predictions. The second one is how large
the system sizes need to be for the relative difference between the diagonal ensemble
and the statistical mechanics predictions to be small. These questions have been mainly
addressed in numerical experiments. We reproduce some results of these numerical ex-
periments below.

4.3.2.1. Dynamics. We consider the dynamics of observables in the hard-core boson
model (55). Some numerical results for this model were already discussed in Secs. 3.4
and 4.3.1. For the quench dynamics discussed here, the initial states are taken to be
eigenstates of the Hamiltonian with JI = 0.5, VI = 2, J ′ = V ′, and the time evolutions

16This is guaranteed if the operator norm of each ĥj is finite
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Figure 18. (a)–(c) Relative difference between the instantaneous momentum distribution function and the diag-

onal ensemble prediction (see text) as a function of time. (d)–(f) Relative difference between the instantaneous

kinetic energy and the diagonal ensemble prediction (see text) as a function of time. The strength of the inte-
grability breaking terms (J ′ = V ′) increases from top to bottom: (a),(d) J ′ = V ′ = 0 (integrable point); (b),(e)

J ′ = V ′ = 0.16; and (c),(f) J ′ = V ′ = 0.64. Results are reported for two system sizes (L = 21 and 24) and

N = L/3. In all cases, J = V = 1 (unit of energy). Time is given in units of ~/J . See also Ref. [157].

are studied under final Hamiltonians with J = V = 1 (unit of energy), and J ′ = V ′

[157]. Hence, only the nearest neighbor parameters are changed during the quench. The
strengths (J ′ = V ′) of the integrability breaking terms remain unchanged. To characterize
the dynamics of the entire momentum distribution function and of the kinetic energy
(by comparing them to the diagonal ensemble results), the following relative differences
are computed

δm(t) =

∑
k |m(k, t)−mDE(k)|∑

kmDE(k)
, and δK(t) =

|K(t)−KDE|
|KDE|

, (83)

respectively. In these expressions, t refers to time and the subscript “DE” refers to the
diagonal ensemble prediction [recall Eq. (53)]. In order to be able to compare results
for systems with different Hamiltonian parameters in a meaningful way, the initial state
for each quench is selected to be the eigenstate of the initial Hamiltonian that, after
the quench, has the closest energy to that of a system with temperature T , namely,
〈ψI |Ĥ|ψI〉 = Tr[Ĥ exp(−Ĥ/T )]/Tr[exp(−Ĥ/T )], where the Boltzmann constant is set to
unity. For the quenches discussed in what follows, T = 3 as in Fig. 15. This temperature
is such that eigenstate thermalization can be seen in these small systems and O(Ē) is
not featureless as expected in the center of the spectrum (i.e., at “infinite temperature”).

In Fig. 18(a)–18(c), we show results for δm(t) vs t for systems with L = 21 (blue lines)
and L = 24 (red lines), and for three values of J ′ = V ′. The behavior of δm(t) vs t is qual-
itatively similar for all values of J ′ = V ′. Namely, at t = 0, one can see that δm is large
(& 10%, except for J ′ = V ′ = 0.16) and then it quickly decreases (in a time scale of the
order of ~/J) and starts oscillating about a small nonzero value (∼ 2% for L = 24). With
increasing system size, the value about which δm(t) oscillates, as well as the amplitude
of the oscillations, decrease. A qualitatively similar behavior, though with a significantly
smaller mean and amplitude of the oscillations about the mean, can be seen during the
time evolution of δK(t) [Fig. 18(d)–18(f)]. Comparable results have been obtained for
other nonintegrable models and observables [28, 99, 154, 157, 158, 169, 179–185]. All that
numerical evidence makes clear that, despite the exponentially small (in system size) level
spacing in many-body quantum systems, the relaxation of physically relevant observables
to the diagonal ensemble results does not take exponentially long time. Furthermore, in
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Figure 19. (Main panels) Relative difference between the predictions of the diagonal and microcanonical ensembles
for the momentum distribution function (see text) as a function of the strength of the integrability breaking terms.

(Insets) The same as the main panels but for the kinetic energy. Results are reported for hard-core bosons (a) and

for spinless fermions (b), and for two system sizes L = 21 (blue lines) and L = 24 (red lines) with N = L/3. In all
cases, J = V = 1 (unit of energy). See also Refs. [157, 158].

accordance with our expectations based on the ETH ansatz, numerical experiments have
also shown that the scaling of the variance of the time fluctuations of expectation val-
ues of observables is consistent with an exponential decrease with increasing system size
[185].

Note that the results reported in Fig. 18 were obtained in systems in which there are
only seven and eight hard-core bosons, for L = 21 and L = 24, respectively. Namely,
the time fluctuations of the expectation values of observables can be very small even for
systems with a very small number of particles (see Ref. [28] for an analysis of a two-
dimensional system with only five hard-core bosons that exhibits a qualitatively similar
behavior).

4.3.2.2. Post relaxation. After showing that even small finite systems relax to the pre-
dictions of the diagonal ensemble and remain close to them, we need to check how close
the diagonal ensemble predictions are to those made by standard statistical mechanics.
This is the final step needed to know whether thermalization takes place. Since we are
dealing with small systems, which ensemble is taken among the microcanonical, canoni-
cal, and grand canonical ensembles makes a difference. Considering that the systems of
interest here are isolated, the most appropriate statistical ensemble is the microcanonical
ensemble [28, 157]. Therefore, we compute the following relative differences to character-
ize whether the system thermalizes or not

∆m =

∑
k |mDE(k)−mME(k)|∑

kmDE(k)
, and ∆K =

|KDE −KME|
|KDE|

. (84)

In these expressions, the subscripts “DE” and “ME” refer to the diagonal and micro-
canonical ensemble predictions, respectively.

The main panel (inset) in Fig. 19(a) depicts results for ∆m (∆K) in the hard-core
boson systems whose dynamics was reported in Fig. 18. The corresponding results when
the hard-core bosons are replaced by spinless fermions are shown in Fig. 19(b). One
can see that the behavior of ∆m (∆K) is qualitatively similar for hard-core bosons and
spinless fermions. The largest differences between the predictions of the diagonal and
microcanonical ensembles are seen at (and close to) the integrable point. As one departs
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from the integrable point, the differences decrease. After a fast decrease, there is an
interval of values of J ′ = V ′ at which ∆m (∆K) becomes almost independent of the
exact value of J ′ = V ′ (up to finite-size fluctuations). In that interval, ∆m (∆K) can
be seen to decrease as one increases system size (up to finite-size fluctuations). This is
consistent with the expectation that those differences vanish in the thermodynamic limit.
Numerical evidence that, in the thermodynamic limit, the predictions of the diagonal
ensemble for observables after a quench to a nonintegrable model are identical to those
from traditional statistical mechanics ensembles has been obtained in numerical linked
cluster expansion studies [130, 135]. On the other hand, in quenches to integrable points in
the thermodynamic limit, it was found that lack of thermalization is ubiquitous [130, 135]
(see Sec. 8.3). For finite systems, it is striking that the differences between the diagonal
and the microcanonical ensembles can be a fraction of a percent even for systems with
less than 10 particles (which makes their experimental detection unlikely). Similar results
have been obtained for other observables in Refs. [28, 99, 154, 157, 158, 169].

The results presented in this section support the expectation that nonintegrable quan-
tum systems exhibit eigenstate thermalization and therefore thermalize in the strong
sense as defined in this review.

5. Quantum Chaos and the Laws of Thermodynamics

If one assumes that a system is prepared in a Gibbs, or other equivalent ensemble, then
one does not need assumptions about chaos and ergodicity to prove various statements
of statistical mechanics and thermodynamics. For example, the fluctuation-dissipation
relation can be straightforwardly proved using standard perturbation theory. Quantum
chaos and ETH allow one to prove all the statements for individual eigenstates of chaotic
Hamiltonians, and therefore for arbitrary stationary ensembles (with subextensive energy
fluctuations). This distinction is at the heart of the importance of quantum chaos for the
proper understanding of thermodynamics in isolated systems. In the earlier sections, we
argued that eigenstate thermalization is generally needed for isolated quantum systems
taken far from equilibrium to thermalize. Likewise, in the following sections, we will
show that the same assumptions of quantum chaos together with ETH are sufficient for
establishing thermodynamic relations in such isolated systems.

5.1. General Setup and Doubly Stochastic Evolution

Equilibrium thermodynamics studies transformations between equilibrium states of
macroscopic systems. During such a transformation, thermodynamic quantities (such
as the free energy, magnetization, and pressure) evolve in time. These changes are usu-
ally induced by either heat exchange with another macroscopic system or the work done
on the system via changing some macroscopic parameters in time (like its volume or the
applied magnetic field), or both. For example, consider a phase transformation from a
solid to a liquid as temperature is changed, or the exchange of energy, in the form of
heat and work, in heat engines. The laws of thermodynamics dictate which process are
possible and which are not. They give bounds for engine efficiencies and provide rela-
tions between superficially different quantities (e.g., the Onsager relations, which will be
discussed in the next section).

Since equilibrium thermodynamics provides relations between different equilibrium
states, the concept of a quasi-static process is central to the development of the theory. A
quasi-static process is one in which the state of the system is changed very slowly through
a sequence of equilibrium states. However, it is important to stress that thermodynamics
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Figure 20. Schematic representation of a gas undergoing a compression

is not limited to quasi-static processes. For example, in one formulation of the second
law of thermodynamics one considers an equilibrated isolated system that undergoes a
dynamical process (which need not be quasi-static). As a result, the entropy difference
between the final equilibrium state of the system and the initial equilibrium state is
positive or zero independent of how rapidly the process is carried out. Moreover, this
entropy difference is uniquely determined by the total energy change in the system, no
matter how fast or slow the process of energy exchange is. Another remarkable example
of thermodynamic relations are the recently discovered fluctuation theorems [20, 25, 186,
187], which make exact statements about work, heat, and free energy changes in arbitrary
nonequilibrium processes.

To derive thermodynamic relations one needs to consider dynamical processes that
start from a stationary state. To this end, we focus on an isolated system initially prepared
in a stationary state, which undergoes a unitary evolution in response to an external
change. The latter is modeled by a change in time of macroscopic parameters in the
Hamiltonian according to a prescribed protocol. The protocol considered is such that
the parameters are changed during a finite time, after which the Hamiltonian is time
independent and the system is allowed to relax to equilibrium. As an example, one
can think of a gas confined in a container by a piston (see Fig. 20). In this case, the
macroscopic parameter is the position of the piston, which is changed in time from
position z = A to z = B according to a protocol z(t). At the end of the process, the
piston is kept fixed at position z = B and the gas is allowed to equilibrate. While we
focus on isolated systems, our setup can also describe open systems. This is because, if
the dynamical process involves changing parameters only in a part of the system (a local
operation), the rest of the system can act as a thermal bath. If the bath is much larger
than the part of the system in which the dynamical process is implemented, the intensive
quantities characterizing the latter (such as the energy density defining the temperature
or the pressure) after it relaxes to equilibrium will be identical to their initial values.

Mathematically, the assumption that the systems start in a stationary (i.e., a state
that is translationally invariant in time) amounts to taking the initial density matrix
to be diagonal in the basis of the initial Hamiltonian (if there are degeneracies in the
spectrum, one just needs to find a basis where the density matrix is diagonal)

ρ(0)
nm = ρ(0)

nn δnm. (85)

It is important to note that, at the moment, we make no assumptions on the structure of
the density matrix beyond stationarity. After the system undergoes a dynamical process,
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the density matrix in the basis of the final Hamiltonian, that is, the Hamiltonian at
the end of the dynamical process, is not diagonal anymore. As discussed previously,
the off-diagonal matrix elements dephase and, at long times, the expectation values of
observables are solely determined by the diagonal matrix elements. The latter are given
by

ρm̃m̃ =
∑

n

Um̃nρ
(0)
nnU

†
nm̃, (86)

where Unm are the matrix elements of the evolution operator

Û = Tt exp

[
−i
ˆ t

0
dt′Ĥ(t′)

]
, Um̃n = 〈m̃|Û |n〉. (87)

Here, Tt denotes time ordering, and the “tilde” indicates that the states |m̃〉 are eigen-
states of the Hamiltonian after the evolution, while |n〉 are the eigenstates of the initial
Hamiltonian. The two basis sets coincide only in the special case of cyclic processes.

Equation (86) can be rewritten as a master equation for the occupation probabilities
of the microstates

ρ
(1)
m̃m̃ =

∑

n

ρ(0)
nn

(
Um̃nU

†
nm̃

)
≡
∑

n

ρ(0)
nn pn→m̃, (88)

where we have defined the transition probabilities between states |n〉 and |m̃〉 associated
with the dynamical process to be17

pn→m̃ = Um̃nU
†
nm̃ = |Um̃n|2 . (89)

The last equality trivially follows from the identity U †nm̃ = (Um̃n)∗, where the star indi-
cates complex conjugation.

From the unitarity of the evolution operator it follows that

∑

m̃

Um̃nU
†
km̃ = δnk, and

∑

n

U †
nk̃
Um̃n = δk̃m̃ . (90)

Setting k = n and k̃ = m̃, we immediately see that

∑

m̃

pn→m̃ = 1,
∑

n

pn→m̃ = 1. (91)

These conditions allow for a simple physical interpretation if we rewrite it changing the
dummy indices n and m in the second sum, namely

∑

m̃ 6=ñ
pn→m̃ =

∑

m6=n
pm→ñ. (92)

In other words, the sum of incoming probabilities to any given state |ñ〉 of the final
Hamiltonian is equal to the sum of the outgoing probabilities from an equivalent, for
example, adiabatically connected state |n〉 of the initial Hamiltonian. For a cyclic process,

17Note that the transition probabilities are conditional, i.e., they define the probability of a transition from state

|n〉 to state |m̃〉 if the system is initially prepared in state |n〉.
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one can remove the tildes and simply say that the sum of incoming probabilities to any
eigenstate is equal to the sum of outgoing probabilities from the same state.

The transition probabilities pn→m̃ = |Unm̃|2 are positive semi-definite for any pair of
states. This, combined with the constraints above, leads to

0 ≤ pn→m̃ ≤ 1 , (93)

as expected. Any semi-positive matrix p satisfying the constraints (91) and (93) is called
doubly stochastic [188]. The corresponding evolution described by the master equa-
tion (88) is called a doubly stochastic evolution.

As it has been known for a long time, the constraints (91) have far-reaching conse-
quences and, for example, play a prominent role in the formulation of the kinetic theory
of gases [189]. Moreover, doubly stochastic evolution is the proper framework to discuss
thermodynamic processes in isolated quantum systems since it emerges naturally based
on the assumptions that: (i) the system starts from a stationary state, (ii) the system
evolves unitarily, and (iii) the long-time behavior of the observables is determined only
by the diagonal elements of the density matrix in the basis of the final Hamiltonian.
With this in mind, we review some general properties of the master equation, and those
associated with doubly stochastic matrices in particular.

5.1.1. Properties of Master Equations and Doubly Stochastic Evolution

Equation (88) is a discrete-time master equation. The matrix p, with elements pn,m̃ =
pn→m̃ satisfying the first of the two conditions in Eq. (91), is known as a Markov matrix
or, equivalently, as a stochastic matrix. The action of p on a probability vector, in our

case ρ(0) (with elements ρ
(0)
nn), gives a new probability vector ρ(1) (with elements ρ

(1)
m̃m̃),

which is the result of stochastic transitions between the different states of the system.
For completeness, we briefly review some of the properties of a Markov matrix that will
be used in our discussion. More details and complete proofs can be found, for example,
in Ref. [190].

We first note that the conservation of probability implies that the outgoing transition
probabilities from any state must sum to one [first condition in Eq. (91)], so that the
sum over each column of the Markov matrix is 1. This holds for any master equation.
Indeed, from Eq. (88),

∑

m̃

ρ
(1)
m̃m̃ =

∑

m̃

∑

n

ρ(0)
nn pn→m̃ =

∑

n

ρ(0)
nn = 1. (94)

In general, the matrix p is not symmetric and therefore admits separate left and right
eigenvectors (the spectrum associated with left and right eigenvectors is the same). If
one applies the matrix p many times on a probability vector one expects that the prob-
ability distribution relaxes to a steady state. This implies that the matrix p has one
eigenvalue λ0 = 1 whose corresponding right eigenvector is the steady-state probability
distribution [190]. The existence of the eigenvalue λ0 = 1 is straightforward to prove
as the left vector (1, 1, 1 . . .) is always, by conservation of probability, the corresponding
left eigenvector. One can show that if the Markov matrix does not have a block diago-
nal form, which implies that some states cannot be reached from others, then the right
eigenvector corresponding to the eigenvalue 1 is unique [190]. Finally, we note that the
relaxation to the steady-state following many applications of p is dictated by the other
eigenvectors and their corresponding eigenvalues. One then expects that the eigenvalues
λi satisfy |λi| ≤ 1 (this can be proved rigorously [190]).

Next, we turn to the second condition in Eq. (91), which is associated with the doubly
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Figure 21. Schematic representation of a doubly stochastic evolution for a cyclic process. An isolated system

undergoes some dynamical process where the control parameter λ changes in time in some arbitrary way (top).
The cumulative effect of the evolution is given by the transition probabilities (bottom). Red arrows indicate the

outgoing transition probabilities from the level |2〉 of the initial Hamiltonian to levels |1̃〉 and |3̃〉 of the final

Hamiltonian (which in this case are the same as |1〉 and |3〉 because we consider a cyclic process). Black arrows
describe the incoming transition probabilities to the level |2̃〉 of the final Hamiltonian: |1〉 → |2̃〉 and |3〉 → |2̃〉.
Doubly stochastic evolution implies that p21̃ + p23̃ = p12̃ + p32̃.

stochastic nature of p. It states that the incoming transition probabilities to any state
sum to one. This constraint is less trivial and does not generally hold for non-unitary
evolution.18 At the same time doubly stochastic evolution is more general than uni-
tary evolution. In particular, the product of two doubly stochastic matrices is a doubly
stochastic matrix [see Eq. (95)]. This implies that any projective measurement performed
during the evolution, which breaks unitarity, keeps the transition matrix doubly stochas-
tic. Moreover, any statistical mixture of doubly stochastic matrices is doubly stochastic.
This implies that if, for example, one repeats slightly different dynamical protocols start-
ing with the same density matrix and ending with the same final Hamiltonian, then the
transition matrix describing the average effect of these dynamical protocols is still doubly
stochastic. Because of this, various dephasing mechanisms (e.g., the presence of external
noise or fluctuating waiting times between different pulses) keep the evolution doubly
stochastic, even if they generally break its unitarity. The second condition in Eq. (91) is
a direct consequence of the fact that any doubly stochastic matrix can be represented as
pn→m̃ = |〈m̃|Û |n〉|2 for some (maybe fictitious) unitary operator Û , see Ref. [191]. For a
unitary process, one can always define its inverse. Therefore, the role of the initial and
final states is interchangeable, and the same sum rule applies to both summations over
n and m̃. The doubly stochastic condition is schematically illustrated in Fig. 21, where
it is shown that the sum of the outgoing rates from a state |2〉 (red lines) is equal to the
sum of the incoming probabilities into the state |2̃〉 (black lines).

The easiest way to satisfy the doubly stochastic constraint is to have identical transi-
tion probabilities between any two pair of energy levels, pn→m̃ = pm̃→n. This condition
is known as detailed balance for an isolated system.19 Detailed balance is satisfied in:
(i) two level systems, (ii) systems with more than two energy levels within first order of
perturbation theory (e.g., a Fermi golden rule) [192], and (iii) systems with real Hamilto-
nians, which satisfy instantaneous time-reversal symmetry, subjected to symmetric cyclic
protocols such that Ĥ(t) = Ĥ(T − t), where T indicates the total duration of the dy-

18For example, if the Markov process admits an absorbing state, this condition is violated since the sum of the

incoming transition probabilities into the absorbing state is larger than one.
19For systems in contact with a thermal bath at temperature T , the detailed balance condition is pn→m̃ =
pm̃→n exp [β(En − Em̃)], where β = (kBT )−1 is the inverse temperature. In Sec.6.2, we show how this condition

follows from the doubly stochastic transition rates.
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namical process [193]. In general, however, pairwise transition probabilities are not the
same, that is, the detailed balance condition pn→m̃ = pm̃→n is violated and only the sum
rules (91) are satisfied.

In passing, we note that doubly stochastic matrices are intimately related to permuta-
tion matrices, as stated by Birkhoff’s theorem, which is presented in Appendix D. This
theorem allows one to make physical predictions for arbitrary doubly stochastic evolution
of systems with many degrees of freedom. For example, it allows one to rigorously bound
the maximum amount of work that can be extracted from a microcanonical bath [194].

Repeated processes. Next, we show that doubly stochastic matrices form a group under
multiplication, that is, the product of two doubly stochastic matrices p and q is a doubly
stochastic matrix s (the remaining group properties follow trivially):

sn→k ≡
∑

m

pn→mqm→k ⇒
{∑

n sn→k =
∑

m qm→k = 1∑
k sn→k =

∑
m pn→m = 1

, (95)

where, to simplicity the notation, we dropped the tilde over the state labels. Physically,
Eq. (95) tells us that performing a sequence of two (or more) doubly stochastic processes
on a system is again a doubly stochastic process. This property allows one to split any
doubly stochastic process in a sequence of arbitrary many doubly stochastic processes.
We now apply this result to a concrete setup in which an initially stationary density

matrix ρ
(0)
nn undergoes an arbitrary dynamical process that is interrupted by a sequence

of ideal projective measurements, i.e., we consider the sequence:

ρ(0)
nn −→︸︷︷︸

U1

M1 −→︸︷︷︸
U2

M2 . . . −→︸︷︷︸
UN

MN (96)

where Uj represents an arbitrary dynamical process and Mj an arbitrary projective
measurement. Immediately after each projective measurement, the density matrix is
diagonal in the basis of the projection operator Mj . Hence the previous sequence is
equivalent to:

ρ(0)
nn −→︸︷︷︸

U1

ρ
(1)
ll −→︸︷︷︸

U2

ρ
(2)
kk . . . −→︸︷︷︸

UN

ρ(N)
mm (97)

where ρ(j) is a diagonal matrix in the basis of the projection operator Mj .
20 Each fun-

damental block is a doubly stochastic process and is represented by a proper doubly
stochastic matrix. For example:

ρ
(j−1)
ll −→︸︷︷︸

Uj

ρ
(j)
kk ⇔ ρ

(j)
kk =

∑

l

ρ
(j−1)
ll p

(j)
l→k. (98)

Using the group property discussed above, the sequence is described by a single doubly
stochastic matrix s obtained as the (matrix) product of the doubly stochastic matrices
of the fundamental processes:

ρ(N)
mm =

∑

n

ρ(0)
nn sn→m, s = p(N) . . .p(2)p(1) , (99)

20To simplify the presentation, here we denote all basis states using the same notation. One needs to keep in mind
that the initial state is always diagonal in the basis of the initial (measurement) Hamiltonian and the final state

is always diagonal in the basis of the final (measurement) Hamiltonian.
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where the bold symbols indicate matrices.
One can generally think of projective measurements as quenches to a measurement

Hamiltonian and dephasing. For example, let us imagine we have a system of (possibly
interacting) spins and we want to do a projective measurement of the z-magnetization
of a given spin. Formally, we can simply say that we project this spin to the z-axis
and read probabilities. Alternatively, one can think about the same process as a quench
to a very strong local magnetic field along the z-axis, such that the remaining part
of the Hamiltonian does not matter, and then dephasing (or time averaging) of the
density matrix. Thus, this combination of quench and dephasing projects the local spin
density matrix into a statistical mixture of “up” and “down” states. For this reason, the
factorization property of the transition matrix (99) holds if we have a series of quenches
with long random waiting times in between. These random waiting times are equivalent
to the projection of the density matrix to the basis of the Hamiltonian after each quench
or, formally equivalent, to the projective measurement of the energy of this intermediate
Hamiltonian.

In ergodic systems, random waiting times are not needed, it is sufficient to wait times
that are longer than the relevant relaxation time. As we discussed in the previous section,
apart from small fluctuations, from the point of view of observables the density matrix
is effectively dephased (see Ref. [195] for a more formal discussion of this point, and
Ref. [196] for caveats). If the waiting time between quenches (random or not) is shorter
than the relaxation time, then the transition matrix describing the whole dynamical pro-
cess is doubly stochastic but it is not the product of the transition matrices corresponding
to the individual quenches. For example, if one considers a large periodically driven er-
godic system, one can anticipate that, if the driving period is longer than the relaxation
time, the exact periodicity of the driving protocol is not important and the transition
probability factorizes (in small ergodic systems the factorization can be violated even for
long driving periods [196]). If the period is short compared to the relaxation time, one
has to use the Floquet formalism (see, e.g., Ref. [197] for review) to accurately describe
the time evolution after many periods. In this case, the dynamics between periods is
coherent and the factorization property of the transition probability (99) does not apply.
Still, the overall evolution remains doubly stochastic.

Let us now discuss the implications of doubly stochastic evolution for time-reversed
processes. The two conditions (91) imply that one can define the transpose transition
rate matrix pTm̃→n = pn→m̃, which is also a doubly stochastic matrix that corresponds to
a reversed process in which the role of initial and final states is swapped. For a unitary
process (i.e., a process without projective measurements or dephasing), the time-reversal
process corresponds to the transition matrix pT , that is, pt.r. = pT . Indeed, for the
time-reversal process, the evolution operator is given by Û−1 = Û †. Therefore

pt.r.
m̃→n ≡ |U †nm̃|2 = |Um̃n|2 = pn→m̃. (100)

In practice, time-reversal processes are very difficult to realize. They require either an
overall change of sign of the Hamiltonian or taking the complex conjugate of the wave
function, which in the classical language is equivalent to changing the sign of the velocities
of all particles. As noted in Ref. [25], the dynamics leading to the transition probabilities
pt.r.
m̃→n can be achieved much more easily by using the so-called reversed protocol. To see

the difference between the time-reversal and reversed processes, consider again a unitary
evolution. The evolution operator and its time inverse are given by the time-ordered
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exponentials (such that later times t appear on the left):

Û = Tt exp

[
−i
ˆ T

0
Ĥ(t)dt

]
, Û † = Tt exp

[
i

ˆ T

0
Ĥ(T − t)dt

]
(101)

Let us now define the reverse protocol as the forward time evolution with the Hamiltonian
H(T − t), that is, the Hamiltonian for which we simply reverse the dynamical protocol.
The corresponding evolution operator is given by

Û r = Tt exp

[
−i
ˆ T

0
Ĥ(T − t)dt

]
. (102)

Note that Û r and Û † are very different. For example, Û Û † is the identity while Û Û r is
not. Nevertheless, if the Hamiltonian Ĥ(t) is real at each moment of time, that is, satis-

fies instantaneous time-reversal symmetry, then Û r and Û † lead to the same transition
probabilities. Using this fact, the eigenstate |n〉 and |m̃〉 can be chosen to be real in that
case, we find

〈n|Û r|m̃〉∗ = 〈n∗|
(
Û r
)∗
|m̃∗〉 = 〈n|Û †|m̃〉. (103)

Therefore

pr
m̃→n = |U r

nm̃|2 = |〈n|U †|m̃〉|2 = pt.r.
m̃→n. (104)

Unlike the time-reversal process, which generally exists only for unitary evolution, the
reverse process is defined even if the forward protocol is not unitary. For example, if
it involves projection measurements along the way. As we discussed, in this case the
transition probability matrices factorize into products of transition probability matri-
ces corresponding to processes between measurements. It is then straightforward to see
that for the reversed process, which involves exactly the same sequence of measurement
performed in the opposite order, one still has prm̃→n = pn→m̃. If the protocol is time

symmetric, that is, Ĥ(T − t) = Ĥ(t), then Û = Û r and hence pr
m→n = pm→n. Combining

this condition with prm→n = pn→m, we see that for such symmetric protocols, detailed
balance is automatically satisfied, i.e., pn→m = pm→n.

5.2. General Implications of Doubly Stochastic Evolution

We now derive the physical implications of doubly stochastic evolution. The results in this
subsection rely only on doubly stochasticity and are therefore valid for both nonintegrable
and integrable systems.

5.2.1. The Infinite Temperature State as an Attractor of Doubly-Stochastic Evolution

First, let us consider a cyclic process. In this case, the basis m̃ and m are identical and
the master equation (88) becomes:

ρ(1) = pρ(0), (105)
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where on the RHS we have a matrix vector multiplication. If we repeat the process N
times, we obtain

ρ(N) = pNρ(0). (106)

On physical grounds one expects that, after many applications of a dynamical process,
all eigenstates of the Hamiltonian should have an equal occupation:

lim
N→∞

ρ(N)
mm = const. =

1

D , (107)

where D is the dimensionality of the Hilbert space. The state characterized by ρmm =
const. is often called an “infinite temperature state” since it is formally identical to a
Gibbs distribution, ρnn = e−βEn/Z, in the limit β → 0. The invariance of the infinite
temperature state under doubly stochastic evolution trivially follows from the master
equation. By substituting the infinite temperature state (which is the right eigenvector
of p corresponding to λ0 = 1) in the master equation, we obtain:

ρ(N+1)
mm =

∑

n

pn→mρ(N)
nn =

1

D
∑

n

pn→m =
1

D = ρ(N)
nn . (108)

In Appendix C, we prove that the infinite temperature state is an attractor of the doubly
stochastic evolution. The approach to the steady state is controlled, as discussed in Sec.
5.1.1, by the eigenvalues of p whose absolute value is smaller than one.

Let us discuss in detail the three-level system depicted in Fig. 21. Besides providing
a concrete example of the approach to infinite temperature, this example clarifies under
which conditions the system always relaxes to the infinite temperature state. Instead
of considering the most general doubly stochastic evolution (which is discussed in ap-
pendix D in connection with Birkhoff’s theorem), we assume that: (i) the process is cyclic
(therefore we can drop tilde signs over eigenstate labels of the final Hamiltonian), (ii)
the transition probabilities satisfy the detailed balance condition pn→m = pm→n, and
(iii) the only nonzero transition probabilities are between states 1 and 2 (p12 = γ12) and
states 2 and 3 (p23 = γ23). From probability conservation, we must have p11 = 1 − γ12,
p22 = 1− γ12 − γ23 and p33 = 1− γ23

p =




1− γ12 γ12 0
γ12 1− γ12 − γ23 γ23

0 γ23 1− γ23.


 (109)

Note that p is symmetric because of the detailed balance condition. Its eigenvalues are:

λ0 = 1, λ1 = 1−γ12−γ23+
√
γ2

12 + γ2
23 − γ12γ23, λ2 = 1−γ12−γ23−

√
γ2

12 + γ2
23 − γ12γ23

(110)
One can then see that unless either γ12 = 0 or γ23 = 0, that is, unless the transition
matrix is block diagonal, |λ1|, |λ2| < 1. As a result, for a repeated process, any probability
distribution will relax to the eigenstate corresponding to the eigenvalue λ0 = 1, which is
nothing but the uniform probability distribution (1/3, 1/3, 1/3).

5.2.2. Increase of the Diagonal Entropy Under Doubly Stochastic Evolution

As shown above, any initial state evolving under a repeated doubly stochastic process
approaches the “infinite temperature state”. This state is the one with the maximal
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spread in the eigenstates of any final Hamiltonian. As we discussed in Sec. 3.4, a natural
measure of the spreading of states, in the basis of a given Hamiltonian, is the diagonal
entropy:

Sd = −
∑

n

ρnn ln ρnn. (111)

This entropy is maximized for the uniform occupation probability (which, as shown in
Appendix C, is an attractor) so one can anticipate that Sd can only increase under doubly
stochastic evolution.

The diagonal entropy has many interesting properties. For example, it coincides with
the usual von Neumann entropy for stationary density matrices. In addition, the diagonal
entropy can be viewed as the entropy of the time averaged density matrix. The diagonal
entropy also sets a natural “distance” between the density matrix ρ and the infinite
temperature density matrix. Indeed given two discrete distributions P and Q a natural
distance between them, also known as the Kullback-Leibler (KL) divergence [198], is21

DKL(P ||Q) =
∑

n

Pn ln(Pn/Qn). (112)

It is straightforward to see that this distance is non-negative and that it is zero only
when the two distributions coincide, that is, only when Pn = Qn for all values of n. If
we substitute Pn → ρnn and Qn → 1/D then

DKL(ρnn||ρ∞) = S∞ − Sd ≥ 0, (113)

where S∞ = ln(D) is the entropy of the infinite temperature state (the highest possible
entropy). Therefore, an increase of the diagonal entropy is equivalent to decreasing the
distance between the actual and the infinite temperature energy distributions.

We prove next that doubly stochastic evolution leads to an increase of the diagonal
entropy. First, recall that if a function is convex in a given interval then

f(x) ≥ f(y) + (x− y)f ′(y) (114)

for any x, y in that interval. In particular, if we chose the function f(x) = x ln(x), which
is convex for any x ≥ 0, we obtain

x ln(x)− y ln(y) ≥ (x− y)[ln(y) + 1]. (115)

By replacing x→ ρ
(0)
nn and y → ρ

(1)
m̃m̃, we obtain

ρ(0)
nn ln ρ(0)

nn − ρ(1)
m̃m̃ ln ρ

(1)
m̃m̃ ≥

(
ρ(0)
nn − ρ(1)

m̃m̃

)(
ln ρ

(1)
m̃m̃ + 1

)
. (116)

Multiplying both sides of the equation above by pn→m̃, and summing over n, leads to

∑

n

(
pn→m̃ ρ(0)

nn ln ρ(0)
nn

)
− ρ(1)

m̃m̃ ln ρ
(1)
m̃m̃ ≥ 0, (117)

21Some caution is needed here as the Kullback-Leibler divergence is not symmetric and does not satisfy the

triangular inequalities. Therefore, it is not a distance in the metric sense.
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where we have used that
∑

n pn→m̃ = 1 and
∑

n ρ
(0)
nn pn→m̃ = ρ

(1)
m̃m̃. Finally, summing this

inequality over m̃ and using that
∑

m̃ pn→m̃ = 1, one obtains

∆Sd ≡ S(1)
d − S

(0)
d =

∑

n

ρ(0)
nn ln ρ(0)

nn −
∑

m̃

ρ
(1)
m̃m̃ ln ρ

(1)
m̃m̃ ≥ 0. (118)

This implies that, under any doubly stochastic evolution, the diagonal entropy can only
increase or stay constant. Hence, the distance from the uniform or infinite temperature
distribution monotonically decreases or stays constant. It is interesting that this state-
ment is not tied in any way to quantum chaos. For example, if we take an arbitrary
two level system in a stationary state and apply any sequence of pulses then the diago-
nal entropy cannot decrease. This statement, however, does not hold if the initial state
is nonstationary. In that case, the evolution is not doubly stochastic and the diagonal
entropy can decrease.

The increase of the diagonal entropy under doubly stochastic evolution should be
contrasted with the exact conservation of von Neumann’s entropy Svn = −Tr [ρ̂ ln ρ̂]
under any unitary evolution. These two results do not contradict each other. In fact, the
relation between these two results can be understood by considering a unitary evolution
of an initially stationary density matrix. Then the following chain of relations hold:

Sd(0) = Svn(0) = Svn(t) ≤ Sd(t) . (119)

The first equality follows from the fact that, for a stationary density matrix, the von
Neumann and the diagonal entropy are identical. The second equality reflects the obvious
fact that under unitary evolution the von Neumann entropy is conserved. Finally, the last
inequality follows from Eq. (118). This has a direct analogy in classical systems where
Liouville’s theorem conserves the volume in phase space while the total entropy of an
isolated system increases or stays constant.

The fact that

Sd(t) ≥ Sd(0), (120)

means that, under unitary evolution starting from a stationary state, the diagonal entropy
at any time t > 0 is larger than (or equal to) the initial diagonal entropy. This does not
mean that the diagonal entropy increases continuously in time, that is, in general it is not
true that Sd(t2) ≥ Sd(t1) for t2 > t1 > 0 because at intermediate times the system might
retain coherence. A monotonic increase occurs if we consider repeated doubly stochastic
processes, as discussed in Sec. 5.1.1. One can also prove a more general statement without
assuming any dephasing, namely, that if one waits for a fixed long time between two pulses
the probability that the diagonal entropy increases in time is higher (exponentially higher
for many particles) than the probability that it decreases. The proof of this statement is
beyond the scope of this review and can be found in Ref. [195].

5.2.3. The Second Law in the Kelvin Formulation for Passive Density Matrices

As shown above, under repeated doubly stochastic evolution that starts from a station-
ary density matrix, the diagonal entropy increases until it reaches its maximum value,
corresponding to an “infinite temperature state”.

Now, we take a step further and assume that the initial probabilities decrease mono-
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tonically in energy, that is, for any n and m

(
ρ(0)
nn − ρ(0)

mm

)
(En − Em) ≤ 0, (121)

where En and Em are eigenenergies of the system. Relying on this assumption, one can
prove that, for any doubly stochastic cyclic evolution (in particular, for any cyclic unitary
process), the energy of the system can only increase or stay constant [188, 199]:

∑

n

Enρ
(1)
nn ≥

∑

n

Enρ
(0)
nn . (122)

By energy conservation, this difference must be equal to the average work done on the
system during the cyclic process

〈W 〉 =
∑

n

Enρ
(1)
nn −

∑

n

Enρ
(0)
nn ≥ 0 . (123)

Diagonal density matrices satisfying the inequality (121) are termed passive [188] and are
common. The Gibbs distribution for systems in thermal equilibrium, ρnn = e−βEn/Z, is a
passive density matrix. Therefore, condition (123) is quite general and can be interpreted
as a manifestation of the second law of thermodynamics in Kelvin’s formulation – one
cannot extract work from a closed equilibrium system by carrying out a cyclic process.
As all the results in Sec. 5.2, this statement is solely based on doubly stochastic evolution
and on the passivity of the initial density matrix (and therefore, applies to both integrable
and nonintegrable systems). In Sec. 7, we show explicitly how it works for a single particle
driven in a chaotic cavity.

The proof of Eq. (123) relies on the fact that any doubly stochastic evolution tends
to make the occupation probabilities uniform. In the case of an initial passive density
matrix, this process requires a transfer of probability from low- to high-energy states
causing the energy of the system to increase. If a stronger detailed balance condition
is satisfied, that is, pn→m = pm→n for any m,n, then the proof becomes particularly
simple [192]:

〈W 〉 =
∑

n,m

Enpn→m[ρ(0)
mm − ρ(0)

nn ] =
1

2

∑

n,m

pn→m(En − Em)[ρ(0)
mm − ρ(0)

nn ] ≥ 0. (124)

The second equality follows from symmetrizing with respect to n and m and using the
detailed balance condition. However, in general, pairwise transition probabilities are not
the same and only the sum rule (91) is satisfied. In this case, the proof is more complicated
but still straightforward [188]. For completeness, it is presented in Appendix E.

5.3. Implications of Doubly-Stochastic Evolution for Chaotic Systems

In the previous three subsections we discussed three important results that are all man-
ifestations of the second law of thermodynamics. In Sec. 5.2.1 (and Appendix C), we
showed that the “infinite temperature state” is the only generic attractor of a doubly
stochastic evolution. In Sec. 5.2.2, we proved that under a repeated doubly stochastic
evolution the diagonal entropy increases until it reaches its maximum value, which corre-
sponds to that of the “infinite temperature state”. Finally, in Sec. 5.2.3, we proved that
any cyclic doubly stochastic evolution leads to an increase of the (average) energy of the
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system (provided the initial density matrix is passive). This statement is equivalent to
the second law of thermodynamics in the Kelvin form.

All these statements rely only on doubly stochastic evolution and therefore apply to
both integrable (and in particular noninteracting) and chaotic systems. In this section,
we take a step further and assume that the system undergoing the dynamical process is
chaotic.

5.3.1. The Diagonal Entropy and the Fundamental Thermodynamic Relation

The entropy of a system in thermal equilibrium is a unique function of its energy and
other relevant extensive variables (denoted by λ). This fact implies the fundamental
thermodynamic relation

dS =
1

T
(dE + Fλdλ) . (125)

Here, Fλ is the generalized force conjugate to λ. Since this expression is directly derived
from S(E, λ), it applies to both reversible and irreversible processes. In the case of a
reversible transformation, we can identify TdS as the heat transferred and Fλdλ as the
work done by the system. In contrast, for an irreversible transformation, one cannot make
these identifications. Equation (125) is then taken as a mathematical relation between
thermodynamic functions. For example, if an isolated gas in a container is expanded by
a volume dλ by moving a partition very quickly (a Joule experiment), there is no work
done and the energy change in the system is zero. The fundamental relation then implies
that the change in entropy is given by dS = Fλdλ/T with Fλ being the pressure before
the expansion. If one insists on giving an interpretation to the equation as describing
a dynamical process, it can be thought of as a fictitious reversible process (expansion
with work and heat exchange) that is not related to the actual (irreversible) process
that has taken place. As we show in this and the following subsection, thinking about
the fundamental relation from a microscopic point of view is illuminating. The changes
in the entropy can actually be assigned to underlying, in general irreversible, physical
processes (which may result from work and/or heat exchange). The entropy change is
then simply related to transitions between the energy levels of the system during the
dynamical process.

From the microscopic point of view, the fundamental relation is not at all trivial (see,
e.g., Ref. [200]). The energy and its change are uniquely defined by the density matrix
and the energy eigenstates. The generalized force is also expressed through the density
matrix and the Hamiltonian. Thus, for the fundamental relation to apply microscopically,
we need to define an object, the entropy, which can also be expressed through the density
matrix and possibly the Hamiltonian and ensure that Eq. (125) holds for any dynamical
process both for open and isolated systems. Let us show that the diagonal entropy,
which we defined earlier as the measure of delocalization in the energy space, satisfies
the fundamental relation in chaotic systems [125, 134]. As we will see, Sd satisfies

dE = TdSd − Fλdλ, (126)

for both reversible and irreversible processes. Once we identify Sd with the entropy, this
constitutes the fundamental relation.

To derive the fundamental relation, let us first use standard statistical mechanics and
come back to the role of quantum chaos later. We assume that the initial density matrix
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is described by a Gibbs distribution (the extension to other ensembles is straightforward)

ρnm(λ) =
1

Z(λ)
e−βEn(λ)δnm. (127)

Using that the energy of the system is given by E(λ) =
∑

n ρnnEn(λ), and calculating
its change for an arbitrary ‘small’ dynamical process (we are not assuming here that the
system is isolated or that the process is unitary), we find

dE(λ) = d

(∑

n

ρnnEn(λ)

)
=
∑

n

[
En(λ)dρnn + ρnn

dEn
dλ

dλ

]
=
∑

n

En(λ)dρnn − Fλdλ,

(128)
where Fλ = −∑n ρnndEn(λ)/dλ. Next, we compute the change in the diagonal entropy
for the same process. This gives

dSd = −d
[∑

n

ρnn ln(ρnn)

]
= −

∑

n

dρnn ln(ρnn)−
∑

n

dρnn = β
∑

n

En(λ)dρnn, (129)

where we used that, by conservation of probability,
∑

n dρnn = 0. Comparing Eqs. (128)
and (129), and noting that the generalized force can be also written as

Fλ = −∂E(λ)

∂λ

∣∣∣∣
Sd

, (130)

we recover that the diagonal entropy indeed satisfies the fundamental thermodynamic
relation, Eq. (126), for any dynamical process. Remarkably, under the assumption that
the system is initially described by the Gibbs distribution, the fundamental relation
applies exactly for both large and small systems whether they are open or closed during
the dynamical process. Moreover, it applies to integrable and nonintegrable systems alike.

To see where quantum chaos enters, assume that an isolated system undergoes a quench
(or any other dynamic process) protocol. Then, according to ETH, physical observables
after relaxation are described by an equilibrium thermal ensemble. This is true despite
the fact that the density matrix of the entire system is not that of the Gibbs ensemble.
With this in mind, we want to prove that if the system is chaotic then the fundamental
relation holds up to possible subextensive corrections. The easiest way to prove it without
assuming a standard equilibrium density matrix is to show that the diagonal entropy,
which is a function of the density matrix, coincides with the thermodynamic entropy
up to subextensive corrections. Then, the fundamental relation and its generalization
immediately follows. Recall that we already presented numerical evidence that the di-
agonal entropy coincides with the thermodynamic entropy in Sec. 3.4, when discussing
implications of quantum chaos and RMT to delocalization in energy space (see Fig. 12).

We start our discussion by noticing that, for large system sizes (no matter whether
they are in a pure or in a mixed state), the diagonal entropy can written as an integral
over energies

Sd ' −
ˆ
dE Ω(E) ρ(E) ln[ρ(E)], (131)

where ρ(E) is an interpolating function satisfying ρ(En) = ρnn and Ω(E) is the smoothed
many-body density of states. We note that ρ(E)Ω(E) = P (E) is the energy distribution
function in the system [see Eq. (56)], from which all moments of the energy can be
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computed. For example, the average energy is given by 〈E〉 =
´
dE E P (E). One can

rewrite the diagonal entropy as

Sd = −
ˆ
dEP (E) ln

[
P (E)δE

Ω(E)δE

]
=

ˆ
dEP (E)Sm(E)−

ˆ
dEP (E) ln[P (E)δE], (132)

where Sm(E) = ln[Ω(E)δE] is the microcanonical entropy at energy E (δE is the width
of the microcanonical energy window).

The last term in Eq. (132) is the one that exhibits a qualitatively different behavior
in integrable and chaotic systems [125]. In nonintegrable systems, one expects P (E) to
be a smooth function of the energy (see, Sec. 3.4). As a result,

´
dEP (E) lnP (E) is not

extensive because
´
dEP (E) is normalized to one and the width of the energy distribution

is not exponentially large in the system size (see Sec. 4.3.2). In integrable systems, on
the other hand, P (E) after a dynamical process (such as a quench) generally exhibits
large fluctuations (see, e.g., left panels in Fig. 11). As a result, the last term in Eq. (132)
can be extensive and, therefore, comparable to the contribution of the first term, that
is, Sd can differ from the thermodynamic entropy. Numerical studies have indeed found
that Sd agrees (disagrees) with the thermodynamic entropy in quenches in nonintegrable
(integrable) systems [125, 130, 135] (for results at integrability, see Sec. 8.3).

Actually, if P (E) after a dynamical process is well approximated by a smooth Gaussian
(expected for sufficiently large nonintegrable systems, see Sec. 3.4)

P (E) ≈ 1√
2πσ2

exp

[
−(E − 〈E〉)2

2σ2

]
, (133)

with σ2 being, at most, extensive (for a discussion of σ2 after a quench, see Sec. 4.3.2),
then the fact that Sd agrees with the thermodynamic entropy follows straightforwardly.
To show that, let us expand Sm(E) around the mean energy 〈E〉

Sm(E) ≈ Sm(〈E〉) +
∂Sm(E)

∂E

∣∣∣∣
〈E〉

(E − 〈E〉) +
1

2

∂2Sm(E)

∂E2

∣∣∣∣
〈E〉

(E − 〈E〉)2 + . . . . (134)

By substituting Eqs. (133) and (134) into Eq. (132), and computing the Gaussian inte-
grals, we obtain

Sd ≈ Sm(〈E〉)− 1

2

(
σ2

σ2
c

− 1

)
, (135)

where Sm(〈E〉) = ln[Ω(〈E〉)
√

2πσ] is the von Neumann entropy of a microcanonical
distribution with mean energy 〈E〉 and energy width δE =

√
2πσ. In the expression

above

σ−2
c = − ∂β(E)

∂E

∣∣∣∣
〈E〉

, with β(E) =
∂S(E)

∂E
. (136)

We note that here the inverse temperature β(E) is defined solely by the density of states
at energy E, and that σ2

c is the variance of the energy in a canonical ensemble with inverse
temperature β(〈E〉).22 Since σ2

c is extensive, the last term in Eq. (135) is clearly non-
extensive and can be ignored in large systems. We then see that, in chaotic systems, one

22We assume that we are not at a phase transition, at which σ2
c might diverge.
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can define a functional of the density matrix (the diagonal entropy) that coincides with
the thermodynamic entropy both in open and closed systems after they are driven from
equilibrium and allowed to relax. For closed systems, this is a nontrivial statement that
relies on the assumption that the final Hamiltonian (the one after the dynamical process)
is quantum chaotic (nonintegrable). From this result, the fundamental thermodynamic
relation for chaotic systems follows without the assumption that the system is in thermal
equilibrium.

To conclude this section, let us mention an apparent paradox that is frequently raised
to argue that there is a deficiency in the diagonal entropy (or, for that matter, von Neu-
mann’s entropy) for quantum systems. A similar “paradox” can be argued to occur for
Liouville’s entropy for classical systems. If one starts a cyclic process from an eigenstate
of an ergodic Hamiltonian, where von Neumann’s entropy is zero by definition, after
reaching the new equilibrium the energy change can be made arbitrarily small while
the entropy change cannot. The latter will be the thermodynamic entropy. Hence, the
equality dE = TdS seems to be violated. There is, in fact, no paradox. The entropy of
a single eigenstate is a singular quantity. Any arbitrarily small perturbation will imme-
diately lead to mixing exponentially many eigenstates of the Hamiltonian and lead to
the thermodynamic entropy (see, e.g., the discussion in Ref. [109]). In particular, any
attempt to measure the temperature of the eigenstate, which is necessary to test the
fundamental relation, will introduce an extensive thermodynamic entropy and thus the
paradox is immediately removed.

5.3.2. The Fundamental Relation vs the First Law of Thermodynamics

It is interesting to put the results presented in the previous subsection in the context of
the first law of thermodynamics:

dE = dQ+ dW. (137)

This law is a statement about energy conservation and implies that the energy of the
system can change only due to heat (defined as the energy flow from one system to another
at fixed macroscopic couplings) and work (defined as the energy change in the system
due to a dynamical change of these couplings). Note that, as previously stressed, the
fundamental relation (125) is a mathematical expression relating equilibrium quantities,
while the first law only deals with the conservation of energy.

From the microscopic stand point it is convenient to split an infinitesimal energy change
into two contributions [see Eq. (128)]:

dE = dQ̃+ dWad. (138)

The first one, dQ̃ =
∑

nEndρnn, results from changes in occupation numbers of the
microscopic energy levels (and is not to be confused with the common definition of heat
in the first law) and the second one, dWad =

∑
n dEnρnn, results from the changes

of the energy spectrum at fixed occupation numbers. This last term, as we discussed,
can be written as the full derivative of the energy (assuming that the energy spectrum
is differentiable) and thus represents the adiabatic work done on the system, dWad =
−Fλdλ [see Eq. (130)]. If the dynamical process is infinitesimally slow, changing the
macroscopic parameter of the system does not change occupation probabilities. Formally,
one can prove this statement using adiabatic perturbation theory, similarly to what was
done for energy in Ref. [201]. We thus see that for infinitesimally slow processes dQ̃ =
TdS = dQ and dW = dWad, which is well known from thermodynamics. We note that in
large systems the strict quantum-mechanical adiabatic limit requires exponentially slow
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processes in order to suppress transitions between many-body eigenstates. This is another
way of saying that isolated eigenstates are very fragile. Thermodynamic adiabaticity on
the other hand requires that the dynamical process is slow with respect to physical time
scales, which are much shorter than the inverse level spacing. This is of course consistent
with Eq. (138) as transitions between nearest eigenstates lead to exponentially small
heating and essentially do not contribute to dQ̃ and hence to dE. So the only way to
have significant heating is to introduce transitions across exponentially many energy
levels, which requires much faster dynamics.

The situation becomes somewhat different in a setup where the process is not infinites-
imally slow, even if it is still effectively quasi-static. For example, one can imagine a
compression and expansion of a piston containing a gas (see Fig. 20) at some finite rate.
At the end of the process, when the piston is back at its original position, the energy
of the gas is higher than its initial energy. This is essentially the way microwave ovens
function. There, the food heats up because of the non-adiabatic work performed by the
time-dependent electromagnetic field. This process can still be quasi-static because if in
each cycle the energy of the system increases by a small amount then it can be approx-
imately described by local equilibrium. This “microwave heating” in ergodic systems is
indistinguishable, at the end of the process, from conventional heating resulting from
connecting the system to a thermal reservoir.

Therefore, from a microscopic standpoint, it is more natural to define dQ̃ (and not dQ)
as heat. In the literature, dQ̃ has been called heat [192], excess heat [202], excess energy
[203], non-adiabatic work [193], and others. We will not argue one way or another in
terming dQ̃. We only note that, physically, it represents the heating of the system, that
is, the energy change in the system caused by transitions between levels, independent of
whether those transitions are induced by contact with another system or by changing
non-adiabatically some coupling λ, or both. As we proved earlier [see Eq. (126)], for small
changes in ergodic systems, one always has dQ̃ = TdSd, so this energy change is uniquely
associated with the entropy change. If an isolated system starts in the stationary state
then, as we proved, the entropy change is always non-negative and thus one always has
dQ̃ ≥ 0. This, in turn, implies that dW ≥ dWad (in the latter dQ = 0), in agreement
with the results in Sec. 5.2.3.23 If the system is not closed, then, by definition,

dQ̃ = dQ+ (dW − dWad). (139)

As a result, dQ̃ ≥ dQ so that TdSd ≥ dQ, as expected from thermodynamics.

6. Quantum Chaos, Fluctuation Theorems, and Linear Response Relations

The recently discovered fluctuation theorems are remarkable equalities involving thermo-
dynamic variables. They are valid for systems initially prepared in equilibrium and then
driven far from equilibrium in an arbitrary way (see, e.g., Refs. [25, 187] for reviews).
These theorems effectively replace many thermodynamic inequalities by equalities (e.g.,
the second law of thermodynamics in the Kelvin form discussed previously). In many
cases, the proof of the fluctuation theorems, as previously done for the fundamental rela-
tions, assumes that the initial state is described by a Gibbs distribution. When this is the
case, one does not need any additional assumptions, such as quantum chaos. However,
if the system is not weakly coupled to an equilibrium bath, then the assumption of a

23For processes that are not infinitesimally slow, in the presence of unavoidable level crossings, there can be

exceptions where dW < dWad [204]
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Gibbs distribution is often not justified and one has to rely on quantum chaos and ETH
to prove these relations.

In this section, we derive the fluctuation theorems for individual eigenstates and hence
extend them to arbitrary stationary distributions that are narrow in energy. Based on
these fluctuation theorems, we derive energy drift-diffusion relations for both isolated
and open systems, and discuss how they lead to nontrivial asymptotic energy distribu-
tions for driven isolated systems. For clarity, we derive these fluctuation relations in two
ways. First we show a standard derivation for an initial Gibbs ensemble, and then, for
quantum chaotic systems, we generalize this derivation to systems prepared in individual
eigenstates. The latter approach clarifies in which situations fluctuation theorems apply
to isolated systems. It also allows us to derive finite-size corrections and to extend them
to open systems that are strongly coupled to a bath.

6.1. Fluctuation Theorems

Particularly simple proofs of fluctuation theorems are obtained by considering isolated
quantum systems initially prepared in contact with a thermal bath at temperature T .
The bath is then disconnected from the system which undergoes a unitary (or, more
generally, doubly stochastic) evolution in response to an external protocol that changes
some macroscopic parameter in time. The protocol has a specified duration after which
the parameter is kept constant and the system is allowed to relax back to equilibrium.

Thermodynamics tell us that the average external work, W , done on the system during
a thermodynamic protocol is bounded from below by the difference in the equilibrium
free-energies (at the same temperature T ) evaluated at the initial (A) and final (B) value
of the control parameters. Specifically,

〈W 〉 ≥ ∆F ≡ FB,T − FA,T . (140)

Because the system is isolated, there is no heat flowing to the system, and according
to the first law of thermodynamics 〈W 〉 = Wad + Q̃, where Q̃ [introduced in Eq. (138)
in the previous section] is the irreversible work or, microscopically, the energy change
associated with the transitions between different energy levels. Then Eq. (140) becomes

Q̃ ≥ 0. (141)

For a cyclic process, Wad = 0. Therefore, 〈W 〉 = Q̃, and this inequality reduces to
Kelvin’s formulation of the second law. For an adiabatic process, Q̃ = 0, and the in-
equality (141) becomes an equality.

By properly taking into account the fluctuations, the Jarzynski equality turns the in-
equality (140) into an equality even if the protocol drives the system far from equilibrium.
This equality reads:

〈e−W/kBT 〉 = e−∆F/kBT , (142)

where the angular brackets denote the average over many experimental realizations of
the same protocol. In particular, for cyclic processes (for which A = B), the Jarzynski
equality reduces to

〈e−W/kBT 〉 = 1, (143)

which was first discovered by Bochkov and Kuzovlev [205, 206] as a nonlinear general-
ization of the fluctuation-dissipation theorem. Equation (143) is frequently referred to as
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the Bochkov-Kuzovlev work-fluctuation theorem [25].
To clarify the meaning of Eq. (142), it is better to refer to a concrete example, say, the

compression of a gas by a moving piston (see Fig. 20). Initially, the gas is assumed to be
in thermal equilibrium connected to a bath, with the piston at position z(0) = A. We
assume that, during the protocol z(t), the system is not connected the bath anymore, i.e.,
it can be regarded as isolated. At the end of the protocol, the control parameter reaches
the value z(t) = B. We record the external work W , which is formally defined as the
energy change of the piston. Note that the free energy FB,T is not the free energy of the
system after the protocol. It is rather the equilibrium free energy evaluated at the initial
temperature and the final value of the control parameter.24 Upon repeating the protocol
many times, the work will fluctuate around some average value. The Jarzynski equality
(142) states that the exponential of the work done, averaged over many realizations of
the same experiment, is equal to the exponential of the equilibrium free energy difference.
Hence, the Jarzynski equality connects a dynamical quantity, work, which depends on
the details of the protocol, and an equilibrium quantity, the free energy difference, which
only depends on the initial and final values of the control parameter. In particular, this
relation can be used to measure free energy differences in small systems by measuring
the work. In large systems, the Jarzynski relation is generally not very useful unless W
is small. This because the average of the function exp[−βW ] will be dominated by rare
events in which the work is negative. The assumption that the system is not connected
to the bath during the protocol, which was present in the original work of Jarzynski [20]
and which caused some confusion, is not necessary (see Ref. [207] and the proof below).

Equation (142) can be understood as a constraint on the work distribution P (W ). This
constraint is independent of the details of the protocol z(t), and depends only on the
initial and final values of the macroscopic parameter, A and B, respectively, through the
free energy difference ∆F ≡ FB,T − FA,T . Note that the full distribution P (W ) depends
on the details of z(t). If we take the logarithm of Eq. (142), and perform the cumulant
expansion, we obtain the expression:

∑

n≥1

(−1)n

n!

〈Wn〉c
(kBT )n

= − ∆F

kBT
. (144)

We therefore see that the Jarzynski equality constraints different cumulants of the work.
If the work is small, or if the temperature is high, then only a few cumulants effectively
enter the sum. When this happens, the constraint has an important consequence and
leads to standard thermodynamic relations. However, if many cumulants contribute to
the expansion (as expected when W is large), then the constraint does not place strong
restrictions to the moments of the work.

Note that, by combining the Jarzynski equality (142) and Jensen’s inequality 〈exp[x]〉 ≥
exp[〈x〉], we recover the Clausius inequality (140). Let us emphasize that this inequality
only applies to the average work. The work carried out in a single realization of the
experiment can be smaller than ∆F . This can be the case especially in small systems,
where fluctuations are large. The Jarzynski equality allows one to estimate the likelihood
of such rare events [207].

Closely related to the Jarzynski equality is the Crooks theorem, which was originally
formulated for classical systems [186] and then extended to quantum systems [23, 24].
The Crooks theorem relates the probability of performing a work W during the forward
process, PF (W ) (A → B), with the probability of performing a work −W during the

24It would be the free energy of the system if it is reconnected to the same bath and allowed to re-equilibrate. Since

no work is done on the system during its re-equilibration, such a process does not affect the Jarzynski equality.
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reverse process, PR(−W ) (B → A, in a time-reversed manner):

PF (W )

PR (−W )
= e(W−∆F )/kBT . (145)

The expression above can be interpreted as a symmetry of the distribution function
between the forward and the reverse process. Note that this symmetry is with respect to
W = 0 and not with respect to the average work. Rewriting the Crooks relation as

PF (W ) e−W/kBT = PR (−W ) e−∆F/kBT , (146)

and integrating over W , one recovers the Jarzynski equality.

6.1.1. Fluctuation Theorems for Systems Starting from a Gibbs State

Here we derive the Jarzynski equality (142) and the Crooks theorem (145) for a system
that is initially in a Gibbs state and is not coupled to a bath during its evolution. In this
case, neither quantum chaos nor the limit of a large system size need to be invoked. The
derivation relies exclusively on the symmetry of the doubly stochastic evolution between
the forward and the reverse process [see Eq. (104)]:

prm̃→n = pn→m̃. (147)

We recall, that a doubly stochastic evolution describes unitary dynamics of systems
starting from stationary states and extends to some non-unitary processes involving
projective measurements or dephasing.

Let us consider a system prepared in a state characterized by an initial energy EA,
corresponding to an initial value of the control parameter λ(0) ≡ λA, drawn from the
Gibbs ensemble of the initial Hamiltonian. Then the system undergoes an arbitrary
dynamical process described by a doubly stochastic evolution. At the end of the process,
the system has an energy EB, which is a random variable. The fluctuating work25 is
formally defined as W = EB −EA [23, 24]. This work is characterized by the probability
distribution:

PF (W ) =
∑

n,m̃

ρ(0)
nn pn→m̃δ(Ẽm̃ − En −W ) =

∑

n,m̃

e−βEn

ZA
pn→m̃ δ(Ẽm̃ − En −W ), (148)

where n and En (m̃ and Ẽm̃) refer to states and the spectrum of the initial (final) Hamil-
tonian, and ZA is the partition function associated with the initial value of the control
parameter λA. The probability of performing work −W during the reverse process, start-
ing from a Gibbs distribution, is

PR(−W ) =
∑

n,m̃

e−βẼm̃

ZB
prm̃→n δ(En − Ẽm̃ +W )

=
∑

n,m̃

e−β(En+W )

ZB
pn→m̃ δ(Ẽm̃ − En −W ) = PF (W ) e−βW

ZA
ZB

, (149)

25There is an active discussion on how to define work in quantum systems, with many conflicting definitions. We
use the definition due to Kurchan [23] and Tasaki [24], which has a transparent physical meaning, namely, the

energy change in the system. By energy conservation, W is also the energy change of the macroscopic degree of

freedom associated with the control parameter.
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where ZB is the partition function associated with the thermal equilibrium distribution
at the final value of the control parameter, that is, λB. Writing the free energy difference
as ∆F = FB(T ) − FA(T ), and using the relation between free energy and partition
function, that is, ZA,B = e−βFA,B , one sees that Eq. (149) is nothing but the Crooks
theorem (145).

For cyclic symmetric protocols, for which the reverse process is identical to the forward
process, the Crooks theorem simplifies to

P (W )e−βW = P (−W ), (150)

where we suppressed the indexes F and R since, in this case, they are redundant. In
turn, this relation can be recast in the form of a symmetry relation for the cumulant
generating function G(ζ):

G(ζ) = ln

[ˆ
dWP (W )e−ζW

]
=

∞∑

n=1

〈Wn〉c
(−ζ)n

n!
. (151)

To see this we multiply both sides of Eq. (150) by eζW :

P (W )e−βW eζW = P (−W )eζW , (152)

and integrate over W to obtain

G(β − ζ) = G(ζ). (153)

The generating function formalism is a convenient tool for deriving various linear re-
sponse relations, for example, Onsager relations and their nonlinear generalizations (see
Ref. [208] and the discussion below).

6.1.2. Fluctuation Theorems for Quantum Chaotic Systems

Now, let us focus on eigenstates of many-body chaotic Hamiltonians and derive the
corresponding fluctuation relations for isolated systems. The applicability of fluctuation
relations to individual eigenstates allows one to extend them to arbitrary initial stationary
distributions so long as they are sufficiently narrow. The approach based on individual
eigenstates also allows us to derive the leading finite-size corrections to the cumulant
expansion of these relations and prove these relations for open systems, even if they are
strongly coupled to the bath throughout the dynamical process.

Let us analyze the probability of doing work W during the forward process starting
from a given many-body energy eigenstate |n〉. By definition, this is given by

PF (En → En +W ) ≡ PF (En,W ) =
∑

m̃

pn→m̃ δ(Ẽm̃ − En −W )

=

ˆ
dẼ ΩB(Ẽ) p(En → Ẽ) δ(Ẽ − En −W ), (154)

where ΩB is the density of states at the final value of the control parameter and we
used the fact that, for chaotic systems, the probability pn→m̃ ≈ p(En → Ẽ) is a smooth
function of the energy Ẽm̃, up to a small Gaussian noise (c.f., Sec. 3.4). In non-chaotic
systems, the transition probability pn→m̃ can fluctuate strongly between states that are
close in energy, that is, changing the summation over m̃ by an integration over Ẽ is not
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Figure 22. Illustration of relation (157). A system is composed of many closely spaced energy levels. In response
to some dynamic process, during the forward process (red arrow) the system undergoes a transition from an initial

state |n〉 to a final state |m̃〉 with the energy Ẽm̃ = En+W . During the reverse process (green arrow), the opposite

transition happens. The ratio of probabilities of doing work W for the red process and −W for the green process
is given by the ratio of the density of states of the corresponding final states [see Eq. (157)].

justified and, in general, is not valid. Integrating the expression above over the energy,
we find

PF (En → En +W ) = p(En → En +W ) ΩB(En +W ). (155)

Using similar considerations, we find that the transition probability for doing work
−W during the reverse process starting from state |m̃〉 is:

PR(Ẽm̃ → Ẽm̃ −W ) ≡ PR(Ẽm̃,−W ) =
∑

n

prm̃→n δ(En − Ẽm̃ +W )

=
∑

n

pn→m̃ δ(En − Ẽm̃ +W ) =

ˆ
dE ΩA(E) p(E → Ẽm) δ(E − Ẽm̃ +W )

= p(Ẽm̃ −W → Ẽm̃)ΩA(Ẽm̃ −W ). (156)

Comparing the expressions for the forward and backward processes, and substituting
En → E and Ẽm̃ → E +W , we obtain

PF (E,W )

PR(E +W,−W )
=

ΩB(E +W )

ΩA(E)
≡ eSB(E+W )−SA(E), (157)

which is known as the Evans-Searles fluctuation relation [209] (for classical derivations of
a similar nature, see Ref. [210]). This result tells us that the ratio of probabilities of doing
work W in the forward process and −W in the reverse process is simply equal to the
ratio of the final and initial densities of states, that is, the ratio of the number of available
microstates. Typically, as schematically illustrated in Fig. 22, the density of states is an
exponentially increasing function of the energy (corresponding to positive temperature
states). Hence, the number of available microstates is larger for processes corresponding
to an energy increase. This asymmetry is the microscopic origin of the higher probability
of doing positive work, despite the equivalence of the forward and backward microscopic
rates. Note that these considerations are only valid for chaotic systems. For integrable
systems, not all microstates might be accessible and one needs to refine the argument.

Relation (157) is very general. In particular, it contains fluctuation theorems and, in
a sense, generalizes them. To see this, consider a total system with N particles and
let us assume that a dynamical process is applied only to a small subsystem with N1

particles, such that N1 is kept fixed as N → ∞ (N1 can be arbitrarily small, e.g., just
one particle, or can be macroscopic). If the subsystem is weakly coupled to the rest of
the system, it is expected that the rest of the system will act as a thermal bath and, as

68



August 2, 2016 Advances in Physics Review

Figure 23. Schematic representation of the setup considered to prove the detailed balance condition, Eq. (166).

A system I, which can be either quantum chaotic or not is coupled to another system II (bath), which is quantum
chaotic. The two systems are weakly coupled and are allowed to exchange energy. The microscopic transition

probabilities from a pair of states |nI, nII〉 to another pair of states |mI,mII〉 (red arrows) is the same as the

probability of the reverse process (green arrows). However, if one is only interested in transition probabilities in
system I, irrespective of the outcome in the bath, this symmetry is broken and one obtains the standard equilibrium

detailed balance.

discussed previously, from ETH we expect that the small subsystem is described by the
Gibbs ensemble. In this case, we are back to the standard setup considered in Sec. 6.1.1.
On the contrary, when the subsystem is strongly coupled to the rest of the system the
assumption about the Gibbs distribution is not justified. However, even in this case,
the Crooks theorem (145) (and, hence, the Jarzynski equality) still applies. The proof is
straightforward. Since W is at most proportional to N1 and it is therefore non-extensive
in N , we can expand the entropy in Eq. (157) to the leading order in W :

SB(E+W )−SA(E) =
∂SB
∂E

W+SB(E)−SA(E)+O(N1/N) = βW−β∆F+O(N1/N),

(158)

where we used the standard thermodynamic result that at constant temperature

− β∆F = S(E, λB)− S(E, λA) ≡ SB(E)− SA(E). (159)

Therefore, up to N1/N corrections, Eq. (157) implies that

PF (E,W )

PR(E +W,−W )
= eβ(W−∆F ), (160)

irrespective of whether the subsystem is described by the Gibbs ensemble or not. Note
that the free energy difference here is that of the whole system. It becomes the free
energy difference in the subsystem only for a weak coupling between the subsystem and
the rest of the system.

If the work W is small but extensive, for example, coming from a global protocol, or
if one does not take the thermodynamic limit, one can still perform a Taylor expansion
of the entropy in Eq. (157) in powers of W . Then, corrections to the Crooks relation
will be generally finite. In particular, in Sec. 6.3, we will discuss how such corrections
affect the Einstein drift-diffusion relation for the energy current (as occurs, for example,
in microwave heating) of a driven isolated system, and to the Onsager relations. In what
follows, we discuss various implications of Eq. (157) to setups involving both isolated
and open systems.
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6.2. Detailed Balance for Open Systems

Let us use the general relation (157) to derive the familiar detailed balance condition
for open systems. Imagine we have two weakly coupled systems I and II. We do not
need to make any assumption about system I. It can be arbitrarily small, for example,
consisting of one spin, and can be either integrable or ergodic. We assume that system
II is quantum chaotic. For convenience, we call system II a bath, but we emphasize
that we do not assume that system II is much bigger than system I. The weak coupling
assumption is made explicit by writing the Hamiltonian of the entire system as

Htot = HI +HII + γHI−II , (161)

with γ small. Initially, the two systems are prepared in a stationary state with respect to
the uncoupled Hamiltonian HI + HII and then they are allowed to interact. The initial
state can be the product of two Gibbs states with different temperatures or can be the
product of two eigenstates. Because of the coupling, energy is allowed to flow between the
two systems. If the coupling is weak, then the sum of the energies of systems I and II is
(approximately) conserved. This implies that only microscopic transitions between states
|nI, nII〉 and |mI,mII〉 satisfying the energy conservation EI

nI
+ EII

nII
= EI

mI
+ EII

mII
are

allowed (see the red arrows in Fig. 23). This setup is formally equivalent to a quench in
the coupling γ. Therefore, the transition probabilities are doubly stochastic. Moreover, as
we discussed in the previous section, within the Fermi golden rule (or because this quench
can be viewed as a time-symmetric protocol) these probabilities satisfy the stronger global
detailed balance condition

pnI,nII→mI,mII
= pmI,mII→nI,nII

. (162)

Suppose that we are interested in the transition between microstates only in system I,
irrespective of the outcomes in the bath II. Hence, we have to sum over all final states
of the bath. Using that in quantum chaotic systems the transition probabilities are the
same for nearby eigenstates

pI(nI → mI) =
∑

mII

pnI,nII→mI,mII
= pnI,nII→mI,mII

ΩII(E
II
mII

). (163)

This equation is a direct analogue of Eq. (155), with the solely difference being that
only the density of states of the bath enters the RHS, as the sum is carried out over the
final states of the bath. For the reverse process (green arrows in Fig. 23), using the same
arguments, we find

pI(mI → nI) = pmI,mII→nI,nII
ΩII(E

II
nII

) (164)

Comparing these two results, using the conservation of energy together with the global
detailed balance condition, and simplifying notations EII

nII
→ EII (162), we find

pI(nI → mI)

pI(mI → nI)
=

ΩII(E
II + EI

nI
− EI

mI
)

ΩII(EII)
= eSII(EII+EI

nI
−EI

mI
)−SII(EII). (165)

If the bath is large, or if the energy change δEI
mn ≡ EI

mI
−EI

nI
is small compared to EII,

as before, one can expand the entropy difference in the energy change. By doing that,
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one recovers the detailed balance condition in its most familiar form [211]:

pI(nI → mI)

pI(mI → nI)
≈ e−βII(EII) δEI

mn , (166)

where βII(E
II) is the temperature of the bath corresponding to the energy EII.

6.3. Einstein’s Energy Drift-Diffusion Relations for Isolated and Open
Systems

In Sec. 6.1, we showed that the Jarzynski equality can be viewed as a constraint on
the cumulant expansion of the work generating function [see Eq. (144)]. Consider, for
example, the Jarzynski equality for a cyclic process applied to a small subsystem of a
large system or to a system initialized in a Gibbs state. In these cases, the Jarzynski
equality is exact and, given the fact that the process is cyclic, ∆F = 0, so that

〈e−βW 〉 = 1. (167)

Next, let us perform a cumulant expansion of this equality:

0 = ln〈e−βW 〉 = −β〈W 〉+
1

2
β2〈W 2〉c +

1

6
β3〈W 3〉c + . . . . (168)

where 〈W 2〉c = 〈W 2〉 − 〈W 〉2 and 〈W 3〉c = 〈W 3〉 − 3〈W 2〉〈W 〉 + 2〈W 〉3. If the average
work performed is small and its distribution is close to Gaussian or if temperature is
high, then cumulants of order three and higher in the expansion above can be neglected
leading to:

0 ≈ −β〈W 〉+
1

2
β2〈W 2〉c ⇒ 〈W 〉 =

β

2
〈W 2〉c . (169)

The relation above can be interpreted as a fluctuation-dissipation relation for a system
coupled to an external noise. 〈W 〉 is the average work characterizing energy dissipation in
the system and 〈W 2〉c characterizes the uncertainty in the work. Equation (169) can also
be interpreted as an analogue of Einstein’s drift-diffusion relation for the energy. Indeed,
〈W 〉 is the average work done on the system during the cyclic process, which is the energy
drift, and 〈W 2〉c represents the work fluctuations, which is the energy diffusion.

Next we consider a system prepared in a single eigenstate (hence, the results equally
apply to a setup where we start from an arbitrary narrow stationary distribution). We
focus on the general expression for the work probability distribution, Eq. (157). For
simplicity, we focus once again on cyclic26 and symmetric protocols.27 Then

P (E,W ) e−S(E+W )+S(E) = P (E +W,−W ). (170)

In order to proceed further, let us assume that the work W is small (though it can be
extensive). Then, the probability P (E,W ) is a slow function of the first argument and a

26If the protocol is not cyclic the total work W is the sum of the adiabatic work Wad, which is not fluctuating,

and the non-adiabatic work Q̃ which is fluctuating. Then, the following derivation remains valid if one identifies

W with Q̃.
27If the protocol is not symmetric one has to distinguish between forward and reverse processes.
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fast function of the second argument W . Similarly, the entropy is a slow function of W .
Formally, the RHS of the equation above can be rewritten as

P (E +W,−W ) = eW∂EP (E,−W ), (171)

where we used the notation ∂E = ∂/∂E. Finally, expanding the entropy S(E + W ) in
Eq. (170) to second order in W , and integrating over W , we find

〈e−βW−W
2

2

∂β

∂E 〉E ≈ 〈e−W∂E〉E , (172)

where 〈. . . 〉E means that an average is taken with respect to the probability distribution
P (E,W ) at fixed E. Taking the logarithm of both sides of this relation, and performing
the cumulant expansion to the second order, one finds

− β〈W 〉E +
1

2
β2〈W 2〉E,c −

1

2
∂Eβ 〈W 2〉E ≈ −∂E〈W 〉E +

1

2

[
∂2
EE〈W 2〉E − (∂E〈W 〉E)2

]
.

(173)
Note that 〈W 2〉E = 〈W 2〉E,c + 〈W 〉2E , where the first term on the RHS is linear and
the second is quadratic in cumulants. By equating all linear terms in the cumulants28

Eq. (173) reduces to:

− β〈W 〉E +
1

2
β2〈W 2〉E,c −

1

2
∂Eβ 〈W 2〉E,c ≈ −∂E〈W 〉E +

1

2
∂2
EE〈W 2〉E,c . (174)

Using that

∂Eβ 〈W 2〉E,c = ∂E(β〈W 2〉E,c)− β∂E〈W 2〉E,c , (175)

and regrouping all the terms, one finds that the equation above simplifies to

−β
(
〈W 〉E −

β

2
〈W 2〉E,c −

1

2
∂E〈W 2〉E,c

)
+∂E

(
〈W 〉E −

β

2
〈W 2〉E,c −

1

2
∂E〈W 2〉E,c

)
= 0.

(176)
Therefore, the first and the second cumulant have to satisfy the relation:

〈W 〉E =
β

2
〈W 2〉E,c +

1

2
∂E〈W 2〉E,c . (177)

Equation (177) extends Einstein’s drift-diffusion relation (169) connecting work and
work fluctuations for a system prepared in a single eigenstate (and hence to a micro-
canonical shell). In large systems, the last term in (177) is a subleading correction since
the energy is extensive. So, in the thermodynamic limit, this term can be dropped and
one is back to Eq. (169). However, if one is dealing with a small chaotic system, then the
last term cannot be neglected. As we will show in the next section, it has important im-
plications for determining the correct asymptotic distribution of driven chaotic systems.
Relation (177) was first obtained by C. Jarzynski for a single classical particle moving in
a shaken chaotic cavity [212, 213], and then extended to arbitrary quantum or classical
systems along the lines of our derivation in Ref. [193].

28Formally, this can be justified by introducing some parameter ε such that all cumulants are linear in ε. This
parameter can be, for example, duration of the pulse ε = dt or the size of the subsystem that is coupled to the

driving term. Since the relation (170) is valid in all orders in ε, it is sufficient to verify it only to linear order.
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The exact same analysis can be carried out if, instead of a single driven system, one
considers two weakly coupled systems I and II as illustrated in Fig. 23. For the purposes of
this discussion, we will assume that both systems are ergodic. Let us assume that the two
systems are initialized in eigenstates with energies EI and EII and then coupled weakly.
This coupling leads to an energy exchange between the two systems. Since the dynamics
is unitary, and after the assumption that each system is quantum chaotic, we can apply
Eq. (170) to this setup. The only new ingredient is that the entropy S is replaced by
the sum of entropies of the systems I and II (corresponding to the factorization of the
densities of states of the uncoupled systems). Thus

P (EI → EI +W,EII → EII −W ) ≡ P (EI, EII,W )

= eSI(EI+W )+SII(EII−W )−SI(EI)−SII(EII)P (EI +W,EII −W,−W ). (178)

Note that, here, we use W to denote the energy exchange between systems I and II (even
though now it means heat). As we will see shortly, for isolated chaotic systems an external
drive is equivalent to a coupling to an infinite temperature bath βII. Therefore, we prefer
to keep the same notation for both coupled and isolated driven systems. Repeating
exactly the same steps as before, that is, expanding the two entropies and P with respect
to W up to the second order and integrating over the distribution function P (EI, EII,W ),
one obtains (see Appendix G):

〈W 〉EI,EII
=
βI − βII

2
〈W 2〉EI,EII,c +

1

2
(∂EI

− ∂EII
) 〈W 2〉EI,EII,c, (179)

where the symbol 〈. . . 〉EI,EII
means that an average is taken with respect to the prob-

ability distribution P (EI, EII,W ) at fixed EI and EII, the suffix “c” means connected,
and βI − βII is the difference in temperature between the two systems. If both systems
are large, then the last term is again subextensive and can be dropped. It is interesting
to note that Einstein’s relation for coupled systems (179) reduces to the one for isolated
systems (177) if the temperature of system II is infinite βII = 0 and 〈W 2〉EI,EII,c is either
negligible or independent of EII. Hence, from the point of view of energy flow, driving
an isolated system by means of an external cyclic perturbation (like it happens, e.g., in
microwave ovens) is equivalent to coupling it to an infinite temperature reservoir.

6.4. Fokker-Planck Equation for the Heating of a Driven Isolated System

The drift-diffusion relation (177) can be used to understand energy flow (or heating) in
a driven ergodic system not coupled to a bath. Let us imagine that the process consists
of many pulses, well separated in time, such that the system can relax between pulses
to the diagonal ensemble. Then, after coarse-graining, one can view this as a continuous
(in number of pulses) process. If the mean energy deposited in each pulse is small then
both 〈W 〉 and 〈W 2〉c (as well as other cumulants of W ) scale linearly with the number
of pulses and, hence, with the coarse-grained time. Next, instead of a series of discrete
processes, one can consider a single continuous process. Then, as long as the relaxation
time is faster than the characteristic time for the energy change in the system, 〈W 〉 and
〈W 2〉c are approximately linear in time. It is well known that under such assumptions
transport (energy transport in our case) can be described by the Fokker-Planck equation.
The derivation of the Fokker-Planck equation is fairly standard (see, e.g., Ref. [190]) but
we repeat it here for completeness. We start from the microscopic master equation (88).
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For simplicity, assuming a cyclic process and dropping the tildes:

ρn(t+ δt) =
∑

m

pm→n(δt)ρm(t), (180)

where δt is a small interval of time. By assumption, pm→n(δt) ∝ δt. Let us define the
energy distribution function

Π(En, t) = ρn(t)Ω(En). (181)

Now, replacing the summation over m in the master equation by an integration over W
(and multiplying by the density of states), recalling that the probability of performing
work W is P (En,W ) = pn→mΩ(Em), where Em = En + W , and dropping the index n
in En, we can rewrite Eq. (180) as

Π(E, t+ δt) =

ˆ
dWP (E −W,W )Π(E −W, t). (182)

Note that P (E−W,W ) is a fast function of the second argument with the width δW 2 ≡
〈W 2〉c ∝ δt, but a slow function of the total energy of the system, that is, of the first
argument. Similarly, the probability distribution Π(E, t) is expected to be a slow function
of E on the scale of δW . Hence, we can use the Taylor expansions:

Π(E −W, t) = Π(E,W )−W∂EΠ(E,W ) + . . . ,

P (E −W,W ) = P (E,W )−W∂EP (E,W ) + . . .

By substituting these expansions in Eq. (182), and expanding to second order in the
work W , we find:

Π(E, t+ δt)−Π(E, t) = −〈W 〉E∂EΠ(E, t)− ∂E〈W 〉EΠ(E, t) +
1

2
〈W 2〉E∂2

EEΠ(E, t)

+∂E〈W 2〉E∂EΠ(E, t) +
1

2
∂2
EE〈W 2〉EΠ(E, t). (183)

Dividing the equation above by δt, and using the notation

JE =
〈W 〉E
δt

, DE =
〈W 2〉E,c

δt
, (184)

we find the Fokker-Planck equation

∂Π(E, t)

∂t
= −∂E [JEΠ(E, t)] +

1

2
∂2
EE [DEΠ(E, t)]. (185)

To obtain this result, we notice that the cumulants of the work are linear in transition
probabilities and, hence, they are linear in δt. So, in the limit δt→ 0, one can substitute
〈W 2〉E → 〈W 2〉E,c.

This Fokker-Planck equation for the energy drift and diffusion is completely general.
Effectively, it describes the evolution of the energy distribution function under many
small uncorrelated pulses or under a continuous slow driving such that, at each moment
of time, the system is, approximately, in a stationary state. In general, the drift JE and
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diffusion DE coefficients are independent. However, in ergodic systems, they are related
to each other by Eq. (177), which, after dividing by δt, reads [193]

JE =
β

2
DE +

1

2
∂EDE . (186)

Likewise, for open systems, Eq. (179) implies that [212–214]

JE =
∆β

2
DE +

1

2
∂EDE (187)

In the next section, we will see how powerful this result is for finding universal energy dis-
tributions in driven isolated and open systems. We note that the Fokker-Planck equation
can be derived using a different approach, as done in Refs. [215, 216].

Interestingly, one can derive Eqs. (186) and (187) from a very simple argument [193].
Let us discuss it here only for an isolated setup, which is relevant to Eq. (186). It is
straightforward to extend the discussion to open systems, relevant to Eq. (187). According
to the discussion in Sec. 5.2.1, the only attractor for the probability distribution of a
driven system is the infinite temperature distribution: ρ∗n = C1, where C1 is a constant.
This implies that Π∗(E) = C2 exp[S(E)], with C2 another constant, should be stationary
under the Fokker-Planck equation or, in other words, that

− ∂E [JEΠ∗(E)] +
1

2
∂2
EE [DEΠ∗(E)] = 0, (188)

which, in turn, implies that

− JEeS(E) +
1

2
∂E [DEeS(E)] = C3 = 0. (189)

The integration constant C3 has to be equal to zero because one can go to (typically,
low) energies where there are no states and, hence, JE = DE = 0. From Eq. (189), one
immediately recovers the drift-diffusion relation (186).

6.5. Fluctuation Theorems for Two (or More) Conserved Quantities

Until now we focused on systems with only one conserved quantity, the energy. Quite
often one deals with situations where, in addition to the energy, there are other conserved
quantities, such as the number of particles, magnetization, momentum, charge, and vol-
ume. In this section, we extend the fluctuation relations and their implications to such
setups. To simplify our derivations, we will focus on systems with two conserved quanti-
ties: energy E and the number of particles N . At the end of Sec. 6.6, we comment on how
to extend our results to an arbitrary (non-extensive) number of conserved quantities. We
focus on a particular setup, where two initially separated chaotic systems I and II are
weakly coupled allowing for energy and particle exchange (see Fig. 24). The expressions
obtained in this setup can also be used to describe a single system, say, system I, coupled
to an external driving by setting ∂SII/∂EII = ∂SII/∂NII = 0. We assume that the two
systems are connected to each other for a short period of time τ and then detached again
and allowed to equilibrate (i.e., reach a diagonal ensemble), see Fig. 24. It is intuitively
clear that this assumption of connecting and disconnecting the systems is not needed if
the coupling between them is weak and the two systems are in an approximate stationary
state with respect to the uncoupled Hamiltonian at each moment of time. This intuition
can be formalized using time-dependent perturbation theory (see Appendix F).
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Figure 24. Two systems are connected and exchange energy and particles. (Top) Initially, the two systems have
a well-defined energy and number of particles. (Middle) Then they are connected and allowed to exchange energy

and particles. (Bottom) Finally they are disconnected and each system is allowed to equilibrate at the new fixed

values of energy and particle numbers.

Repeating the same steps as in Sec. 6.3, one can straightforwardly generalize Eq. (170)
to:

P (EI, EII, NI, NII,W, δN)

P (EI +W,EII −W,NI + δN,NII − δN,−W,−δN)

= eSI(EI+W,NI+δN)+SII(EII−W,NII−δN)−SI(EI,NI)−SII(EII,NII), (190)

where

P (EI, EII, NI, NII,W, δN)

≡ P (EI → EI +W,EII → EII −W,NI → NI + δN,NII → NII − δN).

If the energy and particle changes are small, one can expand the entropy and the
probability distribution P in Taylor series. If W and δN are small and non-extensive,
then only the leading derivatives of the entropy need to be kept and we find a Crooks-type
relation for two conserved quantities:

P (EI, EII, NI, NII,W, δN)e−∆βW−∆κδN ≈ P (EI, EII, NI, NII,−W,−δN), (191)

where ∆β = βI − βII, and ∆κ = κI − κII, with

κi =
∂Si
∂Ni

= −βiµi, i = I, II (192)

As in Sec. 6.1.1, this relation is exact if the two systems I and II are described by grand
canonical distributions. It is also asymptotically exact to order 1/N (with N of the order
of the number of particles in each system) irrespective of the distribution, if the two
systems are extensive while the energy and particle exchanges are not (which is, e.g.,
the typical setup if two large macroscopic systems are connected through a surface).
For the specific case of effusion of an ideal gas between two reservoirs kept at different
temperatures and chemical potentials, Eq. (191) was derived microscopically in Ref. [217].
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Following Ref. [208], we can use the fluctuation relation (191) to derive the symmetry
property of the cumulant generating function for W and δN , see Eq. (153). Namely,
multiplying both sides of Eq. (191) by eζW+δN

P (EI, EII, NI, NII,W, δN)e−(∆β−ζ)W−(∆κ−η)δN = P (EI, EII, NI, NII,−W,−δN)eζW+δN

(193)
for arbitrary ζ and η, and integrating over W and δN , we find

G(∆β − ζ,∆κ− η) = G(ζ, η) (194)

together with the normalization condition G(0, 0) = 1. For the particular choices of ζ
and η the symmetry relation (194) is equivalent to two different Jarzynski-type relations:

〈exp[−∆βW −∆κδN ]〉 = 1, 〈exp[−∆βW ]〉 = 〈exp[−∆κδN ]〉, (195)

where the left relation holds for ζ = η = 0 and the right for ζ = 0, η = ∆κ. As in Sec. 6.3
the angular brackets imply averaging over W and δN starting at EI, EII and NI, NII.

6.6. Linear Response and Onsager Relations

Continuing with the setup of the previous section, one can perform the cumulant expan-
sion of Eq. (195) up to the second order, or, alternatively, perform a Taylor expansion
of the cumulant generating function and using relation (194). One obtains:

−∆β〈W 〉 −∆κ〈δN〉+
∆β2

2
〈W 2〉c +

∆κ2

2
〈δN2〉c + ∆β∆κ〈WδN〉c = 0, (196)

−∆β〈W 〉+
∆β2

2
〈W 2〉c = −∆κ〈δN〉+

∆κ2

2
〈δN2〉c. (197)

First, we move all the terms to the left-hand side (LHS) of Eq. (197), then by adding
and subtracting the resulting expression with Eq. (196), we obtain the two completely
symmetric relations:

〈W 〉 =
∆β

2
〈W 2〉c +

∆κ

2
〈WδN〉c, 〈δN〉 =

∆κ

2
〈δN2〉c +

∆β

2
〈WδN〉c. (198)

If the coupling between the systems is weak, then either from Fermi’s golden rule or using
the same arguments as presented above Eq. (180), we conclude that 〈W 〉 and 〈δN〉 (as
well as other cumulants such as 〈W 2〉c) are linear functions of the coupling time δt. Then
one can define the energy and particle currents JE = 〈W 〉/δt and JN = 〈δN〉/δt; as well
as DWW = 〈W 2〉c/δt, D2

NN = 〈δN2〉c/δt, and DWN = 〈WδN〉c/δt. Equations (198) can
then be rewritten in the matrix form [218]:

(
JE
JN

)
=

1

2

(
DWW DWN

DWN DNN

)(
∆β
∆κ

)
(199)

These equations are analogous to Eq. (169) and are known as the Onsager relations.
On the LHS one has the energy and particle currents, while on the RHS one has the
symmetric fluctuation matrix multiplied by the thermodynamic biases (∆β and ∆κ)
that drive the energy and particle currents. Note that we obtained these relations as a
cumulant expansion, not as a gradient expansion. This means that they remain valid
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for arbitrarily large ∆β and ∆κ as long as the distribution P (W, δN) is approximately
Gaussian. For this reason, the diffusion matrix in Eq. (199) does not have to be the one in
equilibrium, that is, does not have to correspond to the one for ∆β = ∆κ = 0. When the
temperature and the chemical potential gradients are small, contributions from higher
order cumulants are suppressed because of the higher powers of ∆β and ∆κ. As a result,
the usual Onsager relations apply.

This derivation of the Onsager relations applies to large systems. As with the Einstein
relation (179), there is a correction that can be important for small systems. The deriva-
tion of this correction is analogous to the derivation of Eq. (179). The starting point is
now Eq. (190). One needs to expand the entropy and the probability distribution as a
function of EI,II ±W and NI,II ± δN to second order in W and δN , and then to carry
out a cumulant expansion with these additional corrections. We leave the details of the
derivation to Appendix G and show only the final result, which is the natural extension
of Eq. (179):

〈W 〉 =
∆β

2
〈W 2〉c +

∆κ

2
〈WδN〉c +

1

2
∂E〈W 2〉c +

1

2
∂N 〈WδN〉c,

〈δN〉 =
∆κ

2
〈δN2〉c +

∆β

2
〈WδN〉c +

1

2
∂N 〈δN2〉c +

1

2
∂E〈WδN〉c. (200)

The terms with derivatives are clearly subextensive and not important for large systems,
but they can play an important role in small or mesoscopic systems. It is interesting to
note that the Onsager relations can still be written in the conventional form (199) if one
redefines the energy and particle currents as

JE =
1

τ
〈W 〉− 1

2τ
∂E〈W 2〉c−

1

2τ
∂N 〈WδN〉c, JN =

1

τ
〈δN〉− 1

2τ
∂N 〈δN2〉c−

1

2τ
∂E〈WδN〉c .

(201)
Let us comment that these results immediately generalize to more (M ≥ 3) conserved

quantities. For example, in the Onsager relation (199) one will need to use M -component
vectors for the currents and the gradients and a symmetric M ×M diffusion matrix.
Similarly, one can generalize corrections to the currents (201) writing them using an
M -component gradient form.

6.7. Nonlinear Response Coefficients

Along the lines of Refs. [208, 218], one can go beyond the Onsager relation and use
the symmetry relation of the generating function (194) to constrain nonlinear response
coefficients. It is convenient to work using a vector notation for M -conserved quantities
δ ~N , where δN1 stands for the energy, and δN2, . . . , δNM for other conserved quantities.
Similarly, let us denote by ∆~κ the gradients of affinities (or thermodynamic forces)
κα = ∂S/∂Nα (such that κ1 = β) and ∆κα is the difference in affinities between the
systems I and II. Ignoring subextensive corrections, the symmetry relation (194) reads

G(∆~κ− ~ζ) = G(~ζ), (202)

where we recall that

〈
exp

[
−
∑

α

ζαδNα

]〉
= exp[G(~ζ)]. (203)
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Differentiating this equality with respect to ζα and using that G(0) = 1, we find

Jα ≡ 〈δNα〉 = −∂G(~ζ)

∂ζα

∣∣∣∣
~ζ=0

. (204)

To simplify the notation, we set τ = 1 so that 〈δNα〉 = Jα is the current of the α-th
conserved quantity. The symmetry relation (202) thus implies that

Jα = −∂G(~ζ)

∂ζα

∣∣∣∣
~ζ=0

= −∂G(∆~κ− ~ζ)

∂ζα

∣∣∣∣
~ζ=0

=
∂G(~ζ)

∂ζα

∣∣∣∣
~ζ=∆~κ

. (205)

Let us write explicitly the cumulant expansion of the generating function G(~ζ):

G(~ζ) = −
∑

α

ζαJα +
1

2

∑

αβ

Dαβζαζβ −
1

3!

∑

αβγ

Mαβγζαζβζγ + . . . , (206)

where Dαβ = 〈δNαδNβ〉c is the covariance matrix (second-order joint cumulant matrix),
Mαβγ is the third-order cumulant tensor, and so on. By substituting this expansion into
Eq. (205), we find

2Jα =
∑

β

Dαβ∆κβ −
1

2

∑

βγ

Mαβγ∆κβ∆κγ + . . . (207)

Using this expansion and the symmetry relations of joint cumulant tensors, such asDαβ =
Dβα and Mαβγ = Mβαγ , one can extend the Onsager reciprocity relations to higher order
cumulants. As in the previous section, these results extend to externally driven systems
by substituting ∆~κ by ~κI. Note that because we carry out a cumulant expansion, and not
a gradient expansion, all cumulant tensors, such as Dα,β and Mαβγ , are functions of ∆~κ,
that is, they are evaluated away from the global equilibrium corresponding to ∆~κ = 0.
If one further re-expands these tensors in gradients ∆~κ, one obtains a more standard
gradient expansion around equilibrium [208].

6.8. ETH and the Fluctuation-Dissipation Relation for a Single Eigenstate

In Sec. 4.2, we introduced the ETH ansatz for the matrix elements of physical operators in
the eigenstates of a quantum chaotic Hamiltonian (62). This ansatz contains two smooth
functions of the mean energy Ē = (En+Em)/2, and the energy difference ω = Em−En.
The first function, O(Ē), is nothing but the microcanonical average of the observable

Ô. The second function, fO(Ē, ω), contains information about the off-diagonal matrix

elements of the operator Ô. Let us elaborate on the second function here and show its
relation to nonequal-time correlation functions of the observable Ô (see also Ref. [154]).
In parallel, we will be able to prove the fluctuation-dissipation relation for individual
eigenstates.

We begin by using the ETH ansatz (62) to analyze the quantum fluctuations of an

observable Ô in the eigenstate |n〉:

δO2
n = 〈n|Ô2|n〉 − 〈n|Ô|n〉2 =

∑

m 6=n
|Onm|2 =

∑

m6=n
e−S(En+ω/2)|fO(En + ω/2, ω)|2|Rnm|2,

(208)
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where we used that Ē = (En + Em)/2 = En + ω/2. For concreteness, we consider the
most general case in which the matrix elements of observables are complex.

Because of the ETH requirement that the function fO is smooth, the fluctuations of
|Rnm|2 average out in the sum and one can replace the summation over states m by
an integration over ω:

∑
m →

´
dωΩ(En + ω) =

´
dω exp[S(En + ω)]. To shorten the

notation, we will drop the subindex n in En and, unless otherwise specified, will identify
E with the energy of the energy eigenstate |n〉. Then

δO2
n =

∑

m 6=n
e−S(E+ω/2)|fO(E + ω/2, ω)|2 =

ˆ ∞
−∞

dω eS(E+ω)−S(E+ω/2)|fO(E + ω/2, ω)|2.

(209)
We are interested in expectation values of few-body (usually local) operators (such as
the magnetization in a given region of space) or sums of those operators (such as the
total magnetization). This kind of operators generally connect states that differ by non-
extensive energies, implying that the function fO(E + ω/2, ω) rapidly decreases with
the second argument ω [29, 154] (see Figs. 16 and 17). On the other hand, the entropy
S(E + ω) and the function fO as a function of the first argument can only change if
ω changes by an extensive amount. This means that one can expand these functions in
Taylor series around ω = 0:

S(E + ω)− S(E + ω/2) =
βω

2
+
∂β

∂E

3ω2

8
+ . . . ,

fO(E + ω/2, ω) = fO(E,ω) +
∂fO(E,ω)

∂E

ω

2
+ . . . .

By substituting this expansion in Eq. (209) and keeping terms up to the linear order in
ω, one obtains

δO2
n ≈
ˆ ∞
−∞

dω eβω/2
[
|fO(E,ω)|2 +

∂|fO(E,ω)|2
∂E

ω

2

]
. (210)

The function fO(E,ω) therefore determines the quantum fluctuations of the operator

Ô in eigenstates of the Hamiltonian and, as a result, in the associated microcanonical
ensembles.

In passing, we note that the result above shows that fluctuations of Ô within each
eigenstate are slow functions of the energy. Combining this observation with an earlier
discussion of fluctuations of observables in the diagonal ensemble (see Sec. 4.2.1), we can
rewrite Eq. (72) as

δO2 ≈ δO2
n +

(
∂Ō

∂E

)2

δE2, (211)

where n is the eigenstate corresponding to the mean energy: En = 〈E〉. We see that
fluctuations of any observable in a diagonal ensemble have essentially two independent
contributions, the first coming from fluctuations within each eigenstate and the second
from the energy fluctuations. For extensive observables, these two contributions are of
the same order but, for intensive observables confined to a finite subsystem, the second
contribution becomes subleading and all fluctuations are essentially coming from δO2

n.
This is nothing but a manifestation of equivalence of ensembles applied to the diagonal
ensemble.
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The previous derivation immediately extends to more general nonequal-time correla-
tion functions:

CO(t) ≡ 〈n|Ô(t)Ô(0)|n〉c ≡ 〈n|Ô(t)Ô(0)|n〉 − 〈n|Ô(t)|n〉〈n|Ô(0)|n〉, (212)

where Ô(t) = eiĤtÔe−iĤt is the operator in the Heisenberg picture. Repeating the same
steps as before, one finds

CO(t) ≈
ˆ ∞
−∞

dω eβω/2−iωt
[
|fO(E,ω)|2 +

∂|fO(E,ω)|2
∂E

ω

2

]
. (213)

It is convenient to define the spectral density of the operator Ô as the Fourier transform
of CO(t)

SO(E,ω) =

ˆ ∞
−∞

dt eiωtCO(t). (214)

Substituting here the expression for CO(t), one obtains

|fO(E,ω)|2 +
ω

2

∂|fO(E,ω)|2
∂E

=
e−βω/2

2π
SO(E,ω). (215)

Noting that |fO(E,ω)|2 is an even function of ω and ω|fO(E,ω)|2 is an odd function,
changing ω → −ω in Eq. (215), and adding and subtracting the two resulting equations,
one finds that

|fO(E,ω)|2 =
1

4π

[
e−βω/2SO(E,ω) + eβω/2SO(E,−ω)

]

=
1

4π

[
cosh(βω/2)S+

O (E,ω)− sinh(βω/2)S−O (E,ω)
]
,

∂|fO(E,ω)|2
∂E

=
1

2πω

[
cosh(βω/2)S−O (E,ω)− sinh(βω/2)S+

O (E,ω)
]
, (216)

where

S+
O (E,ω) = SO(E,ω) + SO(E,−ω) =

ˆ ∞
−∞

dteiωt〈n|{Ô(t), Ô(0)}|n〉c,

S−O (E,ω) = SO(E,ω)− SO(E,−ω) =

ˆ ∞
−∞

dteiωt〈n|[Ô(t), Ô(0)]|n〉c, (217)

are the Fourier transforms of the symmetric and antisymmetric correlation functions,
{·, ·} stands for the anti-commutator and [·, ·] stands for the commutator of two opera-
tors. The symmetric correlation function appears in the quantum fluctuations of phys-
ical observables and the antisymmetric correlation function appears in Kubo’s linear
response. We thus see that the absolute value of the function fO(E,ω) and its deriva-
tive with respect to E are determined by the Fourier transforms of the symmetric and
antisymmetric nonequal-time correlation functions of the operator Ô taken in the many-
body eigenstate state |n〉, or, equivalently, in the microcanonical ensemble consisting of
a single eigenstate with the energy E = En. The phase of this function is not uniquely
defined because, in Eq. (62), the random function Rnm is defined up to a random phase.
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One can also invert the relations (216) and obtain

S+
O (E,ω) = 4π

[
cosh(βω/2)|fO(E,ω)|2 +

ω

2
sinh(βω/2)

∂|fO(E,ω)|2
∂E

]
,

S−O (E,ω) = 4π

[
sinh(βω/2)|fO(E,ω)|2 +

ω

2
cosh(βω/2)

∂|fO(E,ω)|2
∂E

]
. (218)

Let us recall that S(E,ω) also determines Kubo’s linear response susceptibility (see,
e.g., Ref. [219]):

χO(ω) = i

ˆ ∞
0

dteiωt〈[Ô(t), Ô(0)]〉 = i

ˆ ∞
0

dteiωt[CO(t)− CO(−t)], (219)

where we used that, for any stationary distribution (including an energy eigenstate),

〈Ô(0)Ô(t)〉c = 〈Ô(−t)Ô(0)〉c = CO(−t). Using Eq. (213), and that

ˆ ∞
0

dteiνt = πδ(ν) + iP
(

1

ν

)
, (220)

where P(1/ν) stands for the principal value, we find

χO(E,ω) = 2πi

[
sinh(βω/2)|fO(E,ω)|2 + cosh(βω/2)

ω

2

∂|fO(E,ω)|2
∂E

]

+ P
ˆ ∞
−∞

dν

[
2|fO(E, ν)|2 sinh(βν/2)

ν − ω +
∂|fO(E, ν)|2

∂E

ν cosh(βν/2)

ν − ω

]

Hence, the imaginary part of Kubo’s susceptibility is also determined by |fO(E,ω)|2:

I [χO(E,ω)] = 2π

[
|fO(E,ω)|2 sinh(βω/2) +

ω

2

∂|fO(E,ω)|2
∂E

cosh(βω/2)

]
=

1

2
S−O (E,ω).

(221)

If Ô is a local operator, or a sum of local operators, then the terms with derivatives of
the total energy become unimportant for very large systems, and Eqs. (218) and (221)
simplify to:

S+
O (E,ω) ≈ 4π cosh(βω/2)|fO(E,ω)|2, I [χO(E,ω)] ≈ 2π|fO(E,ω)|2 sinh(βω/2),

(222)
which imply the famous fluctuation-dissipation relation [219]:

S+
O (E,ω) ≈ 2 coth

(
βω

2

)
I [χO(E,ω)] . (223)

We see that, as with the fluctuation theorems, the fluctuation-dissipation relation does
not rely on the assumption of a Gibbs distribution. It is satisfied for every eigenstate of
a chaotic Hamiltonian (away from the edges of the spectrum, where ETH is expected to
hold), and hence for any stationary ensemble with non-extensive energy fluctuations.

For finite systems, one can calculate corrections to the fluctuation-dissipation relation.
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For example, combining the relations in Eq. (216), one finds that

[
sinh

βω

2

(
1− ω2

4σ2
c

)
+
ω

2
cosh

βω

2
∂E

]
S+
O (E,ω)

=

[
cosh

βω

2

(
1− ω2

4σ2
c

)
+
ω

2
sinh

βω

2
∂E

]
S−O (E,ω), (224)

which replaces the standard relation

sinh
βω

2
S+
O (E,ω) ≈ cosh

βω

2
S−O (E,ω), (225)

valid for Gibbs ensembles or for individual eigenstates in very large systems. This more
general fluctuation-dissipation relation for individual eigenstates (224) still connects the
noise and the dissipative response but in a more complicated way.

6.9. ETH and Two-Observable Correlations Functions

In the previous section we established a relation between fO(E,ω) and the Fourier trans-

form SO(E,ω) of the nonequal-time correlation function of Ô, see Eq. (216). Here, we dis-

cuss how the ETH ansatz for two observables Ô(1) and Ô(2) are related to their nonequal-
time (connected) correlation function 〈n|Ô(1)(t)Ô(2)|n〉c. Because of its experimental rel-

evance, a case of particular interest is when Ô(1) ≡ Ô(x1) and Ô(2) ≡ Ô(x2). This because

〈n|Ô(x1, t)Ô(x2, 0)|n〉c determines the Ô–Ô structure factor. Another commonly encoun-

tered situation correspond to Ô(1) and Ô(2) representing different components of some
observable, such as the magnetization, the current, and the electric polarization.

We rewrite the ETH ansatz for the two observables [see Eq. (62)] as

O(j)
mn = O(j)(Ē)δmn + e−S(Ē)/2Υ(j)

mn(E,ω), (226)

where j = 1, 2, and Υ
(j)
mn(E,ω) ≡ fO(j)(E,ω)RO

(j)

mn . This allows us to write

〈n|Ô1(t)Ô2(0)|n〉c =

ˆ
dω eβω/2−iωtK12(E + ω/2, ω), (227)

where the noise kernel

K12(E + ω/2, ω) ≡ Υ
(1)
nm(E + ω/2, ω)Υ

(2)
mn(E + ω/2, ω). (228)

The overline indicates an average over states |m〉 within a narrow energy window, that is,
at fixed E and ω (or, equivalently, an average over a fictitious Random Matrix ensemble).

It is apparent in the expressions above that the noise terms RO
(1)

mn and RO
(2)

mn must, in

general, be correlated with each other, or else 〈n|Ô1(t)Ô2(0)|n〉c ≡ 0. Hence, the assump-
tion that they are random numbers with zero mean and unit variance is oversimplifying
and only applicable if we are interested in 〈n|Ô(t)Ô(0)|n〉c. In order to generalize ETH

to deal with nonequal-time correlations of different observables, one can still take Υ
(j)
mn to

be Gaussian with zero mean but its noise kernel with other observables generally needs
to be nonvanishing.
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Inverting Eq. (227), one has that

K12(E + ω/2, ω) =
e−βω/2

2π
S12(E,ω), (229)

where

S12(E,ω) =

ˆ ∞
−∞

dt eiωt〈n|O1(t)O2(0)|n〉c. (230)

For nonequal-space correlation functions in translationally invariant systems, when
indexes 1 and 2 represent spatial coordinates x1 and x2 for a given observable Ô, one
can write

K12(E + ω/2, ω) ≡ K(E + ω/2, ω, x1 − x2). (231)

In this case it is convenient to define the spatial Fourier transform K and work in the
momentum space, as one does with structure factors. If the system exhibits Lorentz or
Galilean invariance one can further restrict the functional form of the noise kernel.

We note that, as we did in Sec. 6.8, one can further simplify Eq. (227) splitting the
correlation function into its symmetric and antisymmetric parts and Taylor expanding
the noise kernel K1,2(E+ω/2, ω) with respect to the first argument. However, we should
stress that the extension of ETH that we have introduced in this section still needs to be
verified numerically. In particular, one needs to understand the regime of validity of the
Gaussian ansatz and its applicability to the study of higher order correlation functions.
These important questions are left open to future investigations.

7. Application of Einstein’s Relation to Continuously Driven Systems

In this section, we discuss several examples illustrating how one can use the Einstein
relation to obtain nontrivial information about driven systems. We focus first on driven
isolated systems which, in the absence of the drive, have only one conserved quantity
(energy). We study the energy distribution obtained after a generic quasi-static pro-
cess, where the driven system is approximately in equilibrium at each moment of time.
Schematically, a quasi-static process in an isolated system can be represented as a series
of small quenches and relaxation to the diagonal ensemble (see Fig. 25). As described
in the previous section, the same setup applies to continuous driving protocols provided
that the relevant relaxation time in the system is fast compared to time over which the
energy of changes significantly.29 As we will show, this setup, besides being common,
allows one to take full advantage of the predictive power of the fluctuation theorems to
derive results even if the overall energy change in the process is not small, and which,
as we will see, might lead to energy distributions that are non-thermal. This setup is
analogous to heating in a microwave oven. In the latter, heating occurs not due to the
coupling to an external heat reservoir (like in the conventional oven) but rather due to the
non-adiabatic work performed by the time-dependent electromagnetic field, see Fig. 26.
Even though this field is periodic in time, the typical relaxation time in the system is
much faster than the pulse frequency and therefore the process is quasi-static. Such a
process is quasi-static but it is not adiabatic since each electromagnetic pulse performs

29In standard thermodynamics, by a quasi-static process one usually understands a process in which the irreversible

work comes from heat exchange with a heat bath. However, such a definition is very restrictive.
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Figure 25. Schematic representation of a continuous process as a series of quenches followed by relaxation to the
diagonal ensemble. This approximation is justified if the relevant relaxation time in the system is short compared

to the characteristic time scale associated with the change of λ.

irreversible work dQ̃ [see Eq. (138)] on the system. That work accumulates and leads
to heating. This heating can be described by the Fokker-Planck drift-diffusion equation,
where the drift and diffusion terms are connected by Einstein’s relation (see Sec. 6.4).

Figure 26. Schematic comparison between the usual thermal heating (traditional oven, top) and an energy increase

due to non-adiabatic work (microwave oven, bottom).

In what follows, we apply these relations to several setups and show how they allow
one to make nontrivial statements about the asymptotic energy distribution after long
times. Moreover, one can even predict the existence of dynamical phase transitions.
All the examples analyzed in this section are classical. The reason is that microscopic
simulations of long-time dynamics in quantum chaotic systems are very difficult. It is
expected, however, that the general expressions and the Fokker-Planck formalism apply
equally to classical and quantum systems.

7.1. Heating a Particle in a Fluctuating Chaotic Cavity

We start by considering a very simple problem, that of a classical particle bouncing
elastically in a cavity in two spatial dimensions. When the cavity is stationary, the
energy of the particle is conserved. If the cavity is chaotic, in the long-time limit, the
particle reaches a uniform position distribution and an isotropic momentum distribution.
We consider a process in which the system is repeatedly driven by deforming the cavity.
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Figure 27. Schematic representation of a particle moving in a two-dimensional chaotic cavity with moving bound-

aries. The driving protocol consists in repeatedly deforming the cavity between the two shapes shown, while keeping
its volume fixed.

At the end of each cycle, the cavity comes back to its original shape30 and the system is
allowed to relax in the sense described above (see Fig. 27). In a single collision with the
moving wall, the particle’s kinetic energy can either increase or decrease. However, it will
always increase on average and eventually the particles velocity will become much greater
than the velocity of the wall, so that the work per cycle automatically becomes small.
The assumption that the cavity is chaotic implies that there are no correlations between
consequent collisions. If this is the case, then one can consider a continuous driving
protocol instead of repeated quenches and all the results will be the same. Such a setup
was analyzed by Jarzynski [213] followed by other works [193, 220–224]. An interesting
and nontrivial result that emerges from this analysis is a nonequilibrium exponential
velocity distribution (to be contrasted with the Gaussian Maxwell distribution). Here,
we analyze this problem in two ways. First, using standard kinetic considerations and
then using the Einstein relation.

Let us denote the velocity of the particle as ~v and velocity of the wall as ~V . Note
that the wall velocity is perpendicular to the boundary and, by convention, it points
outward, that is, ~V = V n̂, where n̂ is the outward normal vector to the boundary. Since
we assumed that the cavity deformations are volume preserving ~V averaged either over
time, or over the boundary of the cavity, is zero. By elementary kinematics we know that,
during a collision, the component of the relative velocity perpendicular to the boundary
is reversed while the component parallel to the boundary is unchanged:

~v → ~v ′ = ~v − 2
(
~v · n̂− ~V · n̂

)
n̂ = ~v − 2

(
~v⊥ − ~V

)
, (232)

where, in the last equality, we have used that ~V = V n̂ and ~v⊥ ≡ v⊥ n̂ = (~v · n̂) n̂. Note
that for a collision to happen we need to have v⊥ − V > 0 indicating that the particle
and the wall are approaching each other. As a check, we verify that when the boundary
is stationary, that is, ~V = 0, the update rule (232) simplifies to

~v → ~v ′ = ~v − 2~v⊥ = ~v‖ − ~v⊥ , (233)

where ~v‖ ≡ ~v − ~v⊥. As expected, this expression simply states that the perpendicular
component of the velocity is reversed while the parallel component is unchanged.

30This requirement can be further relaxed. It is only important that the cavity comes back to the original volume,
as the density of states only depends on the volume.
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The energy change of the particle during a collision is

∆E =
m

2

(
|~v ′|2 − |~v|2

)
= 2m

(
V 2 − V v⊥

)
. (234)

We therefore see that the sign of the energy change depends on the sign of V 2 − V v⊥.
Combining this result with the constraint v⊥−V > 0, which ensures that a collision takes
place, we obtain that: i) the energy increases if the boundaries move inward, i.e., V < 0
and ii) the energy decreases if the boundaries move outward, i.e., V > 0. The probability
of a collision per unit length, L, is proportional to the relative velocity between the
particle and the wall v⊥ − V (provided this is positive). For the collisions where the
energy of the particle increases (i.e., V < 0) the latter is

p> =
c δt

8L
(v⊥ − V ) θ (v⊥ − V ) =

c δt

8L
(v⊥ + |V |) θ (v⊥ + |V |) , (235)

where θ is the Heaviside step function, c is a proportionality constant (for many particles,
c is proportional to the particle density), and 8 was introduced for convenience. On the
other hand, for collisions in which the energy of particles decreases (i.e., V > 0) the
probability of collision is

p< =
c δt

8L
(v⊥ − V ) θ (v⊥ − V ) =

c δt

8L
(v⊥ − |V |) θ (v⊥ − |V |) . (236)

We are interested in the limit in which the wall moves slowly compared to the particle,
i.e., |v⊥| ∼ |v| � |V | and therefore the two-step functions above can be simplified to
θ (v⊥), indicating that v⊥ > 0. Rewriting expression (234) for the energy increasing
(decreasing) collisions as

∆E> = 2m
(
V 2 + |V ||v⊥|

)
, ∆E< = 2m

(
V 2 − |V ||v⊥|

)
, (237)

and using the expressions above for the collision probabilities, we find the average heating
rate (energy drift) and the energy diffusion:

JE =
1

δt
[∆E> p> + ∆E< p<] = cmV 2 |v⊥| θ(v⊥),

DE =
1

δt

[
(∆E>)2 p> + (∆E<)2 p<

]
≈ cm2 V 2 |v⊥|3 θ(v⊥),

(238)

where, in the second line, we have kept only the leading contribution in |V |/v⊥. The
overline indicates averaging over the velocity distribution. It is convenient to use polar
coordinates, where v⊥ = |~v| cos(φ) with φ ∈ [−π/2, π/2] to ensure v⊥ > 0. Using that
the particle energy is E = m|~v|2/2, we obtain

JE =
cmV 2

L

(
2E

m

)1/2 1

2π

ˆ π/2

−π/2
dφ cosφ,

DE =
cm2 V 2

L

(
2E

m

)3/2 1

2π

ˆ π/2

−π/2
dφ cosφ3.

(239)
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Computing the integral over the angle φ, we obtain

JE = C
√
E, DE = C

4

3
E3/2, (240)

where C = c V 2
√

2m/(Lπ) is a constant with dimensions of
√

energy/time. Note that
when computing the averages over v⊥ in Eq. (239), we have used a uniform measure,
that is, we took all angles φ to be equally probable. This is justified because the cavity is
assumed to be chaotic. We note that the same analysis can be carried out in an arbitrary
spatial dimension d. The only difference arises when computing the corresponding angular
integrals. A straightforward generalization of the analysis above leads to:

JE = Cd
√
E, DE = Cd

4

d+ 1
E3/2, (241)

where Cd is an overall constant that depends on the dimensionality d.
These coefficients satisfy the Einstein relation (186):

2JE = β(E)DE + ∂EDE . (242)

To see this, we note that the single-particle density of states in d dimensions is Ω(E) ∝
E(d−2)/2 and therefore

β(E) = ∂E ln[Ω(E)] =
d− 2

2E
. (243)

Combining this with Eq. (241), it is easy to see that Einstein’s relation is indeed satisfied.
In fact, there was no need to carry out these relatively elaborate calculations. It was
sufficient to note that JE in all dimensions must be proportional to

√
E, which, for

example, follows from the fact that the average number of collisions is proportional to
|v⊥| ∼

√
E. Then, the Einstein relation immediately fixes the energy diffusion DE with

respect to the energy drift JE .
With relation (241) in hand, we can rewrite the Fokker-Planck equation describing the

heating process in an arbitrary spatial dimension d as

∂tP (E, t) = −Cd∂E [
√
EP (E, t)] +

2

d+ 1
Cd∂EE [E3/2P (E, t)]. (244)

As a preliminary step, we define a new variable t′ = t Cd and write ∂t = Cd ∂t′ so that
the constant Cd disappears from the Fokker-Plank equation for P (E, t′):

∂t′P (E, t′) = −∂E [
√
EP (E, t′)] +

2

d+ 1
∂EE [E3/2P (E, t′)] (245)

We observe that, by a scaling analysis of this equation, t′ ∼
√
E. Therefore, we can use

the following scaling ansatz

P (E, t′) =
1

2αt′
√
E
f

(√
E

αt′

)
≡ 1

2t′α
√
E
f(ξ). (246)

where α is a constant of order one, which will be fixed later, and the prefactor 1/(2αt′
√
E)
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has been chosen so that the normalization condition becomes

1 =

ˆ ∞
0

dE P (E, t′) =

ˆ ∞
0

dE

2αt′
√
E
f

(√
E

αt′

)
=

ˆ ∞
0

dξ f(ξ). (247)

By substituting ansatz (246) into the Fokker-Planck equation (245), we find:

2α(1 + d)f(ξ) + [2− d+ 2α(1 + d)ξ] f ′(ξ) + ξf ′′(ξ) = 0. (248)

It is therefore convenient to choose α−1 = 2(1 + d) so that the equation assumes a
particularly simple form:

f(ξ) + (2− d+ ξ)f ′(ξ) + ξf ′′(ξ) = 0 ⇒ f(ξ) =
1

(d− 1)!
ξd−1 e−ξ, (249)

where the normalization constant was fixed using Eq. (247).
Defining τ = αt′ = tCd/[2(d+ 1)], we obtain the final result for the asymptotic energy

distribution P (E, τ) (see also Refs. [223, 224]):

P (E, τ) =
1

2(d− 1)!

E
d−2

2

τd
e−
√
E/τ . (250)

This distribution is universal in the sense that it does not depend on any details of the
driving protocol. It is interesting to compare this result with the equilibrium canonical
distribution at temperature β:

Pc(E, β) =
1

Γ[d/2]
βd/2E

d−2

2 e−βE . (251)

Clearly, these two distributions are different but share some properties. In particular,
they both decay in energy faster than any power law so that all energy moments are
well defined. However, P (E, τ) decay in energy is slower than the Pc(E, β) one, that is,
the former is “wider”. To quantify this, we compute the first and second moments of the
energy with respect both to P (E, τ) and Pc(E, β):

〈E〉τ =

ˆ ∞
0

dE EP (E, τ) = d(d+ 1)τ2, 〈E2〉τ = d(d+ 1)(d+ 2)(d+ 3)τ4

〈E〉c =

ˆ ∞
0

dE EPc(E, β) =
d

2β
, 〈E2〉c =

d(2 + d)

4β2
,

(252)

and define the relative energy width as a figure of merit to compare the width of the two
distributions:

σ2
τ

〈E〉2τ
≡ 〈E

2〉τ
〈E〉2τ

− 1 =
6 + 4d

d(d+ 1)
,

σ2
c

〈E〉2c
≡ 〈E

2〉c
〈E〉2c

− 1 =
2

d
. (253)

Clearly, the nonequilibrium distribution P (E, τ) is wider than Pc(E, β) in any spatial
dimension. In particular, as d increases from d = 1 to d = ∞, the ratio of the relative
energy widths changes from 2.5 to 2. In the analysis above, the dimensionality d only
enters through the density of states. If we deal with a gas of weakly interacting particles in
three dimensions, and the relaxation time of the gas is fast compared to the characteristic
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rate of energy change due to the cavity’s motion, then the same analysis can be applied.
The only difference is that d→ 3N , where N is the number of particles. Therefore, the
result that the asymptotic width of the energy distribution of a driven gas is twice as large
as the width of the Gibbs distribution applies to any weakly interacting many-particle
gas in any spatial dimension. The gas asymptotically approaches a universal distribution
(at least has universal energy fluctuations), but it is not the canonical distribution. In
the examples that follow, we will show that a generalization of this result applies to
arbitrary driven interacting systems.

Since the distribution P (E, τ) is a nonequilibrium distribution, it should also have
lower entropy than the equivalent Gibbs distribution. The two entropies are

Sτ = −
ˆ ∞

0
dEP (E, τ) ln

[
P (E, τ)

Ω(E)

]
= d(1 + ln τ) + ln (2 Γ[d]) ,

Sc = −
ˆ ∞

0
dEPc(E, β) ln

[
Pc(E, β)

Ω(E)

]
=
d

2
(1− lnβ) + ln (Γ[d/2]) .

(254)

In order to compare these two entropies, we evaluate Sc at β−1 = 2(d+ 1)τ2 (so that the
distributions P (E, τ) and Pc(E, β) have identical average energy) and compute Sc − Sτ :

Sc − Sτ =
d

2
ln

[
2(d+ 1)

e

]
+ ln

(
Γ[d/2]

2Γ[d]

)
. (255)

This function is positive and increases monotonically from 0.07 for d = 1 to (1−ln 2)/2 ≈
0.15 for d → ∞. Note that, for large d, the first term of both entropies in Eq. (254) is
proportional to d, so the relative difference between them decreases with the dimen-
sionality.31 According to our previous discussion, in a weakly interacting gas one has to
substitute d → 3N so that, in the thermodynamic limit (N → ∞), the driven gas has
a thermal entropy up to subextensive corrections. If, conversely, we are dealing with a
gas of noninteracting particles (implying that the their relaxation time is longer than
the heating time) the entropy difference between the driven and the thermal gas will be
extensive. This happens despite the fact that the total energy distribution of the nonin-
teracting gas is still a Gaussian due to the central limit theorem. This extensive entropy
difference can be used, for example, to build more efficient heat engines and even to beat
the fundamental Carnot bound in some cases (see the discussion in Ref. [225]).

Let us note that the form of the distribution (250) was obtained under the assumption
of constant driving, i.e., V 2 = const. If one uses feedback control mechanisms such that
velocity of the wall is tied to the velocity of the particle, i.e., V = V (E), then one
can change the energy dependence of JE ∝ V 2

√
E and, hence, change the resulting

nonequilibrium distribution. One can even induce dynamical phase transitions (see the
next example).

In passing, we note that the same results for the energy distribution have been derived
in a the context of the Lorentz gas [226]. This gas is defined as a system of noninteracting
light particles colliding with an interacting gas of heavy particles moving with an average
velocity V . If the ratio of the masses is very large, then there is no effect of the collision
on the heavy particles so the latter serve precisely the role of moving boundaries. In
this case, the behavior of the light particles can be obtained exactly via the Lorentz-
Boltzmann kinetic equation. It is interesting to note that the ensemble of heavy particles
can be viewed as an infinite temperature heat bath. Indeed, the average energy of heavy
particles M〈V 2〉/2, which defines temperature, diverges in the limit M → ∞ at fixed

31The β or τ independent terms in both entropies play no role in thermodynamics.
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〈V 2〉. Thus, according to the general discussion of Sec. 6, this simple example shows that
an external quasi-static driving of an isolated system is equivalent to the coupling to the
infinite temperature bath.

While the single-particle example considered here is relatively simple, it teaches us
several important lessons that can be extended to many-particle systems. In particular,
it shows: (i) the possibility of nonequilibrium universal distributions, and (ii) that doubly
stochastic evolution for quasi-static driving protocols is sufficiently constraining to pre-
dict such universality irrespective of the details of the driving protocol (in our example,
the details are encoded in the overall constant Cd).

7.2. Driven Harmonic System and a Phase Transition in the Distribution
Function

Next, we consider a driven single particle in a harmonic trap [193]. This particle is weakly
coupled to a finite system composed of N identical particles, so that the overall system is
ergodic. The details of the larger system define the density of states Ω(E), and therefore
β(E). Repeated impulses of short duration act on the particle and drive it away from
equilibrium. The time scale between impulses is taken to be larger than the equilibration
time of the particle. In addition, we assume that the coupling of the particle to the rest
of the system is so weak that during the impulse it can be ignored. This setup can be
easily generalized to impulses acting on an extensive number of particles. The energy of
the particle ε (we use this notation to distinguish it from the total energy of the system
E) between cycles is given by

ε =
1

2
kx2 +

p2

2
. (256)

For simplicity, we work in one dimension. In Eq. (256), x is the coordinate of the particle,
v its velocity, m = 1 its mass, and k is the spring constant. Because the system is ergodic
and N is large, at any given energy of the system, the probability distribution for (x, v)
before the impulse is Gibbs: ρ(x, v) ∝ exp[−β(E)ε]. We take the impulse magnitude to be
F (x)δt, with δt short enough so that, during the impulse, the particle’s position does not
change appreciably and the coupling to the rest of the system can be ignored. Following
the impulse, the momentum changes according to p→ p+F (x) δt. It is straightforward
to calculate both the drift JE and the diffusion constant DE [193]:

JE =
〈

[F (x)]2
〉 δt2
τ
,

DE =
2

β(E)

〈
[F (x)]2

〉 δt2
τ
,

where the angular brackets denote an average over ρ(x, v) and τ is the time (or average
time) between impulses. As in the previous example, one could have calculated JE and
deduced DE from the Einstein relation. Note that here, in contrast to the single-particle
example, the ∂EDE term in the relation 2JE = β(E)DE + ∂EDE is a 1/N correction,
which is negligible. Technically, this correction would amount to the fact that, at finite but
largeN , the single-particle distribution ρ(x, v) slightly deviates from a Gibbs distribution.

Next, we consider the probability distribution for the energy of the system after the
application of many impulses. To proceed, we have to assume a specific form for Ω(E)
[or equivalently β(E)] and for F (x). For simplicity, we take β (E) ∝ E−α and F (x) ∝
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sign(x)|x|r so that

JE ∝ 〈x2r〉 ∝ Eαr ≡ Es, (257)

where we used 〈x2〉 ∝ β(E)−1 ∝ Eα, with the first proportionality following from the
equipartition theorem. For large N , due to the central limit theorem, the energy distri-
bution is approximately Gaussian. Therefore, to characterize the distribution, it suffices
to find the mean energy as a function of time and its variance as a function of the mean
energy.

To find the relation between the mean energy and its variance, to leading order in 1/N ,
we can multiply the Fokker-Planck equation (185) by E and E2 and integrate over all
energies. This yields the following differential equations describing the time evolution of
〈E〉 and σ2 = 〈E2〉−〈E〉2, where angular brackets stand for averaging over the probability
distribution P (E, t):

∂t〈E〉 = 〈JE〉
∂tσ

2 = 〈DE〉+ 2 (〈JE E〉 − 〈JE〉 〈E〉) .

Combining these equations yields

∂σ2

∂〈E〉 =
〈DE〉+ 2 (〈JE E〉 − 〈JE〉 〈E〉)

〈JE〉
. (258)

Moreover, if the energy distribution P (E) is narrow, as is the case of large N , we can
evaluate the averages within the saddle-point approximation. Using the Einstein relation
JE = β(E)DE/2, we obtain:

∂σ2

∂〈E〉 =
2

β(〈E〉) + 2
∂EJE(〈E〉)
JE(〈E〉) σ2(〈E〉). (259)

Integrating this equation between the initial energy of the system 〈E〉0 and its final
energy 〈E〉 gives

σ2(〈E〉) = σ2
0

JE(〈E〉)2

JE(〈E〉0)2
+ 2J2

E(〈E〉)
ˆ 〈E〉
〈E〉0

dE′

JE(E′)2β(E′)
(260)

where σ0 is the initial width of the distribution and 〈E〉0 is the initial mean energy.
We now use this equation in conjunction with the results obtained for the particle in

a harmonic trap. In that case, the change of the mean energy of the system is given by

∂t〈E〉 = JE(〈E〉) = c〈E〉s . (261)

Note that the values of α (recall that αr = s), which define the specific heat exponents,
are constrained by thermodynamic reasons to 0 < α ≤ 1. The lower bound is required
due to the positivity of the specific heat, and the upper bound assures that the entropy
[S(E) ∝ E1−α] is an increasing unbounded function of the energy (the latter condition
can be violated in systems with bounded energy spectrum). To prevent the energy of
the system from diverging at finite time, we require s ≤ 1 [as follows from integrating
Eq. (261)].

For simplicity, we assume that σ0 → 0, that is, that we are starting from a very narrow
microcanonical distribution. As done in Sec. 7.1, it is useful to compare the width σ2
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to the equilibrium canonical width σ2
c = −∂β〈E〉 ∼ 〈E〉1+α/α. This comparison reveals

that, as the functional form of the impulse (specifically, the value of r) is changed, the
system displays a transition between two behaviors. To see this, note that σ2(〈E〉) is
controlled by the exponent η = 2αr−α−1 = 2s−α−1, which determines if the integral
in Eq. (260) is controlled by its lower or upper bound: (i) When η < 0, the width is
Gibbs-like with σ2/σ2

c → 2α/|η|, that is, the ratio σ2/σ2
c asymptotically approaches a

constant value that can be either larger or smaller than one. Smaller widths correspond to
protocols with large and negative s. Namely, protocols where JE is a strongly decreasing
function of the energy. (ii) When η > 0, there is a run-away regime. Here, the width
increases with a higher power of the energy than the canonical width: σ2/σ2

c ∼ Eη. The
resulting distribution is significantly wider than the canonical one. Given the constraint
on the value of s, this regime can only be reached if α < 1 (in particular, this regime
is unreachable for a driven classical ideal gas). The transition between the two regimes
occurs when η = 0. In this case, σ2/σ2

c ∼ 2α ln(〈E〉/〈E〉0). One can show that close to
this transition, when |η| � 1, there is a divergent time scale (in terms of the number of
impulses) required to reach the asymptotic regime, see Ref. [193] for details. Therefore,
this setup realizes a dynamical transition for the asymptotic energy distribution of the
system, which is qualitatively similar to a continuous phase transition. The parameter η
plays the role of the tuning parameter.

For concreteness, consider a system with α = 1/2 (such as a Fermi liquid or the one-
dimensional harmonic system above). When r = 1, we have η = 2αr − α − 1 = −1/2
and the resulting distribution is Gibbs-like with σ2/σ2

c = 2. When r = 3/2, we are at
the critical regime η = 0. Finally, for r = 2, one has η = 1/2 leading to the run-away
regime with σ2/σ2

c ∼ E1/2. Note that Eq. (260) implies that the existence of these three
regimes is generic. In particular, depending on the functional form of JE(E) and β(E),
the variance of the distribution can be larger or, surprisingly, smaller than the width of
the equilibrium Gibbs distribution at the same mean energy. Specifically, σ2(E)/σ2

c (E)
can be made arbitrarily small by a proper choice of JE(E). Also, the existence of the
dynamical phase transition described for this simple model is only tied to whether the
integral in Eq. (260) diverges or converges at high energy. The emergence of a nontrivial
universal asymptotic behavior of the energy distribution is insensitive to the details of
the driving protocol, such as the driving amplitude and shape of the pulse.

While in the examples in this section we focused on classical systems, the same con-
clusions apply to driven quantum systems (see Ref. [193] for specific examples). One can
also anticipate nontrivial universal non-equilibrium distributions in driven systems with
more than one conserved quantity. In this case, the Onsager relations will be responsi-
ble for constraining the mean flows of the conserved quantities and the flows of their
fluctuations.

7.3. Two Equilibrating Systems

As a final example, we follow Ref. [214] and describe the equilibration of two weakly
coupled systems, as those shown in Fig. 24, but with no particle exchange (JN = 0).
When one of the systems is much bigger than the other one, the bigger system serves as
a heat bath for the small system and the two systems equilibrate at the temperature of
the bath, which does not change during the equilibration process. The situation changes,
however, when the two systems are comparable to each other, so that both systems are
affected by the heat exchange. Assuming that the energy flow between the two systems
is much slower than the characteristic relaxation time of each of the systems, and that
the total energy Etot is not fluctuating, we can again use the Fokker-Planck formalism
and the analysis in the previous example. The only difference is that, instead of β(E),
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we need to use ∆β(E) = βI(EI) − βII(EII), where βI and βII are the temperatures of
systems I and II, respectively, and EI and EII are their respective energies. The latter
satisfy the constraint EI + EII = Etot = const. Then, instead of Eq. (260), we find the
following expression for the energy fluctuations in system I:

σ2
I (〈EI〉) = σ2

I,0

JE(〈EI〉)2

JE(〈EI〉0)2
+ 2JE(〈EI〉)2

ˆ 〈EI〉

〈EI〉0

1

JE(E′)2 [βI(E′)− βII(Etot − E′)]
dE′ ,

(262)
where JE is the rate of the heat flow into system I. This equation describes the evolution
of the width of the energy distribution of system I. As the system equilibrates, one
expects that

JE = C(E − Eeq
I ), (263)

where Eeq
I is the equilibrium steady-state mean energy of system I, for a given total

energy Etot. Likewise

βI(E
′)− βII(Etot − E′) ≈ −

(
1

σ2
I,c

+
1

σ2
II,c

)
(E′ − Eeq

I ), (264)

where σ2
I,c = −∂EI/∂βI is the variance of the energy distribution in the canonical ensem-

ble of system I with mean energy Eeq
I and, similarly, σ2

II,c is defined for system II. The two

expressions above ensure that, in the steady state, when EI = Eeq
I , the (average) heat

flux is zero and the temperatures of the two subsystems are identical. By substituting
this expansion in Eq. (262), we find the asymptotic result for the energy fluctuations in
system I after equilibration:

σ2
I = σ2

II ≈
σ2

II,cσ
2
I,c

σ2
II,c + σ2

I,c

. (265)

If one of the systems, say system I, is much smaller than the other, then this result
simply implies that, after equilibration, the energy fluctuations in both systems are given
by the canonical energy fluctuations of the smallest system. If the two systems are
identical, then the energy fluctuations in either one of the systems are equal to one half
of the canonical ones.

Equation (262) is, however, more general and can be used to study the full evolution of
the distribution as the systems equilibrate (and not just the approach to the asymptotic
result). Again, following Ref. [214], let us consider a specific example of a gas of hard
spheres in a box. They are simulated using an event-driven molecular dynamics [227].
The gas has NI particles of mass mI and NII particles of mass mII, all of equal size.
These groups of particles represent the two systems I and II. This setup is similar to
the Lorentz gas analyzed in Sec. 7.1, which in turn is identical to a single particle in a
chaotic cavity. The difference is that here the two masses are both finite while, in the
Lorentz gas analyzed earlier, one type of atoms was infinitely heavier than the other.
It is straightforward to check studying the collision between two particles that, if the
two masses are very different, the energy transfer in each collision is small. In this case,
a significant energy transfer occurs only over many collisions. Numerical simulations
were repeated for many runs to evaluate the width of the distribution as a function
of the average energy. In addition, during the evolution, the energy transfer between
the two systems was evaluated and Eq. (262) was used to compute the width of the
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Figure 28. Equilibration of a system consisting of 50 particles with two different masses confined in a box. We

plot results for 〈EI〉 vs σ2 (dots), and compared them to the theoretical prediction in Eq. (262) (solid line). Inset:

Energy EI(t) in a single run (solid line), and the average energy 〈EI〉(t) (dashed line). The particle numbers
used in the simulations are NI = 30 and NII = 20. The initial velocities are sampled from a Maxwell-Boltzmann

distribution with very different initial temperatures: βI = 60 and βII = 3. The total energy constraint is enforced

by a (small) rescaling of the velocities of the mII-particles. The masses are chosen to be mI = 10−4 and mII = 1
(in arbitrary units). The box is a unit cube with reflecting boundaries, and the added volume of the particles is

taken to occupy a 5% of the volume of the box.

distribution. The results, shown in Fig. 28, indeed confirm the predictions of the Fokker-
Planck derivation based on the Einstein relation for the open systems (187).

8. Integrable Models and the Generalized Gibbs Ensemble (GGE)

One of the focuses of this review has been understanding what happens in isolated non-
integrable quantum systems that are taken far from equilibrium by means of a sudden
quench. We have discussed the relaxation dynamics of physical observables and their
properties after relaxation. We explained that quantum chaos, through eigenstate ther-
malization, is the reason behind thermalization in those systems. In this section, we
briefly discuss what happens in integrable systems. Such systems do not exhibit eigen-
state thermalization.

We note that the very definition of quantum integrability is a topic of debate (see, e.g.,
Ref. [228–230]), but we will not touch upon that here. A rather standard definition of
quantum integrability, based on the existence of an extensive number of local operators
(or, more precisely, operators that are extensive sums of local operators) Îk that commute
with the Hamiltonian and with each other, will be sufficient for the discussion here. The
requirement that the conserved quantities are local/extensive is essential and it excludes
the projection operators to the eigenstates of the Hamiltonian. In fact, for any quantum
Hamiltonian, integrable or not, the projection operators to its eigenstates commute with
the Hamiltonian and with each other, that is, they are conserved, but they are neither
local nor extensive. As we have argued for quantum chaotic systems, the existence of
those conserved quantities does not preclude the thermalization of physical observables.
Exactly the same can be said about higher moments of the Hamiltonian, which are
separately conserved but play no role both in equilibrium thermodynamics and in the
thermalization of chaotic systems (see, e.g., the discussion in Sec. 4.3.2).

8.1. Constrained Equilibrium: the GGE

The main difference between chaotic and integrable systems becomes apparent already
at the single-particle level, see Fig. 1. In the classical chaotic billiard any trajectory, after
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some time, uniformly fills the available phase space at a given energy. As a result, the
long-time average and the microcanonical ensemble average of an observable agree with
each other. In contrast, in the integrable cavity the particle’s motion is constrained by
other conserved quantities and the time average and the microcanonical ensemble average
need not agree. Nevertheless, the particle might still uniformly fill the available phase
space. This means that the long-time average could still be described by an ensemble
average, but it needs to be a generalized microcanonical ensemble that accounts for all
conserved quantities in the system [231].

In the quantum language, this amounts to saying that, in order to describe time av-
erages of observables in integrable systems, one needs a constrained ensemble which is
built using eigenstates of the Hamiltonian involved in the dynamics (they are selected
by the initial state). As in classical systems, in which conserved quantities preclude the
exploration of all phase space, the failure of integrable quantum systems to exhibit eigen-
state thermalization can be traced back to the fact that they have an extensive number
of nontrivial (local/extensive) conserved quantities {Îk}, as opposed to the O(1) num-
ber of extensive conserved quantities in nonintegrable systems (energy, momentum, etc).

Despite the existence of the conserved quantities {Îk}, and because of dephasing (like
in nonintegrable systems), observables in integrable systems are expected to relax to
stationary values and remain close to those values at most later times.

Remarkably, in Ref. [232], the previous statements were shown to hold for an inte-
grable model of hard-core bosons. Instead of a generalized microcanonical ensemble, a
generalized grand canonical one was introduced in that work. It is now known as the
GGE, whose density matrix:

ρ̂GGE =
exp(−∑k λkÎk)

Tr[exp(−∑k λkÎk)]
, (266)

was obtained by maximizing the entropy [233, 234] under the constraints imposed by
conserved quantities that make the system integrable. The values of the Lagrange mul-
tipliers were determined by requiring that, for all k’s, Tr[ρ̂GGEÎk] equals the expectation

value of Îk in the initial state. It is a priori not obvious that the exponential form in
Eq. (266) is warranted. For extensive integrals of motion, one can justify the exponential
form in the same way as it is done in traditional statistical mechanics, namely, noting
that: (i) because of the equivalence of ensembles for subsystems, which is a direct conse-
quence of the extensivity of the conserved quantities, the precise form of the distribution
is not essential, and (ii) the exponential distribution leads to statistical independence of
subsystems, which is naturally expected after relaxation in a system governed by a local
Hamiltonian.

The fact that observables in integrable systems do not, in general, relax to the same
values seen in thermal equilibrium, and that the GGE describes few-body observables
after relaxation, has been verified in a large number of studies of integrable models. These
can be either solved numerically for much larger system sizes than those accessible to
full exact diagonalization or analytically solved in the thermodynamic limit [131, 133,
232, 235–255]. We should emphasize, however, that special initial states may still lead to
nearly thermal expectation values of observables in integrable systems after relaxation
[136, 137, 145, 236, 256–259]. Hence, finding nearly thermal results for some initial states
does not automatically mean that a system is nonintegrable. In what follows we discuss
several examples for which the GGE can be used. These will highlight the reasons for its
applicability.
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8.1.1. Noninteracting Spinless Fermions

Noninteracting systems are possibly the simplest class of integrable systems. Let us
discuss one particular noninteracting system that clarifies some important features of
the GGE introduced above. We focus on noninteracting spinless fermions in a one-
dimensional lattice (relevant to the hard-core boson system discussed in Sec. 8.1.2)

ĤSF = −J
L−1∑

j=1

(
f̂ †j f̂j+1 + H.c.

)
+

L∑

j=1

ujn̂
f
j , (267)

where f̂ †j (f̂j) is a fermionic creation (annihilation) operator at site j, n̂fj = f̂ †j f̂j is the site
j occupation operator, J is the hopping parameter, and uj are arbitrary site potentials.

The single-particle Hamiltonian (267) can be straightforwardly diagonalized:

ĤSFγ̂
†
k|0〉 = εkγ̂

†
k|0〉, where εk are the single-particle eigenenergies, |k〉 ≡ γ̂†k|0〉 are the

single-particle eigenstates, and k = 1, 2, . . . , L. The occupations of the single-particle

eigenstates η̂k = γ̂†kγ̂k immediately form a set of L nontrivial nonlocal conserved quan-
tities for a system consisting of many noninteracting spinless fermions. These conserved
quantities are not extensive. However, carrying out the GGE analysis for this set of
conserved quantities, imposing that Tr[ρ̂GGEη̂k] = 〈ψI |η̂k|ψI〉 ≡ ηIk, one finds that the
Lagrange multipliers are given by the expression [232]

λk = ln

[
1− ηIk
ηIk

]
, (268)

that is, the Lagrange multipliers are smooth functions of ηIk.
In Fig. 29, we show results for ηIk and λk after a quench in which a superlattice potential

[uj = u(−1)j in Eq. (267)] is turned off. In this quench the initial state is taken to be the
ground state for uI 6= 0 and the time evolution is carried out under a final Hamiltonian
with u = 0. An important feature, made apparent by the results in Fig. 29, is that
increasing the system size by a factor of 10 leads to essentially the same curve for ηIk
vs k but with 10 times the number of data points. This smooth dependence of λ on
k′ = k/L allows one, for sufficiently large system sizes, to define extensive integrals of
motion by taking the sum

∑
k′∈[k′′−δk′′/2,k′′+δk′′/2] λk′ η̂k′ as being equal to λk′′ η̂

′
k′′ where

now η̂′k′′ =
∑

k′∈[k′′−δk′′/2,k′′+δk′′/2] η̂k′ is extensive. Hence, the mode occupations η̂k can
be thought of as being extensive in a coarse-grained sense and the justification of the
GGE exponential form [see Eq. (266)] presented above remains valid [131, 133, 136].
The formal equivalence between the GGE constructed using occupation modes (as done
here) and using extensive conserved quantities was established in Ref. [252]. It extends
beyond noninteracting systems to integrable models that may or may not be mappable
to noninteracting ones.

Having justified the applicability of the GGE to the occupation modes of the single-
particle Hamiltonian of noninteracting many-particle systems, one can go a step further
and prove that the GGE defined this way provides exact results for the time average
of all one-body observables (without finite-size errors) [132, 260]. The proof, following
Ref. [132], is straightforward. Projecting the many-body time-evolving wave function
ρ̂(t) = |ψ(t)〉〈ψ(t)| onto the one-body sector, and using the fact that all eigenstates of
the many-body Hamiltonian are (antisymmetrized) direct products of the single-particle
states |k〉, the time evolution of the one-body density matrix can be written as

ρ̂ob(t) =
∑

k,k′

ckk′e
−i(εk−εk′ )t|k〉〈k′|. (269)
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Figure 29. (a) Expectation value of the conserved quantities in quenches from uI 6= 0 (as indicated in the figure)
to u = 0. (b) The corresponding Lagrange multipliers. The conserved quantities are ordered such that εk increases

with increasing k. The results denoted by symbols (lines) correspond to systems with L = 38 (380) sites at

half-filling (N = L/2). Adapted from Ref. [136].

In the absence of degeneracies in the single-particle spectrum, the infinite-time average
of ρ̂ob(t) can be written as

ρ̂ob(t) = lim
t′→∞

1

t′

ˆ t′

0
dt ρ̂ob(t) =

∑

k

ηIk|k〉〈k|, (270)

which is, by construction, the one-body density matrix within the GGE, as ηIk =∑
n |〈n|ψI〉|2ηk,n ≡ tr[ρ̂GGE η̂k], where ηk,n = 1 (ηk,n = 0) if the single-particle state

|k〉 is (is not) part of the particular many-body state |n〉, and Tr[ρ̂GGE γ̂
†
kγ̂k′ ] ≡ 0 for

k 6= k′. We should emphasize at this point that this does not mean that all one-body
observables equilibrate at their GGE values (they do not, see Refs. [132, 238, 255, 260]),
but simply that their time average is given by the GGE prediction.

8.1.2. Hard-Core Bosons

We now turn our attention to hard-core bosons, described by the Hamiltonian

ĤHCB = −J
L−1∑

j=1

(
b̂†j b̂j+1 + H.c.

)
+

L∑

j=1

ujn̂
b
j , (271)

where b̂†j (b̂j) is the hard-core boson creation (annihilation) operator at site j, n̂bj = b̂†j b̂j
is the site j occupation operator, J is the hopping parameter, and uj are arbitrary site
potentials. Hard-core bosons satisfy the same commutation relations as bosons but with
the additional constraint that there cannot be multiple occupancy of any lattice site, i.e.,

(b̂†j)
2 = b̂2j = 0 [33].

The hard-core boson Hamiltonian above can be mapped onto a spin-1/2 chain through
the Holstein-Primakoff transformation [33, 261] and the spin-1/2 chain onto the spinless
fermion Hamiltonian in Eq. (267) via the Jordan-Wigner transformation [33, 262]

b̂†j → f̂ †j

j−1∏

`=1

e−iπf̂
†
` f̂` , b̂j →

j−1∏

`=1

eiπf̂
†
` f̂` f̂j , n̂bj → n̂fj . (272)
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Figure 30. (Main panels) Site (a) and momentum (b) occupations in a trapped integrable system of hard-core

bosons after a quench in which the initial state is the ground state of a trapped system (vI 6= 0) in the presence
of a superlattice potential (uI 6= 0) and the dynamics is carried out in the presence of the same trap (v = vI)

but with no superlattice potential (u = 0), see text. Results are presented for the time average of the occupations

after relaxation, as well as for the GGE and the grand canonical ensemble (GE) predictions. The insets show
the dynamics of the occupation of site 251 (a) and of the zero momentum occupation (b). The horizontal lines

correspond to the results in the GGE and grand canonical ensemble, as depicted in the main panels. The system
has 900 sites and 299 hard-core bosons. Times are reported in units of ~/J , and k is reported in units of 1/a,

where a is the lattice spacing. See also Ref. [236].

This means that the dynamics of the hard-core boson site occupations is identical to
that of the fermions, but the momentum distribution function of hard-core bosons, which
involves a Fourier transform of one-body correlations in real space, is very different from
that of the fermions. The hard-core momentum distribution function can be efficiently
calculated for eigenstates of the Hamiltonian [263], for systems out of equilibrium [264],
and in the grand canonical ensemble [265] using properties of Slater determinants. The
conserved quantities to construct the GGE can be taken to be the same as for the
noninteracting spinless fermions in Sec. 8.1.1, namely, single-particle mode occupations.

In Fig. 30, we show results for an integrable model of hard-core bosons in the presence
of a harmonic trap after a quench in which a superlattice potential is turned off [236] –
in this case, uj = v(j − L/2)2 + u(−1)j , where v and u set the strength of the harmonic
trap and the superlattice potential, respectively. In the main panels, one can see the time
average of the site (a) and momentum (b) occupation profiles after relaxation. They are
clearly different from the predictions of a grand canonical ensemble for a system whose
Hamiltonian is the one after the quench. The temperature and chemical potential of the
grand canonical ensemble are fixed so that the mean energy and number of particles
match those of the time-evolving state. We note that the system considered here is
large enough so that the observed differences between the time-averaged profiles and
the thermal predictions are not due to finite-size effects [236]. On the other hand, the
predictions of the GGE, which like the grand canonical ensemble also has energy and
particle number fluctuations, are indistinguishable from the results of the time average.
The insets exemplify the relaxation dynamics by depicting the time evolution of the
occupation of one site [Fig. 30(a)] and of the zero momentum mode [Fig. 30(b)]. They
can both be seen to relax towards, and oscillate about, the GGE prediction. The grand
canonical ensemble results are clearly incompatible with the results after relaxation.
The amplitude of the fluctuations about the time average reveals another qualitative
difference between nonintegrable and integrable systems. In quenches involving pure
states in isolated integrable systems mappable to noninteracting models (and in the
absence of localization), time fluctuations only decrease as a power law of the system
size [131, 245, 255, 260, 266, 267]. This is to be contrasted to the exponential decrease
of the amplitude of the time fluctuations as a function of the system size expected, and
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seen [185], in nonintegrable systems. In Ref. [185], it was argued based on numerical
experiments that the time fluctuations of observables in integrable systems that are not
mappable to noninteracting ones can also decrease exponentially fast with increasing
system size.

8.2. Generalized Eigenstate Thermalization

One may ask at this point why is it that the GGE is able to describe observables after
relaxation in isolated integrable systems following a quantum quench. After all, Eq. (60)
is still dictating the dynamics and, once eigenstate thermalization does not occur, one
might expect that the results after relaxation will depend on the exponentially large (in
the system size) number of parameters Cn ≡ 〈n|ψI〉 that are set by the initial state while
the GGE depends only on a polynomially large number of parameters. As discussed
in Ref. [131], the validity of the GGE can be understood in terms of a generalization
of eigenstate thermalization in integrable systems. Namely, if eigenstates of integrable
Hamiltonians with similar distributions of conserved quantities have similar expectation
values of physical observables (we call this phenomenon generalized eigenstate thermal-
ization32), then the GGE will describe those observables after relaxation following a
quench. This can be understood as follows. In the diagonal ensemble (after quenches to
integrable systems), the fluctuations of each extensive conserved quantity are expected
to be subextensive for physical initial states – as we showed for the energy in Sec. 4.3.2.
This, together with the fact that the GGE is constructed to have the same expectation
values of conserved quantities as the diagonal ensemble and combined with generalized
eigenstate thermalization, is what leads to the agreement between the GGE and the
results after relaxation.

Numerical evidence for the occurrence of generalized eigenstate thermalization was
presented in Refs. [131, 132] for integrable hard-core boson systems (similar to those in
Fig. 30), and in Ref. [133] for the transverse field Ising model. In addition, for some ob-
servables, the occurrence of generalized eigenstate thermalization was proved analytically
in Ref. [133]. In what follows, we review results for the transverse field Ising model.

The relation between the transverse field Ising model and the hard-core boson model
in Eq. (271) can be understood as follows. The hard-core boson chain can be mapped
onto a spin-1/2 chain via:

Ŝzj = b̂†j b̂j −
1

2
, Ŝ+

j = b̂†j , Ŝ−j = b̂j . (273)

After these substitutions, using that Ŝ+
j = Ŝxj + iŜyj and Ŝ−j = Ŝxj − iŜyj , the Hamilto-

nian (271) reads

ĤXX = −2J

L−1∑

j=1

(
Ŝxj Ŝ

x
j+1 + Ŝyj Ŝ

y
j+1

)
+

L∑

j=1

uj

(
Ŝzj +

1

2

)
, (274)

This Hamiltonian is known as the isotropic XY model (or the XX model) in a transverse
field. Its anisotropic version, for periodic boundary conditions in the presence of a uniform

32What changes from nonintegrable to integrable Hamiltonians is that, in the latter, the expectation values of
few-body observables in any eigenstate are determined by the values of all conserved quantities and not just the

energy.
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Figure 31. Density plots of the weights of the eigenstates of the transverse field Ising Hamiltonian [Eq. (275) with

γ = 1 and J = 1] as a function of their eigenenergies and of the eigenstate expectation values of the next-nearest
neighbor correlation function σ̂x

j σ̂
x
j+2. Panels (a)-(c) depict the weights in the diagonal ensemble and panels (d)-(f)

depict the weights in the GGE, in each case for three different system sizes. The initial state is the ground state

for hI = 0.1, and after the quench h = 1.5. Black pixels mark the presence of eigenstates (with vanishing weight),
while gray pixels signal their absence. Colored pixels show the nonvanishing weights in the diagonal ensemble

[panels (a)-(c)] and in the GGE [panels (d)-(f)]. These results were provided by Lev Vidmar (see also Ref. [133]).

field of strength h, can be written as

ĤXY = −J (1 + γ)

2

L∑

j=1

σ̂xj σ̂
x
j+1 − J

(1− γ)

2

L∑

j=1

σ̂yj σ̂
y
j+1 + h

L∑

j=1

σ̂zj , (275)

where we used that Ŝαj = σ̂αj /2, and γ is the anisotropy parameter. In the hard-core

boson language, γ 6= 0 leads to non-number-conserving terms of the form (b̂†j b̂
†
j+1 +H.c.).

In the extreme anisotropic limit γ = 1, the model in Eq. (275) is known as the transverse
field Ising model [268].

In Fig. 31, we show results for the weights of the many-body eigenstates of the trans-
verse field Ising model (color coded in the scale on the right) as a function of the energy
of the eigenstates and of the eigenstate expectation values of σ̂xj σ̂

x
j+2. In the top panels,

we show weights in the diagonal ensemble and in the bottom panels we show weights
in the GGE, in each case for three different system sizes. The black regions mark the
existence of eigenstates with the corresponding eigenenergies and eigenstate expectation
values, but with vanishing weight in the ensembles. The fact that those black regions do
not narrow with increasing system size (they can be seen to slightly widen) is to be con-
trasted to the results in Fig. 13 for nonintegrable systems. The contrast makes apparent
that in the transverse field Ising model eigenstate thermalization does not occur.

More remarkably, Fig. 31 shows that the eigenstates of the Hamiltonian with a sig-
nificant weight in the diagonal ensemble and the GGE are located in approximately the
same small region in the plane defined by the eigenstate energies and expectation values
of σ̂xj σ̂

x
j+2 (see Ref. [133] for similar results for other observables). In Ref. [133], it was

shown that, in both ensembles, the width of the energy distribution and of the distri-
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bution of expectation values of σ̂xj σ̂
x
j+2 vanishes as 1/

√
L with increasing system size. If

one adds to this finding the fact that, in both ensembles, the mean value of the energy
is the same by construction and the expectation value of σ̂xj σ̂

x
j+2 is found to agree, as

in previous examples, one concludes that the eigenstates of the final Hamiltonian that
determine the results in the diagonal ensemble and in the GGE in the thermodynamic
limit are located at the same point in the aforementioned plane. Generalized eigenstate
thermalization is reflected by the fact that the width of the distribution of eigenstate ex-
pectation values vanishes with increasing system size. These results make apparent that
the exact distribution of weights in the diagonal ensemble and the GGE is irrelevant, the
overwhelming majority of the states they sample have the same expectation values of
the observable. This is why the GGE can predict the expectation values of observables
in integrable systems after relaxation following a quench, even though the number of
parameters required to construct the GGE increases polynomially with the system size
while for the diagonal ensemble it increases exponentially with the system size. In this
spirit, in Ref. [249] it was argued that a single representative state is sufficient to describe
the relaxed state of integrable systems after a quench in the thermodynamic limit. This
statement is indeed very reminiscent of ETH for nonintegrable systems.

8.2.1. Truncated GGE for the Transverse Field Ising Model

As for hard-core bosons, for the transverse field Ising model in Fig. 31 the GGE was
constructed using occupations of single-particle fermionic quasiparticles (Bogoliubov
fermions) [133]. Alternatively, one can construct a different equivalent set of integrals
of motion, which are explicitly local and extensive. Following Ref. [252], these integrals

of motion can be ordered according to their locality and come in pairs Î+
k and Î−k , such

that I+,−
k contains sums of products of up to k+2 neighboring spin operators [252]. They

can be written as

Î+
0 = Ĥ = −J

∑

j

Ŝxxj,j+1 + h
∑

j

σ̂zj ,

Î+
1 = −J

∑

j

(Ŝxxj,j+2 − σ̂zj )− h
∑

j

(Ŝxxj,j+1 + Ŝyyj,j+1),

Î+
n≥2 = −J

∑

j

(Ŝxxj,j+n+1 + Ŝyyj,j+n−1)− h
∑

j

(Ŝxxj,j+n + Ŝyyj,j+n),

Î−n = −J
∑

j

(Ŝxyj,j+n+1 − Ŝ
yx
j,j+n+1), (276)

where Ŝαβj,j+l = σαj [σzj+1 . . . σ
z
j+l−1]σβj+l.

An important question one might ask is, given a desired accuracy for some observable,
how many conserved quantities are needed for the GGE to describe the result after
relaxation. On this point, the locality of the observable and of the conserved quantities
included in the GGE turn out to be crucial. For the model above, Fagotti et al. showed
numerically that if one is interested in the reduced density matrix of a subsystem of size
L′, then only the first L′ integrals of motion: I+,−

k with k . L′, that is, the integrals
of motion that can “fit” on the subsystem, are important [252]. All other “less local”
integrals of motion have an exponentially small effect on the subsystem (see Fig. 32).
This is expected to be generic in integrable models, whether they are mappable or not
to noninteracting ones.
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13

and the bar denotes the average (8.24). Using that

R(O) ≤
√

[R(O)]
2

= D(ρGGE,ℓ, ρℓ(t)), (10.5)

and then substituting the asymptotic behaviour (10.1),
(10.2) into the right hand side, we obtain

R(O) ! ℓ2t−3/2 . (10.6)

Bounding the right hand side by a (small) constant, we
obtain a time scale t∗rms associated with the relaxation of
the average relative error with respect to the distribution
(8.24)

t∗rms ∼ ℓ4/3 . (10.7)

It is not simple to identify the observables that give signif-
icant contribution to the average, since it depends both
on their “multiplicity” in the subsystem (produced by
translational invariance and other symmetries) and on
the expectation values. We note that the relaxation time
t∗rms is very different from the time scales identified in
Ref. [32] in the time evolution of the two point functions
of spin operators for quenches within the paramagnetic
phase.

B. Distance from Truncated Generalized Gibbs
Ensembles

Having established that the distance between quench
and GGE reduced density matrices tends to zero as a
universal power law at late times, a natural question is,
how close the quench RDM is to the truncated GGEs
(5.1), which retain only finite numbers of conservation
laws. A representative example for a quench within the
paramagnetic phase is shown in Fig. 6. We see that at
sufficiently late times, the distances converge to constant
values. However, increasing the range (and number) of
conservation laws, the values of these plateaux decrease,
signalling that retaining more conservation laws gives
better descriptions. In an intermediate time window, the
extent of which grows with y, the distance decays in a
universal t−3/2 power-law fashion. In Fig. 7 we consider
the distance

D(y)
∞ = lim

t→∞
D(ρℓ(t), ρ

(y)
tGGE,ℓ) = D(ρGGE,ℓ, ρ

(y)
tGGE,ℓ),

(10.8)
between the RDMs of the truncated and full generalized
Gibbs ensembles as a function of the parameter y. For a
given subsystem size ℓ, this corresponds to plotting the
values of the plateaux seen in Fig. 6 against the corre-
sponding values of y. The distance is seen to start de-
caying exponentially as a function of y as soon as y " ℓ.

There are two main conclusions of the above analysis:

1. Including more local conservation laws improves
the description of the stationary state.
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2. The description of the stationary state improves
rapidly, once the range y + 1 of all conservation
laws not included in the truncated GGE exceeds
the subsystem size ℓ.

Figure 32. Norm distance D(y)
∞ , in the thermodynamic limit, between reduced density matrices in the GGE and

in the truncated GGE obtained by imposing local conservation laws with support in at most y + 1 consecutive
sites, for a particular quench in the transverse Ising model. The subsystem size ranges from l = 5 to l = 50. The

color and size of the symbols in the figure change gradually as a function of the subsystem size l. For y > l, the

norm distance decays exponentially in y, with an l-independent decay constant. From Ref. [252].

8.3. Quenches in the XXZ model

An area of much current interest within the far from equilibrium dynamics of integrable
systems is that of quenches in models that are not mappable to noninteracting ones.
One model in this class, which is particularly important due to its relevance to exper-
iments with ultracold bosons in one-dimensional geometries, is the Lieb-Liniger model.
Studies of quenches within this model, in which repulsive interactions were suddenly
turned on, revealed that the expectation values of conserved quantities diverge. As a
result, a straightforward implementation of the GGE is not possible [269, 270]. A lattice
regularization for this problem was discussed in Refs. [254, 269] (generalized eigenstate
thermalization was argued to occur in this regularized model [254]). Despite progress in
constructing GGEs for field theories [271], an explicit construction of the GGE for the
Lieb-Liniger is still lacking.

Another model that has attracted much recent interest, and which is the focus of this
subsection, is the XXZ model

ĤXXZ = −J
L∑

j=1

(
σ̂xj σ̂

x
j+1 + σ̂yj σ̂

y
j+1 + ∆ σ̂zj σ̂

z
j+1

)
. (277)

This model is, up to a possible boundary term, mappable onto the models in Eqs. (40)
and (55) when J ′ = V ′ = 0. Studies of quenches in the XXZ model revealed that the
GGE constructed using all known local conserved quantities at the time failed to describe
few-body observables after relaxation [272–275]. In Fig. 33(a), we show results for the
next-nearest neighbor correlation 〈σ̂z1σ̂z3〉 in this model after a quench from an initial Néel
state to a finite value of the anisotropy parameter ∆ [equivalent to V/(2J) in Eq. (55) for
J ′ = V ′ = 0]. The results expected for that correlation in the steady state, which were
obtained in the thermodynamic limit using Bethe ansatz, (〈σ̂z1σ̂z3〉sp, continuous line)
are almost indistinguishable from the GGE results (〈σ̂z1σ̂z3〉GGE, dashed line). However,
plotting the relative difference δ〈σ̂z1σ̂z3〉 = (〈σ̂z1σ̂z3〉GGE − 〈σ̂z1σ̂z3〉sp) / |〈σ̂z1σ̂z3〉sp|, see the
inset in Fig. 33(a), reveals that they are not identical. The differences are largest close
to the isotropic Heisenberg point. Near that point, calculations using numerical linked
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/
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cluster expansions (NLCEs) for the diagonal ensemble [135] after the same quench [276]
agree with the steady-state predictions obtained using Bethe ansatz, see Fig. 33(b). The
discrepancy between the GGE results and the others suggested that, given the set of
conserved quantities selected, generalized eigenstate thermalization did not occur in this
model (in Ref. [277], it was argued that it fails for integrable models that support bound
states). Hence, other local conserved quantities (not known at the time) were expected to
also be important. The extra conserved quantities needed were recently found [278, 279]
and the GGE constructed using them has been shown to describe the steady state of
observables after relaxation following the quench for the XXZ model described above
[279].

It is important to emphasize at this point that we expect generalized eigenstate ther-
malization to be a generic phenomenon in integrable systems (as eigenstate thermal-
ization is in nonintegrable systems) and that, as a result, GGEs allow one to describe
observables in integrable systems after relaxation. However, in contrast to nonintegrable
systems in which the conserved quantities are trivial to find and, as a result, traditional
statistical mechanics can be used almost as a black box, the same is not true in integrable
systems. For the latter, a careful analysis needs to be done (specially for models that
are not mappable to noninteracting ones) in order to identify the appropriate conserved
quantities needed to construct the GGE.

In all quenches discussed so far for integrable systems, mappable or not mappable
to noninteracting ones, the initial states were taken to be eigenstates (mostly ground
states) of an integrable model. One may wonder whether the lack of thermalization we
have seen in those quenches is a result of the special initial states selected. In order to
address this question, NLCEs were used in Ref. [130] to study the diagonal ensemble
results (in the thermodynamic limit) for observables in quenches to the J ′ = V ′ = 0
hard-core boson model in Eq. (55), which is the XXZ model (277) written in the hard-
core boson language. The initial states for those quenches were taken to be thermal
equilibrium states of Hamiltonian (55) for Λ ≡ J ′I = V ′I 6= 0, that is, thermal equilibrium
states of a nonintegrable model. Those are the kind of initial states that one expects to
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Figure 34. NLCE results after quenches in which the initial state is a thermal equilibrium state of the nonin-
tegrable Hamiltonian (55) with Λ ≡ J ′I = V ′I 6= 0 and the system is quenched to J ′ = V ′ = 0, that is, to the

integrable XXZ model written in the hard-core boson language. J = V = 1 remains unchanged during the quench.

(a) Relative entropy differences δSl [see Eq. (278)] and (b) relative momentum distribution differences δml [see
Eq. (279)] vs the order l of the NLCE for the diagonal ensemble. Results are shown for TI = 2 and six values of

Λ. δSl and δml for Λ = 0, that is, in the absence of a quench, decrease exponentially fast with the order l of the

NLCE. All other differences saturate to a nonvanishing value reflecting lack of thermalization. Similar results were
obtained in Ref. [130] for other initial temperatures and observables. Adapted from Ref. [130].

have usually in experiments.
In Fig. 34, we show results for the relative entropy differences

δSl =
SGE

18 − SDE
l

SGE
18

, (278)

between the grand canonical ensemble (GE) and the diagonal ensemble (DE) predictions,
and the relative momentum distribution differences

δml =

∑
k

∣∣mk
DE
l −mk

GE
18

∣∣
∑

kmk
GE
18

, (279)

also between the GE and the DE predictions, plotted as a function of the order l of the
NLCE for the diagonal ensemble. The initial states were taken to have a temperature
TI = 2J (the results for other initial temperatures are qualitatively similar [130]). After
the quench, the temperature and chemical potential in the grand canonical ensemble
were fixed so that the mean energy and number of bosons per site agree (up to machine
precision) with those in the diagonal ensemble. The NLCE was carried out up to order
l = 18. SGE

18 and mk
GE
18 were checked to be converged to the thermodynamic limit result

up to machine precision (see Ref. [130] for details).
The results for δSl and δml in Fig. 34 are qualitatively similar. For Λ = 0, that is,

in the absence of a quench (J ′I = V ′I = J ′ = V ′ = 0), one can see that δSl and δml

vanish exponentially fast with increasing l, i.e., the convergence of the NLCE expansion
to the thermodynamic limit result is exponential in l. However, as soon as Λ 6= 0, that
is, as soon as there is a quench, the differences saturate to a nonzero value.33 This means
that the entropy and the momentum distribution function in the diagonal ensemble are
different from their grand canonical counterpart in the thermodynamic limit. This is
to be contrasted with the opposite quench, from integrable to nonintegrable points, for
which the numerical results are consistent with vanishing δSl→∞ and δml→∞ [130]. For
quenches to the integrable point, the fact that δSl→∞ 6= 0 [as suggested by Fig. 34(a)]

33The quantitative difference between the values at which each relative difference saturates is related to the
fact that δSl→∞ ∝ Λ2 while δml→∞ ∝ Λ. This is something that was argued analytically and demonstrated

numerically for δSl=18 and δml=18 in Ref. [130], but that it is not important for the discussion here.
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means that the energy distribution is not a smooth Gaussian function (or else δSl→∞ = 0,
see Sec. 5.3.1). Hence, the sparseness of the energy density appears to be a generic feature
in physically relevant quenches and not a consequence of specially fine-tuned initial states.
This is why, after the quench, observables such as the momentum distribution function
do not thermalize [δml→∞ 6= 0 as suggested by Fig. 34(b)]. The latter phenomenon
also appears to be generic. These results highlight how careful one needs to be when
using typicality arguments [142–144]. Those arguments might lead one to conclude that
a fine-tuning of the initial state is needed for integrable systems not to thermalize after
a quench, while this appears not to be the case in physically relevant situations.

8.4. Relaxation of Weakly Non-Integrable Systems: Prethermalization and
Quantum Kinetic Equations

Integrable systems are unlikely to be found in nature. Nevertheless there are many ex-
amples of models which are nearly integrable, where the integrability breaking terms
are irrelevant for relatively long times. As early as in 1834, Scott Russel observed the
soliton created by a boat in a narrow canal near Edinburgh [280]. In our language, the
solitary wave is an example of a macroscopic non-thermalizing perturbation. It was not
until 30 years later that it was realized that this phenomenon can be attributed to the
integrability of the Korteweg-de Vries (KdV) equation, which approximately describes
water waves in narrow one-dimensional channels [281]. Since the KdV equation only pro-
vides an approximate description of the problem, one can expect that after long times
the soliton will decay and the system will thermalize. Similarly, in a recent experiment
with ultracold atoms [38], the lack of thermalization of the one-dimensional bosonic gas
was attributed to the integrability of the Lieb-Liniger model that quite accurately de-
scribes those systems [33]. Like the KdV equation, the Lieb-Liniger model provides only
an approximate description of the experimental system and there are various integra-
bility breaking corrections that need to be taken into account at long times (see, e.g.,
Ref. [282]).

For nearly integrable systems, one can naturally expect a relatively fast relaxation
to an approximate steady state determined by the integrable model, and then a much
slower relaxation to the true thermal equilibrium. Such a scenario is now known under
the name of prethermalization. This term was introduced by Berges et al. in the con-
text of cosmology [283], though the ideas of multi-time thermalization are much older.
Recently, several different prethermalization scenarios have been explored both theoret-
ically and experimentally. Just to name a few: relaxation of weakly interacting fermions
after an interaction quench [183, 237, 284–287], prethermalization plateaus in various
one-dimensional nonintegrable systems [39, 288–293], prethermalization in interacting
spin systems [294], two-dimensional superfluids with slow vortices and other topological
defects [295–297], prethermalization after turning on a long-range interaction in a spin-
less Fermi gas in two dimensions [298], the emergence of nonthermal fixed points, and, in
particular, the emergence of turbulence [299–301]. On the latter, it is actually interesting
to note that a GGE based on momentum occupation numbers (for the limit of weakly
interacting particles) can be used to explain Kolmogorov’s law [299].

In few-particle classical systems, the KAM theorem ensures that chaotic motion does
not appear immediately after one breaks integrability. Instead, one can have coexis-
tence of regions of chaotic and regular motion. As the strength of integrability break-
ing perturbation increases, chaotic regions spread and eventually occupy all available
phase space (see, e.g., Fig. A1). It is not known whether a similar scenario is realized
in many-particle systems. If situations like that exist, so that an extensive number of
integrals of motion can survive small integrability breaking perturbations then, instead
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of prethermalization, one can anticipate relaxation to a GGE defined with respect to
deformed integrals of motion. Such deformations have been discussed in the literature
for transitionally invariant integrable systems with small integrability breaking perturba-
tions [292, 302, 303], and, in the context of many-body localization, for weakly interacting
disordered systems [304, 305]. At the moment, it is unclear whether in non-disordered
extended systems (either classical or quantum) in the thermodynamic limit there can
be a finite threshold for ergodicity breaking. Thus, it is not clear whether the emerged
deformed GGEs can only describe transient states (although potentially long lived) or
can represent true steady states. The former scenario is probably more generic but we
are not aware of any strong evidence for it.

Arguably, the most successful approach for describing relaxation of weakly inter-
acting (i.e., weakly nonintegrable) systems to equilibrium is the kinetic theory (see,
e.g., Ref. [189]). Recently, Stark and Kollar [306] derived kinetic equations using time-
dependent perturbation theory applied to the GGE. These equations describe the relax-
ation from a prethermalized GGE to a thermal state. Below, we closely follow that work,
extending it to arbitrary integrable systems.

Let us assume that we have an integrable system described by the Hamiltonian Ĥ0

and a weak integrability breaking perturbation Ĥ ′

Ĥ = Ĥ0 + Ĥ ′, (280)

The Hamiltonian Ĥ0 commutes with a set of mutually commuting linearly independent
integrals of motion Îk, i.e., [Ĥ0, Îk] = 0. For example, in the spirit of what was discussed
in Sec. 8.1.1, in a system of interacting fermions or bosons, these integrals of motion can
be the occupations of the single-particle eigenstates.

Let us now assume that the system is prepared in some nonequilibrium initial state, for
example, by a quantum quench, and we are interested in its relaxation. If Ĥ ′ is a weak
perturbation of Ĥ0, then, at short times after a quench, the system “does not know” that
it is nonintegrable and the effect of Ĥ ′ on the dynamics is small and the system relaxes
to an appropriate GGE, possibly described by deformed integrals of motion of Ĥ0. This
was found to be the case numerically in several systems (see, e.g., Refs. [292, 306].) At

long times, Ĥ ′ is expected to lead to relaxation to thermal equilibrium.
Since Ĥ ′ is assumed weak compared to Ĥ0, the dynamics generated by Ĥ ′ is slow

compared to the dynamics generated by Ĥ0. This time scale separation translates into
the fact that, at each moment of the evolution, the system is approximately stationary
with respect to Ĥ0 so that it can be described by a GGE with slowly evolving Lagrange
multipliers plus a small correction δρ̂(t). This leads to the following ansatz for the density
matrix of the system:

ρ̂(t) ≡ ρ̂GGE(t) + δρ̂(t),

ρ̂GGE(t) ≡ exp(−∑k λk(t)Îk)

Tr[exp(−∑k λk(t)Îk)]
.

(281)

If the system thermalizes, one expects that the Lagrange multiplier associated with the
energy approaches the inverse temperature β, while all others approach zero.

Since Ĥ ′ is small, it is convenient to go to the interaction picture with respect to Ĥ0:

ρ̂I(t) = e−iĤ0tρ̂(t) eiĤ0t, Ĥ ′(t) = eiĤ0tĤ ′e−iĤ0t. (282)
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where von Neumann’s equation becomes:

i∂tρ̂I(t) = [Ĥ ′(t), ρ̂I(t)]. (283)

Our strategy will be to solve the von Neumann equation (283) using time-dependent
perturbation theory with the GGE ansatz as the initial condition. This will allow us to
find small changes in the expectation values of the integrals of motion 〈Îk〉, which in
turn define the Lagrange multipliers in the GGE (281). In this way, the slow evolution
of ρ̂GGE is determined self-consistently:

dt〈Îk〉 = dt

(
Tr
[
Îkρ̂I(t)

])
= Tr

(
Îk∂t[ρ̂I(t)]

)
= iTr

(
Îk[ρ̂I(t), H

′(t)]
)
, (284)

where we used Eq. (283), and that Îk is commute with Ĥ0 and thus remain time inde-

pendent in the interaction picture. To leading order of perturbation theory in Ĥ ′(t), we
have ρ̂I(t) ≈ ρ̂GGE ,34 and therefore

dt〈Îk〉 ≈ iTr
(
Îk

[
ρ̂GGE, Ĥ

′(t)
])

= 0. (285)

The last equality follows from the cyclic property of trace and the fact that ρ̂GGE and
Îk commute. Therefore, we have to go to the next order of perturbation theory: ρ̂I(t) ≈
ρ̂GGE + δρ̂I(t), where from Eq. (283)

δρ̂I(t) ≈ i
ˆ t

t0

dt′[ρ̂GGE, Ĥ
′(t′)] = i

ˆ t−t0

0
dτ [ρ̂GGE, Ĥ

′(t− τ)]. (286)

Here, t0 is some arbitrary time in the past. By substituting this correction to Eq. (284),
we obtain

dt〈Îk〉 = iTr
(
Îk[δρ̂I(t), Ĥ

′(t)]
)
≈ −
ˆ t−t0

0
dτ Tr

(
Îk

[[
ρ̂GGE, Ĥ

′(t− τ)
]
, Ĥ ′(t)

])

= −
ˆ t−t0

0
dτ〈[[Îk, Ĥ ′(t− τ)], Ĥ ′(t)]〉GGE, (287)

where, once again, we have used the cyclic property of the trace and the fact that
ρ̂GGE and Îk commute. To simplify this expression further, we note that the correlation
functions appearing in Eq. (287) depend only on time differences. Also, because the
relaxation of nearly conserved integrals of motion is very slow compared to the time
scales set by Ĥ0, the correlation functions appearing in the integral above decay fast so
one can take the limit t − t0 → ∞. After these simplifications, one obtains the desired
quantum kinetic equations for the integrals of motion

dt〈Îk〉 ≈ −
ˆ ∞

0
dt〈[[Îk, Ĥ ′(0)], Ĥ ′(t)]〉GGE. (288)

Both the expectation value on the LHS and RHS of the equation above can be written in
terms of the Lagrange multipliers specifying ρ̂GGE [see Eq. (281)]. Solving these equations,
it is possible to determine the evolution of the Lagrange multipliers and therefore the

34We note that the GGE density matrix is not affected by the transformation to the interaction picture.
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slow relaxation of the GGE to the thermal equilibrium state. Being a set of coupled
scalar equations, Eq. (288) is much simpler than the original von Neumann equation.

It is instructive to rewrite the kinetic equations using the Lehman representation in
the basis of Ĥ0. Using the identity

ˆ ∞
0

dtei(εn−εm)t = πδ(εn − εm) + P i

εn − εm
, (289)

and, for simplicity, assuming that both the Hamiltonian and the integrals of motion are
real, we rewrite Eq. (288) as

dt〈Îk〉 = 2π
∑

nm

(ρGGEnn − ρGGEmm )〈n|Îk|n〉|〈n|Ĥ ′|m〉|2δ(ε0n − ε0m). (290)

where ε0n is the eigenvalue of Ĥ0 corresponding to eigenstate |n〉, i.e., Ĥ0|n〉 = ε0n|n〉. In
this form, it becomes clear that the thermal distribution (where ρnn is only a function

of energy) is a stationary solution of these kinetic equations, i.e., dt〈Îk〉 = 0 for any Îk.

Also, the delta function of (ε0n − ε0m) ensures that dt〈Ĥ0〉 = 0. So relaxation to thermal
equilibrium occurs in the presence of energy conservation. Both properties are, of course,
expected from general considerations.

Let us now apply the kinetic equation (287) to a common setup dealing with a gas
of weakly interacting particles, bosons or fermions. For simplicity, we assume that they
are spinless. Also, to shorten notations, we will use a scalar notation for the momentum
modes, keeping in mind that this can be a vector index. Then the Hamiltonian reads

Ĥ0 =
∑

k

εk ĉ
†
k ĉk (291)

For the integrability breaking term, we take the usual (normal ordered) density-density
interactions

Ĥ ′ =
∑

ij

V (i, j)ĉ†i ĉ
†
j ĉj ĉi =

∑

k1,k2,k3,k4

ĉ†k1 ĉ
†
k2
Vk1,k2,k3,k4 ĉk3 ĉk4 . (292)

For translationally invariant interactions, Vk1,k2,k3,k4 is nonzero only when k1 + k2 =
k3 + k4, and it depends only on the transferred momentum q = k1 − k3. But, since our
formalism applies even if translational invariance is broken, we will keep the interac-
tion matrix element in the most general form. The obvious integrals of motion are the

momentum occupation numbers n̂k = ĉ†k ĉk. Let us first compute the commutator

[n̂k′ , Ĥ
′] = 2

∑

k2,k3,k4

[ĉ†k′ ĉ
†
k2
Vk′,k2,k3,k4 ĉk3 ĉk4 − ĉ

†
k2
ĉ†k3Vk2,k3,k′,k4 ĉk′ ĉk4 ], (293)

where we used the invariance of the interaction matrix element with respect to permuta-
tion of k1 with k2 and k3 with k4. Plugging this into Eq. (288) and using Wick’s theorem,
which works for any GGE with quadratic integrals of motion, we find

ṅk′ ≈ 16π
∑

k2,k3,k4

(ñk′ ñk2nk3nk4 − nk′nk2 ñk3 ñk4)|Vk′,k2,k3,k4 |2δ(εk′ + εk2 − εk3 − εk4), (294)

where ñk = 1 ± nk with a plus sign referring to bosons and a minus sign referring to
fermions and nk = 〈n̂k〉. Classical kinetic equations are obtained by taking the limit
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nk � 1 and effectively replacing ñk by unity. Solving these kinetic equations can be
tedious, but it is numerically feasible for very large systems. Let us check that the thermal
distribution is a fixed point of these kinetic equations. For example, for fermions, the
equilibrium distribution reads

nk =
1

1 + exp[β(εk − µ)]
(295)

then

ñk′ ñk2nk3nk4 − nk′nk2 ñk3 ñk4 = (1− nk′ − nk2)nk3nk4 − nk′nk2(1− nk3 − nk4)

=
[
eβ(εk′+εk2−2µ) − eβ(εk3+εk4−2µ)

]
nk′nk2nk3nk4 = 0, (296)

where the last equality relies on the total energy conservation. With more effort, one can
show that the equilibrium fixed distribution is the attractor of the kinetic equations.

This example connects the ideas of GGE as a generic stationary state of integrable
systems, prethermalized states as slowly evolving GGE states, and the kinetic theory as
the perturbation theory in time describing the final evolution to thermal equilibrium. As
previously mentioned, more work is needed to understand the generality of this approach
and its applicability to systems other than those for which one can take the occupations
of the single-particle eigenstates to be the nearly conserved quantities.
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Appendix A. The Kicked Rotor

In this appendix, we discuss how chaos emerge in the simplest setup, namely, a driven
single-particle system in one dimension. In the presence of driving there is no energy con-
servation and, as a result, the system is not integrable. The Hamiltonian of the classical
kicked rotor reads

H(p, x, t) =
p2

2
−K cos(x)

∞∑

n=−∞
δ(t− nT ). (A1)

If one thinks of p as angular momentum and x as the canonically conjugate angle, this
Hamiltonian describes a freely rotating particle that is periodically kicked at times t =
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nT . We choose the minus sign in front of K so that the time-averaged Hamiltonian
reduces to a conventional pendulum with an energy minimum at x = 0 (there is no loss
of generality as this sign can always be changed by x → x + π). For simplicity, in what
follows we refer to p and x as momentum and position, respectively.

The equations of motion for the kicked rotor are

dx

dt
= {x,H} =

∂H

∂p
= p,

dp

dt
= {p,H} = −∂H

∂x
= −K sin(x)

∞∑

n=−∞
δ(t− nT ). (A2)

These equations can be easily integrated between kicks. Let us denote by pn and xn the
momentum and the position of the particle, respectively, just before the n-th kick, i.e.,
at time t = nT − ε, where ε → 0. Then the equations of motion result in the following
recursion relations

xn+1 = xn + T pn+1, pn+1 = pn −K sin(xn). (A3)

These equations provide a discrete map (known as the Chirikov standard map) that
allows one to uniquely determine the position and the momentum of the particle. If
nT < t < (n+ 1)T , then p(t) = pn+1 and x(t) = xn + pn+1(tmodT ). Note that one can
confine momentum to any periodic interval of length 2π/T . Indeed, from Eq. (A3), it is
obvious that shift of the momentum by 2π/T and the coordinate by 2π leaves the map
invariant. Let us analyze the time evolution that follows from this map. The dynamics
is determined by the kick strength K, the period T , and the initial values of p and x.
The map depends only on the product KT so we can set T = 1 and analyze the map as
a function of K keeping in mind that K � 1 is equivalent to the short period limit.

If K � 1 and p0 � 1, from Eqs. (A3), one can see that both p and x change very
little during each period. Hence, instead of solving discrete equations, one can take the
continuum limit and write

∂x

∂n
≈ p, ∂p

∂n
= −K sin(x) → ∂2x

∂n2
≈ −K sin(x). (A4)

This equation describes the motion of a pendulum in a cosine potential, which is regular.
Depending on the initial conditions there are two types of trajectories, corresponding to
oscillations (p� K) and full rotations (p� K). A careful analysis shows that one does
not need to assume that p is initially small, the only crucial assumption is that K � 1.

Next, one needs to check the stability of the obtained trajectories. It might happen
that, if one includes corrections to the continuum approximation, chaos occurs. However,
as proved by Kolmogorov, Arnold, and Moser (KAM) [62–64], this is not the case. As
mentioned in the Introduction, the KAM theorem states that regular motion is stable
against small perturbations. For the kicked rotor problem, one can check the stability of
the solution above perturbatively. In particular, Eqs. (A3) can be written as

xn+1 − 2xn + xn−1 = −K sin(xn). (A5)

If K is small, we can assume that x is a nearly continuous variable. By expanding in
Taylor series one gets

d2x

dn2
+

1

12

d4x

dn4
≈ −K sin(x). (A6)

From the unperturbed solution, we see that (at least in the localized regime) the natural
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frequency of oscillations is
√
K. This means that, in Eq. (A6), the term with the fourth

derivative is proportional to K2, that is, it is small when K � 1.
When K is large, the continuum approximation for the map fails. p and x “jump” from

kick to kick. Since both are determined modulo 2π, one may guess that the motion is
chaotic. A rigorous analytical proof that this is the case does not exist. Hence, we discuss
indications for the occurrence of chaos for large values of K by analyzing the stability of
the fixed points of the map:

xn+1 = xn + pn+1 = xn, pn+1 = pn −K sin(xn) = pn. (A7)

There are only two possible solutions: pn = 0, xn = 0 and pn = 0, xn = π. Now, let us
perturb the trajectories and see whether they remain stable. The linearized equations
read

δxn+1 − 2δxn + δxn−1 = −K cos(xn)δxn = ∓Kδxn, (A8)

where the minus and plus signs refer to the fixed points x = 0 and x = π, respectively.
In Eq. (A8), one might recognize the equation of motion of coupled harmonic oscillators,
where ±K plays the role of the frequency squared. For a harmonic chain, it is standard to
introduce normal Fourier modes, i.e, λ = exp[iq]. Here, we need to be careful because the
frequency,

√
±K, can be imaginary. Because this is a translationally invariant system, we

seek the solution of the form δxn+1 = λδxn = λnδx0. Using our ansatz for the solution,
Eq. (A8) reduces to a simple quadratic equation

λ2 − (2∓K)λ+ 1 = 0, (A9)

which has two solutions

λ1,2 = 1∓ K

2
±
√
∓K +

K2

4
. (A10)

Let us analyze these solutions separately for the two fixed points. For x = 0, correspond-
ing to the “−” sign, we have two solutions

λ1,2 = 1− K

2
±
√
K2

4
−K. (A11)

For 0 < K < 4, the expression in the square root is negative leading to an imaginary
contribution to λ. In the same range of K, the absolute value of the real part of λ is
smaller than one. This means that the solution is stable. Indeed, if one introduces a small
deviation to the stable position then, as the discrete time n increases, that deviation does
not grow. Moreover, in this range, we can check that

|λ2| = (1−K/2)2 +K −K2/4 = 1 (A12)

implying that λ = exp[iq], as for a harmonic chain. This means that any small deviation
leads to oscillations around the fixed point.

If K > 4, the outcome of introducing a small deviation is completely different. This is
because now there are two real solutions for λ. The solution with the negative sign,

λ2 = 1− K

2
−
√
K2

4
−K, (A13)
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Figure A1. Phase-space portrait (Poincare cross-section) of the kicked rotor for different values of the parameter

K. From left to right, K = 0.5, 0.971635, and 5. Images taken from scholarpedia [308].

satisfies |λ2| > 1. This means that any small deviation from the fixed point grows ex-
ponentially in time without bound, at least in the linearized regime. This exponential
growth does not prove that the motion is chaotic, but is a strong indicator of it. The expo-
nent characterizing the rate of growth, ln(λ), is called the Lyapunov exponent. In chaotic
systems with many degrees of freedom, there are many Lyapunov exponents. Typically,
the largest one determines the rate of divergence of nearby phase-space trajectories.

The analysis of the other fixed point, with x = π, is even simpler

λ1,2 = 1 +
K

2
±
√
K +

K2

4
. (A14)

Clearly, for any positive K, there are two real solutions with one larger than one, that is,
this point is always unstable. This is not surprising since this fixed point corresponds to
the situation where a mass sits at a potential maximum. It is interesting that if, instead
of δ kicks, one applies a fast periodic drive to the pendulum: K = K0 + a sin(νt), one
can stabilize x = π to be an equilibrium position. This is known as the Kapitza effect (or
Kapitza pendulum), and can be seen to occur in many physical systems [66, 197, 307].

In Fig. A1, we show phase-space portraits of the kicked rotor for different values of K.
For small values of K (left panel), the motion is essentially regular everywhere except
in the vicinity of the unstable fixed point x = π, p = 0. As K increases, chaotic regions
gradually cover a larger and larger fraction of phase space. At K = Kc (center panel),
with 0.971635 . Kc < 63/64 [309–311], there is a percolation transition. Isolated chaotic
regions for K < Kc percolate through phase space for K > Kc. This implies that the
system can increase its energy without bound. For sufficiently large values of K, chaotic
regions cover phase space almost entirely (right panel).

The Chirikov standard map can be quantized. A discussion of the quantum map can
be found in Ref. [308], and references therein.

Appendix B. Zeros of the Riemann Zeta Function

Here, we discuss a remarkable manifestation of RMT, which highlights a connection
between GUE statistics and prime numbers. There is no clear understanding of the
origin of this connection and, at the moment, it represents one of the biggest mysteries
associated with prime numbers. The Riemann zeta function ζ(s) is formally defined (for
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<(s) > 1) as

ζ(s) =
∑

n≥1

1

ns
. (B1)

For other values of s, it is defined by an appropriate analytic continuation through the
integral:

ζ(s) =
1

Γ(s)

ˆ ∞
0

xs−1

ex − 1
dx (B2)

As proved by Euler in 1859, the Riemann zeta function is related to prime numbers
(again for <(s) > 1):

ζ(s) =
∏

p=prime

1

1− p−s . (B3)

The proof of this result is simple and elegant. Notice that we can construct a function
I2(s)

I2(s) = ζ(s)− 1

2s
ζ(s) = 1 +

1

3s
+

1

5s
+ . . . , (B4)

which is a sum that lacks terms that are inverse powers of integer multiples of 2. Similarly,
one can construct I3(s)

I3(s) = I2(s)− 1

3s
I2(s) = ζ(s)

(
1− 1

2s

)(
1− 1

3s

)
= 1 +

1

5s
+

1

7s
+

1

11s
+ . . . , (B5)

which is a sum that lacks terms that are inverse powers of integer multiples of 2 and 3.
Continuing this exercise, and using the fundamental theorem of arithmetic, i.e., that any
number has a unique decomposition into prime numbers, ones proves that, as n → ∞,
In(s)→ 1, and hence proves Eq. (B3).

Equation (B3) allows one to map ζ(s) onto the partition function of a noninteracting
harmonic chain in which the frequencies of the normal modes are related to the prime
numbers. The partition function for a single oscillator is

zp(β) =
∑

n

exp[−βωpn] =
1

1− exp[−βωp]
. (B6)

If we associate prime numbers with normal modes, ωp = ln(p), and require that β = s,
then

Z(β) =
∏

p

zp(β) = ζ(β). (B7)

The (complex) zeros of the zeta function are thus the (complex) zeros of the partition
function of this model. The zeros of the partition function are known as Fisher zeros [312],
which are closely related to Yang-Lee zeros [313]. Condensation of these zeros near the
real temperature axis is an indicator of a phase transition [312]. Recently, it was conjec-
tured that concentration of Fisher zeros at complex infinity is related to the ergodicity
of the system [314]. Physically, the Fisher zeros correspond to the zeros of the Fourier
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Figure B1. Distribution of the spacings between approximately one billion zeros of the Riemann zeta function

near zero number 1023 + 17, 368, 588, 794, and the statistics of level spacings in the Gaussian unitary ensemble
(continuous line). These results were provided by Andrew Odlyzko (see also Ref. [316]).

transform of the energy distribution function P (E) (closely connected to the Loshmidt
echo and zeros of the work distribution for the quench problems [315]). Indeed

P (E) =
1

Z(β)

∑

n

exp[−βEn]δ(En − E) (B8)

where

Z(β) =
∑

n

exp[−βEn] (B9)

is the partition function. Hence

W̃ (τ) ≡
ˆ ∞
−∞

dE P (E) exp[iEτ ] =
1

Z(β)

∑

n

exp[−(β − iτ)En] =
Z(β − iτ)

Z(β)
. (B10)

Thus, in the physics language, the complex zeros of the partition function Z(β − iτ)
correspond to the zeros of the Fourier transform of the energy distribution for a system
of phonons with normal modes given by the natural logarithm of the prime numbers.

Riemann’s zeta function has many fascinating properties. One of them is that the non-
trivial zeros of ζ(s), i.e., zeros that are nonnegative integers, lie on the line <(s) = 1/2.
This conjecture is called the Riemann hypothesis and it remains one of the greatest un-
solved problems in mathematics. By now, it has been checked for the first 1022 zeros
[316]. Remarkably, the distribution of the normalized spacings of the zeros of Riemann’s
zeta function is the same as that of level spacings in the GUE (see Fig. B1). This agree-
ment hints, as mentioned before, a deep connection between prime numbers and random
numbers.
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Appendix C. The Infinite Temperature State as an Attractor

To prove that the infinite temperature distribution is an attractor, let us recall that any
stochastic matrix M or, equivalently, Markov matrix has one eigenvalue λ0 = 1, while
all the other eigenvalues have absolute value less or equal than one, i.e., |λα>0| ≤ 1 [190].
The eigenvalue λ0 = 1 clearly corresponds to the steady state of the system while the
others denote processes where the probability distribution decays to the steady state. The
left and right eigenvectors corresponding to the eigenvalue λ0 = 1 satisfy the relation

L0M = L0, MR0 = R0. (C1)

Note that, by construction, the right eigenvector R0 is the steady-state probability dis-
tribution of the system so that its elements should, by normalization, sum to 1. By the
conservation of probability, i.e.,

∑
mMn→m = 1, and by direct substitution, it is easy to

see that the left eigenvector is given by the constant vector L0 = (1, 1, · · · , 1). Note that
with this choice L0 · R0 = 1. Of course, the right eigenvector R0 depends on the details
of the Markov matrix M and in general has a nontrivial structure.

To see this, let us decompose the vector of initial probabilities ρ
(0)
nn in terms of the right

eigenvectors as35

ρ(0) =

D∑

α=0

cαRα = R0 +

D∑

α>0

cαRα (C2)

where we have used the fact that the coefficients cα are determined by projection on the

left eigenvectors cα =
∑

n ρ
(0)
nn(Lα)n and therefore c0 = 1. Plugging the expression above

into the master equation (106), we obtain

ρ(N) =

D∑

α=0

cα (λα)N Rα ≈ R0 (C3)

where we have used that c0 = 1, λ0 = 1, and assumed that |λα>0| < 1 so that λNα>0 ≈ 0.

This equation shows that ρ(N) approaches the stationary state R0 exponentially fast in
the number of processesN . The only exception to this result is when the doubly stochastic
matrix admits other eigenvalues with absolute value one. This situation, however, is not
generic. It corresponds to systems that are not ergodic so that some portions of the
configuration space cannot be accessed from others, see Appendix D.

Doubly stochastic matrices p are a special subgroup of Markov matrices which, besides
satisfying the conservation of probability

∑
m pn→m = 1, satisfy the additional constraint∑

n pn→m = 1. This additional property allows one to prove that the right eigenvector
corresponding to the λ0 = 1 eigenvalue has the specific form Rds

0 = (1/D, · · · , 1/D)T ,
where D is the dimension of the matrix p. Therefore, for a doubly stochastic matrix,
the stationary state is the “infinite temperature state”. To this end, we simply check
explicitly that pRds

0 = Rds
0 :

p Rds
0 = p




1/D
...

1/D


 =



D−1

∑
m p1→m

D−1
∑

m p2→m
...


 =



D−1

D−1

...


 = Rds

0 , (C4)

35In this discussion, we ignore cases in which the Markov matrix cannot by diagonalized. The proof can be extended

to these cases as well.
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where the third equality follows directly from the doubly stochastic condition (91). Next,
we prove that |λα| ≤ 1. Let us assume that there is an eigenvalue λα larger than one.
Then, the corresponding eigenvector Rα grows exponentially under the repeated action
of p, that is, pNRα = λNα Rα. This implies that there are entries of pN that are larger
than one. However, pN is a product of doubly stochastic matrices so it is itself a doubly
stochastic matrix (see Sec. 5.1.1). Therefore, all its entries need to be smaller than one,
see Eq. (93). As a result, we conclude that there cannot be any eigenvalue larger than
one.

Appendix D. Birkhoff’s Theorem and Doubly Stochastic Evolution

Birkhoff’s theorem [191] states that any doubly stochastic matrix is given by the convex
sum of permutation matrices Πα:

p =
∑

α

kαΠα,
∑

α

kα = 1, 0 ≤ kα ≤ 1. (D1)

We can then rewrite the doubly stochastic master equation (88) as

ρ(1) = p ρ(0) =
∑

α

kαΠαρ
(0) (D2)

When only one permutation matrix contributes, the master equation simply describes a
perfect transfer of population between two states. For example, for a three level system
in which only one permutation matrix contributes, say, between states one and two, the
permutation matrix is given by

Π1↔2 =




0 1 0
1 0 0
0 0 1


 (D3)

and the master equation above simply reduces to:

ρ
(1)
11 = ρ

(0)
22 , ρ

(1)
22 = ρ

(0)
11 , ρ

(1)
33 = ρ

(0)
33 (D4)

If we apply the master equation with this transition matrix, the system will enter a cycle
that will neither lead to an entropy increase nor to an energy increase.

In general, however, many permutation matrices contribute to the master equation.
Using Birkhoff’s theorem, it is easy to see that the most general doubly stochastic matrix
for the three level system considered above is

p =



δ + β α+ η γ + µ
α+ µ δ + γ β + η
γ + η β + µ δ + α


 , (D5)

which describes the transfer of probabilities between states 1 and 2 with weight α, be-
tween states 2 and 3 with weight β, between states 1 and 3 with weight γ, no transfer
of probabilities with weight δ, cyclic permutations 1 → 2 → 3 → 1 with probability η,
and cyclic permutations 3 → 2 → 1 → 3 with probability µ. Note that the sum of the
weights is one, that is, α + β + γ + δ + η + µ = 1, so that the matrix above is doubly
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stochastic (i.e., the sum of each row and each column is one). Also note that, while p is
not symmetric in general, it is symmetric when only pairwise permutation are present.

The most general master equation for a three level system, using p in Eq. (D5), has
the form:

ρ
(1)
11 = (δ + β)ρ

(0)
11 + (α+ η)ρ

(0)
22 + (γ + µ)ρ

(0)
33

ρ
(1)
22 = (α+ µ)ρ

(0)
11 + (δ + γ)ρ

(0)
22 + (β + η)ρ

(0)
33

ρ
(1)
33 = (γ + η)ρ

(0)
11 + (β + µ)ρ

(0)
22 + (δ + α)ρ

(0)
33 ,

(D6)

and is already quite complicated when compared to the particular case in Eq. (D4). The
complexity increases as the number of states increases. However, as we discussed in the
main text, the doubly stochastic form of the transition matrix leads to several important
general consequences (see also Ref. [194]).

Appendix E. Proof of 〈W 〉 ≥ 0 for Passive Density Matrices and
Doubly-Stochastic Evolution

In this appendix, we prove that 〈W 〉 ≥ 0 if the initial density matrix is passive and the
evolution is doubly stochastic (see also Ref. [188]).

Let us arrange the energy levels in order of increasing energies and, hence, by passivity,

decreasing occupation probabilities, that is, E1 ≤ E2 ≤ . . . ED and ρ
(0)
11 ≥ ρ

(0)
22 ≥ . . . ρ

(0)
DD.

We also assume that the Hilbert space size D is finite (one can always take the limit
D →∞ at the end). The general expression for the average work is

〈W 〉 =
∑

m

ρ(1)
mmEm −

∑

n

ρ(0)
nnEn

=
∑

m,n

ρ(0)
nnpn→mEm −

∑

n

ρ(0)
nnEn =

∑

n

ρ(0)
nn

[∑

m

pn→mEm − En
] (E1)

where the sums over n and m go from 1 to D. Next, we define

∆k
n ≡ ρ(0)

nn − ρ(0)
D−k,D−k. (E2)

Clearly, from the passivity condition (121), ∆0
n = ρ

(0)
nn − ρ(0)

DD ≥ 0 . Then, we rewrite
Eq. (E1) as:

〈W 〉 =

D∑

n=1

∆0
n

[
D∑

m=1

pn→mEm − En
]

+K0, (E3)

where, using the doubly stochastic condition for transition rates, that is,
∑D

n=1 pn→m = 1,
one can show that

K0 = ρ
(0)
DD

D∑

n=1

[
D∑

m=1

pn→mEm − En
]

= 0. (E4)
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Finally, noting that ∆0
D = 0, we rewrite (E3) as

〈W 〉 =

D−1∑

n=1

∆0
n

[
D∑

m=1

pn→mEm − En
]
. (E5)

Next, we write ∆0
n in terms of ∆1

n, that is, ∆0
n = ∆1

n + ρ
(0)
D−1,D−1 − ρ

(0)
D,D, and plug it

in the equation above to obtain

〈W 〉 =

D−1∑

n=1

∆1
n

[
D∑

m=1

pn→mEm − En
]

+K1, (E6)

where

K1 =
(
ρ

(0)
D−1,D−1 − ρ

(0)
D,D

)D−1∑

n=1

[
D∑

m=1

pn→mEm − En
]
≥ 0. (E7)

To see why K1 ≥ 0 note that: (i) the passivity condition, Eq. (121), implies ρ
(0)
D−1,D−1 ≥

ρ
(0)
D,D, and that (ii) the remaining sum can be rewritten as

D−1∑

n=1

[
D∑

m=1

pn→mEm − En
]

=

D∑

m,n=1

pn→mEm −
D∑

m=1

pD→mEm −
D−1∑

n=1

En

=

D∑

m=1

Em −
D−1∑

n=1

En −
D∑

m=1

pD→mEm = ED −
D∑

m=1

pD→mEm ≥ ED −
D∑

m=1

pD→mED = 0,

(E8)

where we have used the doubly stochastic (91) condition multiple times. Finally, noting
that ∆1

D−1 = 0, we rewrite Eq. (E6) as

〈W 〉 ≥
D−2∑

n=1

∆1
n

[
D∑

m=1

pn→mEm − En
]
. (E9)

Equation (E9) is similar to Eq. (E5) except that the external sum in Eq. (E9) extends
only up to D − 2 and not to D − 1 as in Eq. (E5).

The proof continues iteratively. For example, in the next iteration, we write ∆1
n in

terms of ∆2
n, that is, ∆1

n = ∆2
n + ρ

(0)
D−2,D−2 − ρ

(0)
D−1,D−1 to obtain

〈W 〉 ≥
D−2∑

n=1

∆2
n

[
D∑

m=1

pn→mEm − En
]

+K2 (E10)

where

K2 = (ρ
(0)
D−2,D−2 − ρ

(0)
D−1,D−1)

D−2∑

n=1

[
D∑

m=1

pn→mEm − En
]

(E11)
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The prefactor (ρ
(0)
D−2,D−2 − ρ

(0)
D−1,D−1) is positive by the passivity condition, Eq. (121).

Moreover, using similar steps as above, we rewrite the sum as

D−2∑

n=1

[
D∑

m=1

pn→mEm − En
]

= ED + ED−1 −
D∑

m=1

p(D−1)→mEm −
D∑

m=1

pD→mEm

= ED + ED−1 − 2ED−1 +

D∑

m=1

[
p(D−1)→m + pD→m

]
δEm

≥ ED + ED−1 − 2ED−1 +
[
p(D−1)→D + pD→D

]
δED

≥ ED + ED−1 − 2ED−1 + (ED−1 − ED) = 0,

(E12)

where we have defined δEm ≡ ED−1−Em. In the third line, we have used that δEm ≥ 0
for any m ≤ D − 1 and, in the fourth line, we have used that p(D−1)→D + pD→D ≤ 1,
which is guaranteed by the doubly stochastic condition

∑
m pm→D = 1. We therefore

conclude that K2 ≥ 0. Finally, noting that ∆2
D−2 = 0 we arrive at:

〈W 〉 ≥
D−3∑

n=1

∆2
n

[
D∑

m=1

pn→mEm − En
]

(E13)

where now the external sum extends only up to D − 3.
Clearly, comparing Eqs. (E5), (E9) and (E13), we see that at each iteration the upper

limit of the external sum decreases by one and the index k in ∆k
n increases by one.

Continuing this iterative process, eventually, the external sum will include only one
element proportional to ∆D−1

1 , which is zero by definition [see Eq. (E2)]. Therefore one
can conclude that 〈W 〉 ≥ 0.

Appendix F. Derivation of the Drift Diffusion Relation for Continuous
Processes

We already showed how one can derive the drift diffusion relation (177) by means of a
cumulant expansion of the Evans-Searles fluctuation relation (157). Here, we show how
the same result can be derived directly from the ETH ansatz (62) applied to continuous
driving protocols. In particular, let us focus on a setup in which the external parameter
λ, conjugate to the observable Ô = −∂λĤ, changes in time at a constant rate. For
example, this parameter can be the position of a macroscopic object moving in some
media (quantum or classical).

Within leading order in adiabatic perturbation theory (see Ref. [201] for further de-
tails), the energy dissipation in the system is given by (we have set ~ = 1 so that the
energy has dimension of time−1):

dQ̃

dt
≈ λ̇2

∑

n,m

ρn − ρm
Em − En

〈n|Ô|m〉〈m|Ô|n〉δ(En − Em), (F1)

where ρn and ρm are the stationary probabilities to occupy the many-body eigenstates
|n〉 and |m〉 corresponding to the energies En and Em, respectively. All matrix elements
and energies here correspond to the instantaneous value of λ. For the Gibbs distribution,
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ρn ∝ exp[−βEn], it is easy to see that

ρn − ρm
Em − En

δ(En − Em) = βρnδ(En − Em) (F2)

and Eq. (F1) reduces to the standard expression for the energy dissipation (see, e.g.,
Ref. [317]). As in many places in this review, let us focus instead on the dissipation from
a single many-body energy eigenstate, ρn = δn,n0

. If the relation holds for any eigenstate,
it holds for any stationary distribution with subextensive energy fluctuations. For a single
eigenstate, Eq. (F1) becomes

dQ̃

dt
= 2λ̇2

∑

m 6=n0

1

Em − En0

〈n0|Ô|m〉〈m|Ô|n0〉δ(En0
− Em), (F3)

Let us now use the ETH ansatz (62) and, as usual, replace the summation over the
eigenstates by an integration over ω = Em −En0

≡ Em −E:
∑

m →
´
dω exp[S(E + ω)]

(for simplicity, we drop the index n0 in the energy). Then

dQ̃

dt
= 2λ̇2P

ˆ
dω

eS(E+ω)−S(E+ω/2)

ω
|fO(E + ω/2, ω)|2δ(ω), (F4)

where P
´

stands for the principal value of the integral. Noting that

eS(E+ω)−S(E+ω/2) ≈ eβω/2 = 1 +
βω

2
+ . . . ,

|fO(E + ω/2, ω)|2 = |fO(E,ω)|2 +
ω

2
∂E |fO(E,ω)|2 + . . . , (F5)

and using the fact that |fO(E,ω)|2 is an even function of ω, we find

dQ̃

dt
≡ JE = λ̇2[β|fO(E, 0)|2 + ∂E |fO(E, 0)|2]. (F6)

We note that, formally, the function |fO(E, 0)|2 diverges in the thermodynamic limit (see
Fig. 17). However, physically, this divergence is cutoff by the inverse relaxation time in
the system, which defines the broadening of the δ-function in Eq. (F1).

Similarly, from adiabatic perturbation theory, one can show that

d(δE2)

dt
≡ DE = 2λ̇2

∑

m6=n0

〈n0|Ô|m〉〈m|Ô|n0〉δ(En0
− Em) = 2λ̇2|fO(E, 0)|2. (F7)

Comparing Eqs. (F6) and (F7), we recover the desired drift-diffusion relation (177).

Appendix G. Derivation of Onsager Relations

In this appendix, we derive Eqs. (179) and (200). Since Eq. (200) is more general, we
show its derivation first and then obtain Eq. (179) as a special case. First, in the Crooks
relation (200), we expand the entropy and the probability distribution as a function of
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EI,II ±W and NI,II ± δN to second order in W and δN to obtain

P (EI, EII, NI, NII,W, δN) exp

[
−∆βW −∆κδN − W 2

2
∂E∆β − δN2

2
∂N∆κ (G1)

− WδN

2
(∂N∆β + ∂Eδκ)

]
= exp [W∂E + δN∂N ]P (EI, EII, NI, NII,−W,−δN),

where ∆β = βI−βII, ∆κ = κI−κII, βI = ∂EI
SI, κI = ∂δNI

SI, and similarly for II (I→ II).
The partial derivatives ∂E and ∂N are understood as derivatives with respect to energy
and particle exchange: ∂Ef(EI, EII) ≡ ∂EI

f(EI, EII)− ∂EII
f(EI, EII). Next, one needs to

integrate over W and δN and perform the cumulant expansion to second order. Following
the discussion after Eq. (173), we keep only the terms linear in the cumulants to obtain

−∆β〈W 〉 −∆κ〈δN〉 − 〈W
2〉c

2
∂E∆β − 〈δN

2〉c
2

∂N∆κ− 〈WδN〉c
2

(∂N∆β + ∂E∆κ)

+
(∆β)2

2
〈W 2〉c +

(∆κ)2

2
〈δN2〉c + ∆β∆κ〈WδN〉c

= −∂E〈W 〉 − ∂N 〈δN〉+
1

2
∂2
EE〈W 2〉c +

1

2
∂2
NN 〈δN2〉c + ∂2

EN 〈WδN〉c .
(G2)

Using the following identities:

〈W 2〉c∂E∆β =∂E
(
∆β〈W 2〉c

)
−∆β∂E〈W 2〉c,

〈δN2〉c∂N∆κ =∂N
(
∆κ〈δN2〉c

)
−∆κ∂N 〈δN2〉c,

〈WδN〉c (∂N∆β + ∂E∆κ) =∂N (∆β〈WδN〉c)−∆β∂N 〈WδN〉c
+ ∂E(∆κ〈WδN〉c)−∆κ∂E〈WδN〉c,

we can rewrite Eq. (G2) as

(∆β − ∂E)

[
−〈W 〉+

∆β

2
〈W 2〉c +

∆κ

2
〈WδN〉c +

1

2
∂E〈W 2〉c +

1

2
∂N 〈WδN〉c

]
+ (G3)

(∆κ− ∂N )

[
−〈δN〉+

∆κ

2
〈δN2〉c +

∆β

2
〈WδN〉c +

1

2
∂N 〈δN2〉c +

1

2
∂E〈WδN〉c

]
= 0 .

Since this relation holds for any value of ∆β and ∆κ, each term in the square brackets
must be zero, leading to Eq. (200). By assuming that the systems do not exchange
particles, that is, that δN = 0, we recover Eq. (179).
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[179] C. Kollath, A.M. Läuchli, and E. Altman, Phys. Rev. Lett. 98 (2007), p. 180601.
[180] S.R. Manmana, S. Wessel, R.M. Noack, and A. Muramatsu, Phys. Rev. Lett. 98 (2007), p.

210405.
[181] M. Cramer, A. Flesch, I.P. McCulloch, U. Schollwöck, and J. Eisert, Phys. Rev. Lett. 101
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