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A theory is all the more impressive the simpler its
premises, the greater the variety of phenomena it
describes, and the broader its area of application. This is
the reason for the profound impression made on me by
classical thermodynamics. It is the only general physical
theory of which I am convinced that, within its regime
of applicability, it will never be overturned (this is for
the special attention of the skeptics in principle).

Albert Einstein

To my daughter Birgitta



Preface to the Second Edition

In this new edition, supplements, additional explanations and cross references
have been added in numerous places, including additional problems and re-
vised formulations of the problems. Figures have been redrawn and the layout
improved. In all these additions I have pursued the goal of not changing the
compact character of the book. I wish to thank Prof. W. Brewer for inte-
grating these changes into his competent translation of the first edition. I am
grateful to all the colleagues and students who have made suggestions to
improve the book as well as to the publisher, Dr. Thorsten Schneider and
Mrs. J. Lenz for their excellent cooperation.

Munich, December 2005 F. Schwabl



Preface to the First Edition

This book deals with statistical mechanics. Its goal is to give a deductive
presentation of the statistical mechanics of equilibrium systems based on a
single hypothesis – the form of the microcanonical density matrix – as well
as to treat the most important aspects of non-equilibrium phenomena. Be-
yond the fundamentals, the attempt is made here to demonstrate the breadth
and variety of the applications of statistical mechanics. Modern areas such
as renormalization group theory, percolation, stochastic equations of motion
and their applications in critical dynamics are treated. A compact presenta-
tion was preferred wherever possible; it however requires no additional aids
except for a knowledge of quantum mechanics. The material is made as un-
derstandable as possible by the inclusion of all the mathematical steps and
a complete and detailed presentation of all intermediate calculations. At the
end of each chapter, a series of problems is provided. Subsections which can
be skipped over in a first reading are marked with an asterisk; subsidiary
calculations and remarks which are not essential for comprehension of the
material are shown in small print. Where it seems helpful, literature cita-
tions are given; these are by no means complete, but should be seen as an
incentive to further reading. A list of relevant textbooks is given at the end
of each of the more advanced chapters.

In the first chapter, the fundamental concepts of probability theory and
the properties of distribution functions and density matrices are presented. In
Chapter 2, the microcanonical ensemble and, building upon it, basic quan-
tities such as entropy, pressure and temperature are introduced. Following
this, the density matrices for the canonical and the grand canonical ensemble
are derived. The third chapter is devoted to thermodynamics. Here, the usual
material (thermodynamic potentials, the laws of thermodynamics, cyclic pro-
cesses, etc.) are treated, with special attention given to the theory of phase
transitions, to mixtures and to border areas related to physical chemistry.
Chapter 4 deals with the statistical mechanics of ideal quantum systems, in-
cluding the Bose–Einstein condensation, the radiation field, and superfluids.
In Chapter 5, real gases and liquids are treated (internal degrees of free-
dom, the van der Waals equation, mixtures). Chapter 6 is devoted to the
subject of magnetism, including magnetic phase transitions. Furthermore,
related phenomena such as the elasticity of rubber are presented. Chapter 7



X Preface

deals with the theory of phase transitions and critical phenomena; following
a general overview, the fundamentals of renormalization group theory are
given. In addition, the Ginzburg–Landau theory is introduced, and percola-
tion is discussed (as a topic related to critical phenomena). The remaining
three chapters deal with non-equilibrium processes: Brownian motion, the
Langevin and Fokker–Planck equations and their applications as well as the
theory of the Boltzmann equation and from it, the H-Theorem and hydrody-
namic equations. In the final chapter, dealing with the topic of irreversiblility,
fundamental considerations of how it occurs and of the transition to equilib-
rium are developed. In appendices, among other topics the Third Law and a
derivation of the classical distribution function starting from quantum statis-
tics are presented, along with the microscopic derivation of the hydrodynamic
equations.

The book is recommended for students of physics and related areas from
the 5th or 6th semester on. Parts of it may also be of use to teachers. It is
suggested that students at first skip over the sections marked with asterisks or
shown in small print, and thereby concentrate their attention on the essential
core material.

This book evolved out of lecture courses given numerous times by the au-
thor at the Johannes Kepler Universität in Linz (Austria) and at the Technis-
che Universität in Munich (Germany). Many coworkers have contributed to
the production and correction of the manuscript: I. Wefers, E. Jörg-Müller,
M. Hummel, A. Vilfan, J. Wilhelm, K. Schenk, S. Clar, P. Maier, B. Kauf-
mann, M. Bulenda, H. Schinz, and A. Wonhas. W. Gasser read the whole
manuscript several times and made suggestions for corrections. Advice and
suggestions from my former coworkers E. Frey and U. C. Täuber were likewise
quite valuable. I wish to thank Prof. W. D. Brewer for his faithful translation
of the text. I would like to express my sincere gratitude to all of them, along
with those of my other associates who offered valuable assistance, as well as
to Dr. H. J. Kölsch, representing the Springer-Verlag.

Munich, October 2002 F. Schwabl



Table of Contents

1. Basic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 A Brief Excursion into Probability Theory . . . . . . . . . . . . . . . . . 4

1.2.1 Probability Density and Characteristic Functions . . . . . 4
1.2.2 The Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Ensembles in Classical Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Phase Space and Distribution Functions . . . . . . . . . . . . . 9
1.3.2 The Liouville Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Quantum Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.1 The Density Matrix for Pure and Mixed Ensembles . . . 14
1.4.2 The Von Neumann Equation . . . . . . . . . . . . . . . . . . . . . . . 15

∗1.5 Additional Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
∗1.5.1 The Binomial and the Poisson Distributions . . . . . . . . . 16
∗1.5.2 Mixed Ensembles and the Density Matrix

of Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2. Equilibrium Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1 Introductory Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Microcanonical Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Microcanonical Distribution Functions
and Density Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 The Classical Ideal Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
∗2.2.3 Quantum-mechanical Harmonic Oscillators

and Spin Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 General Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.2 An Extremal Property of the Entropy . . . . . . . . . . . . . . . 36
2.3.3 Entropy of the Microcanonical Ensemble . . . . . . . . . . . . 37

2.4 Temperature and Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.1 Systems in Contact: the Energy Distribution Function,

Definition of the Temperature . . . . . . . . . . . . . . . . . . . . . . 38



XII Table of Contents

2.4.2 On the Widths of the Distribution Functions
of Macroscopic Quantities . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.3 External Parameters: Pressure . . . . . . . . . . . . . . . . . . . . . 42
2.5 Properties of Some Non-interacting Systems . . . . . . . . . . . . . . . 46

2.5.1 The Ideal Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
∗2.5.2 Non-interacting Quantum Mechanical

Harmonic Oscillators and Spins . . . . . . . . . . . . . . . . . . . . 48
2.6 The Canonical Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6.1 The Density Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.6.2 Examples: the Maxwell Distribution

and the Barometric Pressure Formula . . . . . . . . . . . . . . . 53
2.6.3 The Entropy of the Canonical Ensemble

and Its Extremal Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.6.4 The Virial Theorem and the Equipartition Theorem . . 54
2.6.5 Thermodynamic Quantities in the Canonical Ensemble 58
2.6.6 Additional Properties of the Entropy . . . . . . . . . . . . . . . 60

2.7 The Grand Canonical Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.7.1 Systems with Particle Exchange . . . . . . . . . . . . . . . . . . . . 63
2.7.2 The Grand Canonical Density Matrix . . . . . . . . . . . . . . . 64
2.7.3 Thermodynamic Quantities . . . . . . . . . . . . . . . . . . . . . . . . 65
2.7.4 The Grand Partition Function

for the Classical Ideal Gas . . . . . . . . . . . . . . . . . . . . . . . . . 67
∗2.7.5 The Grand Canonical Density Matrix

in Second Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3. Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.1 Potentials and Laws of Equilibrium Thermodynamics . . . . . . . 75

3.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.1.2 The Legendre Transformation . . . . . . . . . . . . . . . . . . . . . . 79
3.1.3 The Gibbs–Duhem Relation in Homogeneous Systems . 81

3.2 Derivatives of Thermodynamic Quantities . . . . . . . . . . . . . . . . . 82
3.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.2.2 Integrability and the Maxwell Relations . . . . . . . . . . . . . 84
3.2.3 Jacobians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3 Fluctuations and Thermodynamic Inequalities . . . . . . . . . . . . . 89
3.3.1 Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3.2 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.4 Absolute Temperature and Empirical Temperatures . . . . . . . . . 91
3.5 Thermodynamic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.5.1 Thermodynamic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.5.2 The Irreversible Expansion of a Gas;

the Gay-Lussac Experiment . . . . . . . . . . . . . . . . . . . . . . . . 95
3.5.3 The Statistical Foundation of Irreversibility . . . . . . . . . . 97



Table of Contents XIII

3.5.4 Reversible Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.5.5 The Adiabatic Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.6 The First and Second Laws of Thermodynamics . . . . . . . . . . . . 103
3.6.1 The First and the Second Law for Reversible

and Irreversible Processes . . . . . . . . . . . . . . . . . . . . . . . . . 103
∗3.6.2 Historical Formulations

of the Laws of Thermodynamics and other Remarks . . 107
3.6.3 Examples and Supplements to the Second Law . . . . . . . 109
3.6.4 Extremal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

∗3.6.5 Thermodynamic Inequalities
Derived from Maximization of the Entropy . . . . . . . . . . 123

3.7 Cyclic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.7.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.7.2 The Carnot Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.7.3 General Cyclic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.8 Phases of Single-Component Systems . . . . . . . . . . . . . . . . . . . . . 130
3.8.1 Phase-Boundary Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.8.2 The Clausius–Clapeyron Equation . . . . . . . . . . . . . . . . . . 134
3.8.3 The Convexity of the Free Energy and the Concavity

of the Free Enthalpy (Gibbs’ Free Energy) . . . . . . . . . . . 139
3.8.4 The Triple Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

3.9 Equilibrium in Multicomponent Systems . . . . . . . . . . . . . . . . . . 144
3.9.1 Generalization of the Thermodynamic Potentials . . . . . 144
3.9.2 Gibbs’ Phase Rule and Phase Equilibrium . . . . . . . . . . . 146
3.9.3 Chemical Reactions, Thermodynamic Equilibrium

and the Law of Mass Action . . . . . . . . . . . . . . . . . . . . . . . 150
∗3.9.4 Vapor-pressure Increase by Other Gases

and by Surface Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4. Ideal Quantum Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.1 The Grand Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.2 The Classical Limit z = eµ/kT ≪ 1 . . . . . . . . . . . . . . . . . . . . . . . . 175
4.3 The Nearly-degenerate Ideal Fermi Gas . . . . . . . . . . . . . . . . . . . 176

4.3.1 Ground State, T = 0 (Degeneracy) . . . . . . . . . . . . . . . . . 177
4.3.2 The Limit of Complete Degeneracy . . . . . . . . . . . . . . . . . 178

∗4.3.3 Real Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
4.4 The Bose–Einstein Condensation . . . . . . . . . . . . . . . . . . . . . . . . . 190
4.5 The Photon Gas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

4.5.1 Properties of Photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
4.5.2 The Canonical Partition Function . . . . . . . . . . . . . . . . . . 199
4.5.3 Planck’s Radiation Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

∗4.5.4 Supplemental Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
∗4.5.5 Fluctuations in the Particle Number of Fermions

and Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205



XIV Table of Contents

4.6 Phonons in Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
4.6.1 The Harmonic Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . 206
4.6.2 Thermodynamic Properties . . . . . . . . . . . . . . . . . . . . . . . . 209

∗4.6.3 Anharmonic Effects,
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1. Basic Principles

1.1 Introduction

Statistical mechanics deals with the physical properties of systems which con-
sist of a large number of particles, i.e. many-body systems, and it is based
on the microscopic laws of nature. Examples of such many-body systems
are gases, liquids, solids in their various forms (crystalline, amorphous), liq-
uid crystals, biological systems, stellar matter, the radiation field, etc. Among
their physical properties which are of interest are equilibrium properties (spe-
cific heat, thermal expansion, modulus of elasticity, magnetic susceptibility,
etc.) and transport properties (thermal conductivity, electrical conductivity,
etc.).

Long before it was provided with a solid basis by statistical mechanics,
thermodynamics had been developed; it yields general relations between the
macroscopic parameters of a system. The First Law of Thermodynamics was
formulated by Robert Mayer in 1842. It states that the energy content of a
body consists of the sum of the work performed on it and the heat which is
put into it:

dE = δQ + δW . (1.1.1)

The fact that heat is a form of energy, or more precisely, that energy can be
transferred to a body in the form of heat, was tested experimentally by Joule
in the years 1843–1849 (experiments with friction).

The Second Law was formulated by Clausius and by Lord Kelvin (W.
Thomson1) in 1850. It is based on the fact that a particular state of a ther-
modynamic system can be reached through different ways of dividing up the
energy transferred to it into work and heat, i.e. heat is not a “state variable”
(a state variable is a physical quantity which is determined by the state of the
system; this concept will be given a mathematically precise definition later).
The essential new information in the Second Law was that there exists a
state variable S, the entropy, which for reversible changes is related to the
quantity of heat transferred by the equation
1 Born W. Thomson; the additional name was assumed later in connection with

his knighthood, granted in recognition of his scientific achievements.
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δQ = TdS , (1.1.2)

while for irreversible processes, δQ < TdS holds. The Second Law is identical
with the statement that a perpetual motion machine of the second kind is
impossible to construct (this would be a periodically operating machine which
performs work by only extracting heat from a single heat bath).

The atomistic basis of thermodynamics was first recognized in the kinetic
theory of dilute gases. The velocity distribution derived by Maxwell (1831–
1879) permits the derivation of the caloric and thermal equation of state of
ideal gases. Boltzmann (1844–1906) wrote the basic transport equation which
bears his name in the year 1874. From it, he derived the entropy increase
(H theorem) on approaching equilibrium. Furthermore, Boltzmann realized
that the entropy depends on the number of states W (E, V, . . .) which are
compatible with the macroscopic values of the energy E, the volume V, . . . as
given by the relation

S ∝ log W (E, V, . . .) . (1.1.3)

It is notable that the atomistic foundations of the theory of gases were laid
at a time when the atomic structure of matter had not yet been demon-
strated experimentally; it was even regarded with considerable scepticism by
well-known physicists such as E. Mach (1828–1916), who favored continuum
theories.

The description of macroscopic systems in terms of statistical ensembles
was justified by Boltzmann on the basis of the ergodic hypothesis. Fundamen-
tal contributions to thermodynamics and to the statistical theory of macro-
scopic systems were made by J. Gibbs (1839–1903) in the years 1870–1900.

Only after the formulation of quantum mechanics (1925) did the correct
theory for the atomic regime become available. To distinguish it from clas-
sical statistical mechanics, the statistical mechanics based on the quantum
theory is called quantum statistics. Many phenomena such as the electronic
properties of solids, superconductivity, superfluidity, or magnetism can be
explained only by applying quantum statistics.

Even today, statistical mechanics still belongs among the most active
areas of theoretical physics: the theory of phase transitions, the theory of
liquids, disordered solids, polymers, membranes, biological systems, granular
matter, surfaces, interfaces, the theory of irreversible processes, systems far
from equilibrium, nonlinear processes, structure formation in open systems,
biological processes, and at present still magnetism and superconductivity
are fields of active interest.

Following these remarks about the problems treated in statistical mechan-
ics and its historical development, we now indicate some characteristic prob-
lems which play a role in the theory of macroscopic systems. Conventional
macroscopic systems such as gases, liquids and solids at room temperature
consist of 1019 –1023 particles per cm3. The number of quantum-mechanical
eigenstates naturally increases as the number of particles. As we shall see
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Fig. 1.1. Spacing of the energy levels for a
large number of particles N .

later, the separation of the energy levels is of the order of e−N , i.e. the en-
ergy levels are so densely spaced that even the smallest perturbation can
transfer the system from one state to another one which has practically the
same energy.

Should we now set ourselves the goal of calculating the motion of the 3N
coordinates in classical physics, or the time dependence of the wavefunctions
in quantum mechanics, in order to compute temporal averages from them?
Both programs would be impossible to carry out and are furthermore unnec-
essary. One can solve neither Newton’s equations nor the Schrödinger equa-
tion for 1019 –1023 particles. And even if we had the solutions, we would not
know all the coordinates and velocities or all the quantum numbers required
to determine the initial values. Furthermore, the detailed time development
plays no role for the macroscopic properties which are of interest. In addition,
even the weakest interaction (external perturbation), which would always be
present even with the best possible isolation of the system from its environ-
ment, would lead to a change in the microscopic state without affecting the
macroscopic properties. For the following discussion, we need to define two
concepts.
The microstate: it is defined by the wavefunction of the system in quantum
mechanics, or by all the coordinates and momenta of the system in classical
physics.
The macrostate: this is characterized by a few macroscopic quantities (energy,
volume, . . .).

From the preceding considerations it follows that the state of a macro-
scopic system must be described statistically. The fact that the system passes
through a distribution of microstates during a measurement requires that we
characterize the macrostate by giving the probabilities for the occurrence of
particular microstates. The collection of all the microstates which represent
a macrostate, weighted by their frequency of occurrence, is referred to as a
statistical ensemble.

Although the state of a macroscopic system is characterized by a statis-
tical ensemble, the predictions of macroscopic quantities are precise. Their
mean values and mean square deviations are both proportional to the num-
ber of particles N . The relative fluctuations, i.e. the ratio of fluctuations to
mean values, tend towards zero in the thermodynamic limit (see (1.2.21c)).
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1.2 A Brief Excursion into Probability Theory

At this point, we wish to collect a few basic mathematical definitions from
probability theory, in order to derive the central limit theorem.2

1.2.1 Probability Density and Characteristic Functions

We first have to consider the meaning of the concept of a random variable.
This refers to a quantity X which takes on values x depending upon the
elements e of a “set of events” E. In each individual observation, the value
of X is uncertain; instead, one knows only the probability for the occurrence
of one of the possible results (events) from the set E. For example, in the
case of an ideal die, the random variable is the number of spots, which can
take on values between 1 and 6; each of these events has the probability 1/6.
If we had precise knowledge of the initial position of the die and the forces
acting on it during the throw, we could calculate the result from classical me-
chanics. Lacking such detailed information, we can make only the probability
statement given above. Let e ∈ E be an event from the set E and Pe be its
corresponding probability; then for a large number of attempts, N , the num-
ber of times Ne that the event e occurs is related to Pe by limN→∞

Ne
N = Pe.

Let X be a random variable. If the values x which X can assume are con-
tinuously distributed, we define the probability density of the random variable
to be w(x). This means that w(x)dx is the probability that X assumes a value
in the interval [x, x+dx]. The total probability must be one, i.e. w(x) is nor-
malized to one:

∫ +∞

−∞
dxw(x) = 1 . (1.2.1)

Definition 1 : The mean value of X is defined by

⟨X⟩ =
∫ +∞

−∞
dxw(x)x . (1.2.2)

Now let F (X) be a function of the random variable X ; one then calls F (X)
a random function. Its mean value is defined corresponding to (1.2.2) by3

⟨F (X)⟩ =
∫

dxw(x)F (x) . (1.2.2′)

The powers of X have a particular importance: their mean values will be
used to introduce the moments of the probability density.
2 See e.g.: W. Feller, An Introduction to Probability Theory and its Applications,

Vol. I (Wiley, New York 1968).
3 In the case that the limits of integration are not given, the integral is to be taken

from −∞ to +∞. An analogous simplified notation will also be used for integrals
over several variables.
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Definition 2 : The nth moment of the probability density w(x) is defined as

µn = ⟨Xn⟩ . (1.2.3)

(The first moment of w(x) is simply the mean value of X .)
Definition 3 : The mean square deviation (or variance) is defined by

(∆x)2 =
〈
X2

〉
− ⟨X⟩2 =

〈(
X − ⟨X⟩

)2〉
. (1.2.4)

Its square root is called the root-mean-square deviation or standard deviation.

Definition 4 : Finally, we define the characteristic function:

χ(k) =
∫

dx e−ikxw(x) ≡
〈
e−ikX

〉
. (1.2.5)

By taking its inverse Fourier transform, w(x) can be expressed in terms of
χ(k):

w(x) =
∫

dk

2π
eikxχ(k) . (1.2.6)

Under the assumption that all the moments of the probability density w(x)
exist, it follows from Eq. (1.2.5) that the characteristic function is

χ(k) =
∑

n

(−ik)n

n!
⟨Xn⟩ . (1.2.7)

If X has a discrete spectrum of values, i.e. the values ξ1, ξ2, . . . can occur
with probabilities p1, p2, . . ., the probability density has the form

w(x) = p1δ(x − ξ1) + p2δ(x − ξ2) + . . . . (1.2.8)

Often, the probability density will have discrete and continuous regions.
In the case of multidimensional systems (those with several components)

X = (X1, X2, . . .), let x = (x1, x2, . . .) be the values taken on by X. Then
the probability density (also called the joint probability density) is w(x)
and it has the following significance: w(x)dx ≡ w(x)dx1dx2 . . . dxN is the
probability of finding x in the hypercubic element x,x+ dx. We will also use
the term probability distribution or, for short, simply the distribution.
Definition 5 : The mean value of a function F (X) of the random variables X
is defined by

⟨F (X)⟩ =
∫

dxw(x)F (x) . (1.2.9)

Theorem: The probability density of F (X)
A function F of the random variables X is itself a random variable, which
can take on the values f corresponding to a probability density wF (f). The
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probability density wF (f) can be calculated from the probability density
w(x). We assert that:

wF (f) = ⟨δ(F (X) − f)⟩ . (1.2.10)

Proof : We express the probability density wF (f) in terms of its characteristic
function

wF (f) =
∫

dk

2π
eikf

∑

n

(−ik)n

n!
⟨Fn⟩ .

If we insert ⟨Fn⟩ =
∫

dxw(x)F (x)n , we find

wF (f) =
∫

dk

2π
eikf

∫
dxw(x)e−ikF (x)

and, after making use of the Fourier representation of the δ-function δ(y) =∫
dk
2π eiky, we finally obtain

wF (f) =
∫

dxw(x)δ(f − F (x)) = ⟨δ(F (X) − f)⟩ ,

i.e. Eq. (1.2.10).
Definition 6 : For multidimensional systems we define correlations

Kij = ⟨(Xi − ⟨Xi⟩)(Xj − ⟨Xj⟩)⟩ (1.2.11)

of the random variables Xi and Xj . These indicate to what extent fluctuations
(deviations from the mean value) of Xi and Xj are correlated.

If the probability density has the form

w(x) = wi(xi)w′({xk, k ̸= i}) ,

where w′({xk, k ̸= i}) does not depend on xi, then Kij = 0 for j ̸= i, i.e. Xi

and Xj are not correlated. In the special case

w(x) = w1(x1) · · ·wN (xN ) ,

the stochastic variables X1, . . . , XN are completely uncorrelated.
Let Pn(x1, . . . , xn−1, xn) be the probability density of the random vari-

ables X1, . . . , Xn−1, Xn. Then the probability density for a subset of these
random variables is given by integration of Pn over the range of values of the
remaining random variables; e.g. the probability density Pn−1(x1, . . . , xn−1)
for the random variables X1, . . . , Xn−1 is

Pn−1(x1, . . . , xn−1) =
∫

dxnPn(x1, . . . , xn−1, xn) .

Finally, we introduce the concept of conditional probability and the condi-
tional probability density.
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Definition 7: Let Pn(x1, . . . , xn) be the probability (density). The conditional
probability (density)

Pk|n−k(x1, . . . , xk|xk+1, . . . , xn)

is defined as the probability (density) of the random variables x1, . . . , xk, if
the remaining variables xk+1, . . . , xn have given values. We find

Pk|n−k(x1, . . . , xk|xk+1, . . . , xn) =
Pn(x1, . . . , xn)

Pn−k(xk+1, . . . , xn)
, (1.2.12)

where Pn−k(xk+1, . . . , xn) =
∫

dx1 . . . dxkPn(x1, . . . , xn) .

Note concerning conditional probability: formula (1.2.12) is usually introduced as a
definition in the mathematical literature, but it can be deduced in the following way,
if one identifies the probabilities with statistical frequencies: Pn(x1, . . . , xk, xk+1,
. . . , xn) for fixed xk+1, . . . , xn determines the frequencies of the x1, . . . , xk with
given values of xk+1, . . . , xn. The probability density which corresponds to these
frequencies is therefore proportional to Pn(x1, . . . , xk, xk+1, . . . , xn). SinceR

dx1 . . . dxkPn(x1, . . . , xk, xk+1, . . . , xn) = Pn−k(xk+1, . . . , xn), the conditional
probability density normalized to one is then

Pk|n−k(x1, . . . , xk|xk+1, . . . , xn) =
Pn(x1, . . . , xn)

Pn−k(xk+1, . . . , xn)
.

1.2.2 The Central Limit Theorem

Let there be mutually independent random variables X1, X2, . . . , XN which
are characterized by common but independent probability distributions w(x1),
w(x2), . . . , w(xN ). Suppose that the mean value and the variance ofX1, X2, . . .,
XN exist. We require the probability density for the sum

Y = X1 + X2 + . . . + XN (1.2.13)

in the limit N → ∞. As we shall see, the probability density for Y is given
by a Gaussian distribution.

Examples of applications of this situation are

a) A system of non-interacting particles
Xi = energy of the i-th particle, Y = total energy of the system

b) The random walk
Xi = distance covered in the i-th step, Y = location after N steps.

In order to carry out the computation of the probability density of Y in
a convenient way, it is expedient to introduce the random variable Z:

Z =
∑

i

(
Xi − ⟨X⟩

)
/
√

N =
(
Y − N⟨X⟩

)
/
√

N , (1.2.14)

where ⟨X⟩ ≡ ⟨X1⟩ = . . . = ⟨XN ⟩ by definition.
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From (1.2.10), the probability density wZ(z) of the random variables Z
is given by

wZ(z) =
∫

dx1 . . . dxN w(x1) . . . w(xN ) δ
(
z − x1 + . . . + xN√

N
+
√

N⟨X⟩
)

=
∫

dk

2π
eikz

∫
dx1 . . . dxN w(x1) . . . w(xN )e

−ik(x1+...+xN )√
N

+ik
√

N⟨X⟩

=
∫

dk

2π
eikz+ik

√
N⟨X⟩

(
χ
( k√

N

))N

, (1.2.15)

where χ(q) is the characteristic function of w(x).
The representation (1.2.7) of the characteristic function in terms of the

moments of the probability density can be reformulated by taking the loga-
rithm of the expansion in moments,

χ(q) = exp
[
−iq⟨X⟩ − 1

2
q2(∆x)2 + . . . q3 + . . .

]
, (1.2.16)

i.e. in general

χ(q) = exp
[ ∞∑

n=1

(−iq)n

n!
Cn

]
. (1.2.16′)

In contrast to (1.2.7), in (1.2.16′) the logarithm of the characteristic function
is expanded in a power series. The expansion coefficients Cn which occur in
this series are called cumulants of the nth order. They can be expressed in
terms of the moments (1.2.3); the three lowest take on the forms:

C1 = ⟨X⟩ = µ1

C2 = (∆x)2 =
〈
X2

〉
− ⟨X⟩2 = µ2 − µ2

1 (1.2.17)

C3 =
〈
X3

〉
− 3

〈
X2

〉
⟨X⟩ + 2⟨X⟩3 = µ3 − 3µ1µ2 + 2µ3

1 .

The relations (1.2.17) between the cumulants and the moments can be ob-
tained by expanding the exponential function in (1.2.16) or in (1.2.16′) and
comparing the coefficients of the Taylor series with (1.2.7). Inserting (1.2.16)
into (1.2.15) yields

wZ(z) =
∫

dk

2π
eikz− 1

2 k2(∆x)2+...k3N− 1
2 +... . (1.2.18)

From this, neglecting the terms which vanish for large N as 1/
√

N or more
rapidly, we obtain

wZ(z) =
(
2π(∆x)2

)−1/2
e−

z2

2(∆x)2 (1.2.19)

and finally, using WY (y)dy = WZ(z)dz for the probability density of the
random variables Y ,

wY (y) =
(
2πN(∆x)2

)−1/2
e−

(y−⟨X⟩N)2

2(∆x)2N . (1.2.20)
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This is the central limit theorem: wY (y) is a Gaussian distribution, although
we did not in any way assume that w(x) was such a distribution,

mean value: ⟨Y ⟩ = N⟨X⟩ (1.2.21a)
standard deviation: ∆y = ∆x

√
N (1.2.21b)

relative deviation:
∆y

⟨Y ⟩ =
∆x

√
N

N⟨X⟩ =
∆x

⟨X⟩
√

N
. (1.2.21c)

The central limit theorem provides the mathematical basis for the fact that
in the limiting case of large N , predictions about Y become sharp. From
(1.2.21c), the relative deviation, i.e. the ratio of the standard deviation to
the mean value, approaches zero in the limit of large N .

1.3 Ensembles in Classical Statistics

Although the correct theory in the atomic regime is based on quantum me-
chanics, and classical statistics can be derived from quantum statistics, it is
more intuitive to develop classical statistics from the beginning, in parallel to
quantum statistics. Later, we shall derive the classical distribution function
within its range of validity from quantum statistics.

1.3.1 Phase Space and Distribution Functions

We consider N particles in three dimensions with coordinates q1, . . . , q3N and
momenta p1, . . . , p3N . Let us define phase space, also called Γ space, as the
space which is spanned by the 6N coordinates and momenta. A microscopic
state is represented by a point in the Γ space and the motion of the overall
system by a curve in phase space (Fig. 1.2), which is also termed a phase-
space orbit or phase-space trajectory.

As an example, we consider the one-dimensional harmonic oscillator

q = q0 cosωt

p = −mq0ω sin ωt ,
(1.3.1)

whose orbit in phase space is shown in Fig. 1.3.
For large N , the phase space is a space of many dimensions. As a rule, our

knowledge of such a system is not sufficient to determine its position in phase
space. As already mentioned in the introductory section 1.1, a macrostate
characterized by macroscopic values such as that of its energy E, volume V ,
number of particles N etc., can be generated equally well by any one of a
large number of microstates, i.e. by a large number of points in phase space.
Instead of singling out just one of these microstates arbitrarily, we consider
all of them, i.e. an ensemble of systems which all represent one and the same
macrostate but which contains all of the corresponding possible microstates.
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Fig. 1.2. A trajectory in phase space. Here, q
and p represent the 6N coordinates and mo-
menta q1, . . . , q3N and p1, . . . , p3N .

Fig. 1.3. The phase-space orbit of the
one-dimensional harmonic oscillator.

The weight with which a point (q, p) ≡ (q1, . . . , q3N , p1, . . . , p3N) occurs at
the time t is given by the probability density ρ(q, p, t).

The introduction of this probability density is now not at all just an ex-
pression of our lack of knowledge of the detailed form of the microstates, but
rather it has the following physical basis: every realistic macroscopic system,
even with the best insulation from its surroundings, experiences an inter-
action with its environment. This interaction is to be sure so weak that it
does not affect the macroscopic properties of the system, i.e. the macrostate
remains unchanged, but it induces the system to change its microstate again
and again and thus causes it for example to pass through a distribution of
microstates during a measurement process. These states, which are occu-
pied during a short time interval, are collected together in the distribution
ρ(q, p). This distribution thus describes not only the statistical properties
of a fictitious ensemble of many copies of the system considered in its di-
verse microstates, but also each individual system. Instead of considering the
sequential stochastic series of these microstates in terms of time-averaged
values, we can observe the simultaneous time development of the whole en-
semble. It will be a major task in the following chapter to determine the
distribution functions which correspond to particular physical situations. To
this end, knowledge of the equation of motion which we derive in the next
section will prove to be very important. For large N , we know only the prob-
ability distribution ρ(q, p, t). Here,
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ρ(q, p, t)dqdp ≡ ρ(q1, . . . , q3N , p1, . . . , p3N , t)
3N∏

i=1

dqidpi (1.3.2)

is the probability of finding a system of the ensemble (or the individual sys-
tems in the course of the observation) at time t within the phase-space vol-
ume element dqdp in the neighborhood of the point q, p in Γ space. ρ(q, p, t)
is called the distribution function. It must be positive, ρ(q, p, t) ≥ 0, and
normalizable. Here, q, p stand for the whole of the coordinates and momenta
q1, . . . , q3N , p1, . . . , p3N .

1.3.2 The Liouville Equation

We now wish to determine the time dependence of ρ(q, p, t), beginning with
the initial distribution W (q0, p0) at time t = 0 on the basis of the classical
Hamiltonian H . We shall assume that the system is closed. The following re-
sults are however also valid when H contains time-dependent external forces.
We first consider a system whose coordinates in phase space at t = 0 are
q0 and p0. The associated trajectory in phase space, which follows from the
Hamiltonian equations of motion, is denoted by q(t; q0, p0), p(t; q0, p0), with
the intitial values of the trajectories given here explicitly. For a single trajec-
tory, the probability density of the coordinates q and the momenta p has the
form

δ
(
q − q(t; q0, p0)

)
δ
(
p − p(t; q0, p0)

)
. (1.3.3)

Here, δ(k) ≡ δ(k1) . . . δ(k3N ). The initial values are however in general not
precisely known; instead, there is a distribution of values, W (q0, p0). In this
case, the probability density in phase space at the time t is found by multi-
plication of (1.3.3) by W (q0, p0) and integration over the initial values:

ρ(q, p, t) =
∫

dq0

∫
dp0 W (q0, p0)δ

(
q−q(t; q0, p0)

)
δ
(
p−p(t; q0, p0)

)
. (1.3.3′)

We wish to derive an equation of motion for ρ(q, p, t). To this end, we use
the Hamiltonian equations of motion

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (1.3.4)

The velocity in phase space

v = (q̇, ṗ) =
(

∂H

∂p
,−∂H

∂q

)
(1.3.4′)

fulfills the equation

div v ≡
∑

i

(
∂q̇i

∂qi
+

∂ṗi

∂pi

)
=

∑

i

(
∂2H

∂qi∂pi
− ∂2H

∂pi∂qi

)
= 0 . (1.3.5)
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That is, the motion in phase space can be treated intuitively as the “flow” of
an incompressible “fluid”.

Taking the time derivative of (1.3.3′), we find

∂ρ(q, p, t)
∂t

= −
∑

i

∫
dq0dp0W (q0, p0)

(
q̇i(t; q0, p0)

∂

∂qi
+ ṗi(t; q0, p0)

∂

∂pi

)

× δ
(
q − q(t; q0, p0)

)
δ
(
p − p(t; q0, p0)

)
. (1.3.6)

Expressing the velocity in phase space in terms of (1.3.4), employing the
δ-functions in (1.3.6), and finally using (1.3.3′) and (1.3.5), we obtain the
following representations of the equation of motion for ρ(q, p, t):

∂ρ

∂t
= −

∑

i

(
∂

∂qi
ρq̇i +

∂

∂pi
ρṗi

)

= −
∑

i

(
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

)

=
∑

i

(
− ∂ρ

∂qi

∂H

∂pi
+

∂ρ

∂pi

∂H

∂qi

)
.

(1.3.7)

Making use of the Poisson bracket notation4, the last line of Eq. (1.3.7) can
also be written in the form

∂ρ

∂t
= − {H, ρ} (1.3.8)

This is the Liouville equation, the fundamental equation of motion of the
classical distribution function ρ(q, p, t).

Additional remarks:

We discuss some equivalent representations of the Liouville equation and
their consequences.

(i) The first line of the series of equations (1.3.7) can be written in abbre-
viated form as an equation of continuity

∂ρ

∂t
= − div vρ . (1.3.9)

One can imagine the motion of the ensemble in phase space to be like the
flow of a fluid. Then (1.3.9) is the equation of continuity for the density and
Eq. (1.3.5) shows that the fluid is incompressible.

4 {u, v} ≡
P

i

h
∂u
∂pi

∂v
∂qi

− ∂u
∂qi

∂v
∂pi

i
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(ii) We once more take up the analogy of motion in phase space to fluid
hydrodynamics: in our previous discussion, we considered the density at a
fixed point q, p in Γ space. However, we could also consider the motion from
the point of view of an observer moving with the “flow”, i.e. we could ask
for the time dependence of ρ(q(t), p(t), t) (omitting the initial values of the
coordinates, q0 and p0, for brevity). The second line of Eq. (1.3.7) can also
be expressed in the form

d

dt
ρ
(
q(t), p(t), t

)
= 0 . (1.3.10)

Hence, the distribution function is constant along a trajectory in phase space.
(iii) We now investigate the change of a volume element dΓ in phase space.
At t = 0, let a number dN of representatives of the ensemble be uniformly
distributed within a volume element dΓ0. Owing to the motion in phase space,
they occupy a volume dΓ at the time t. This means that the density ρ at
t = 0 is given by dN

dΓ0
, while at time t, it is dN

dΓ . From (1.3.10), the equality of
these two quantities follows, from which we find (Fig. 1.4) that their volumes
are the same:

dΓ = dΓ0 . (1.3.11)

Equation (1.3.8) is known in mechanics as the Liouville theorem.5 There,
it is calculated from the Jacobian with the aid of the theory of canonical
transformations. Reversing this process, we can begin with Eq. (1.3.11) and
derive Eq. (1.3.10) and die Liouville equation (1.3.8).

Fig. 1.4. The time dependence of an element in phase space; its volume remains
constant.

5 L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics I: Mechanics,
Eq. (46.5), Pergamon Press (Oxford, London, Paris 1960)
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1.4 Quantum Statistics

1.4.1 The Density Matrix for Pure and Mixed Ensembles6

The density matrix is of special importance in the formulation of quan-
tum statistics; it can also be denoted by the terms ‘statistical operator’ and
‘density operator’.

Let a system be in the state |ψ⟩. The observable A in this state has the
mean value or expectation value

⟨A⟩ = ⟨ψ|A |ψ⟩ . (1.4.1)

The structure of the mean value makes it convenient to define the density
matrix by

ρ = |ψ⟩ ⟨ψ| . (1.4.2)

We then have:

⟨A⟩ = Tr(ρA) (1.4.3a)

Tr ρ = 1 , ρ2 = ρ , ρ† = ρ . (1.4.3b,c,d)

Here, the definition of the trace (Tr) is

Tr X =
∑

n

⟨n|X |n⟩ , (1.4.4)

where {|n⟩} is an arbitrary complete orthonormal basis system. Owing to

Tr X =
∑

n

∑

m

⟨n|m⟩ ⟨m|X |n⟩ =
∑

m

∑

n

⟨m|X |n⟩ ⟨n|m⟩

=
∑

m

⟨m|X |m⟩ ,

the trace is independent of the basis used.
n.b. Proofs of (1.4.3a–c):

Tr ρA =
X

n

⟨n|ψ⟩ ⟨ψ|A |n⟩ =
X

n

⟨ψ|A |n⟩ ⟨n|ψ⟩ = ⟨ψ|A |ψ⟩ ,

Tr ρ = Tr ρ11 = ⟨ψ| 11 |ψ⟩ = 1 , ρ2 = |ψ⟩ ⟨ψ|ψ⟩ ⟨ψ| = |ψ⟩ ⟨ψ| = ρ .

If the systems or objects under investigation are all in one and the same
state |ψ⟩, we speak of a pure ensemble, or else we say that the systems are in
a pure state.
6 See e.g. F. Schwabl, Quantum Mechanics, 3rd edition, Springer, Heidelberg,

Berlin, New York 2002 (corrected printing 2005), Chap. 20. In the following,
this textbook will be abbreviated as ‘QM I’.
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Along with the statistical character which is inherent to quantum-mechanical
systems, in addition a statistical distribution of states can be present in an
ensemble. If an ensemble contains different states, we call it a mixed ensem-
ble, a mixture, or we speak of a mixed state. We assume that the state |ψ1⟩
occurs with the probability p1, the state |ψi⟩ with the probability pi, etc.,
with

∑

i

pi = 1 .

The mean value or expectation value of A is then

⟨A⟩ =
∑

i

pi ⟨ψi|A |ψi⟩ . (1.4.5)

This mean value can also be represented in terms of the density matrix defined
by

ρ =
∑

i

pi |ψi⟩ ⟨ψi| . (1.4.6)

We find:

⟨A⟩ = Tr ρA (1.4.7a)

Tr ρ = 1 (1.4.7b)

ρ2 ̸= ρ and Tr ρ2 < 1, in the case that pi ̸= 0 for more than one i
(1.4.7c)

ρ† = ρ . (1.4.7d)

The derivations of these relations and further remarks about the density
matrices of mixed ensembles will be given in Sect. 1.5.2.

1.4.2 The Von Neumann Equation

From the Schrödinger equation and its adjoint

i! ∂

∂t
|ψ, t⟩ = H |ψ, t⟩ , −i! ∂

∂t
⟨ψ, t| = ⟨ψ, t|H ,

it follows that

i! ∂

∂t
ρ = i!

∑

i

pi

(
˙|ψi⟩ ⟨ψi| + |ψi⟩ ˙⟨ψi|

)

=
∑

i

pi (H |ψi⟩ ⟨ψi|− |ψi⟩ ⟨ψi|H) .
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From this, we find the von Neumann equation,

∂

∂t
ρ = − i

! [H, ρ] ; (1.4.8)

it is the quantum-mechanical equivalent of the Liouville equation. It describes
the time dependence of the density matrix in the Schrödinger representation.
It holds also for a time-dependent H . It should not be confused with the
equation of motion of Heisenberg operators, which has a positive sign on the
right-hand side.

The expectation value of an observable A is given by

⟨A⟩t = Tr
(
ρ(t)A

)
, (1.4.9)

where ρ(t) is found by solving the von Neumann equation (1.4.8). The time
dependence of the expectation value is referred to by the index t.

We shall meet up with the von Neumann equation in the next chapter
where we set up the equilibrium density matrices, and it is naturally of fun-
damental importance for all time-dependent processes.

We now treat the transformation to the Heisenberg representation. The
formal solution of the Schrödinger equation has the form

|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩ , (1.4.10)

where U(t, t0) is a unitary operator and |ψ(t0)⟩ is the initial state at the time
t0. From this we find the time dependence of the density matrix:

ρ(t) = U(t, t0)ρ(t0)U(t, t0)† . (1.4.11)

(For a time-independent H , U(t, t0) = e−iH(t−t0)/!.)
The expectation value of an observable A can be computed both in the

Schrödinger representation and in the Heisenberg representation

⟨A⟩t = Tr
(
ρ(t)A

)
= Tr

(
ρ(t0)U(t, t0)†AU(t, t0)

)
= Tr

(
ρ(t0)AH(t)

)
. (1.4.12)

Here, AH(t) = U †(t, t0)AU(t, t0) is the operator in the Heisenberg represen-
tation. The density matrix ρ(t0) in the Heisenberg representation is time-
independent.

∗1.5 Additional Remarks

∗1.5.1 The Binomial and the Poisson Distributions

We now discuss two probability distributions which occur frequently. Let
us consider an interval of length L which is divided into two subintervals
[0, a] and [a, L]. We now distribute N distinguishable objects (‘particles’) in
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a completely random way over the two subintervals, so that the probability
that a particle be found in the first or the second subinterval is given by a

L
or

(
1 − a

L

)
. The probability that n particles are in the interval [0, a] is then

given by the binomial distribution7

wn =
( a

L

)n(
1 − a

L

)N−n
(

N

n

)
, (1.5.1)

where the combinatorial factor
(N

n

)
gives the number of ways of choosing n

objects from a set of N . The mean value of n is

⟨n⟩ =
N∑

n=0

nwn =
a

L
N (1.5.2a)

and its mean square deviation is

(∆n)2 =
a

L

(
1 − a

L

)
N . (1.5.2b)

We now consider the limiting case L ≫ a. Initially, wn can be written
using

(
N
n

)
= N ·(N−1)···(N−n+1)

n! in the form

wn =
(

aN

L

)n(
1 − a

L

)N−n 1
n!

1 ·
(

1 − 1
N

)
· · ·

(
1 − n − 1

N

)

= n n 1
n!

(
1 − n

N

)N 1 · (1 − 1
N ) · · · (1 − n−1

N )
(1 − a

L )n ,

(1.5.3a)

where for the mean value (1.5.2a), we have introduced the abbreviation
n = aN

L . In the limit a
L → 0, N → ∞ for finite n, the third factor in (1.5.3a)

becomes e−n and the last factor becomes equal to one, so that for the prob-
ability distribution, we find:

wn =
n n

n!
e−n . (1.5.3b)

This is the Poisson distribution, which is shown schematically in Fig. 1.5.
The Poisson distribution has the following properties:

∑

n

wn = 1 , ⟨n⟩ = n , (∆n)2 = n . (1.5.4a,b,c)

The first two relations follow immediately from the derivation of the Poisson
distribution starting from the binomial distribution. They are obtained in
problem 1.5 together with 1.5.4c directly from 1.5.3b. The relative deviation
7 A particular arrangement with n particles in the interval a and N − n in L − a,

e.g. the first particle in a, the second in L − a, the third in L − a, etc., has the

probability
`

a
L

´n `
1 − b

L

´N−n
. From this we obtain wn through multiplication

by the number of combinations, i.e. the binomial coefficient
`

N
n

´
.
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Fig. 1.5. The Poisson distribution

is therefore
∆n

n
=

1
n 1/2

. (1.5.5)

For numbers n which are not too large, e.g. n = 100, ∆n = 10 and ∆n
n = 1

10 .
For macroscopic systems, e.g. n = 1020, we have ∆n = 1010 and ∆n

n = 10−10.
The relative deviation becomes extremely small. For large n, the distribution
wn is highly concentrated around n. The probability that no particles at
all are within the subsystem, i.e. w0 = e−1020

, is vanishingly small. The
number of particles in the subsystem [0, a] is not fixed, but however its relative
deviation is very small for macroscopic subsystems.

In the figure below (Fig. 1.6a), the binomial distribution for N = 5 and
a
L = 3

10 (and thus n = 1.5) is shown and compared to the Poisson distribu-
tion for n = 1.5; in b) the same is shown for N ≡ 10, a

L = 3
20 (i.e. again

n = 1.5). Even with these small values of N , the Poisson distribution al-
ready approximates the binomial distribution rather well. With N = 100,
the curves representing the binomial and the Poisson distributions would
overlap completely.

Fig. 1.6. Comparison of the Poisson distribution and the binomial distribution
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∗1.5.2 Mixed Ensembles and the Density Matrix
of Subsystems

(i) Proofs of (1.4.7a–d)

Tr ρA =
∑

n

∑

i

pi ⟨ψi|A |n⟩ ⟨n|ψi⟩ =
∑

i

pi ⟨ψi|A |ψi⟩ = ⟨A⟩ .

From this, (1.4.7b) also follows using A = 1.

ρ2 =
∑

i

∑

j

pipj |ψi⟩ ⟨ψi|ψj⟩ ⟨ψj | ̸= ρ .

For arbitrary |ψ⟩, the expectation value of ρ

⟨ψ| ρ |ψ⟩ =
∑

i

pi|⟨ψ|ψi⟩|2 ≥ 0

is positive definite. Since ρ is Hermitian, the eigenvalues Pm of ρ are positive
and real:

ρ |m⟩ = Pm |m⟩

ρ =
∞∑

m=1

Pm |m⟩ ⟨m| , (1.5.6)

Pm ≥ 0,
∞∑

m=1

Pm = 1, ⟨m|m′⟩ = δmm′ .

In this basis, ρ2 =
∑

m P 2
m |m⟩ ⟨m| and, clearly, Trρ2 =

∑
m P 2

m < 1, if more
than only one state occurs. One can also derive (1.4.7c) directly from (1.4.6),
with the condition that at least two different but not necessarily orthogonal
states must occur in (1.4.6):

Tr ρ2 =
∑

n

∑

i,j

pipj ⟨ψi|ψj⟩ ⟨ψj |n⟩ ⟨n|ψi⟩

=
∑

i,j

pipj |⟨ψi|ψj⟩|2 <
∑

i

pi

∑

j

pj = 1.

(ii) The criterion for a pure or a mixed state is – from Eq. (1.4.3c) and
(1.4.7c) – given by Tr ρ2 = 1 or Tr ρ2 < 1.
(iii) We consider now a quantum-mechanical system which consists of two
subsystems 1 and 2. Their combined state is taken to be

|ψ⟩ =
∑

n

cn |1n⟩ |2n⟩ , (1.5.7)
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where more than one cn differs from zero. The associated density matrix is
given by

ρ = |ψ⟩ ⟨ψ| . (1.5.8)

We now carry out measurements dealing with only subsystem 1, i.e. the
operators corresponding to the observables A act only on the states |1n⟩. We
then find for the expectation value

⟨A⟩ = Tr1Tr2ρA = Tr1[(Tr2ρ)A] . (1.5.9)

Here, Tri refers to taking the trace over the subsystem i. According to
Eq. (1.5.9), the density matrix which determines the outcome of these ex-
periments is obtained by averaging ρ over subsystem 2:

ρ̂ = Tr2ρ =
∑

n

|cn|2 |1n⟩ ⟨1n| . (1.5.10)

This is the density matrix of a mixture, although the overall system is in a
pure state.
The most general state of the subsystems 1 and 2 has the form8

|ψ⟩ =
∑

n,m

cnm |1n⟩ |2m⟩ . (1.5.11)

Here, again, we find that

ρ̂ ≡ Tr2 |ψ⟩ ⟨ψ| =
∑

n

∑

n′

∑

m

cnmc∗n′m |1n⟩ ⟨1n′|

=
∑

m

(∑

n

cnm |1n⟩
)(∑

n′

c∗n′m ⟨1n′|
) (1.5.12)

is in general a mixture. Since a macroscopic system will have spent some time
in contact with some other systems, even when it is completely isolated, it
will never be in a pure state, but always in a mixed state.
It may be instructive to consider the following special case: we write cnm in
the form cnm = |cnm| eiϕnm . In the case that the phases ϕnm are stochastic,
from ρ̂ we then obtain the density matrix

ˆ̂ρ =
∏

⟨nm⟩

(∫ 2π

0
d
ϕnm

2π

)
ρ̂ =

∑

n

(∑

m

|cnm|2
)
|1n⟩ ⟨1n| .

8 As an aside, we note that it is possible to introduce a biorthogonal system
(Schmidt basis) which brings the state (1.5.11) into the form (1.5.7); see QM I,
problem 20.5.
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Problems for Chapter 1

1.1 Prove the Stirling formula

x! ≈
√

2πx xx e−x ,

by starting from N ! =
R∞
0

dx xN e−x and fitting the integrand f(x) ≡ xNe−x up to

second order to the function g(x) = A e−(x−N)2/a2
. f(x) has a sharp maximum at

x0 = N .

1.2 Determine the probability w(N, m) that in a system of N spins exactly m
will be found to have the orientation “↑” and correspondingly N − m have the
orientation “↓”. There is no external magnetic field and no interaction of the spins
with one another, so that for each individual spin, the configurations ↑ and ↓ are
equally probable.
(a) Verify

NX

m=0

w(N, m) = 1 .

(b) Calculate the mean value of m,

⟨m⟩ =
NX

m=0

w(N, m)m ,

and its standard deviation,
`˙

m2
¸
− ⟨m⟩2

´1/2
.

The dimensionless magnetization is defined as M = 2m − N ; give its mean value
and its standard deviation.
(c) Calculate the distribution w(N, M) for large N . Assume that |M/N | ≪ 1.

1.3 Derive the central limit theorem for wi(xi) instead of for w(xi).
Note: In the result, you need only replace N⟨X⟩ by

P
i ⟨Xi⟩ and N(∆x)2 byP

i(∆xi)
2.

1.4 The random walk: a particle moves at each step with equal probability by a
unit distance either to the left or to the right.
(a) Calculate ⟨Y ⟩ and

˙
Y 2
¸

exactly after N = N++N− steps, where Y = N+−N− .
(b) What result would you obtain from the central limit theorem?

1.5 Verify the relations (1.5.4a-c) for the Poisson distribution, (1.5.3b):

w(n) = e−n n n

n!
, n an integer ≥0 .

1.6 The distribution function ρ(E1, . . . , EN) has the form

ρ =
NY

i=1

f(Ei) .

Let the mean value and the standard deviation of the individual Ei-values be de-
noted by e and

˙
(∆Ei)

2
¸1/2

= ∆, respectively.
Compute the mean value and the standard deviation of E =

P
i Ei.

1.7 Sketch the trajectory in phase space of a particle
(a) which moves with the energy E within a one-dimensional, infinitely high po-
tential well (particle in a box):
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(b) which falls from a height h under the influence of gravity, is inelastically re-
flected by the ground and rises again to a height 9/10h, etc.

1.8 The gradient of the Hamiltonian is defined by ∇ H(q, p) =
“

∂H
∂q , ∂H

∂p

”
. Com-

pare with v of Eq. (1.3.4′) and show that |v| = |∇ H | and v⊥∇ H .

1.9 An ion source emits ions of energy E1 = 5000± 1.00 eV from a surface of area
1mm2 into a solid angle of Ω1 = 1 sterad. The ions are accelerated by electric fields
to E2 = 10 MeV and focused onto an area of 1cm2. Calculate the opening angle of
the ion beam on impact using the Liouville theorem.

Suggestion: Assume that the acceleration acts so rapidly that the different ve-
locities within the beam do not lead to an additional broadening of the beam,
i.e. dx2 = dx1; assume also that the width of the energy distribution remains un-
changed, dE2 = dE1.

1.10 (a) Show that Tr(AB) = Tr(BA).
(b) The operators ρν are taken to be density matrices, so that they obey the
conditions (1.4.7b-d), and pν ≥0,

P
ν pν = 1. Show that

P
ν pνρν also obeys these

conditions.

1.11 Consider a beam of light which is propagating in the +z direction. An arbi-
trary pure polarization state can be written as a linear combination

a |↑⟩ + b |↓⟩ ,

where |↑⟩ represents the state which is polarized in the x direction and |↓⟩ the state
polarized in the y direction.
(a) Calculate the density matrix: (i) for an arbitrary pure state, (ii) for the state
polarized in the x direction, (iii) for the state polarized at 45◦, and (iv) for the state
polarized at 135◦.
(b) What is the density matrix like for a mixed state, where e.g. 50% of the light is
polarized along 45◦ and 50% along 135◦, or 50% is polarized in the x direction and
50% in the y direction? The angles are those between the x axis and the direction
of polarization.

1.12 A Galton board is a board with nails which is set upright; it has N horizontal
rows of nails, all the same length, shifted so that the nails of successive rows are
precisely in between those in the row above. In the center above the uppermost row
is a funnel through which little balls can be released to fall down through the rows
of nails. Below the bottom row are a series of compartments which catch the balls.
What curve is represented by the height of the balls in the various compartments?
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1.13 A container of volume V holds N particles. Consider the subvolume v and
assume that the probability of finding a particular particle in this subvolume is
given by v/V .
(a) Give the probability pn of finding n particles within v.
(b) Calculate the mean value n and the mean square deviation (n − n)2.
(c) Show with the help of the Stirling formula that pn corresponds approximately
to a Gaussian distribution when N and n are large.
(d) Show in the limit v

V → 0 and V → ∞ with N
V = const. that pn approaches a

Poisson distribution.

1.14 The Gaussian distribution: The Gaussian distribution is defined by the con-
tinuous probability density

wG(x) =
1√

2πσ2
e−(x−x0)2/2σ2

.

For this distribution, compute < X >, ∆x, < X4 >, and < X− < X3 >>.

1.15 The log-normal distribution: Let the statistical variables X have the property
that log X obeys a Gaussian distribution with < log X >= log x0.
(a) Show by transforming the Gaussian distribution that the probability density
for X has the form

P (x) =
1√

2πσ2

1
x

e−
(log(x/x0))2

2σ2 , 0 < x < ∞ .

(b) Show that

< X >= x0e
σ2/2

and

< log X >= log x0 .

(c) Show that the log-normal distribution can be rewritten in the form

P (x) =
1

x0

√
2πσ2

(x/x0)
−1−µ(x)

with

µ(x) =
1

2σ2
log

x
x0

;

it can thus be easily confused with a power law when analyzing data.
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2.1 Introductory Remarks

As emphasized in the Introduction, a macroscopic system consists of 1019 −
1023 particles and correspondingly has an energy spectrum with spacings
of ∆E ∼ e−N . The attempt to find a detailed solution to the microscopic
equations of motion of such a system is hopeless; furthermore, the required
initial conditions or quantum numbers cannot even be specified. Fortunately,
knowledge of the time development of such a microstate is also superfluous,
since in each observation of the system (both of macroscopic quantities and
of microscopic properties, e.g. the density correlation function, particle diffu-
sion, etc.), one averages over a finite time interval. No system can be strictly
isolated from its environment, and as a result it will undergo transitions into
many different microstates during the measurement process. Figure 2.1 il-
lustrates schematically how the system moves between various phase-space
trajectories. Thus, a many-body system cannot be characterized by a sin-
gle microstate, but rather by an ensemble of microstates. This statistical
ensemble of microstates represents the macrostate which is specified by the
macroscopic state variables E, V, N, . . .1 (see Fig. 2.1).

p

q
Fig. 2.1. A trajectory in phase space
(schematic)

1 A different justification of the statistical description is based on the ergodic
theorem: nearly every microstate approaches arbitrarily closely to all the states
of the corresponding ensemble in the course of time. This led Boltzmann to
postulate that the time average for an isolated system is equal to the average
over the states in the microcanonical ensemble (see Sect. 10.5.2).
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Experience shows that every macroscopic system tends with the passage
of time towards an equilibrium state, in which

ρ̇ = 0 = − i

! [H, ρ] (2.1.1)

must hold. Since, according to Eq. (2.1.1), in equilibrium the density matrix
ρ commutes with the Hamiltonian H , it follows that in an equilibrium en-
semble ρ can depend only on the conserved quantities. (The system changes
its microscopic state continually even in equilibrium, but the distribution of
microstates within the ensemble becomes time-independent.) Classically, the
right-hand side of (2.1.1) is to be replaced by the Poisson bracket.

2.2 Microcanonical Ensembles

2.2.1 Microcanonical Distribution Functions and Density Matrices

We consider an isolated system with a fixed number of particles, a fixed
volume V , and an energy lying within the interval [E, E + ∆] with a small
∆, whose Hamiltonian is H(q, p) (Fig. 2.2). Its total momentum and total
angular momentum may be taken to be zero.

Fig. 2.2. Energy shell in phase space

We now wish to find the distribution function (density matrix) for this
physical situation. It is clear from the outset that only those points in phase
space which lie between the two hypersurfaces H(q, p) = E and H(q, p) =
E +∆ can have a finite statistical weight. The region of phase space between
the hypersurfaces H(q, p) = E and H(q, p) = E + ∆ is called the energy
shell. It is intuitively plausible that in equilibrium, no particular region of the
energy shell should play a special role, i.e. that all points within the energy
shell should have the same statistical weight. We can indeed derive this fact
by making use of the conclusion following (2.1.1). If regions within the energy
shell had different statistical weights, then the distribution function (density
matrix) would depend on other quantities besides H(q, p), and ρ would not
commute with H (classically, the Poisson bracket would not vanish). Since
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for a given E, ∆, V , and N , the equilibrium distribution function depends
only upon H(q, p), it follows that every state within the energy shell, i.e. all
of the points in Γ space with E ≤ H(q, p) ≤ E + ∆, are equally probable.
An ensemble with these properties is called a microcanonical ensemble. The
associated microcanonical distribution function can be postulated to have the
form

ρMC =

{
1

Ω (E)∆ E ≤ H(q, p) ≤ E + ∆

0 otherwise ,
(2.2.1)

where, as postulated, the normalization constant Ω (E) depends only on E,
but not on q and p. Ω (E)∆ is the volume of the energy shell.2 In the limit
∆ → 0, (2.2.1) becomes

ρMC =
1

Ω (E)
δ
(
E − H(q, p)

)
. (2.2.1′)

The normalization of the probability density determines Ω (E):
∫

dq dp

h3NN !
ρMC = 1 . (2.2.2)

The mean value of a quantity A is given by

⟨A⟩ =
∫

dq dp

h3NN !
ρMC A . (2.2.3)

The choice of the fundamental integration variables (whether q or q/const) is
arbitrary at the present stage of our considerations and was made in (2.2.2)
and (2.2.3) by reference to the limit which is found from quantum statistics. If
the factor (h3NN !)−1 were not present in the normalization condition (2.2.2)
and in the mean value (2.2.3), then ρMC would be replaced by (h3NN !)−1ρMC.
All mean values would remain unchanged in this case; the difference however
would appear in the entropy (Sect. 2.3). The factor 1/N ! results from the
indistinguishability of the particles. The necessity of including the factor 1/N !
was discovered by Gibbs even before the development of quantum mechanics.
Without this factor, an entropy of mixing of identical gases would erroneously
appear (Gibbs’ paradox). That is, the sum of the entropies of two identical
ideal gases each consisting of N particles, 2SN , would be smaller than the
entropy of one gas consisting of 2N particles. Mixing of ideal gases will be
treated in Chap. 3, Sect. 3.6.3.4. We also refer to the calculation of the entropy
of mixtures of ideal gases in Chap. 5 and the last paragraph of Appendix B.1.
2 The surface area of the energy shell Ω (E) depends not only on the energy E

but also on the spatial volume V and the number of particles N . For our present
considerations, only its dependence on E is of interest; therefore, for clarity and
brevity, we omit the other variables. We use a similar abbreviated notation for the
partition functions which will be introduced in later sections, also. The complete
dependences are collected in Table 2.1.
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For the 6N -dimensional volume element in phase space, we will also use
the abbreviated notation

dΓ ≡ dq dp

h3NN !
.

From the normalization condition, (2.2.2), and the limiting form given in
(2.2.1′), it follows that

Ω (E) =
∫

dq dp

h3NN !
δ
(
E − H(q, p)

)
. (2.2.4)

After introducing coordinates on the energy shell and an integration variable
along the normal k⊥ , (2.2.4) can also be given in terms of the surface integral:

Ω (E) =
∫

E

dS

h3NN !
dk⊥ δ

(
E − H(SE) − |∇H |k⊥

)

=
∫

dS

h3NN !
1

|∇H(q, p)| . (2.2.4′)

Here, dS is the differential element of surface area in the (6N−1)-dimensional
hypersurface at energy E, and ∇ is the 6N -dimensional gradient in phase
space. In Eq. (2.2.4′) we have used H(SE) = E and performed the integration
over k⊥ . According to Eq. (1.3.4′), it holds that |∇H(q, p)| = |v| and the
velocity in phase space is perpendicular to the gradient, i.e. v ⊥∇H(q, p).
This implies that the velocity is always tangential to the surface of the energy
shell; cf. problem 1.8.
Notes:

(i) Alternatively, the expression (2.2.4′) can be readily proven by starting with
an energy shell of finite width ∆ and dividing it into segments dS∆k⊥ . Here, dS
is a surface element and ∆k⊥ is the perpendicular distance between the two hy-
persurfaces (Fig. 2.3). Since the gradient yields the variation perpendicular to an
equipotential surface, we find |∇H(q, p)|∆k⊥ = ∆, where ∇H(q, p) is to be com-
puted on the hypersurface H(q, p) = E.

Fig. 2.3. Calculation of the vol-
ume of the energy shell
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From this it follows that

Ω (E)∆ =

Z
dS

h3NN !
∆k⊥ =

Z
dS

h3NN !|∇H(q, p)| · ∆ ,

i.e. we again obtain (2.2.4′).

(ii) Equation (2.2.4′) has an intuitively very clear significance. Ω (E) is given by the
sum of the surface elements, each divided by the velocity in phase space. Regions
with high velocity thus contribute less to Ω (E). In view of the ergodic hypothesis
(see 10.5.2), this result is very plausible. See problem 1.8: |v| = |∇H | and v ⊥∇H .

As already mentioned, Ω (E)∆ is the volume of the energy shell in classical
statistical mechanics. We will occasionally also refer to Ω (E) as the “phase
surface”. We also define the volume inside the energy shell:

Ω̄(E) =
∫

dq dp

h3NN !
Θ

(
E − H(q, p)

)
. (2.2.5)

Clearly, the following relation holds:

Ω (E) =
dΩ̄(E)

dE
. (2.2.6)

Quantum mechanically, the definition of the microcanonical ensemble for an
isolated system with the Hamiltonian H and associated energy eigenvalues
En is:

ρMC =
∑

n

p(En) |n⟩ ⟨n| , (2.2.7)

where, analogously to (2.2.1),

p(En) =

{
1

Ω (E)∆ E ≤ En ≤ E + ∆

0 otherwise .
(2.2.8)

In the microcanonical density matrix ρMC, all the energy eigenstates |n⟩ whose
energy En lies in the interval [E, E + ∆] contribute with equal weights. The
normalization

Tr ρMC = 1 (2.2.9a)

yields

Ω (E) =
1
∆

∑

n

′
1 , (2.2.9b)

where the summation is restricted to energy eigenstates within the energy
shell. Thus Ω (E)∆ is equal to the number of energy eigenstates within the
energy shell [E, E + ∆]. For the density matrix of the microcanonical ensem-
ble, an abbreviated notation is also used:

ρMC = Ω (E)−1δ(H − E) (2.2.7′)
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and

Ω (E) = Tr δ(H − E) . (2.2.9b′)

Equation (2.2.8) (and its classical analogue (2.2.1)) represent the fundamental
hypothesis of equilibrium statistical mechanics. All the equilibrium properties
of matter (whether isolated or in contact with its surroundings) can be de-
duced from them. The microcanonical density matrix describes an isolated
system with given values of E, V , and N . The equilibrium density matrices
corresponding to other typical physical situations, such as those of the canon-
ical and the grand canonical ensembles, can be derived from it. As we shall
see in the following examples, in fact essentially the whole volume within the
hypersurface H(q, p) = E lies at its surface. More precisely, comparison of
Ω̄(E) and Ω (E)∆ shows that

log
(
Ω (E)∆

)
= log Ω̄(E) + O

(
log

E

N∆

)
.

Since log Ω (E)∆ and log Ω̄(E) are both proportional to N , the remaining
terms can be neglected for large N ; in this spirit, we can write

Ω (E)∆ = Ω̄(E) .

2.2.2 The Classical Ideal Gas

In this and in the next section, we present three simple examples for which
Ω (E) can be calculated, and from which we can directly read off the char-
acteristic dependences on the energy and the particle number. We shall now
investigate the classical ideal gas, i.e. a classical system of N atoms between
which there are no interactions at all; and we shall see from it how Ω (E)
depends on the energy E and on the particle number N . Furthermore, we
will make use of the results of this section later to derive the thermodynamics
of the ideal gas. The Hamiltonian of the three-dimensional ideal gas is

H =
N∑

i=1

p2
i

2m
+ Vwall . (2.2.10)

Here, the pi are the cartesian momenta of the particles and Vwall is the
potential representing the wall of the container. The surface area of the energy
shell is in this case

Ω (E) =
1

h3NN !

∫

V

d3x1 . . .

∫

V

d3xN

∫
d3p1 . . .

∫
d3pN δ

(
E −

N∑

i=1

p2
i

2m

)
,

(2.2.11)
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where the integrations over x are restricted to the spatial volume V defined
by the walls. It would be straightforward to calculate Ω (E) directly. We shall
carry out this calculation here via Ω̄(E), the volume inside the energy shell,
which in this case is a hypersphere, in order to have both quantities available:

Ω̄(E) =
1

h3NN !

×
∫

V

d3x1 . . .

∫

V

d3xN

∫
d3p1 . . .

∫
d3pN Θ

(
E −

∑

i

p2
i /2m

)
. (2.2.12)

Introducing the surface area of the d-dimensional unit sphere,3

(2π)dKd ≡
∫

dΩd =
2πd/2

Γ (d/2)
, (2.2.13)

we find, representing the momenta in spherical polar coordinates,

Ω̄(E) =
V N

h3NN !

∫
dΩ3N

√
2mE∫

0

dp p3N−1 .

From this, we immediately obtain

Ω̄(E) =
V N (2πmE) 3N

2

h3NN !(3N
2 )!

, (2.2.14)

where Γ (3N
2 ) =

(
3N
2 − 1

)
! was used, under the assumption – without loss of

generality – of an even number of particles. For large N , Eq. (2.2.14) can be
simplified by applying the Stirling formula (see problem 1.1).

N ! ∼ NNe−N (2πN)1/2 , (2.2.15)

whereby it suffices to retain only the first two factors, which dominate the
expression. Then

Ω̄(E) ≈
(

V

N

)N (
4πmE

3h2N

) 3N
2

e
5N
2 . (2.2.16)

Making use of Eq. (2.2.6), we obtain from (2.2.14) and (2.2.16) the exact
result for Ω (E):

Ω (E) =
V N 2πm

(
2πmE

) 3N
2 −1

h3NN !
(

3N
2 − 1

)
!

(2.2.17)

as well as an asymptotic expression which is valid in the limit of large N :
3 The derivation of (2.2.13) will be given at the end of this section.
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Ω (E) ≈
(

V

N

)N (
4πmE

3h2N

) 3N
2

e
5N
2

1
E

3N

2
. (2.2.18)

In (2.2.16) and (2.2.18), the specific volume V/N and the specific energy
E/N occur to the power N . We now compare Ω̄(E), the volume inside the
energy shell, with Ω (E)∆, the volume of a spherical shell of thickness ∆, by
considering the logarithms of these two quantities (due to the occurrence of
the Nth powers):

log
(
Ω (E)∆

)
= log Ω̄(E) + O

(
log

E

N∆

)
. (2.2.19)

Since log Ω (E)∆ and log Ω̄(E) are both proportional to N , the remaining
terms can be neglected in the case that N is large. In this approximation, we
find

Ω (E)∆ ≈ Ω̄(E) , (2.2.20)

i.e. nearly the whole volume of the hypersphere H(q, p) ≤ E lies at its surface.
This fact is due to the high dimensionality of the phase space, and it is to be
expected that (2.2.20) remains valid even for systems with interactions.

We now prove the expression (2.2.13) for the surface area of the d-dimensional
unit sphere. To this end, we compute the d-dimensional Gaussian integral

I =

∞Z

−∞

dp1 . . .

∞Z

−∞

dpd e−(p2
1+···+p2

d) = (
√

π)d . (2.2.21)

This integral can also be written in spherical polar coordinates:4

I =

Z ∞

0

dp pd−1
Z

dΩd e−p2
=

1
2

Z
dt t

d
2 −1e−t

Z
dΩd =

1
2
Γ
“d

2

”Z
dΩd , (2.2.22)

where

Γ (z) =

∞Z

0

dt tz−1e−t (2.2.23)

is the gamma function. Comparison of the two expressions (2.2.21) and (2.2.22)
yields

Z
dΩd =

2πd/2

Γ (d/2)
. (2.2.13′)

In order to gain further insights into how the volume of the energy shell de-
pends upon the parameters of the microcanonical ensemble, we will calculate
4 We denote an element of surface area on the d-dimensional unit sphere by dΩd.

For the calculation of the surface integral
R

dΩd, it is not necessary to use the
detailed expression for dΩd. The latter may be found in E. Madelung, Die Math-
ematischen Hilfsmittel des Physikers, Springer, Berlin, 7th edition (1964), p. 244.
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Ω (E) for two other simple examples, this time quantum-mechanical systems;
these are: (i) harmonic oscillators which are not coupled, and (ii) paramag-
netic (not coupled) spins. Simple problems of this type can be solved for
all ensembles with a variety of methods. Instead of the usual combinatorial
method, we employ purely analytical techniques for the two examples which
follow.

∗2.2.3 Quantum-mechanical Harmonic Oscillators
and Spin Systems

∗2.2.3.1 Quantum-mechanical Harmonic Oscillators

We consider a system of N identical harmonic oscillators, which are either not
coupled to each other at all, or else are so weakly coupled that their interactions
may be neglected. Then the Hamiltonian for the system is given by:

H =
NX

j=1

!ω

„
a†

jaj +
1
2

«
, (2.2.24)

where a†
j(aj) are creation (annihilation) operators for the jth oscillator. Thus we

have

Ω (E) =
∞X

n1=0

· · ·
∞X

nN =0

δ
“
E − !ω

X

j

`
nj +

1
2

´”

=
∞X

n1=0

· · ·
∞X

nN =0

Z
dk
2π

eik
`

E−
P

j !ω(nj+ 1
2 )
´

=

Z
dk
2π

eikE
NY

i=1

e−ik!ω/2

1 − e−ik!ω
,

(2.2.25)

and finally

Ω (E) =

Z
dk
2π

eN
`
ik(E/N)−log(2i sin(k!ω/2))

´
. (2.2.26)

The computation of this integral can be carried out for large N using the saddle-
point method.5 The function

f(k) = ike − log
`
2i sin(k!ω/2)

´
(2.2.27)

with e = E/N has a maximum at the point

k0 =
1

!ωi
log

e + !ω
2

e − !ω
2

. (2.2.28)

This maximum can be determined by setting the first derivative of (2.2.27) equal
to zero

5 N.G. de Bruijn, Asymptotic Methods in Analysis, (North Holland, 1970);
P.M. Morse and H. Feshbach, Methods of Theoretical Physics, p. 434, (McGraw
Hill, New York, 1953).
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f ′(k0) = ie − !ω
2

cot
k0!ω

2
= 0 .

Therefore, with

f(k0) = ik0e − log
“
2i/
p

1 − (2e/!ω)2
”

=
e

!ω
log

e + !ω
2

e − !ω
2

+
1
2

log

„„
e +

!ω
2

«„
e − !ω

2

«.
(!ω)2

« (2.2.29)

and f ′′(k0) =
` !ω

2

´2 ‹
sin2(k0!ω/2), we find for Ω (E):

Ω (E) =
1
2π

eNf(k0)
Z

dk eN 1
2 f ′′(k0)(k−k0)2 . (2.2.30)

The integral in this expression yields only a factor proportional to
√

N ; thus, the
number of states is given by

Ω (E) = exp

ȷ
N

»
e + 1

2!ω

!ω
log

e + 1
2!ω

!ω
−

e − 1
2!ω

!ω
log

e − 1
2!ω

!ω

–ff
. (2.2.31)

∗2.2.3.2 Two-level Systems: the Spin-1
2

Paramagnet

As our third example, we consider a system of N particles which can occupy one
of two states. The most important physical realization of such a system is a para-
magnet in a magnetic field H (h = −µBH), which has the Hamiltonian6

H = −h
NX

i=1

σi , with σi = ±1. (2.2.32)

The number of states of energy E is, from (2.2.1), given by

Ω (E) =
X

{σi=± 1}

δ
`
E + h

NX

i=1

σi

´
=

Z
dk
2π

X

{σi=± 1}

eik(E+h
P

i σi)

=

Z
dk
2π

eikE(2 cos kh)N = 2N
Z

dk
2π

ef(k)

(2.2.33)

with

f(k) = ikE + N log cos kh . (2.2.34)

The computation of the integral can again be accomplished by applying the saddle-
point method. Using f ′(k) = iE−Nh tan kh and f ′′(k) = −Nh2/ cos2 kh, we obtain

6 In the literature of magnetism, it is usual to denote the magnetic field by H or
H . To distinguish it from the Hamiltonian in the case of magnetic phenomena,
we use the symbol H for the latter.
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from the condition f ′(k0) = 0

k0h = arctan
iE
Nh

=
i
2

log
1 + E/Nh
1 − E/Nh

.

For the second derivative, we find

f ′′(k0) = −
`
1 − (E/Nh)2

´
Nh2 ≤0 for − Nh ≤E ≤Nh .

Thus, using the abbreviation e = E/Nh, we have

Ω (E) = 2N exp

„
−Ne

2
log

1 + e
1 − e

+ N log
1√

1 − e2

«Z
dk
2π

e−
1
2

`
−f ′′(k0)

´
(k−k0)2

=
2N

√
2π

exp

„
−Ne

2
log

1 + e
1 − e

+
N
2

log
1

1 − e2
− 1

2
log
`
(1 − e2)Nh2´

«

=
1√
2π

exp
n
− N

2
(1 + e) log

1 + e
2

− N
2

(1 − e) log
1 − e

2
−

− 1
2

log(1 − e2) − 1
2

log Nh2
o

,

Ω (E) = exp

ȷ
−N

2

»
(1 + e) log

1 + e
2

+ (1 − e) log
1 − e

2

–
+ O(1, log N)

ff
.

(2.2.35)

We have now calculated the number of states Ω (E) for three examples. The physical
consequences of the characteristic energy dependences will be discussed after we
have introduced additional concepts such as those of entropy and temperature.

2.3 Entropy

2.3.1 General Definition

Let an arbitrary density matrix ρ be given; then the entropy S is defined by

S = −k Tr (ρ log ρ) ≡ −k⟨log ρ⟩ . (2.3.1)

Here, we give the formulas only in their quantum-mechanical form, as we
shall often do in this book. For classical statistics, the trace operation Tr is
to be read as an integration over phase space. The physical meaning of S
will become clear in the following sections. At this point, we can consider
the entropy to be a measure of the size of the accessible part of phase space,
and thus also of the uncertainty of the microscopic state of the system: the
more states that occur in the density matrix, the greater the entropy S. For
example, for M states which occur with equal probabilities 1

M , the entropy
is given by

S = −k
M∑

1

1
M

log
1
M

= k log M .
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For a pure state, M = 1 and the entropy is therefore S = 0. In the diagonal
representation of ρ (Eq. 1.4.8), one can immediately see that the entropy is
positive semidefinite:

S = −k
∑

n

Pn log Pn ≥ 0 (2.3.2)

since x log x ≤ 0 in the interval 0 < x ≤ 1 (see Fig. 2.4). The factor k in
(2.3.1) is at this stage completely arbitrary. Only later, by identifying the
temperature scale with the absolute temperature, do we find that it is then
given by the Boltzmann constant k = 1.38×10−16 erg/K = 1.38×10−23J/K.
See Sect. 3.4. The value of the Boltzmann constant was determined by Planck
in 1900.
The entropy is also a measure of the disorder and of the lack of information content
in the density matrix. The more states contained in the density matrix, the smaller
the weight of each individual state, and the less information about the system one
has. Lower entropy means a higher information content. If for example a volume
V is available, but the particles remain within a subvolume, then the entropy is
smaller than if they occupied the whole of V . Correspondingly, the information
content ( ∝ Tr ρ log ρ) of the density matrix is greater, since one knows that the
particles are not anywhere within V , but rather only in the subvolume.

2.3.2 An Extremal Property of the Entropy

Let two density matrices, ρ and ρ1, be given. The important inequality

Tr
(
ρ(log ρ1 − log ρ)

)
≤ 0 . (2.3.3)

then holds. To prove (2.3.3), we use the diagonal representations of ρ =∑
n Pn |n⟩ ⟨n| and ρ1 =

∑
ν P1ν |ν⟩ ⟨ν|:

Tr
(
ρ(log ρ1 − log ρ)

)
=

∑

n

Pn ⟨n| (log ρ1 − log Pn) |n⟩ =

=
∑

n

Pn ⟨n| log
ρ1

Pn
|n⟩ =

∑

n

∑

ν

Pn⟨n|ν⟩ ⟨ν| log
P1ν

Pn
|ν⟩ ⟨ν|n⟩ =

≤
∑

n

∑

ν

Pn⟨n|ν⟩ ⟨ν|
(P1ν

Pn
− 1

)
|ν⟩ ⟨ν|n⟩ =

∑

n

Pn ⟨n|
( ρ1

Pn
− 1

)
|n⟩ =

= Tr ρ1 − Tr ρ = 0 .

In an intermediate step, we used the basis |ν⟩ of ρ1 as well as the inequality
log x ≤ x− 1. This inequality is clear from Fig. 2.4. Formally, it follows from
properties of the function f(x) = log x − x + 1:

f(1) = 0, f ′(1) = 0, f ′′(x) = − 1
x2

< 0 (i.e. f(x) is convex).
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Fig. 2.4. Illustrating the inequality log x ≤
x − 1

2.3.3 Entropy of the Microcanonical Ensemble

For the entropy of the microcanonical ensemble, we obtain by referring to
(2.3.1) and (2.2.7)

SMC = −k Tr
(
ρMC log ρMC

)
= −k Tr

(
ρMC log

1
Ω (E)∆

)
,

and, since the density matrix is normalized to 1, Eq. (2.2.9a), the final result:

SMC = k log
(
Ω (E)∆

)
. (2.3.4)

The entropy is thus proportional to the logarithm of the accessible phase
space volume, or, quantum mechanically, to the logarithm of the number of
accessible states.

We shall now demonstrate an interesting extremal property of the entropy.
Of all the ensembles whose energy lies in the interval [E, E +∆], the entropy
of the microcanonical ensemble is greatest. To prove this statement, we set
ρ1 = ρMC in (2.3.3) and use the fact that ρ, like ρMC, differs from zero only
on the energy shell

S[ρ] ≤ −k Tr
(
ρ log ρMC

)
= −k Tr

(
ρ log

1
Ω (E)∆

)
= SMC . (2.3.5)

Thus, we have demonstrated that the entropy is maximal for the microcanon-
ical ensemble. We note also that for large N , the following representations of
the entropy are all equivalent:

SMC = k log Ω (E)∆ = k log Ω (E)E = k log Ω̄(E) . (2.3.6)

This follows from the neglect of logarithmic terms in (2.2.19) and an analo-
gous relation for Ω (E)E.

We can now estimate the density of states. The spacing ∆E of the energy
levels is given by

∆E =
∆

Ω (E)∆
= ∆ · e−SMC/k ∼ ∆ · e−N . (2.3.7)
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The levels indeed lie enormously close together, i.e. at a high density, as
already presumed in the Introduction. For this estimate, we used

S = k log Ω (E)∆ ∝ N ;

this can be seen from the classical results, (2.2.18) as well as (2.2.31) and
(2.2.35).

2.4 Temperature and Pressure

The results for the microcanonical ensemble obtained thus far permit us to
calculate the mean values of arbitrary operators. These mean values depend
on the natural parameters of the microcanonical ensemble, E, V , and N .
The temperature and pressure have so far not made an appearance. In this
section, we want to define these quantities in terms of the energy and volume
derivatives of the entropy.

2.4.1 Systems in Contact: the Energy Distribution Function,
Definition of the Temperature

We now consider the following physical situation: let a system be divided
into two subsystems, which interact with each other, i.e. exchange of energy
between the two subsystems is possible. The overall system is isolated. The
division into two subsystems 1 and 2 is not necessarily spatial. Let the Hamil-
tonian of the system be H = H1 + H2 + W . Let further the interaction W
be small in comparison to H1 and H2. For example, in the case of a spatial
separation, the surface energy can be supposed to be small compared to the
volume energy. The interaction is of fundamental importance, in that it al-
lows the two subsystems to exchange energy. Let the overall system have the
energy E, so that it is described by a microcanonical density matrix:

ρMC = Ω1,2(E)−1δ(H1+H2+W −E) ≈ Ω1,2(E)−1δ(H1 +H2−E) . (2.4.1)

Here, W was neglected relative to H1 and H2, and Ω1,2 (E) is the phase-space
surface of the overall system with a dividing wall (see remarks at the end of
this section).

Fig. 2.5. An isolated system divided into subsys-
tems 1 and 2 separated by a fixed diathermal wall
(which permits the exchange of thermal energy)
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ω (E1) denotes the probability density for subsystem 1 to have the energy
E1. According to Eq. (1.2.10), ω (E1) is given by

ω (E1) = ⟨δ(H1 − E1)⟩

=
∫

dΓ1dΓ2 Ω1,2(E)−1δ(H1 + H2 − E)δ(H1 − E1)

=
Ω2(E − E1)Ω1(E1)

Ω1,2(E)
. (2.4.2a)

Here, (2.4.1) was used and we have introduced the phase-space surfaces of
subsystem 1, Ω1(E1) =

∫
dΓ1 δ(H1 − E1), and subsystem 2, Ω2(E − E1) =∫

dΓ2 δ(H2 −E +E1). The most probable value of E1, denoted as Ẽ1, can be
found from dω (E1)

dE1
= 0:

(
−Ω′

2(E − E1)Ω1(E1) + Ω2(E − E1)Ω′
1(E1)

)∣∣∣
Ẽ1

= 0 .

Using formula (2.3.4) for the microcanonical entropy, we obtain

∂

∂E2
S2(E2)

∣∣∣
E−Ẽ1

=
∂

∂E1
S1(E1)

∣∣∣
Ẽ1

. (2.4.3)

We now introduce the following definition of the temperature:

T−1 =
∂

∂E
S(E) . (2.4.4)

Then it follows from (2.4.3) that

T1 = T2 . (2.4.5)

In the most probable configuration, the temperatures of the two subsystems
are equal. We are already using partial derivatives here, since later, several
variables will occur. For the ideal gas, we can see immediately that the tem-
perature increases proportionally to the energy per particle, T ∝ E/N . This
property, as well as (2.4.5), the equality of the temperatures of two systems
which are in contact and in equilibrium, correspond to the usual concept of
temperature.

Remarks:

The Hamiltonian has a lower bound and possesses a finite smallest eigenvalue
E0. In general, the Hamiltonian does not have an upper bound, and the
density of the energy eigenvalues increases with increasing energy. As a result,
the temperature cannot in general be negative, (T ≥ 0), and it increases with
increasing energy. For spin systems there is also an upper limit to the energy.
The density of states then again decreases as the upper limit is approached,
so that in this energy range, Ω ′/Ω < 0 holds. Thus in such systems there
can be states with a negative absolute temperature (see Sect. 6.7.2). Due to
the various possibilities for representing the entropy as given in (2.3.6), the
temperature can also be written as T =

(
k d

dE log Ω̄(E)
)−1.
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Notes concerning Ω1,2(E) in Eq. (2.4.1); may be skipped over in a first reading:

(i) In (2.4.1 and 2.4.2a), it must be taken into account that subsystems 1 and 2
are separated from each other. The normalization factor Ω1,2(E) which occurs in
(2.4.1) and (2.4.2a) is not given by

Z
dΓ δ(H − E) ≡

Z
dq dp

h3N N !
δ(H − E) ≡ Ω(E) ,

but instead by

Ω1,2(E) =

Z
dΓ1dΓ2 δ(H − E) ≡

Z
dq1 dp1

N1!h3N1

dq2 dp2

N2!h3N2
δ(H − E)

=

Z
dE1

Z
dΓ1dΓ2 δ(H − E)δ(H1 − E1)

=

Z
dE1

Z
dΓ1dΓ2 δ(H2 − E + E1)δ(H1 − E1)

=

Z
dE1 Ω1(E1)Ω2(E − E1) .

(2.4.2b)

(ii) Quantum mechanically, one obtains the same result for (2.4.2a):

ω (E1) = ⟨δ(H1 − E1)⟩ ≡ Tr
“ 1

Ω1,2(E)
δ(H1 + H2 − E)δ(H1 − E1)

”

= Tr 1Tr 2

“ 1
Ω1,2(E)

δ
`
H2 − (E − E1)

´
δ(H1 − E1)

”

=
Ω1(E1)Ω2(E − E1)

Ω1,2(E)

and

Ω1,2(E) = Tr δ(H1 + H2 − E) ≡
Z

dE1 Tr
`
δ(H1 + H2 − E)δ(H1 − E1)

´

=

Z
dE1 Tr

`
δ(H2 − E + E1)δ(H1 − E1)

´
=

Z
dE1 Ω1(E1)Ω2(E − E1) .

Here, we have used the fact that for the non-overlapping subsystems 1 and 2, the
traces Tr 1 and Tr 2 taken over parts 1 and 2 are independent, and the states must
be symmetrized (or antisymmetrized) only within the subsystems.

(iii) We recall that for quantum-mechanical particles which are in non-overlapping
states (wavefunctions), the symmetrization (or antisymmetrization) has no effect
on expectation values, and that therefore, in this situation, the symmetrization
does not need to be carried out at all.7 More precisely: if one considers the matrix
elements of operators which act only on subsystem 1, their values are the same
independently of whether one takes the existence of subsystem 2 into account, or
bases the calculation on the (anti-)symmetrized state of the overall system.

7 See e.g. G. Baym, Lectures on Quantum Mechanics (W.A. Benjamin, New York,
Amsterdam 1969), p. 393
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2.4.2 On the Widths of the Distribution Functions of Macroscopic
Quantities

2.4.2.1 The Ideal Gas

For the ideal gas, from (2.2.18) one finds the following expression for the
probability density of the energy E1, Eq. (2.4.2a):

ω (E1) ∝ (E1/N1)3N1/2(E2/N2)3N2/2 . (2.4.6)

In equilibrium, from the equality of the temperatures [Eq. (2.4.3)], i.e. from
∂S(Ẽ1)

∂E1
= ∂S(Ẽ2)

∂E2
, we obtain the condition N1

Ẽ1
= N2

E−Ẽ1
and thus

Ẽ1 = E
N1

N1 + N2
. (2.4.7)

If we expand the distribution function ω (E1) around the most probable en-
ergy value Ẽ1, using dω (E1)

dE1
|Ẽ1

= 0 and terminating the expansion after the
quadratic term, we find

log ω (E1) = log ω(Ẽ1) +
1
2

(
−3

2
N1

Ẽ2
1

− 3
2

N2

Ẽ2
2

)(
E1 − Ẽ1

)2
,

and therefore

ω (E1) = ω(Ẽ1) e−
3
4

N1+N2
Ẽ1Ẽ2

(E1−Ẽ1)
2

= ω(Ẽ1) e−
3
4

N
N1N2ē2 (E1−Ẽ1)

2

, (2.4.8)

where N1
Ẽ2

1
+ N2

Ẽ2
2

= N2
Ẽ1Ẽ2

+ N1
Ẽ1Ẽ2

= N
Ẽ1Ẽ2

and ē = E/N were used. Here,
log ω (E1) rather than ω (E1) was expanded, because of the occurrence of the
powers of the particle numbers N1 and N2 in Eq. (2.4.6). This is also prefer-
able since it permits the coefficients of the Taylor expansion to be expressed
in terms of derivatives of the entropy. From (2.4.8), we obtain the relative
mean square deviation:

〈
(E1 − Ẽ1)

〉2

Ẽ2
1

=
1

Ẽ2
1

2
3

Ẽ1Ẽ2

(N1 + N2)
=

2
3

1
N

N2

N1
≈ 10−20 (2.4.9)

and the relative width of the distribution, with N2 ≈ N1,

∆E1

Ẽ1

∼ 1√
N

. (2.4.10)

For macroscopic systems, the distribution is very sharp. The most prob-
able state occurs with a stupendously high probability. The sharpness of the
distribution function becomes even more apparent if one expresses it in terms
of the energy per particle, e1 = E1/N1, including the normalization factor:

ωe1 (e1) =
√

3
4π

NN1

N2
ēe

3NN1
4N2 ē2 (e1−ẽ1)2

.
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2.4.2.2 A General Interacting System

For interacting systems it holds quite generally that:
An arbitrary quantity A, which can be written as a volume integral over a
density A(x),

A =
∫

V

d3xA(x) . (2.4.11)

Its average value depends on the volume as

⟨A⟩ =
∫

V

d3x⟨A(x)⟩ ∼ V . (2.4.12)

The mean square deviation is given by

(∆A)2 =
〈(

A − ⟨A⟩
)(

A − ⟨A⟩
)〉

=
∫

V

d3x

∫

V

d3x′
〈(

A(x) − ⟨A(x)⟩
)(

A(x′) − ⟨A(x′)⟩
)〉

∝ V l3 .

(2.4.13)

Both the integrals in (2.4.13) are to be taken over the volume V . The cor-
relation function in the integral however vanishes for |x − x′| > l, where l is
the range of the interactions (the correlation length). The latter is finite and
thus the mean square deviation is likewise only of the order of V and not, as
one might perhaps naively expect, quadratic in V . The relative deviation of
A is therefore given by

∆A

⟨A⟩ ∼ 1
V 1/2

. (2.4.14)

2.4.3 External Parameters: Pressure

Let the Hamiltonian of a system depend upon an external parameter a:
H = H(a). This external parameter can for example be the volume V of
the system. Using the volume in phase space, Ω̄, we can derive an expression
for the total differential of the entropy dS. Starting from the phase-space
volume

Ω̄ (E, a) =
∫

dΓ Θ
(
E − H(a)

)
, (2.4.15)

we take its total differential
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dΩ̄ (E, a) =
∫

dΓ δ
(
E − H(a)

)(
dE − ∂H

∂a
da

)

= Ω (E, a)
(
dE −

〈∂H

∂a

〉
da

)
, (2.4.16)

or

d log Ω̄ =
Ω

Ω̄

(
dE −

〈∂H

∂a

〉
da

)
. (2.4.17)

We now insert S(E, a) = k log Ω̄ (E, a) and (2.4.4), obtaining

dS =
1
T

(
dE −

〈∂H

∂a

〉
da

)
. (2.4.18)

From (2.4.18), we can read off the partial derivatives of the entropy in
terms of E and a:8

(
∂S

∂E

)

a

=
1
T

;
(

∂S

∂a

)

E

= − 1
T

〈
∂H

∂a

〉
. (2.4.19)

Introduction of the pressure (special case: a = V ):
After the preceding considerations, we can turn to the derivation of pres-

sure within the framework of statistical mechanics. We refer to Fig. 2.6 as
a guide to this procedure. A movable piston at a distance L from the origin
of the coordinate system permits variations in the volume V = LA, where
A is the cross-sectional area of the piston. The influence of the walls of the
container is represented by a wall potential. Let the spatial coordinate of the
ith particle in the direction perpendicular to the piston be xi. Then the total
wall potential is given by

Vwall =
N∑

i=1

v(xi − L) . (2.4.20)

Fig. 2.6. The definition of pressure

Here, v(xi − L) is equal to zero for xi < L and is very large for xi ≥ L, so
that penetration of the wall by the gas particles is prevented. We then obtain
for the force on the molecules
8 The symbol

`
∂S
∂E

´
a

denotes the partial derivative of S with respect to the energy
E, holding a constant, etc.
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F =
∑

i

Fi =
∑

i

(
− ∂v

∂xi

)
=

∂

∂L

∑

i

v(xi − L) =
∂H

∂L
. (2.4.21)

The pressure is defined as the average force per unit area which the molecules
exert upon the wall, from which we find using (2.4.21) that

P ≡ −⟨F ⟩
A

= −
〈

∂H

∂V

〉
(2.4.22)

In this case, the general relations (2.4.18) and (2.4.19) become

dS =
1
T

(dE + PdV ) (2.4.23)

and

1
T

=
(

∂S

∂E

)

V

,
P

T
=

(
∂S

∂V

)

E

. (2.4.24)

Solving (2.4.23) for dE, we obtain

dE = TdS − PdV , (2.4.25)

a relation which we will later identify as the First Law of Thermodynamics
[for a constant particle number; see Eqs. (3.1.3) and (3.1.3′)]. Comparison
with phenomenological thermodynamics gives an additional justification for
the identification of T with the temperature. As a result of

−PdV =
⟨F ⟩
A

dV = ⟨FdL⟩ ≡ δW ,

the last term in (2.4.25) denotes the work δW which is performed on the
system causing the change in volume.

We are now interested in the pressure distribution in two subsystems,
which are separated from each other by a movable partition, keeping the
particle numbers in each subsystem constant (Fig. 2.6′). The energies and
volumes are additive

E = E1 + E2 , V = V1 + V2 . (2.4.26)

The probability that subsystem 1 has the energy E1 and the volume V1 is
given by

ω (E1, V1) =
∫

dΓ1dΓ2
δ(H1 + H2 − E)

Ω1,2(E, V )
δ(H1 − E1)Θ(q1 ∈ V1)Θ(q2 ∈ V2)

=
Ω1(E1, V1)Ω2(E2, V2)

Ω1,2(E, V )
. (2.4.27a)
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Fig. 2.6′. Two systems which are isolated from
the external environment, separated by a movable
wall which permits the exchange of energy.

In (2.4.27a), the function Θ(q1 ∈ V1) means that all the spatial coordinates
of the sub-phase space 1 are limited to the volume V1 and correspondingly,
Θ(q2 ∈ V2). Here, both E1 and V1 are statistical variables, while in (2.4.2b),
V1 was a fixed parameter. Therefore, the normalization factor is given here
by

Ω1,2(E, V ) =
∫

dE1

∫
dV1 Ω1(E1, V1)Ω2(E − E1, V − V1) . (2.4.27b)

In analogy to (2.4.3), the most probable state of the two systems is found by
the condition of vanishing derivatives of (2.4.27a)

∂ω (E1, V1)
∂E1

= 0 and
∂ω (E1, V1)

∂V1
= 0 .

From this, it follows that

∂

∂E1
log Ω1(E1, V1) =

∂

∂E2
log Ω2(E2, V2) ⇒ T1 = T2

and
∂

∂V1
log Ω1(E1, V1) =

∂

∂V2
log Ω2(E2, V2) ⇒ P1 = P2 .

(2.4.28)

In systems which are separated by a movable wall and can exchange energy,
the equilibrium temperatures and pressures are equal.

The microcanonical density matrix evidently depends on the energy E
and on the volume V , as well as on the particle number N . If we regard
these parameters likewise as variables, then the overall variation of S must
be replaced by

dS =
1
T

dE +
P

T
dV − µ

T
dN . (2.4.29)

Here, we have defined the chemical potential µ by

µ

T
= k

∂

∂N
log Ω (E, V, N) . (2.4.30)

The chemical potential is related to the fractional change in the number
of accessible states with respect to the change in the number of particles.
Physically, its meaning is the change in energy per particle added to the
system, as can be seen from (2.4.29) by solving that expression for dE.
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2.5 Thermodynamic Properties of Some
Non-interacting Systems

Now that we have introduced the thermodynamic concepts of temperature
and pressure, we are in a position to discuss further the examples of a classical
ideal gas, quantum-mechanical oscillators, and non-interacting spins treated
in Sect. 2.2.2. In the following, we will derive the thermodynamic conse-
quences of the phase-space surface or number of states Ω (E) which we cal-
culated there for those examples.

2.5.1 The Ideal Gas

We first calculate the thermodynamic quantities introduced in the preceding
sections for the case of an ideal gas. In (2.2.16), we found the phase-space
volume in the limit of a large number of particles:

Ω̄ (E) ≡
∫

dΓ Θ
(
E − H(q, p)

)
=

(
V

N

)N (
4πmE

3Nh2

) 3N
2

e
5N
2 . (2.2.16)

If we insert (2.2.16) into (2.3.6), we obtain the entropy as a function of the
energy and the volume:

S(E, V ) = kN log

[
V

N

(
4πmE

3Nh2

) 3
2

e
5
2

]
. (2.5.1)

Eq. (2.5.1) is called the Sackur–Tetrode equation. It represents the starting
point for the calculation of the temperature and the pressure. The temperature
is, from (2.4.4), defined as the reciprocal of the partial energy derivative of
the entropy, T−1 =

(
∂S
∂E

)
V

= kN 3
2E−1, from which the caloric equation of

state of the ideal gas follows immediately:

E =
3
2
NkT . (2.5.2)

With (2.5.2), we can also find the entropy (2.5.1) as a function of T and V :

S(T, V ) = kN log

[
V

N

(
2πmkT

h2

) 3
2

e
5
2

]
. (2.5.3)

The pressure is obtained from (2.4.24) by taking the volume derivative of
(2.5.1)

P = T

(
∂S

∂V

)

E

=
kTN

V
. (2.5.4)
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This is the thermal equation of state of the ideal gas, which is often written
in the form

PV = NkT . (2.5.4′)

The implications of the thermal equation of state are summarized in the
diagrams of Fig. 2.7: Fig. 2.7a shows the PV T surface or surface of the
equation of state, i.e. the pressure as a function of V and T . Figs. 2.7b,c,d
are projections onto the PV -, the TV - and the PT -planes. In these dia-
grams, the isotherms (T = const), the isobars (P = const), and the iso-
chores (V = const) are illustrated. These curves are also drawn in on the
PV T surface (Fig. 2.7a).

Remarks:

(i) It can be seen from (2.5.2) that the temperature increases with the energy
content of the ideal gas, in accord with the usual concept of temperature.

(ii) The equation of state (2.5.4) also provides us with the possibility of
measuring the temperature. The determination of the temperature of
an ideal gas can be achieved by measuring its volume and its pressure.

Fig. 2.7. The equation of state of the ideal gas: (a) surface of the equation of
state, (b) P -V diagram, (c) T -V diagram, (d) P -T diagram
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The temperature of any given body can be determined by bringing it
into thermal contact with an ideal gas and making use of the fact that
the two temperatures will equalize [Eq. (2.4.5)]. The relative sizes of the
two systems (body and thermometer) must of course be chosen so that
contact with the ideal gas changes the temperature of the body being
investigated by only a negligible amount.

∗2.5.2 Non-interacting Quantum Mechanical Harmonic
Oscillators and Spins

2.5.2.1 Harmonic Oscillators

From (2.2.31) and (2.3.6), it follows for the entropy of non-coupled harmonic oscil-
lators with e = E/N , that

S(E) = kN

»
e + 1

2!ω

!ω
log

e + 1
2!ω

!ω
−

e − 1
2!ω

!ω
log

e − 1
2!ω

!ω

–
, (2.5.5)

where a logarithmic term has been neglected. From Eq. (2.4.4), we obtain for the
temperature

T =

„
∂S
∂E

«−1

=
!ω
k

„
log

e + 1
2!ω

e − 1
2!ω

«−1

. (2.5.6)

From this, it follows via
E+ 1

2 N!ω

E− 1
2 N!ω

= e
!ω
kT that the energy as a function of the

temperature is given by

E = N!ω

ȷ
1

e!ω/kT − 1
+

1
2

ff
. (2.5.7)

The energy increases monotonically with the temperature (Fig. 2.8). Limiting cases:
For E → N !ω

2 (the minimal energy), we find

T → 1
log∞ = 0 , (2.5.8a)

and for E → ∞

T → 1
log 1

= ∞ . (2.5.8b)

We can also see that for T → 0, the heat capacity tends to zero: CV =
`

∂E
∂T

´
V
→ 0;

this is in agreement with the Third Law of Thermodynamics.

2.5.2.2 A Paramagnetic Spin-1
2

System

Finally, we consider a system of N magnetic moments with spin 1
2 which do not

interact with each other; or, more generally, a system of non-interacting two-level
systems. We refer here to Sect. 2.2.3.2. From (2.2.35), the entropy of such a system
is given by
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Fig. 2.8. Non-coupled harmonic oscilla-
tors: the energy as a function of the tem-
perature.

S(E) =
kN
2

ȷ
−(1 + e) log

1 + e
2

− (1 − e) log
1 − e

2

ff
(2.5.9)

with e = E/Nh. From this, we find for the temperature:

T =

„
∂S
∂E

«−1

=
2h
k

„
log

1 − e
1 + e

«−1

. (2.5.10)

The entropy is shown as a function of the energy in Fig. 2.9, and the temperature
as a function of the energy in Fig. 2.10. The ground-state energy is E0 = −Nh. For
E → −Nh, we find from (2.5.10)

lim
E→−Nh

T = 0 . (2.5.11)

The temperature increases with increasing energy beginning at E0 = −Nh mono-
tonically until E = 0 is reached; this is the state in which the magnetic moments are
completely disordered, i.e. there are just as many oriented parallel as antiparallel
to the applied magnetic field h. The region E > 0, in which the temperature is
negative (!), will be discussed later in Sect. 6.7.2.

Fig. 2.9. The entropy as a function
of the energy for a two-level system
(spin− 1

2−paramagnet)

Fig. 2.10. The temperature as a func-
tion of the energy for a two-level system
(spin− 1

2−paramagnet)
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2.6 The Canonical Ensemble

In this section, the properties of a small subsystem 1 which is embedded in a
large system 2, the heat bath,9 will be investigated (Fig. 2.11). We first need
to construct the density matrix, which we will derive from quantum mechanics
in the following section. The overall system is taken to be isolated, so that it
is described by a microcanonical ensemble.

Fig. 2.11. A canonical ensemble. Subsystem
1 is in contact with the heat bath 2. The over-
all system is isolated.

2.6.1 The Density Matrix

The Hamiltonian of the total system

H = H1 + H2 + W ≈ H1 + H2 (2.6.1)

is the sum of the Hamiltonians H1 and H2 for systems 1 and 2 and the
interaction term W . The latter is in fact necessary so that the two subsystems
can come to equilibrium with each other; however, W is negligibly small
compared to H1 and H2. Our goal is the derivation of the density matrix for
subsystem 1 alone. We will give two derivations here, of which the second is
shorter, but the first is more useful for the introduction of the grand canonical
ensemble in the next section.

(i) Let PE1n be the probability that subsystem 1 is in state n with an energy
eigenvalue E1n. Then for PE1n , using the microcanonical distribution for the
total system, we find

PE1n =
∑′ 1

Ω1,2(E)∆
=

Ω2(E − E1n)
Ω1,2(E)

. (2.6.2)

The sum runs over all the states of subsystem 2 whose energy E2n lies in the
interval E −E1n ≤ E2n ≤ E + ∆−E1n. In the case that subsystem 1 is very
much smaller than subsystem 2, we can expand the logarithm of Ω2(E−E1n)
in E1n:
9 A heat bath (or thermal reservoir) is a system which is so large that adding or

subtracting a finite amount of energy to it does not change its temperature.
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PE1n =
Ω2(E − Ẽ1 + Ẽ1 − E1n)

Ω1,2(E)

≈ Ω2(E − Ẽ1)
Ω1,2(E)

e(Ẽ1−E1n)/kT = Z−1e−E1n/kT .

(2.6.3)

This expression contains T =
(
k ∂

∂E log Ω2(E − Ẽ1)
)−1

, the temperature of
the heat bath. The normalization factor Z, from (2.6.3), is given by

Z =
Ω1,2(E)
Ω2(Ẽ2)

e−Ẽ1/kT . (2.6.4)

However, it is important that Z can be calculated directly from the properties
of subsystem 1. The condition that the sum over all the PE1n must be equal
to 1 implies that

Z =
∑

n

e−E1n/kT = Tr 1 e−H1/kT . (2.6.5)

Z is termed the partition function. The canonical density matrix is then given
by the following equivalent representations

ρC =
∑

n

PE1n |n⟩ ⟨n| = Z−1
∑

n

e−E1n/kT |n⟩ ⟨n| = Z−1e−H1/kT . (2.6.6)

(ii) The second derivation starts with the fact that the density matrix ρ
for subsystem 1 can be obtained form the microcanonical density matrix by
taking the trace over the degrees of freedom of system 2:

ρC = Tr 2 ρMC = Tr 2
δ(H1 + H2 − E)

Ω1,2(E)
=

Ω2(E − H1)
Ω1,2(E)

≡ Ω2(E − Ẽ1 + Ẽ1 − H1)
Ω1,2(E)

≈ Ω2(E − Ẽ1)
Ω1,2(E)

e(Ẽ1−H1)/kT .

(2.6.7)

This derivation is valid both in classical physics and in quantum mechanics, as
is shown specifically in (2.6.9). Thus we have also demonstrated the validity
of (2.6.6) with the definition (2.6.5) by this second route.

Expectation values of observables A which act only on the states of sub-
system 1 are given by

⟨A⟩ = Tr 1 Tr 2 ρMC A = Tr 1 ρC A . (2.6.8)

Remarks:

(i) The classical distribution function:
The classical distribution function of subsystem 1 is obtained by integration
of ρMC over Γ2
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ρC (q1, p1) =
∫

dΓ2 ρMC

=
∫

dΓ2
1

Ω1,2(E)
δ
(
E − H1(q1, p1) − H2(q2, p2)

)

=
Ω2

(
E − H1(q1, p1)

)

Ω1,2(E)
.

(2.6.9)

If we expand the logarithm of this expression with respect to H1, we obtain

ρC (q1, p1) = Z−1e−H1(q1,p1)/kT (2.6.10a)

Z =
∫

dΓ1 e−H1(q1,p1)/kT . (2.6.10b)

Here, Z is called the partition function. Mean values of observables A(q1, p1)
which refer only to subsystem 1 are calculated in the classical case by means
of

⟨A⟩ =
∫

dΓ1 ρC(q1, p1)A(q1, p1) , (2.6.10c)

as one finds analogously to (2.6.8).
(ii) The energy distribution:
The energy distribution ω (E1) introduced in Sect. 2.4.1 can also be calculated clas-
sically and quantum mechanically within the framework of the canonical ensemble
(see problem 2.7):

ω (E1) =
1

∆1

E1+∆1Z

E1

dE′
1

X

n

δ(E′
1 − E1n)PE1n

≈ Ω2(E − E1)
Ω1,2(E)

1
∆1

X

n

′
1 =

Ω2(E − E1)Ω1(E1)
Ω1,2(E)

.

(2.6.11)

This expression agrees with (2.4.2a).

(iii) The partition function (2.6.5) can also be written as follows:

Z =

Z
dE1 Tr 1 e−H1/kT δ(H1 − E1) =

Z
dE1 Tr 1 e−E1/kT δ(H1 − E1)

=

Z
dE1 e−E1/kT Ω1(E1) .

(2.6.12)

(iv) In the derivation of the canonical density matrix, Eq. (2.6.7), we ex-
panded the logarithm of Ω2(E −H1).We show that it was justified to termi-
nate this expansion after the first term of the Taylor series:

Ω2(E − H1) = Ω2(E − Ẽ1 − (H1 − Ẽ1))

= Ω2(E − Ẽ1)e
− 1

kT (H1−Ẽ1)+ 1
2

“
∂1/T

∂Ẽ2

”
(H1−Ẽ1)

2+...

= Ω2(E − Ẽ1)e
− 1

kT (H1−Ẽ1)− 1
2kT2

∂T
∂Ẽ2

(H1−Ẽ1)
2+...

= Ω2(E − Ẽ1)e−
1

kT (H1−Ẽ1)(1+ 1
2T C (H1−Ẽ1)+...) ,
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where C is the heat capacity of the thermal bath. Since, owing to the large size
of the thermal bath, (H1 − Ẽ1) ≪ TC holds (to be regarded as an inequality
for the eigenvalues), it is in fact justified to ignore the higher-order corrections
in the Taylor expansion.
(v) In later sections, we will be interested only in the (canonical) subsys-
tem 1. The heat bath 2 enters merely through its temperature. We shall then
leave off the index ‘1’ from the relations derived in this section.

2.6.2 Examples: the Maxwell Distribution and the Barometric
Pressure Formula

Suppose the subsystem to consist of one particle. The probability that its
position and its momentum take on the values x and p is given by:

w(x,p) d3xd3p = C e−β
(

p2
2m +V (x)

)
d3xd3p . (2.6.13)

Here, β = 1
kT and V (x) refers to the potential energy, while C = C′C′′

is a normalization factor10. Integration over spatial coordinates gives the
momentum distribution

w(p) d3p = C′ e−β p2
2m d3p . (2.6.14)

If we do not require the direction of the momentum, i.e. integrating over all
angles, we obtain

w(p) dp = 4πC′e−β p2
2m p2 dp ; (2.6.15)

this is the Maxwell velocity distribution. Integration of (2.6.13) over the mo-
mentum gives the spatial distribution:

w(x) d3x = C′′ e−βV (x) d3x . (2.6.16)

If we now set the potential V (x) equal to the gravitational field V (x) = mgz
and use the fact that the particle-number density is proportional to w(x),
we obtain [employing the equation of state for the ideal gas, (2.5.4′), which
relates the pressure to the particle-number density] an expression for the
altitude dependence of the pressure, the barometric pressure formula:

P (z) = P0e−mgz/kT (2.6.17)

(cf. also problem 2.15).

10 C′ =
`

β
2πm

´3/2
and C′′ =

“R
d3x e−βV (x)

”−1
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2.6.3 The Entropy of the Canonical Ensemble
and Its Extremal Values

From Eq. (2.6.6), we find for the entropy of the canonical ensemble

SC = −k⟨log ρC⟩ =
1
T

Ē + k log Z (2.6.18)

with

Ē = ⟨H⟩ . (2.6.18′)

Now let ρ correspond to a different distribution with the same average energy
⟨H⟩ = Ē; then the inequality

S[ρ] = −k Tr (ρ log ρ) ≤ −k Tr
(
ρ log ρC

)

= −k Tr
(
ρ

(
− H

kT
− log Z

))
=

1
T
⟨H⟩ + k log Z = SC

(2.6.19)

results. Here, the inequality in (2.3.3) was used along with ρ1 = ρC . The
canonical ensemble has the greatest entropy of all ensembles with the same
average energy.

2.6.4 The Virial Theorem and the Equipartition Theorem

2.6.4.1 The Classical Virial Theorem
and the Equipartition Theorem

Now, we consider a classical system and combine its momenta and spatial
coordinates into xi = pi, qi. For the average value of the quantity xi

∂H
∂xj

we
find the following relation:

〈
xi

∂H

∂xj

〉
= Z−1

∫
dΓ xi

∂H

∂xj
e−H/kT

= Z−1

∫
dΓ xi

∂e−H/kT

∂xj
(−kT ) = kT δij , (2.6.20)

where we have carried out an integration by parts. We have assumed that
exp(−H(p, q)/kT ) drops off rapidly enough for large p and q so that no
boundary terms occur. This is the case for the kinetic energy and potentials
such as those of harmonic oscillators. In the general case, one would have to
take the wall potential into account. Eq. (2.6.20) contains the classical virial
theorem as a special case, as well as the equipartition theorem.

Applying (2.6.20) to the spatial coordinates qi, we obtain the classical
virial theorem

〈
qi

∂V

∂qj

〉
= kT δij . (2.6.21)
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We now specialize to the case of harmonic oscillators, i.e.

V =
∑

i

Vi ≡
∑

i

mω2

2
q2
i . (2.6.22)

For this case, it follows from (2.6.21) that

⟨Vi⟩ =
kT

2
. (2.6.23)

The potential energy of each degree of freedom has the average value kT/2.
Applying (2.6.20) to the momenta, we find the equipartition theorem. We

take as the kinetic energy the generalized quadratic form

Ekin =
∑

i,k

aikpipk , with aik = aki . (2.6.24)

For this form, we find ∂Ekin
∂pi

=
∑

k(aikpk+akipk) =
∑

k 2aikpk and therewith,
after multiplication by pi and summation over all i,

∑

i

pi
∂Ekin

∂pi
=

∑

k

2aikpipk = 2Ekin . (2.6.25)

Now we take the thermal average and find from (2.6.20)
〈∑

i

pi
∂H

∂pi

〉
= 2⟨Ekin⟩ = 3 NkT ; (2.6.26)

i.e. the equipartition theorem. The average kinetic energy per degree of free-
dom is equal to 1

2kT .
As previously mentioned, in the potential V , the interaction

1
2

∑
m,n v(|xmn|) (with xmn = xm − xn) of the particles with each other and

in general their interaction with the wall, Vwall, must be taken into account.
Then using (2.6.23) and (2.6.25), we find

PV =
2
3
⟨Ekin⟩ −

1
6

∑

m,n

〈
xmn

∂v(|xmn|)
∂xmn

〉
. (2.6.27)

The term PV results from the wall potential. The second term on the right-
hand side is called the ‘virial’ and can be expanded in powers of N

V (virial
expansion, see Sect. 5.3).
∗Proof of (2.6.27):
We begin with the Hamiltonian

H =
X

n

p2
n

2m
+

1
2

X

n,m

v(xn − xm) + Vwall , (2.6.28)
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Fig. 2.12. Quantities related to the wall po-
tential and the pressure: increasing the volume
on displacing a wall by δL1

and write for the pressure, using (2.4.22):

PV = −
D∂H

∂V

E
V = −

D ∂H
∂L1

E V
L2L3

= −1
3

D
L1

∂H
∂L1

+ L2
∂H
∂L2

+ L3
∂H
∂L3

E
. (2.6.29)

Now, Vwall has the form (cf. Fig. 2.12)

Vwall = V∞
X

i

˘
Θ(xi1 − L1) + Θ(xi2 − L2) + Θ(xi3 − L3)

¯
. (2.6.30)

Here, V∞ characterizes the barrier represented by the wall. The kinetic energy of
the particles is much smaller than V∞. Evidently, ∂Vwall

∂L1
= −V∞

P
n δ(xn1 − L1)

and therefore
DX

n

xn1
∂Vwall

∂xn1

E
=
DX

n

xn1V∞δ(xn1 − L1)
E

=
DX

n

L1V∞δ(xn1 − L1)
E

= −
D
L1

∂Vwall

∂L1

E
= −

D
L1

∂H
∂L1

E
.

With this, (2.6.29) can be put into the form

PV =
1
3

DX

n,α

xnα
∂

∂xnα
Vwall

E
= kTN − 1

3

DX

n,α

xnα
∂

∂xnα
v
E

(2.6.31)

=
2
3

˙
Ekin

¸
− 1

6

DX

α

X

n̸=m

(xnα − xmα)
∂v

∂(xnα − xmα)

E
. (2.6.32)

In the first line, the virial theorem (2.6.21) was used, and we have abbreviated the
sum of the pair potentials as v. In the second line, kT was substituted by (2.6.26)
and the derivative of the pair potentials was written out explicitly, whereby for
example

„
x1

∂
∂x1

+ x2
∂

∂x2

«
v(x1 − x2) = (x1 − x2)

∂v(x1 − x2)
∂(x1 − x2)

was used, and x1(x2) refers to the x component of particle 1(2). With (2.6.32), we
have proven (2.6.27).
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∗2.6.4.2 The Quantum-Statistical Virial Theorem

Starting from the Hamiltonian

H =
∑

n

p2
n

2m
+

∑

n

V (xn − xwall) +
1
2

∑

n,m

v(xn − xm) , (2.6.33)

it follows that11

[H,xn · pn] = −i!
(

p2
n

m
− xn ·∇nV (xn − xwall)

−
∑

n̸=m

xn ·∇nv(xn − xm)
)

. (2.6.34)

Now, ⟨ψ| [H,
∑

n xn · pn] |ψ⟩ = 0 for energy eigenstates.
We assume the density matrix to be diagonal in the basis of the energy

eigenstates; from this, it follows that

2
〈
Ekin

〉
−

〈∑

n

xn ·∇nV (xn − xwall)
〉

−
〈∑

n

∑

m ̸=n

xn ·∇nv(xn − xm)
〉

= 0 . (2.6.35)

With (2.6.31), we again obtain the virial theorem immediately

2
〈
Ekin

〉
− 3PV − 1

2

〈∑

n

∑

m

(xn − xm) ·∇v(xn − xm)
〉

= 0 . (2.6.27)

Eq. (2.6.27) is called the virial theorem of quantum statistics. It holds both
classically and quantum mechanically, while (2.6.21) and (2.6.26) are valid
only classically.

From the virial theorem (2.6.27), we find for ideal gases:

PV =
2
3
〈
Ekin

〉
=

2
3

∑

n

m

2
〈
v2

n

〉
=

1
3
mN

〈
v2

〉
. (2.6.36)

For non-interacting classical particles, the mean squared velocity per particle,〈
v2

〉
, can be computed using the Maxwell velocity distribution; then from

(2.6.36), one again obtains the well-known equation of state of the classical
ideal gas.
11 See e.g. QM I, p. 218.
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2.6.5 Thermodynamic Quantities in the Canonical Ensemble

2.6.5.1 A Macroscopic System: The Equivalence of the Canonical
and the Microcanonical Ensemble

We assume that the smaller subsystem is also a macroscopic system. Then
it follows from the preceding considerations on the width of the energy dis-
tribution function ω (E1) that the average value of the energy Ē1 is equal to
the most probable value Ẽ1, i.e.

Ē1 = Ẽ1 . (2.6.37)

We now wish to investigate how statements about thermodynamic quantities
in the microcanonical and the canonical ensembles are related. To this end,
we rewrite the partition function (2.6.4) in the following manner:

Z =
Ω1,2(E)

Ω1(Ẽ1)Ω2(E − Ẽ1)
Ω1(Ẽ1)e−Ẽ1/kT = ω(Ẽ1)−1Ω1(Ẽ1)e−Ẽ1/kT .

(2.6.38)

According to (2.4.8), the typical N1-dependence of ω (E1) is given by

ω (E1) ∼ N
− 1

2
1 e−

3
4 (E1−Ẽ1)

2/N1ē2
, (2.6.39)

with the normalization factor determined by the condition
∫

dE1 ω (E1) = 1.
From (2.4.14), the N1-dependence takes the form of Eq. (2.6.39) even for
interacting systems. We thus find from (2.6.38) that

Z = e−Ẽ1/kT Ω1(Ẽ1)
√

N1 . (2.6.40)

Inserting this result into Eq. (2.6.18), we obtain the following expression for
the canonical entropy [using (2.6.37) and neglecting terms of the order of
log N1]:

SC =
1
T

(
Ē1 − Ẽ1 + kT log Ω1(Ẽ1)

)
= SMC(Ẽ1) . (2.6.41)

From (2.6.41) we can see that the entropy of the canonical ensemble is equal
to that of a microcanonical ensemble with the energy Ẽ1(= Ē1). In both
ensembles, one obtains identical results for the thermodynamic quantities.

2.6.5.2 Thermodynamic Quantities

We summarize here how various thermodynamic quantities can be calculated
for the canonical ensemble. Since the heat bath enters only through its tem-
perature T , we leave off the index 1 which indicates subsystem 1. Then for
the canonical density matrix, we have

ρC = e−βH/Z (2.6.42)
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with the partition function

Z = Tr e−βH , (2.6.43)

where we have used the definition β = 1
kT . We also define the free energy

F = −kT log Z . (2.6.44)

For the entropy, we obtain from (2.6.18)

SC =
1
T

(
Ē + kT log Z

)
. (2.6.45)

The average energy is given by

Ē = ⟨H⟩ = − ∂

∂β
log Z = kT 2 ∂

∂T
log Z . (2.6.46)

The pressure takes the form:

P = −
〈

∂H

∂V

〉
= kT

∂ log Z

∂V
. (2.6.47)

The derivation from Sect. 2.4.3, which gave −
〈

∂H
∂V

〉
for the pressure, is of

course still valid for the canonical ensemble. From Eq. (2.6.45), it follows
that

F = Ē − TSC . (2.6.48)

Since the canonical density matrix contains T and V as parameters, F is
likewise a function of these quantities. Taking the total differential of (2.6.44)
by applying (2.6.43), we obtain

dF = −k dT log Tr e−βH − kT
Tr

(
( dT

kT 2 H − 1
kT

∂H
∂V dV )e−βH

)

Tr e−βH

= − 1
T

(Ē + kT log Z)dT +
〈

∂H

∂V

〉
dV

and, with (2.6.45)–(2.6.47),

dF (T, V ) = −SCdT − PdV . (2.6.49)

From Eqs. (2.6.48) and (2.6.49) we find

dĒ = TdSC − PdV . (2.6.50a)

This relation corresponds to (2.4.25) in the microcanonical ensemble. In the
limiting case of macroscopic systems, Ē = Ẽ = E and SC = SMC.
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The First Law of thermodynamics expresses the energy balance. The most
general change in the energy of a system with a fixed number of particles is
composed of the work δW = −PdV performed on the system together with
the quantity of heat δQ transferred to it:

dE = δQ + δW . (2.6.50b)

Comparison with (2.6.50a) shows that the heat transferred is given by

δQ = TdS (2.6.50c)

(this is the Second Law for transitions between equilibrium states).
The temperature and the volume occur in the canonical partition function

and in the free energy as natural variables. The partition function is calcu-
lated for a Hamiltonian with a fixed number of particles.12 As in the case of
the microcanonical ensemble, however, one can here also treat the partition
function or the free energy, in which the particle number is a parameter, as
a function of N . Then the total change in F is given by

dF = −SCdT − PdV +
(

∂F

∂N

)

T,V

dN , (2.6.51)

and it follows from (2.6.48) that

dĒ = TdSC − PdV +
(

∂F

∂N

)

T,V

dN . (2.6.52)

In the thermodynamic limit, (2.6.52) and (2.4.29) must agree, so that we find
(

∂F

∂N

)

T,V

= µ . (2.6.53)

2.6.6 Additional Properties of the Entropy

2.6.6.1 Additivity of the Entropy

We now consider two subsystems in a common heat bath (Fig. 2.13). As-
suming that each of these systems contains a large number of particles, the
energy is additive. That is, the interaction energy, which acts only at the
interfaces, is much smaller than the energy of each of the individual systems.
We wish to show that the entropy is also additive. We begin this task with
the two density matrices of the subsystems:

ρ1 =
e−βH1

Z1
, ρ2 =

e−βH2

Z2
. (2.6.54a,b)

12 Exceptions are photons and bosonic quasiparticles such as phonons and rotons
in superfluid helium, for which the particle number is not fixed (Chap. 4).
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Fig. 2.13. Two subsystems 1 and 2 in one
heat bath

The density matrix of the two subsystems together is

ρ = ρ1 ρ2 , (2.6.54c)

where once again W ≪ H1, H2 was employed. From

⟨log ρ⟩ = ⟨log ρ1⟩ + ⟨log ρ2⟩ (2.6.55)

it follows that the total entropy S is given by

S = S1 + S2 , (2.6.56)

the sum of the entropies of the subsystems. Eq. (2.6.56) expresses the fact
that the entropy is additive.

∗2.6.6.2 The Statistical Meaning of Heat

Here, we want to add a few supplementary remarks that concern the statis-
tical and physical meaning of heat transfer to a system. We begin with the
average energy

Ē = ⟨H⟩ = Tr ρH (2.6.57a)

for an arbitrary density matrix and its total variation with a fixed number
of particles

dĒ = Tr
(
dρ H + ρ dH

)
, (2.6.57b)

where dρ is the variation of the density matrix and dH is the variation of the
Hamiltonian (see the end of this section). The variation of the entropy

S = −k Tr ρ log ρ (2.6.58)

is given by

dS = −k Tr
(
dρ log ρ +

ρ

ρ
dρ

)
. (2.6.59)

Now we have

Tr dρ = 0 , (2.6.60)
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since for all density matrices, Tr ρ = Tr (ρ + dρ) = 1, from which it follows
that

dS = −k Tr
(
log ρ dρ

)
. (2.6.61)

Let the initial density matrix be the canonical one; then making use of
(2.6.60), we have

dS =
1
T

Tr (H dρ) . (2.6.62)

If we insert this into (2.6.57b) and take the volume as the only parameter in
H , i.e. dH = ∂H

∂V dV , we again obtain (cf. (2.6.50a))

dĒ = TdS +
〈

∂H

∂V

〉
dV . (2.6.63)

We shall now discuss the physical meaning of the general relation (2.6.57b):
1st term: this represents a change in the density matrix, i.e. a change in the
occupation probabilities.
2nd term: the change of the Hamiltonian. This means a change in the energy
as a result of influences which change the energy eigenvalues of the system.

Let ρ be diagonal in the energy eigenstates; then

Ē =
∑

i

piEi , (2.6.64)

and the variation of the average energy has the form

dĒ =
∑

i

dpiEi +
∑

i

pidEi . (2.6.65)

Thus, the quantity of heat transferred is given by

δQ =
∑

i

dpiEi . (2.6.66)

A transfer of heat gives rise to a redistribution of the occupation probabilities
of the states |i⟩. Heating (heat input) increases the populations of the states
at higher energies. Energy change by an input of work (work performed on
the system) produces a change in the energy eigenvalues. In this process, the
occupation numbers can change only in such a way as to keep the entropy
constant.

When only the external parameters are varied, work is performed on the
system, but no heat is put into it. In this case, although dρ may exhibit
a change, there is no change in the entropy. This can be shown explicitly
as follows: From Eq. (2.6.61), we have dS = −kTr (log ρdρ). It then follows
from the von Neumann Eq. (1.4.8), ρ̇ = i

! [ρ, H(V (t))], which is valid also
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for time-dependent Hamiltonians, e.g. one containing the volume V (t):

Ṡ = −k Tr
(
log ρ ρ̇

)

= − ik
! Tr

(
log ρ [ρ, H ]

)
= − ik

! Tr
(
H [log ρ, ρ]

)
= 0 .

(2.6.67)

The entropy does not change, and no heat is put into the system. An example
which demonstrates this situation is the adiabatic reversible expansion of
an ideal gas (Sect. 3.5.4.1). There, as a result of the work performed, the
volume of the gas changes and with it the Hamilton function; furthermore,
the temperature of the gas changes. These effects together lead to a change
in the distribution function (density matrix), but however not of the entropy.

2.7 The Grand Canonical Ensemble

2.7.1 Systems with Particle Exchange

After considering systems in the preceding section which can exchange energy
with a heat bath, we now wish to allow in addition the exchange of matter
between subsystem 1 on the one hand and the heat bath 2 on the other; this
will be a consistent generalization of the canonical ensemble (see Fig. 2.14).
The overall system is isolated. The total energy, the total particle number
and the overall volume are the sums of these quantities for the subsystems:

E = E1 + E2, N = N1 + N2, V = V1 + V2 . (2.7.1)

Fig. 2.14. Regarding the grand canonical
ensemble: two subsystems 1 and 2, between
which energy and particle exchange is permit-
ted.

The probability distribution of the state variables E1, N1, and V1 of sub-
system 1 is found in complete analogy to Sect. 2.4.3,

ω (E1, N1, V1) =
Ω1(E1, N1, V1)Ω2(E − E1, N − N1, V − V1)

Ω (E, N, V )
. (2.7.2)

The attempt to find the maximum of this distribution leads again to equality
of the logarithmic derivatives, in this case with respect to E, V and N . The
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first two relations were already seen in Eq. (2.4.28) and imply temperature
and pressure equalization between the two systems. The third formula can
be expressed in terms of the chemical potential which was defined in (2.4.29):

µ = −kT
∂

∂N
log Ω (E, N, V ) = −T

(
∂S

∂N

)

E,V

, (2.7.3)

and we obtain finally as a condition for the maximum probability the equal-
ization of temperature, pressure, and chemical potential:

T1 = T2, P1 = P2, µ1 = µ2 . (2.7.4)

2.7.2 The Grand Canonical Density Matrix

Next, we will derive the density matrix for the subsystem. The probability
that in system 1 there are N1 particles which are in the state |n⟩ at the
energy E1n(N1) is given by:

p(N1, E1n(N1), V1) =
∑

E−E1n(N1) ≤ E2m(N2) ≤ E−E1n(N1)+∆

1
Ω (E, N, V )∆

=
Ω2(E − E1n, N − N1, V2)

Ω (E, N, V )
.

(2.7.5)

In order to eliminate system 2, we carry out an expansion in the variables E1n

and N1 with the condition that subsystem 1 is much smaller than subsys-
tem 2, analogously to the case of the canonical ensemble:

p(N1, E1n(N1), V1) = Z−1
G e−(E1n−µN1)/kT . (2.7.6)

We thus obtain the following expression for the density matrix of the grand
canonical ensemble13:

ρG = Z−1
G e−(H1−µN1)/kT , (2.7.7)

where the grand partition function ZG (or Gibbs distribution) is found from
the normalization of the density matrix to be

ZG = Tr
(
e−(H1−µN1)/kT

)

=
∑

N1

Tr e−H1/kT+µN1/kT =
∑

N1

Z(N1) eµN1/kT . (2.7.8)

13 See also the derivation in second quantization, p. 69
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The two trace operations Tr in Eq. (2.7.8) refer to different spaces. The trace
after the second equals sign refers to a summation over all the diagonal matrix
elements for a fixed particle number N1, while the Tr after the first equals sign
implies in addition the summation over all particle numbers N1 = 0, 1, 2, . . ..
The average value of an operator A in the grand canonical ensemble is

⟨A⟩ = Tr (ρGA) ,

where the trace is here to be understood in the latter sense.
In classical statistics, (2.7.7) remains unchanged for the distribution func-

tion, while Tr −→
∑

N1

∫
dΓN1 must be replaced by the 6N1-dimensional

operator dΓN1 = dq dp
h3N1N1!

.

From (2.7.5), Z−1
G can also be given in terms of

Z−1
G =

Ω2(E, N, V − V1)
Ω (E,N, V )

= e−PV1/kT (2.7.9)

for V1 ≪ V ; recall Eqns. (2.4.24) and (2.4.25).

From the density matrix, we find the entropy of the grand canonical en-
semble,

SG = −k⟨log ρG⟩ =
1
T

(Ē − µN̄) + k log ZG . (2.7.10)

Since the energy and particle reservoir, subsystem 2, enters only via its tem-
perature and chemical potential, we dispense with the index 1 here and in
the following sections.

The distribution function for the energy and the particle number is ex-
tremely narrow for macroscopic subsystems. The relative fluctuations are
proportional to the square root of the average number of particles. There-
fore, we have Ē = Ẽ and N̄ = Ñ for macroscopic subsystems. The grand
canonical entropy, also, may be shown (cf. Sect. 2.6.5.1) in the limit of macro-
scopic subsystems to be identical with the microcanonical entropy, taken at
the most probable values (with fixed volume V1)

Ẽ1 = Ē1, Ñ1 = N̄1 (2.7.11)

SG = SMC(Ẽ1, Ñ1) . (2.7.12)

2.7.3 Thermodynamic Quantities

In analogy to the free energy of the canonical ensemble, the grand potential
is defined by

Φ = −kT log ZG , (2.7.13)
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from which with (2.7.10) we obtain the expression

Φ (T, µ, V ) = Ē − TSG − µN̄ . (2.7.14)

The total differential of the grand potential is given by

dΦ =
(

∂Φ

∂T

)

V,µ

dT +
(

∂Φ

∂V

)

T,µ

dV +
(

∂Φ

∂µ

)

V,T

dµ . (2.7.15)

The partial derivatives follow from (2.7.13) and (2.7.8):

(
∂Φ

∂T

)

V,µ

= −k log ZG − kT
1

kT 2
⟨H − µN⟩ =

1
T

(Φ − Ē + µN̄) = −SG

(
∂Φ

∂V

)

T,µ

=
〈

∂H

∂V

〉
= −P ,

(
∂Φ

∂µ

)

T,V

= −kT
1

kT
⟨N⟩ = −N̄ .

(2.7.16)

If we insert (2.7.16) into (2.7.15), we find

dΦ = −SGdT − PdV − N̄dµ . (2.7.17)

From this, together with (2.7.14), it follows that

dĒ = TdSG − PdV + µdN̄ ; (2.7.18)

this is again the First Law. As shown above, for macroscopic systems we can
use simply E, N and S in (2.7.17) and (2.7.18) instead of the average values of
the energy and the particle number and SG; we shall do this in later chapters.
For a constant particle number, (2.7.18) becomes identical with (2.4.25). The
physical meaning of the First Law will be discussed in detail in Sect. 3.1.
We have considered the fluctuations of physical quantities thus far only in
Sect. 2.4.2. Of course, we could also calculate the autocorrelation function
for energy and particle number in the grand canonical ensemble. This shows
that these quantities are extensive and their relative fluctuations decrease
inversely as the square root of the size of the system. We shall postpone
these considerations to the chapter on thermodynamics, since there we can
relate the correlations to thermodynamic derivatives.

We close this section with a tabular summary of the ensembles treated in
this chapter.
Remark concerning Table 2.1: The thermodynamic functions which are found
from the logarithm of the normalization factors are the entropy and the
thermodynamic potentials F and Φ (see Chap. 3). The generalization to
several different types of particles will be carried out in Chap. 5. To this end,
one must merely replace N by {Ni} and µ by {µi}.
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Table 2.1. The most important ensembles

Ensemble microcanonical canonical grand canonical

Physical situa-
tion

isolated energy exchange
energy and

particle
exchange

Density matrix
1

Ω (E,V,N) ×
δ(H − E)

1
Z(T,V,N) e

−H/kT
1

ZG(T,V,µ) ×
e−(H−µN)/kT

Normalization
Ω (E, V, N) =
Tr δ(H − E)

Z(T, V, N) =
Tr e−H/kT

ZG(T, V, µ) =
Tr e−(H−µN)/kT

Independent
variables

E, V, N T, V, N T, V, µ

Thermodynamic
functions

S F Φ

2.7.4 The Grand Partition Function
for the Classical Ideal Gas

As an example, we consider the special case of the classical ideal gas.

2.7.4.1 Partition Function

For the partition function for N particles, we obtain

ZN =
1

N ! h3N

∫

V

dq1 . . . dq3N

∫
dp1 . . . dp3N e−β

P
p2

i /2m

=
V N

N !

(
2mπ

βh2

) 3N
2

=
1

N !

(
V

λ3

)N
(2.7.19)

with the thermal wavelength

λ = h/
√

2πmkT . (2.7.20)

Its name results from the fact that a particle of mass m and momentum h/λ
will have a kinetic energy of the order of kT .

2.7.4.2 The Grand Partition Function

Inserting (2.7.19) into the grand partition function (2.7.8), we find

ZG =
∞∑

N=0

eβµNZN =
∞∑

N=0

1
N !

eβµN

(
V

λ3

)N

= ezV/λ3
, (2.7.21)
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where the fugacity

z = eβµ (2.7.22)

has been defined.

2.7.4.3 Thermodynamic Quantities

From (2.7.13) and (2.7.21), the grand potential takes on the simple form

Φ ≡ −kT log ZG = −kTzV/λ3 . (2.7.23)

From the partial derivatives, we can compute the thermodynamic relations.14
Particle number

N = −
(

∂Φ

∂µ

)

T,V

= zV/λ3 (2.7.24)

Pressure

PV = −V

(
∂Φ

∂V

)

T,µ

= −Φ = NkT (2.7.25)

This is again the thermal equation of state of the ideal gas, as found
in Sect. 2.5. For the chemical potential, we find from (2.7.22), (2.7.24),
and (2.7.23)

µ = −kT log
(

V/N

λ3

)
= −kT log

kT

Pλ3
= kT log P − kT log

kT

λ3
. (2.7.26)

For the entropy, we find

S = −
(

∂Φ

∂T

)

V,µ

=
5
2
kz

V

λ3
+ kT

(
− µ

kT 2
z
) V

λ3

= kN

(
5
2

+ log
V/N

λ3

)
,

(2.7.27)

and for the internal energy, from (2.7.14), we obtain

E = Φ + TS + µN = NkT (−1 +
5
2
) =

3
2
NkT . (2.7.28)

14 For the reasons mentioned at the end of the preceding section, we replace Ē
and N̄ in (2.7.16) and (2.7.17) by E and N .
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∗2.7.5 The Grand Canonical Density Matrix
in Second Quantization

The derivation of ρG can be carried out most concisely in the formalism
of the second quantization. In addition to the Hamiltonian H , expressed in
terms of the field operators ψ(x) (see Eq. (1.5.6d) in QM II15), we require
the particle-number operator, Eq. (1.5.10)15

N̂ =
∫

V
d3xψ†(x)ψ(x) . (2.7.29)

The microcanonical density matrix for fixed volume V is

ρMC =
1

Ω(E, N, V )
δ(H − E)δ(N̂ − N) . (2.7.30)

Corresponding to the division of the overall volume into two subvolumes, V =
V1+V2, we have H = H1+H2 and N̂ = N̂1+N̂2 with N̂i =

∫
Vi

d3xψ†(x)ψ(x),
i = 1, 2. We find from (2.7.30) the probability that the energy and the particle
number in subvolume 1 assume the values E1 and N1:

ω(E1, V1, N1)

= Tr
1

Ω(E, N, V )
δ(H − E)δ(N̂ − N)δ(H1 − E1)δ(N̂1 − N1)

= Tr
1

Ω(E, N, V )
δ(H2 − (E − E1))δ(N̂2 − (N − N1))

×δ(H1 − E1)δ(N̂1 − N1)

=
Ω1(E1, N1, V1)Ω2(E − E1, N − N1, V − V1)

Ω(E, N, V )
. (2.7.31)

The (grand canonical) density matrix for subsystem 1 is found by taking
the trace of the density matrix of the overall system over subsystem 2, with
respect to both the energy and the particle number:

ρG = Tr2
1

Ω(E, N, V )
δ(H − E)δ(N̂ − N)

=
Ω2(E − H1, N − N̂1, V − V1)

Ω(E, N, V )
.

(2.7.32)

Expansion of the logarithm of ρG in terms of H1 and N̂1 leads to

ρG = Z−1
G e−(H1 − µN̂1)/kT

ZG = Tr e−(H1 − µN̂1)/kT ,
(2.7.33)

consistent with Equations (2.7.7) and (2.7.8), which were obtained by con-
sidering the probabilities.

15 F. Schwabl, Advanced Quantum Mechanics (QM II), 3rd ed., Springer Berlin,
Heidelberg, New York 2005. This text will be cited in the rest of this book
as QM II.



70 2. Equilibrium Ensembles

Problems for Chapter 2

2.1 Calculate Ω(E) for a spin system which is described by the Hamiltonian

H = µBH
NX

i=1

Si ,

where Si can take on the values Si = ±1/2

Ω(E)∆ =
X

E ≤ En ≤ E+∆

1 .

Use a combinatorial method, rather than 2.2.3.2.

2.2 For a one-dimensional classical ideal gas, calculate
˙
p2
1

¸
and

˙
p4
1

¸
.

Formula:

πZ

0

sinm x cosn x dx =
Γ
`

m+1
2

´
Γ
`

n+1
2

´

Γ
`

n+m+2
2

´ .

2.3 A particle is moving in one dimension; the distance between the walls of the
container is changed by a piston at L. Compute the change in the phase-space
volume Ω̄ = 2Lp (p = momentum).
(a) For a slow, continuous motion of the piston.
(b) For a rapid motion of the piston between two reflections of the particle.

2.4 Assume that the entropy S depends on the volume Ω̄(E) inside the energy
shell: S = f(Ω̄). Show that from the additivity of S and the multiplicative character
of Ω̄, it follows that S = const ×log Ω̄.

2.5 (a) For a classical ideal gas which is enclosed within a volume V , calculate
the free energy and the entropy, starting with the canonical ensemble.
(b) Compare them with the results of Sect. 2.2.

2.6 Using the assertion that the entropy S = −k Tr (ρ log ρ) is maximal, show that
with the conditions Tr ρ = 1 and Tr ρH = Ē for ρ, the canonical density matrix
results.
Hint: This is a variational problem with constraints, which can be solved using the
method of Lagrange multipliers.

2.7 Show that for the energy distribution in the classical canonical ensemble

ω(E1) =

Z
dΓ1 ρK δ(H1 − E1)

= Ω1(E1)
Ω2(Ẽ2)
Ω1,2(E)

eẼ1/kT e−E1/kT ≈ Ω2(E − E1)Ω1(E1)
Ω1,2(E)

. (2.7.34)

2.8 Consider a system of N classical, non-coupled one-dimensional harmonic os-
cillators and calculate for this system the entropy and the temperature, starting
from the microcanonical ensemble.
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2.9 Consider again the harmonic oscillators from problem 2.8 and calculate for this
system the average value of the energy and the entropy, starting with the canonical
ensemble.

2.10 In analogy to the preceding problems, consider N quantum-mechanical non-
coupled one-dimensional harmonic oscillators and compute the average value of the
energy Ē and the entropy, beginning with the canonical ensemble. Also investigate
lim!→0 Ē, lim!→0 S and limT→0 S, and compare the limiting values you obtain with
the results of problem 2.9.

2.11 For the Maxwell distribution, find
(a) the average value of the nth power of the velocity ⟨vn⟩, (b) ⟨v⟩, (c)

˙
(v − ⟨v⟩)2

¸
,

(d)
`

m
2

´2 ˙
(v2 −

˙
v2
¸
)2
¸
, and (e) the most probable value of the velocity.

2.12 Determine the number of collisions of a molecule of an ideal gas with the wall
of its container per unit area and unit time, when
(a) the angle between the normal to the wall and the direction of the velocity lies
between Θ and Θ + dΘ;
(b) the magnitude of the velocity lies between v and v + dv.

2.13 Calculate the pressure of a Maxwellian gas with the velocity distribution

f(v) = n

„
mβ
2π

« 3
2

e−
βmv2

2 .

Suggestions: the pressure is produced by reflections of the particles from the walls
of the container; it is therefore the average force on an area A of wall which acts
over a time interval τ .

P =
1

τA

τZ

0

dtFx(t) .

If a particle is reflected from the wall with the velocity v, its contribution is given

from Newton’s 2nd axiom in terms of
τR
0

dtFx(t) by the momentum transferred per

collision, 2mvx. Then P = 1
τA

P
2mvx,whereby the sum extends over all particles

which reach the area A within the time τ .

Result: P = nkT .

2.14 A simple model for thermalization: Calculate the average kinetic energy of a
particle of mass m1 with the velocity v1 due to contact with an ideal gas consisting
of particles of mass m2. As a simplification, assume that only elastic and linear
collisions occur. The effect on the ideal gas can be neglected. It is helpful to use the
abbreviations M = m1 + m2 and m = m1 − m2. How many collisions are required
until, for m1 ̸= m2, a temperature equal to the (1 − e−1)-fold temperature of the
ideal gas is attained?
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2.15 Using the canonical ensemble, calculate the average value of the particle-
number density

n(x) =
NX

i=1

δ(x− xi)

for an ideal gas which is contained in an infinitely high cylinder of cross-sectional
area A in the gravitational field of the Earth. The potential energy of a particle in
the gravitational field is mgh. Also calculate
(a) the internal energy of this system,
(b) the pressure at the height (altitude) h, using the definition

P =

∞Z

h

˙
n(x)

¸
mg dz ,

(c) the average distance ⟨z⟩ of an oxygen molecule and a helium atom from the
surface of the Earth at a temperature of 0◦C, and
(d) the mean square deviation ∆z for the particles in 2.15c.
At this point, we mention the three different derivations of the barometric pressure
formula, each emphasizing different physical aspects, in R. Becker, Theory of Heat,
2nd ed., Sec. 27, Springer, Berlin 1967.

2.16 The potential energy of N non-interacting localized dipoles depends on their
orientations relative to an applied magnetic field H :

H = −µHz

NX

i=1

cos ϑi .

Calculate the partition function and show that the magnetization along the z-
direction takes the form

Mz =
D NX

i=1

µ cos ϑi

E
= Nµ L

`
βµHz

´
; L(x) = Langevin function .

Plot the Langevin function.
How large is the magnetization at high temperatures? Show that at high tempera-
tures, the Curie law for the magnetic susceptibility holds:

χ = lim
Hz→0

„
∂Mz

∂Hz

«
∼ const/T .

2.17 Demonstrate the equipartition theorem and the virial theorem making use of
the microcanonical distribution.

2.18 In the extreme relativistic case, the Hamilton function for N particles in
three-dimensional space is H =

P
i |pi|c. Compute the expectation value of H with

the aid of the virial theorem.

2.19 Starting with the canonical ensemble of classical statistics, calculate the equa-
tion of state and the internal energy of a gas composed of N indistinguishable
particles with the kinetic energy ε(p) = |p| · c.
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2.20 Show that for an ideal gas, the probability of finding a subsystem in the
grand canonical ensemble with N particles is given by the Poisson distribution:

pN =
1

N !
e−N̄ N̄N ,

where N̄ is the average value of N in the ideal gas.
Suggestions: Start from pN = eβ(Φ+Nµ)ZN . Express Φ, µ, and ZN in terms of N̄ .

2.21 (a) Calculate the grand partition function for a mixture of two ideal gases
(2 chemical potentials!).
(b) Show that

PV =
`
N1 + N2

´
kT and

E =
3
2

`
N1 + N2

´
kT

are valid, where N1, N2 and E are the average particle number and the average
energy.

2.22 (a) Express Ē by taking an appropriate derivative of the grand partition
function.
(b) Express (∆E)2 in terms of a thermodynamic derivative of Ē.

2.23 Calculate the density matrix in the x-representation for a free particle within
a three-dimensional cube of edge length L:

ρ(x, x′) = c
X

n

e−βEn ⟨x|n⟩
˙
n|x′¸

where c is a normalization constant. Assume that L is so large that one can go to
the limit of a continuous momentum spectrum

X

n

−→
Z

L3d3p
(2π!)3

; ⟨x|n⟩ −→ ⟨x|p⟩ =
1

L3/2
eipx/! .

2.24 Calculate the canonical density matrix for a one-dimensional harmonic oscil-

lator H = −(!2/2m)(d2/d2x)+ mω2x2

2 in the x-representation at low temperatures:

ρ(x, x′) = c
X

n

e−βEn ⟨x|n⟩
˙
n|x′¸ ,

where c is the normalization constant.

⟨x|n⟩ = (π1/2 2n n! x0)
−1/2e−(x/x0)2/2 Hn

„
x
x0

«
; x0 =

r
!

ωm
.

The Hermite polynomials are defined in problem 2.27.
Suggestion: Consider which state makes the largest contribution.

2.25 Calculate the time average of q2 for the example of problem 1.7, as well as
its average value in the microcanonical ensemble.
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2.26 Show that:

Z
dq1 . . . dqd f(q2,q · k)

= (2π)−1Kd−1

Z ∞

0

dq qd−1
Z π

0

dΘ(sin Θ)d−2 f(q2, qk cos Θ) , (2.7.35)

where k ∈ Rd is a fixed vector and q = |q|, k = |k|, and Kd = 2−d+1π−d/2 ×`
Γ ( d

2 )
´−1

.

2.27 Compute the matrix elements of the canonical density matrix for a one-
dimensional harmonic oscillator in the coordinate representation,

ρx,x′ = ⟨x| ρ
˛̨
x′¸ = ⟨x| e−βH

˛̨
x′¸ .

Hint: Use the completeness relation for the eigenfunctions of the harmonic oscilla-
tor and use the fact that the Hermite polynomials have the integral representation

Hn(ξ) = (−1)neξ2
„

d
dξ

«n

e−ξ2
=

eξ2

√
π

Z ∞

−∞
(−2iu)ne−u2+2iξudu .

Alternatively, the first representation for Hn(x) and the identity from the next
example can be used.
Result:

ρx,x′ =
1
Z

»
mω

2π! sinh β!ω

–1/2

×exp

ȷ
−mω

4!

“
(x + x′)2 tanh

1
2
β!ω + (x − x′)2 ctgh

1
2
β!ω

”ff
. (2.7.36)

2.28 Prove the following identity:

e
∂

∂x Π ∂
∂x e−x∆x =

1p
Det(1 + 4∆Π)

e−x ∆
1+4∆Π x .

Here, Π and ∆ ate two commuting symmetric matrices, e.g. ∂
∂xΠ ∂

∂x ≡ ∂
∂xi

Πik
∂

∂xk
.



3. Thermodynamics

3.1 Thermodynamic Potentials and the Laws
of Equilibrium Thermodynamics

3.1.1 Definitions

Thermodynamics treats the macroscopic properties of macroscopic systems.
The fact that macroscopic systems can be completely characterized by a small
number of variables, such as their energy E, volume V , and particle num-
ber N , and that all other quantities, e.g. the entropy, are therefore functions
of only these variables, has far-reaching consequences.

In this section, we consider equilibrium states and transitions from one
equilibrium state to another neighboring equilibrium state. In the preceding
sections, we have already determined the change in the entropy due to changes
in E, V and N , whereby the system goes from one equilibrium state E, V, N
into a new equilibrium state E + dE, V + dV, N + dN . Building upon the
differential entropy (2.4.29), we will investigate in the following the First
Law and the significance of the quantities which occur in it. Beginning with
the internal energy, we will then define the most important thermodynamic
potentials and discuss their properties.

We assume the system we are considering to consist of one single type of
particles of particle number N . We start with its entropy, which is a function
of E, V, and N .
Entropy : S = S(E, V, N)
In (2.4.29), we found the differential entropy to be

dS =
1
T

dE +
P

T
dV − µ

T
dN . (3.1.1)

From this, we can read off the partial derivatives:
(

∂S

∂E

)

V,N

=
1
T

,

(
∂S

∂V

)

E,N

=
P

T
,

(
∂S

∂N

)

E,V

= − µ

T
, (3.1.2)

which naturally agree with the definitions from equilibrium statistics. We can
now imagine the equation S = S(E, V, N) to have been solved for E and
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thereby obtain the energy E, which in thermodynamics is usually termed the
internal energy, as a function of S, V, and N .
Internal Energy : E = E(S, V, N)
From (3.1.1), we obtain the differential relation

dE = TdS − PdV + µdN . (3.1.3)

We are now in a position to interpret the individual terms in (3.1.3),
keeping in mind all the various possibilities for putting energy into a system.
This can be done by performing work, by adding matter (i.e. by increasing
the number of particles), and through contact with other bodies, whereby
heat is put into the system. The total change in the energy is thus composed
of the following contributions:

dE = δQ
↓

heat input

+ δW⏐⏐=
mechanical work

+ δEN⏐⏐⏐⏐=

energy increase through addition of matter .

(3.1.3′)

The second term in (3.1.3) is the work performed on the system,

δW = −PdV , (3.1.4a)

while the third term gives the change in the energy on increasing the particle
number

δEN = µdN . (3.1.4b)

The chemical potential µ has the physical meaning of the energy increase on
adding one particle to the system (at constant entropy and volume). The first
term must therefore be the energy change due to heat input δQ, i.e.

δQ = TdS . (3.1.5)

Relation (3.1.3), the law of conservation of energy in thermodynamics, is
called the First Law of Thermodynamics. It expresses the change in energy
on going from one equilibrium state to another, nearby state an infinitesimal
distance away. Equation (3.1.5) is the Second Law for such transitions. We
will formulate the Second Law in a more general way later. In this connection,
we will also clarify the question of under what conditions these relations of
equilibrium thermodynamics can be applied to real thermodynamic processes
which proceed at finite rates, such as for example the operation of steam
engines or of internal combustion engines.
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Remark:

It is important to keep the following in mind: δW and δQ do not represent
changes of state variables. There are no state functions (functions of E, V
and N) identifiable with W und Q. An object cannot be characterized by
its ‘heat or work content’, but instead by its internal energy. Heat (∼ energy
transfer into an object through contact with other bodies) and work are ways
of transferring energy from one body to another.

It is often expedient to consider other quantities – with the dimensions
of energy – in addition to the internal energy itself. As the first of these, we
define the free energy:
Free Energy (Helmholtz Free Energy) : F = F (T, V, N)
The free energy is defined by

F = E − TS
(
= −kT log Z(T, V, N)

)
; (3.1.6)

in parentheses, we have given its connection with the canonical partition
function (Chap. 2). From (3.1.3), the differential free energy is found to be:

dF = −SdT − PdV + µdN (3.1.7)

with the partial derivatives
(

∂F

∂T

)

V,N

= −S ,

(
∂F

∂V

)

T,N

= −P ,

(
∂F

∂N

)

T,V

= µ . (3.1.8)

We can see from (3.1.8) that the internal energy can be written in terms of F
in the form

E = F − T

(
∂F

∂T

)

V,N

= −T 2

(
∂

∂T

F

T

)

V,N

. (3.1.9)

From (3.1.7), it can be seen that the free energy is that portion of the energy
which can be set free as work in an isothermal process; here we assume that
the particle number N remains constant. In an isothermal volume change,
the change of the free energy is given by (dF )T,N = −PdV = δW , while
(dE)T,N ̸= δA, since one would have to transfer heat into or out of the
system in order to hold the temperature constant.
Enthalpy : H = H(S, P, N)
The enthalpy is defined as

H = E + PV . (3.1.10)

From (3.1.3), it follows that

dH = TdS + V dP + µdN (3.1.11)

and from this, its partial derivatives can be obtained:
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(
∂H

∂S

)

P,N

= T ,

(
∂H

∂P

)

S,N

= V ,

(
∂H

∂N

)

S,P

= µ . (3.1.12)

For isobaric processes, (dH)P,N = TdS = δQ = dE + PdV , thus the change
in the enthalpy is equal to the change in the internal energy plus the energy
change in the device supplying constant pressure (see Fig. 3.1). The weight FG

including the piston of area A holds the pressure constant at P = FG/A. The
change in the enthalpy is the sum of the change in the internal energy and the
change in the potential energy of the weight. For a process at constant pres-
sure, the heat δQ supplied to the system equals the increase in the system’s
enthalpy.

FG

Fig. 3.1. The change in the enthalpy in isobaric
processes; the weight FG produces the constant
pressure P = FG/A, where A is the area of the
piston.

Free Enthalpy (Gibbs′ Free Energy) : G = G(T, P, N)
The Gibbs’ free energy is defined as

G = E − TS + PV . (3.1.13)

Its differential follows from (3.1.3):

dG = −SdT + V dP + µdN . (3.1.14)

From Eq. (3.1.14), we can immediately read off
(

∂G

∂T

)

P,N

= −S ,

(
∂G

∂P

)

T,N

= V ,

(
∂G

∂N

)

T,P

= µ . (3.1.15)

The Grand Potential : Φ = Φ(T, V, µ)
The grand potential is defined as

Φ = E − TS − µN
(
= −kT log ZG(T, V, µ)

)
; (3.1.16)

in parentheses we give the connection to the grand partition function
(Chap. 2). The differential expressions are

dΦ = −SdT − PdV − Ndµ , (3.1.17)
(

∂Φ

∂T

)

V,µ

= −S ,

(
∂Φ

∂V

)

T,µ

= −P ,

(
∂Φ

∂µ

)

T,V

= −N . (3.1.18)
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3.1.2 The Legendre Transformation

The transition from E to the thermodynamic potentials defined in (3.1.6),
(3.1.10), (3.1.13), and (3.1.16) was carried out by means of so-called Legendre
transformations, whose general structure will now be considered. We begin
with a function Y which depends on the variables x1, x2, . . .,

Y = Y (x1, x2, . . .) . (3.1.19)

The partial derivatives of Y in terms of the xi are

ai(x1, x2, . . .) =
(

∂Y

∂xi

)

{xj,j ̸=i}
. (3.1.20a)

Our goal is now to replace the independent variable x1 by the partial deriva-
tives

(
∂Y
∂x1

)
as independent variables, i.e. for example to change from the

independent variable S to T . This has a definite practical application, since
the temperature is directly and readily measurable, while the entropy is not.
The total differential of Y is given by

dY = a1dx1 + a2dx2 + . . . (3.1.20b)

From the rearrangement dY = d(a1x1)− x1da1 + a2dx2 + . . ., it follows that

d(Y − a1x1) = −x1da1 + a2dx2 + . . . . (3.1.21)

It is then expedient to introduce the function

Y1 = Y − a1x1 , (3.1.22)

and to treat it as a function of the variables a1, x2, . . . (natural variables).1
Thus, for example, the natural variables of the (Helmholtz) free energy
are T, V , and N . The differential of Y1(a1, x2, . . .) has the following form
in terms of these independent variables:

dY1 = −x1da1 + a2dx2 + . . . (3.1.21′a)

and its partial derivatives are
(

∂Y1

∂a1

)

x2,...

= −x1 ,

(
∂Y1

∂x2

)

a1,...

= a2 , . . . (3.1.21′b)

In this manner, one can obtain 8 thermodynamic potentials corresponding to
the three pairs of variables. Table 3.1 collects the most important of these,
i.e. the ones already introduced above.
1 We make an additional remark here about the geometric significance of the

Legendre transformation, referring to the case of a single variable: a curve can
be represented either as a series of points Y = Y (x1), or through the family
of its envelopes. In the latter representation, the intercepts of the tangential
envelope lines on the ordinate as a function of their slopes a1 are required. This
geometric meaning of the Legendre transformation is the basis of the construction
of G(T, P ) from F (T, V ) shown in Fig. 3.33. [If one simply eliminated x1 in
Y = Y (x1) in favor of a1, then one would indeed obtain Y as a function of a1,
but it would no longer be possible to reconstruct Y (x1)].
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Table 3.1. Energy, entropy, and thermodynamic potentials

State function
Independent

variables
Differentials

Energy
E

S, V, {Nj} dE = TdS − PdV +
P
j

µjdNj

Entropy
S

E, V, {Nj} dS = 1
T dE + P

T dV −
P
j

µj

T dNj

Free Energy
F = E − TS

T, V, {Nj} dF = −SdT − PdV +
P
j

µjdNj

Enthalpy
H = E + PV

S, P, {Nj} dH = TdS + V dP +
P
j

µjdNj

Gibbs’ Free Energy
G = E − TS + PV

T, P, {Nj} dG = −SdT + V dP +
P
j

µjdNj

Grand Potential
Φ = E − TS −

P
j

µjNj T, V, {µj} dΦ = −SdT − PdV −
P
j

Njdµj

This table contains the generalization to systems with several components (see
Sect. 3.9). Nj and µj are the particle number and the chemical potential of the j-th
component. The previous formulas are found as a special case when the index j
and

P
j are omitted.

F, H, G and Φ are called thermodynamic potentials, since taking their
derivatives with respect to the natural independent variables leads to the
conjugate variables, analogously to the derivation of the components of force
from the potential in mechanics. For the entropy, this notation is clearly less
useful, since entropy does not have the dimensions of an energy. E, F, H, G
and Φ are related to each other through Legendre transformations. The nat-
ural variables are also termed canonical variables. In a system consisting of
only one chemical substance with a fixed number of particles, the state is
completely characterized by specifying two quantities, e.g. T and V or V
and P . All the other thermodynamic quantities can be calculated from the
thermal and the caloric equations of state. If the state is characterized by T
and V , then the pressure is given by the (thermal) equation of state

P = P (T, V ) .

(The explicit form for a particular substance is found from statistical me-
chanics.) If we plot P against T and V in a three-dimensional graph, we
obtain the surface of the equation of state (or PV T surface); see Fig. 2.7 and
below in Sect. 3.8.
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3.1.3 The Gibbs–Duhem Relation in Homogeneous Systems

In this section, we will concentrate on the important case of homogeneous
thermodynamic systems.2 Consider a system of this kind with the energy E,
the volume V , and the particle number N . Now we imagine a second system
which is completely similar in its properties but is simply larger by a factor α.
Its energy, volume, and particle number are then αE, αV , and αN . Owing
to the additivity of the entropy, it is given by

S(αE, αV, αN) = αS(E, V, N) . (3.1.23)

As a result, the entropy S is a homogeneous function of first order in E, V
and N . Correspondingly, E is a homogeneous function of first order in S, V
and N .
There are two types of state variables:
E, V, N, S, F, H, G, and Φ are called extensive, since they are proportional
to α when the system is enlarged as described above. T, P, and µ are
intensive, since they are independent of α; e.g. we find

T−1 =
∂S

∂E
=

∂αS

∂αE
∼ α0 ,

and this independence follows in a similar manner from the definitions of the
other intensive variables, also. We wish to investigate the consequences of the
homogeneity of S [Eq. (3.1.23)]. To this end, we differentiate (3.1.23) with
respect to α and then set α = 1:

( ∂S

∂αE
E +

∂S

∂αV
V +

∂S

∂αN
N

)∣∣∣
α=1

= S .

From this, we find using (3.1.2) that −S + 1
T E + P

T V − µ
T N = 0, that is

E = TS − PV + µN . (3.1.24)

This is the Gibbs–Duhem relation. Together with dE = TdS − PdV + µdN ,
we derive from Eq. (3.1.24)

SdT − V dP + Ndµ = 0 , (3.1.24′)

the differential Gibbs–Duhem relation. It states that in a homogeneous sys-
tem, T, P and µ cannot be varied independently, and it gives the relationship
between the variations of these intensive quantities.3 The following expres-
sions can be derived from the Gibbs–Duhem relation:
2 Homogeneous systems have the same specific properties in all spatial regions;

they may also consist of several types of particles. Examples of inhomogeneous
systems are those in a position-dependent potential and systems consisting of
several phases which are in equilibrium, although in this case the individual
phases can still be homogeneous.

3 The generalization to systems with several components is given in Sect. 3.9,
Eq. (3.9.7).
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G(T, P, N) = µ(T, P ) N (3.1.25)

and

Φ(T, V, µ) = −P (T, µ) V . (3.1.26)

Justification: from the definition (3.1.13), it follows immediately using (3.1.24) that
G = µN , and from (3.1.15) we find µ =

`
∂G
∂N

´
T,P

= µ +
`

∂µ
∂N

´
T,P

N ; it follows

that µ must be independent of N . We have thus demonstrated (3.1.25). Similarly,
it follows from (3.1.16) that Φ = −PV , and due to −P =

`
∂Φ
∂V

´
T,µ

, P must be

independent of V .
Further conclusions following from homogeneity (in the canonical ensemble with

independent variables T, V, and N) can be obtained starting with

P (T, V, N) = P (T, αV, αN) and µ(T, V, N) = µ(T, αV, αN) (3.1.27a,b)

again by taking derivatives with respect to α around the point α = 1:

„
∂P
∂V

«

T,N

V +

„
∂P
∂N

«

T,V

N = 0 and

„
∂µ
∂V

«

T,N

V +

„
∂µ
∂N

«

T,V

N = 0 .

(3.1.28a,b)

These two relations merely state that for intensive quantities, a volume increase is

equivalent to a decrease in the number of particles.

3.2 Derivatives of Thermodynamic Quantities

3.2.1 Definitions

In this section, we will define the most important thermodynamic derivatives.
In the following definitions, the particle number is always held constant.

The heat capacity is defined as

C =
δQ

dT
= T

dS

dT
. (3.2.1)

It gives the quantity of heat which is required to raise the temperature of
a body by 1 K. We still have to specify which thermodynamic variables are
held constant during this heat transfer. The most important cases are that
the volume or the pressure is held constant. If the heat is transferred at
constant volume, the heat capacity at constant volume is relevant:

CV = T

(
∂S

∂T

)

V,N

=
(

∂E

∂T

)

V,N

. (3.2.2a)



3.2 Derivatives of Thermodynamic Quantities 83

In rearranging (∂S/∂T )V,N , we have used Eq. (3.1.1). If the heat transfer
takes place under constant pressure, then the heat capacity at constant pres-
sure from (3.2.1) must be used:

CP = T

(
∂S

∂T

)

P,N

=
(

∂H

∂T

)

P,N

. (3.2.2b)

For the rearrangement of the definition, we employed (3.1.11). If we divide the
heat capacity by the mass of the substance or body, we obtain the specific
heat, in general denoted as c, or cV at constant volume or cP at constant
pressure. The specific heat is measured in units of J kg−1 K−1. The specific
heat may also be referred to 1 g and quoted in the (non-SI) units cal g−1 K−1.
The molar heat capacity (heat capacity per mole) gives the heat capacity of
one mole of the substance. It is obtained from the specific heat referred to
1 g, multiplied by the molecular weight of the substance.

Remark: We will later show in general using Eq. (3.2.24) that the specific heat at
constant pressure is larger than that at constant volume. The physical origin of this
difference can be readily seen by writing the First Law for constant N in the form
δQ = dE + PdV and setting dE =

`
∂E
∂T

´
V

dT +
`

∂E
∂V

´
T

dV = CV dT +
`

∂E
∂V

´
T

dV ,
that is

δQ = CV dT +

»
P +

„
∂E
∂V

«

T

–
dV .

In addition to the quantity of heat CV dT necessary for warming at constant volume,
when V is increased, more heat is consumed by the work against the pressure, PdV ,
and by the change in the internal energy, (∂E/∂V )T dV . For CP =

`
δQ
dT

´
P

, it then
follows from the last relation that

CP = CV +

„
P +

„
∂E
∂V

«

T

«„
∂V
∂T

«

P

.

Further important thermodynamic derivatives are the compressibility, the
coefficient of thermal expansion, and the thermal pressure coefficient. The
compressibility is defined in general by

κ = − 1
V

dV

dP
.

It is a measure of the relative volume decrease on increasing the pressure.
For compression at a constant temperature, the isothermal compressibility,
defined by

κT = − 1
V

(
∂V

∂P

)

T,N

(3.2.3a)

is the relevant quantity. For (reversible) processes in which no heat is trans-
ferred, i.e. when the entropy remains constant, the adiabatic (isentropic) com-
pressibility
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κS = − 1
V

(
∂V

∂P

)

S,N

(3.2.3b)

must be introduced. The coefficient of thermal expansion is defined as

α =
1
V

(
∂V

∂T

)

P,N

. (3.2.4)

The definition of the thermal pressure coefficient is given by

β =
1
P

(
∂P

∂T

)

V,N

. (3.2.5)

Quantities such as C, κ, and α are examples of so-called susceptibilities. They
indicate how strongly an extensive quantity varies on changing (increasing)
an intensive quantity.

3.2.2 Integrability and the Maxwell Relations

3.2.2.1 The Maxwell Relations

The Maxwell relations are expressions relating the thermodynamic deriva-
tives; they follow from the integrability conditions. From the total differential
of the function Y = Y (x1, x2)

dY = a1dx1 + a2dx2 , (3.2.6)

a1 =
(

∂Y

∂x1

)

x2

, a2 =
(

∂Y

∂x2

)

x1

we find as a result of the commutatitivity of the order of the derivatives,(
∂a1
∂x2

)
x1

= ∂2Y
∂x2∂x1

= ∂2Y
∂x1∂x2

=
(

∂a2
∂x1

)
x2

the following integrability condition:

(
∂a1

∂x2

)

x1

=
(

∂a2

∂x1

)

x2

. (3.2.7)

All together, there are 12 different Maxwell relations. The relations for fixed
N are:

E :
(

∂T

∂V

)

S

= −
(

∂P

∂S

)

V

, F :
(

∂S

∂V

)

T

=
(

∂P

∂T

)

V

(3.2.8a,b)

H :
(

∂T

∂P

)

S

=
(

∂V

∂S

)

P

or
(

∂S

∂V

)

P

=
(

∂P

∂T

)

S

(3.2.9)

G :
(

∂S

∂P

)

T

= −
(

∂V

∂T

)

P

= −V α . (3.2.10)
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Here, we have labeled the Maxwell relations with the quantity from whose dif-
ferential the relation is derived. There are also relations containing N and µ;
of these, we shall require the following in this book:

F :
(

∂µ

∂V

)

T,N

= −
(

∂P

∂N

)

T,V

. (3.2.11)

Applying this relation to homogeneous systems, we find from (3.1.28a) and
(3.1.28b):

(
∂µ

∂N

)

T,V

= −V

N

(
∂µ

∂V

)

T,N

=
V

N

(
∂P

∂N

)

T,V

= −V 2

N2

(
∂P

∂V

)

T,N

=
V

N2

1
κT

.

(3.2.12)

∗3.2.2.2 Integrability Conditions, Exact and Inexact Differentials

It may be helpful at this point to show the connection between the integra-
bility conditions and the results of vector analysis as they apply to classi-
cal mechanics. We consider a vector field F(x), which is defined within the
simply-connected region G (this field could for example be a force field). Then
the following statements are equivalent:

(I) F(x) = −∇V (x)

with V (x) = −
∫ x
x0

dx′F(x′), where x0 is an arbitrary fixed point of origin
and the line integral is to be taken along an arbitrary path from x0 to x.
This means that F(x) can be derived from a potential.

(II) curlF = 0 at each point in G.
(III)

∮
dxF(x) = 0 along each closed path in G.

(IV)
∫ x2

x1
dxF(x) is independent of the path.

Let us return to thermodynamics. We consider a system characterized
by two independent thermodynamic variables x and y and a quantity whose
differential variation is given by

dY = A(x, y)dx + B(x, y)dy . (3.2.13)

In the notation of mechanics, F = (A(x, y), B(x, y), 0). The existence of a
state variable Y , i.e. a state function Y (x, y) (Statement (I′)) is equivalent
to each of the three other statements (II′,III′, and IV′).

(I′) A state function Y (x, y) exists, with
Y (x, y) = Y (x0, y0) +

∫ (x,y)
(x0,y0)

(
dx′A(x′, y′) + dy′B(x′, y′)

)
.

(II′)
(

∂B
∂x

)
y

=
(

∂A
∂y

)

x
(III′)

∮ (
dxA(x, y) + dyB(x, y)

)
= 0

(IV′)
∫ P1

P0

(
dxA(x, y) + dyB(x, y)

)
is independent of the path.
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Fig. 3.2. Illustrating the path integrals III′

and IV′

The differential (3.2.13) is called an exact differential (or a perfect differ-
ential) when the coefficients A and B fulfill the integrability condition (II′).

3.2.2.3 The Non-integrability of δQ and δW

We can now prove that δQ and δW are not integrable. We first consider δW
and imagine the independent thermodynamic variables to be V and T . Then
the relation (3.1.4a) becomes

δW = −PdV + 0 · dT . (3.2.14)

The derivative of the pressure with respect to the temperature at constant
volume is nonzero,

(
∂P
∂T

)
V

̸= 0, while of course the derivative of zero with
respect to V gives zero. That is, the integrability condition is not fulfilled.
Analogously, we write (3.1.5) in the form

δQ = TdS + 0 · dV . (3.2.15)

Again, we have
(

∂T
∂V

)
S

= − ( ∂S
∂V )

T

( ∂S
∂T )

V

= − ( ∂P
∂T )

V

( ∂S
∂T )

V

̸= 0, i.e. the integrability

condition is not fulfilled. Therefore, there are no state functions W (V, T, N)
and Q(V, T, N) whose differentials are equal to δW and δQ. This is the rea-
son for the different notation used in the differential signs. The expressions
relating the heat transferred to the system and the work performed on it to
the state variables exist only in differential form. One can, of course, com-
pute the integral

∫
1 δQ =

∫
1 TdS along a given path (e.g. 1 in Fig. 3.2), and

similarly for δW , but the values of these integrals depend not only on their
starting and end points, but also on the details of the path which connects
those points.

Remark:

In the case that a differential does not fulfill the integrability condition,

δY = A(x, y)dx + B(x, y)dy ,
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but can be converted into an exact differential through multiplication by a
factor g(x, y), then g(x, y) is termed an integrating factor. Thus, 1

T is an
integrating factor for δQ. In statistical mechanics, it is found quite naturally
that the entropy is a state function, i.e. dS is an exact differential. In the
historical development of thermodynamics, it was a decisive and nontrivial
discovery that multiplication of δQ by 1

T yields an exact differential.

3.2.3 Jacobians

It is often necessary to transform from one pair of thermodynamic variables
to a different pair. For the necessary recalculation of the thermodynamic
derivatives, it is expedient to use Jacobians.

In the following, we consider functions of two variables: f(u, v) and g(u, v).
We define the Jacobian determinant:

∂(f, g)
∂(u, v)

=

∣∣∣∣∣∣

(
∂f
∂u

)

v

(
∂f
∂v

)

u(
∂g
∂u

)

v

(
∂g
∂v

)

u

∣∣∣∣∣∣
=

(
∂f

∂u

)

v

(
∂g

∂v

)

u

−
(

∂f

∂v

)

u

(
∂g

∂u

)

v

. (3.2.16)

This Jacobian fulfills a series of important relations.
Let u = u(x, y) and v = v(x, y) be functions of x and y; then the following

chain rule can be proved in an elementary fashion:

∂(f, g)
∂(x, y)

=
∂(f, g)
∂(u, v)

∂(u, v)
∂(x, y)

. (3.2.17)

This relation is important for the changes of variables which are frequently
needed in thermodynamics. Setting g = v, the definition (3.2.16) is simplified
to

∂(f, v)
∂(u, v)

=
(

∂f

∂u

)

v

. (3.2.18)

Since a determinant changes its sign on interchanging two columns, we have

∂(f, g)
∂(v, u)

= −∂(f, g)
∂(u, v)

. (3.2.19)

If we apply the chain rule (3.2.17) for x = f and y = g, we find:

∂(f, g)
∂(u, v)

∂(u, v)
∂(f, g)

= 1 . (3.2.20)

Setting g = v in (3.2.20), we obtain with (3.2.18)
(

∂f

∂u

)

v

=
1(

∂u
∂f

)

v

. (3.2.20′)
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Finally, from (3.2.18) we have

(
∂f

∂u

)

v

=
∂(f, v)
∂(u, v)

=
∂(f, v)
∂(f, u)

∂(f, u)
∂(u, v)

= −

(
∂f
∂v

)

u(
∂u
∂v

)
f

. (3.2.21)

Using this relation, one can thus transform a derivative at constant v into
derivatives at constant u and f . The relations given here can also be applied
to functions of more than two variables, provided the additional variables are
held constant.

3.2.4 Examples

(i) We first derive some useful relations between the thermodynamic deriva-
tives. Using Eqns. (3.2.21), (3.2.3a), and (3.2.4), we obtain

(
∂P

∂T

)

V

= −
(

∂V
∂T

)
P(

∂V
∂P

)
T

=
α

κT
. (3.2.22)

Thus, the thermal pressure coefficient β = 1
P

(
∂P
∂T

)
V

[Eq. (3.2.5)] is related
to the coefficient of thermal expansion α and the isothermal compressibility
κT . In problem 3.4, it is shown that

CP

CV
=

κT

κS
(3.2.23)

[cf. (3.2.3a,b)]. Furthermore, we see that

CV = T
∂ (S, V )
∂ (T, V )

= T
∂ (S, V )
∂ (T, P )

∂ (T, P )
∂ (T, V )

=

= T

(
∂P

∂V

)

T

[(
∂S

∂T

)

P

(
∂V

∂P

)

T

−
(

∂S

∂P

)

T

(
∂V

∂T

)

P

]
=

= CP − T

(
∂S
∂P

)
T

(
∂V
∂T

)
P(

∂V
∂P

)
T

= CP + T

(
∂V
∂T

)2

P(
∂V
∂P

)
T

.

Here, the Maxwell relation (3.2.10) was used. Thus we find for the heat
capacities

CP − CV =
TV α2

κT
. (3.2.24)

With κT CP − κT CV = TV α2 and κT CV = κS CP , it follows that the
compressibilities obey the relation

κT − κS =
TV α2

CP
. (3.2.25)

It follows from (3.2.24) that the two heat capacities can become equal only
when the coefficient of expansion α vanishes or κT becomes very large. The
former occurs in the case of water at 4◦C.
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(ii) We now evaluate the thermodynamic derivatives for the classical ideal
gas, based on Sect. 2.7 . For the enthalpy H = E + PV , it follows from
Eqns. (2.7.25) and (2.7.28) that

H =
5
2
NkT . (3.2.26)

Then, for the heat capacities, we find

CV =
(

∂E

∂T

)

V

=
3
2
Nk , CP =

(
∂H

∂T

)

P

=
5
2
Nk ; (3.2.27)

and for the compressibilities,

κT = − 1
V

(
∂V

∂P

)

T

=
1
P

, κS = κT
CV

CP
=

3
5P

, (3.2.28)

finally, for the thermal expansion coefficient and the thermal pressure coeffi-
cient, we find

α =
1
V

(
∂V

∂T

)

P

=
1
T

and β =
1
P

(
∂P

∂T

)

V

=
1
P

α

κT
=

1
T

. (3.2.29a,b)

3.3 Fluctuations and Thermodynamic Inequalities

This section is concerned with fluctuations of the energy and the particle
number, and belongs contextually to the preceding chapter. We are only now
treating these phenomena because the final results are expressed in terms of
thermodynamic derivatives, whose definitions and properties are only now at
our disposal.

3.3.1 Fluctuations

1. We consider a canonical ensemble, characterized by the temperature T ,
the volume V , the fixed particle number N , and the density matrix

ρ =
e−βH

Z
, Z = Tr e−βH .

The average value of the energy [Eq. (2.6.37)] is given by

Ē =
1
Z

Tr e−βHH =
1
Z

∂Z

∂(−β)
. (3.3.1)

Taking the temperature derivative of (3.3.1),
(

∂Ē

∂T

)

V

=
1

kT 2

∂Ē

∂(−β)
=

1
kT 2

[〈
H2

〉
− ⟨H⟩2

]
=

1
kT 2

(∆E)2 ,
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we obtain after substitution of (3.2.2a) the following relation between the
specific heat at constant volume and the mean square deviation of the internal
energy:

CV =
1

kT 2
(∆E)2 . (3.3.2)

2. Next, we start with the grand canonical ensemble, characterized by
T, V, µ, and the density matrix

ρG = Z−1
G e−β(H−µN) , ZG = Tr e−β(H−µN).

The average particle number is given by

N̄ = Tr ρGN = kT Z−1
G

∂ZG

∂µ
. (3.3.3)

Its derivative with respect to the chemical potential is
(

∂N̄

∂µ

)

T,V

= β
(〈

N2
〉
− N̄2

)
= β(∆N)2 .

If we replace the left side by (3.2.12), we obtain the following relation between
the isothermal compressibility and the mean square deviation of the particle
number:

κT = − 1
V

(
∂V

∂P

)

T,N

=
V

N2

(
∂N

∂µ

)

T,V

=
V

N2
β(∆N)2 . (3.3.4)

Eqns. (3.3.2) and (3.3.4) are fundamental examples of relations between sus-
ceptibilities (on the left-hand sides) and fluctuations, so called fluctuation-
response theorems.

3.3.2 Inequalities

From the relations derived in 3.3.1, we derive (as a result of the positivity of
the fluctuations) the following inequalities:

κT ≥ 0 , (3.3.5)

CP ≥ CV ≥ 0 . (3.3.6)

In (3.3.6), we have used the fact that according to (3.2.24) and (3.3.5), CP is
larger than CV . On decreasing the volume, the pressure increases. On increas-
ing the energy, the temperature increases. The validity of these inequalities
is a precondition for the stability of matter. If, for example, (3.3.5) were not
valid, compression of the system would decrease its pressure; it would thus
be further compressed and would finally collapse.
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3.4 Absolute Temperature and Empirical Temperatures

The absolute temperature was defined in (2.4.4) as T−1 =
(

∂S(E,V,N)
∂E

)

V,N
.

Experimentally, one uses a temperature ϑ, which is for example given by the
length of a rod or a column of mercury, or the volume or the pressure of
a gas thermometer. We assume that the empirical temperature ϑ increases
monotonically with T , i.e. that ϑ also increases when we put heat into the
system. We now seek a method of determining the absolute temperature
from ϑ, that is, we seek the relation T = T (ϑ). To this end, we start with the
thermodynamic difference quotient

(
δQ
dP

)

T
:

(
δQ

dP

)

T

= T

(
∂S

∂P

)

T

= −T

(
∂V

∂T

)

P

= −T

(
∂V

∂ϑ

)

P

dϑ

dT
. (3.4.1)

Here, we have substituted in turn δQ = TdS, the Maxwell relation (3.2.10),
and T = T (ϑ). It follows that

1
T

dT

dϑ
= −

(
∂V
∂ϑ

)
P(

δQ
dP

)

T

= −
(

∂V

∂ϑ

)

P

(
dP

δQ

)

ϑ

. (3.4.2)

This expression is valid for any substance. The right-hand side can be mea-
sured experimentally and yields a function of ϑ. Therefore, (3.4.2) represents
an ordinary inhomogeneous differential equation for T (ϑ), whose integration
yields

T = const · f(ϑ) . (3.4.3)

We thus obtain a unique relation between the empirical temperature ϑ and
the absolute temperature. The constant can be chosen freely due to the ar-
bitrary nature of the empirical temperature scale. The absolute temperature
scale is determined by defining the triple point of water to be Tt = 273.16K.

For magnetic thermometers, it follows from
`

δQ
dB

´
T

= T
`

∂S
∂B

´
T

= T
`

∂M
∂T

´
B

(cf. Chap. 6), analogously,

1
T

dT
dϑ

=

„
∂M
∂ϑ

«

B

„
dB
δQ

«

ϑ

. (3.4.4)

The absolute temperature

T =
(

∂S

∂E

)−1

V,N

(3.4.5)

is positive, since the number of accessible states (∝ Ω(E)) is a rapidly increas-
ing function of the energy. The minimum value of the absolute temperature
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is T = 0 (except for systems which have energetic upper bounds, such as an
assembly of paramagnetic spins). This follows from the distribution of energy
levels E in the neighborhood of the ground-state energy E0. We can see from
the models which we have already evaluated explicitly (quantum-mechanical
harmonic oscillators, paramagnetic moments: Sects. 2.5.2.1 and 2.5.2.2) that
limE→E0 S′(E) = ∞, and thus for these systems, which are generic with
respect to their low-lying energy levels,

lim
E→E0

T = 0 .

We return once more to the determination of the temperature scale through
Eq. (3.4.3) in terms of Tt= 273.16K. As mentioned in Sect. 2.3, the value of
the Boltzmann constant is also fixed by this relation. In order to see this, we
consider a system whose equation of state at Tt is known. Molecular hydrogen
can be treated as an ideal gas at Tt and P = 1 atm. The density of H2 under
these conditions is

ρ = 8.989× 10−2g/liter = 8.989 × 10−5g/cm−3 .

Its molar volume then has the value

VM =
2.016 g

8.989× 10−2 g liters−1 = 22.414 liters .

One mole is defined as: 1 mole corresponds to a mass equal to the atomic
weight in g (e.g. a mole of H2 has a mass of 2.016 g). From this fact, we can
determine the Boltzmann constant :

k =
PV

NT
=

1 atm VM

NA × 273.16 K
= 1.38066× 10−16 erg/K

= 1.38066× 10−23J/K . (3.4.6)

Here, Avogadro’s number was used:

NA ≡ number of molecules per mole

=
2.016 g

mass of H2
=

2.016 g
2 × 1.6734 × 10−24g

= 6.0221× 1023 mol−1 .

Further definitions of units and constants, e.g. the gas constant R, are given in

Appendix I.

3.5 Thermodynamic Processes

In this section, we want to treat thermodynamic processes, i.e. processes
which either during the whole course of their time development or at least
in their initial or final stages can be sufficiently well described by thermody-
namics.
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3.5.1 Thermodynamic Concepts

We begin by introducing several concepts of thermodynamics which we will
later use repeatedly (cf. Table 3.2).

Processes in which the pressure is held constant, i.e. P = const, are
called isobaric; those in which the volume remains constant, V = const, are
isochoral; those in which the entropy is constant, S = const, are isentropic;
and those in which no heat is transferred, i.e. δQ = 0, are termed adiabatic
(thermally isolated).

Table 3.2. Some thermodynamic concepts

Concept Definition

isobaric P = const.

isochoral V = const.

isothermal T = const.

isentropic S = const.

adiabatic δQ = 0

extensive proportional to the size of the system

intensive independent of the size of the system

We mention here another definition of the terms extensive and intensive,
which is equivalent to the one given in the section on the Gibbs–Duhem
relation. We divide a system that is characterized by the thermodynamic
variable Y into two parts, which are themselves characterized by Y1 and Y2.
In the case that Y1 + Y2 = Y , Y is called extensive; when Y1 = Y2 = Y , it is
termed intensive (see Fig. 3.3).

Fig. 3.3. The definition of extensive and in-
tensive thermodynamic variables

Extensive variable include: V, N, E, S, the thermodynamic potentials, the
electric polarization P, and the magnetization M.
Intensive variables include: P, µ, T , the electric field E, and the magnetic
field B.

Quasistatic process: a quasistatic process takes place slowly with respect
to the characteristic relaxation time of the system, i.e. the time within which
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the system passes from a nonequilibrium state to an equilibrium state, so that
the system remains in equilibrium at each moment during such a process.
Typical relaxation times are of the order of τ = 10−10 − 10−9 sec.

An irreversible process is one which cannot take place in the reverse direc-
tion, e.g. the transition from a nonequilibrium state to an equilibrium state
(the initial state could also be derived from an equilibrium state with restric-
tions by lifting of those restrictions). Experience shows that a system which
is not in equilibrium moves towards equilibrium; in this process, its entropy
increases. The system then remains in equilibrium and does not return to the
nonequilibrium state.

Reversible processes: reversible processes are those which can also occur in
the reverse direction. An essential attribute of reversibility is that a process
which takes place in a certain direction can be followed by the reverse process
in such a manner that no changes in the surroundings remain.

The characterization of a thermodynamic state (with a fixed particle num-
ber N) can be accomplished by specifying two quantities, e.g. T and V , or P
and V . The remaining quantities can be found from the thermal and the
caloric equations of state. A system in which a quasistatic process is occur-
ring, i.e. which is in thermal equilibrium at each moment in time, can be
represented by a curve, for example in a P–V diagram (Fig. 2.7b).

A reversible process must in all cases be quasistatic. In non-quasistatic
processes, turbulent flows and temperature fluctuations take place, leading
to the irreversible production of heat. The intermediate states in a non-
quasistatic process can furthermore not be sufficiently characterized by P
and V . One requires for their characterization more degrees of freedom, or in
other words, a space of higher dimensionality.

There are also quasistatic processes which are irreversibe (e.g. temper-
ature equalization via a poor heat conductor, 3.6.3.1; or a Gay-Lussac ex-
periment carried out slowly, 3.6.3.6). Even in such processes, equilibrium
thermodynamics is valid for the individual components of the system.

Remark:

We note that thermodynamics rests on equilibrium statistical mechanics.
In reversible processes, the course of events is so slow that the system is
in equilibrium at each moment; in irreversible processes, this is true of at
least the initial and final states, and thermodynamics can be applied to these
states. In the following sections, we will clarify the concepts just introduced
on the basis of some typical examples. In particular, we will investigate how
the entropy changes during the course of a process.
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3.5.2 The Irreversible Expansion of a Gas; the Gay-Lussac
Experiment (1807)

The Gay-Lussac experiment4 deals with the adiabatic expansion of a gas and
is carried out as follows: a container of volume V which is insulated from its
surroundings is divided by partition into two subvolumes, V1 and V2. Initially,
the volume V1 contains a gas at a temperature T , while V2 is evacuated. The
partition is then removed and the gas flows rapidly into V2 (Fig. 3.4).

Fig. 3.4. The Gay-Lussac experiment

After the gas has reached equilibrium in the whole volume V = V1 + V2, its
thermodynamic quantities are determined.

We first assume that this experiment is carried out using an ideal gas. The
initial state is completely characterized by its volume V1 and the temperature
T . The entropy and the pressure before the expansion are, from (2.7.27) and
(2.7.25), given by

S = Nk

(
5
2

+ log
V1/N

λ3

)
and P =

NkT

V1
,

with the thermal wavelength λ:

λ =
h√

2πmkT
.

In the final state, the volume is now V = V1 + V2. The temperature is still
equal to T , since the energy remains constant and the caloric equation of
state of ideal gases, E = 3

2kTN , contains no dependence on the volume. The
entropy and the pressure after the expansion are:

S′ = Nk

(
5
2

+ log
V/N

λ3

)
, P ′ =

NkT

V
.

We can see that in this process, there is an entropy production of

∆S = S′ − S = Nk log
V

V1
> 0 . (3.5.1)

4 Louis Joseph Gay-Lussac, 1778–1850. The goal of Gay-Lussac’s experiments was
to determine the volume dependence of the internal energy of gases.
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It is intuitively clear that the process is irreversible. Since the entropy in-
creases and no heat is transferred, (δQ = 0), the mathematical criterion for
an irreversible process, Eq. (3.6.8) (which remains to be proved), is fulfilled.
The initial and final states in the Gay-Lussac experiment are equilibrium
states and can be treated with equilibrium thermodynamics. The interme-
diate states are in general not equilibrium states, and equilibrium thermo-
dynamics can therefore make no statements about them. Only when the
expansion is carried out as a quasistatic process can equilibrium thermody-
namics be applied at each moment. This would be the case if the expansion
were carried out by allowing a piston to move slowly (either by moving a
frictionless piston in a series of small steps without performing work, or by
slowing the expansion of the gas by means of the friction of the piston and
transferring the resulting frictional heat back into the gas).

For an arbitrary isolated gas, the temperature change per unit volume at
constant energy is given by

(
∂T

∂V

)

E

= −
(

∂E
∂V

)
T(

∂E
∂T

)
V

= −
T

(
∂S
∂V

)
T
− P

CV
=

1
CV

(
P − T

(
∂P

∂T

)

V

)
, (3.5.2a)

where the Maxwell relation
(

∂S
∂V

)
T

=
(

∂P
∂T

)
V

has been employed. This co-
efficient has the value 0 for an ideal gas, but for real gases it can have
either a positive or a negative sign. The entropy production is, owing
to dE = TdS − PdV = 0, given by

(
∂S

∂V

)

E

=
P

T
> 0 , (3.5.2b)

i.e. dS > 0. Furthermore, no heat is exchanged with the surroundings, that
is, δQ = 0. Therefore, it follows that the inequality between the change in
the entropy and the quantity of heat transferred

TdS > δQ (3.5.3)

holds here.
The coefficients calculated from equilibrium thermodynamics (3.5.2a,b) can
be applied to the whole course of the Gay-Lussac experiment if the process
is carried out in a quasistatic manner. Yet it remains an irreversible process!
By integration of (3.5.2a,b), one obtains the differences in temperature and
entropy between the final and initial states. The result can by the way also be
applied to the non-quasistatic irreversible process, since the two final states
are identical. We shall return to the quasistatic, irreversible Gay-Lussac ex-
periment in 3.6.3.6.
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3.5.3 The Statistical Foundation of Irreversibility

How irreversible is the Gay-Lussac process? In order to understand why the
Gay-Lussac experiment is irreversible, we consider the case that the volume
increase δV fulfills the inequality δV ≪ V , where V now means the initial
volume (see Fig. 3.5).

Fig. 3.5. Illustration of the Gay-Lussac ex-
periment

In the expansion from V to V +δV , the phase-space surface changes from
Ω(E, V ) to Ω(E, V + δV ), and therefore the entropy changes from S(E, V )
to S(E, V + δV ). After the gas has carried out this expansion, we ask what
the probability would be of finding the system in only the subvolume V .
Employing (1.3.2), (2.2.4), and (2.3.4), we find this probability to be given
by

W (E, V ) =
∫

V

dq dp

N ! h3N

δ(H − E)
Ω(E, V + δV )

=
Ω(E, V )

Ω(E, V + δV )
= (3.5.4)

= e−(S(E,V +δV )−S(E,V ))/k =

= e−( ∂S
∂V )

E
δV/k = e−

P
T δV/k = e−

δV
V N ≪ 1 ,

where in the last rearrangement, we have assumed an ideal gas. Due to the
factor N ≈ 1023 in the exponent, the probability that the system will return
spontaneously to the volume V is vanishingly small.

In general, it is found that for the probability, a constraint (a restriction
C) occurs spontaneously:

W (E, C) = e−(S(E)−S(E,C))/k . (3.5.5)

We find that S(E, C) ≪ S(E), since under the constraint, fewer states are
accessible. The difference S(E) − S(E, C) is macroscopic; in the case of
the change in volume, it was proportional to NδV/V , and the probability
W (E, C) ∼ e−N is thus practically zero. The transition from a state with a
constraint C to one without this restriction is irreversible, since the probabil-
ity that the system will spontaneously search out a state with this constraint
is vanishingly small.



98 3. Thermodynamics

3.5.4 Reversible Processes

In the first subsection, we consider the reversible isothermal and adiabatic
expansion of ideal gases, which illustrate the concept of reversibility and are
important in their own right as elements of thermodynamic processes.

3.5.4.1 Typical Examples: the Reversible Expansion of a Gas

In the reversible expansion of an ideal gas, work is performed on a spring by
the expanding gas and energy is stored in the spring (Fig. 3.6). This energy
can later be used to compress the gas again; the process is thus reversible. It
can be seen as a reversible variation of the Gay-Lussac experiment. Such a
process can be carried out isothermally or adiabatically.

Fig. 3.6. The reversible isothermal expansion of a
gas, where the work performed is stored by a spring.
The work performed by the gas is equal to the area
below the isotherm in the P − V diagram.

a) Isothermal Expansion of a Gas, T = const.
We first consider the isothermal expansion. Here, the gas container is in a
heat bath at a temperature T . On expansion from the initial volume V1 to
the final volume V , the gas performs the work:5

W =
V∫

V1

PdV =
V∫

V1

dV
NkT

V
= NkT log

V

V1
. (3.5.6)

This work can be visualized as the area below the isotherm in the P − V
diagram (Fig. 3.6). Since the temperature remains constant, the energy of
the ideal gas is also unchanged. Therefore, the heat bath must transfer a
quantity of heat
5 We distinguish the work performed by the system (W) from work performed on

the system (W ), we use different symbols, implying opposite signs: W = −W .



3.5 Thermodynamic Processes 99

Q = W (3.5.7)

to the system. The change in the entropy during this isothermal expansion
is given according to (2.7.27) by:

∆S = Nk log
V

V1
. (3.5.8)

Comparison of (3.5.6) with (3.5.8) shows us that the entropy increase and
the quantity of heat taken up by the system here obey the following relation:

∆S =
Q

T
. (3.5.9)

This process is reversible, since using the energy stored in the spring, one
could compress the gas back to its original volume. In this compression, the
gas would release the quantity of heat Q to the heat bath. The final state of
the system and its surroundings would then again be identical to their original
state. In order for the process to occur in a quasistatic way, the strength of
the spring must be varied during the expansion or compression in such a
way that it exactly compensates the gas pressure P (see the discussion in
Sect. 3.5.4.2). One could imagine the storage and release of the energy from
the work of compression or expansion in an idealized thought experiment to
be carried out by the horizontal displacement of small weights, which would
cost no energy.

We return again to the example of the irreversible expansion (Sect. 3.5.2).
Clearly, by performing work in this case we could also compress the gas after
its expansion back to its original volume, but then we would increase its
energy in the process. The work required for this compression is finite and
its magnitude is proportional to the change in volume; it cannot, in contrast
to the case of reversible processes, in principle be made equal to zero.

b) Adiabatic Expansion of a Gas, ∆Q = 0
We now turn to the adiabatic reversible expansion. In contrast to Fig. 3.6,

the gas container is now insulated from its surroundings, and the curves in
the P -V diagram are steeper. In every step of the process, δQ = 0, and
since work is here also performed by the gas on its surroundings, it cools on
expansion. It then follows from the First Law that

dE = −PdV .

If we insert the caloric and the thermal equations of state into this equation,
we find:

dT

T
= −2

3
dV

V
. (3.5.10)

Integration of the last equation leads to the two forms of the adiabatic equa-
tion for an ideal gas:
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T = T1

(
V1/V

)2/3 and P = NkT1 V 2/3
1 V −5/3 , (3.5.11a,b)

where the equation of state was again used to obtain b.
We now once more determine the work W(V ) performed on expansion

from V1 to V . It is clearly less than in the case of the isothermal expansion,
since no heat is transferred from the surroundings. Correspondingly, the area
beneath the adiabats is smaller than that beneath the isotherms (cf. Fig. 3.7).
Inserting Eq. (3.5.11b) yields for the work:

Fig. 3.7. An isotherm and an adiabat pass-
ing through the initial point (P1, V1), with P1 =
NkT1/V1

W(V ) =
V∫

V1

dV P =
3
2
NkT1

(
1 −

(
V

V1

)−2/3)
; (3.5.12)

geometrically, this is the area beneath the adiabats, Fig. 3.7. The change in
the entropy is given by

∆S = Nk log
(

V

λ3

λ3
1

V1

)
= 0 , (3.5.13)

and it is equal to zero. We are dealing here with a reversible process in
an isolated systems, (∆Q = 0), and find ∆S = 0, i.e. the entropy remains
unchanged. This is not surprising, since for each infinitesimal step in the
process,

TdS = δQ = 0 (3.5.14)

holds.

∗3.5.4.2 General Considerations of Real, Reversible Processes

We wish to consider to what extent the situation of a reversible process can
indeed be realized in practice. If the process can occur in both directions,
what decides in which direction it in fact proceeds? To answer this question,
in Fig. 3.8 we consider a process which takes place between the points 1
and 2.
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Fig. 3.8. A reversible process. P is the internal pressure of the system (solid line).
Pa is the external pressure produced by the spring (dashed line).

The solid curve can be an isotherm or a polytrope (i.e. an equilibrium curve
which lies between isotherms and adiabats). Along the path from 1 to 2, the
working substance expands, and from 2 to 1, is is compressed again, back to
its initial state 1 without leaving any change in the surroundings. At each
moment, the pressure within the working substance is precisely compensated
by the external pressure (produced here by a spring).

This quasistatic reversible process is, of course, an idealization. In order
for the expansion to occur at all, the external pressure PEx

a must be some-
what lower than P during the expansion phase of the process. The external
pressure is indicated in Fig. 3.8 by the dashed curve. This curve, which is
supposed to characterize the real course of the process, is drawn in Fig. 3.8
as a dashed line, to indicate that a curve in the P − V diagram cannot fully
characterize the system. In the expansion phase with Pa < P , the gas near
the piston is somewhat rarefied. This effectively reduces its pressure and the
work performed by the gas is slightly less than would correspond to its actual
pressure. Density gradients occur, i.e. there is a non-equilibrium state. The
work obtained (which is stored as potential energy in the spring),

∫ 2
1 dV PEx

a ,
then obeys the inequality

2∫

1

dV PEx
a <

∫ 2

1
dV P <

∫ 2

1
dV PCom

a . (3.5.15)

For the compression, we must have PCom
a ! P . On returning to point 1, the

work −
∫
⃝∨ dV Pa =

∫
⃝∨ dV Pa (which is equal to the area enclosed by the dashed

curve) is performed. This work is given up to the heat bath in the form of a
heat loss ∆QL. [Frictional losses; turbulent motions when the process is too
rapid, which also produce heat.]

∆QL =
∫
⃝∨ Pa dV >

( 2∫

1

P dV +
1∫

2

P dV

)
= 0 . (3.5.16)

The inequality results from the fact that Pa ≷ P , that is, the gas and the
spring are not in equilibrium. On returning to point 1, the entropy is again
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equal to the initial entropy, that is the change in the entropy ∆S = 0. There-
fore, the preceding inequality can also be written in the form

∆Q = −∆QL ≤ T∆S , (3.5.17)

where ∆Q is the quantity of heat taken up by the system (which is negative).
These irreversible losses can in principle be made arbitrarily small by moving
the piston very slowly. The reversible process is the ideal limiting case of
extreme slowness.

Analogously, for processes with heat transfer, small temperature differ-
ences must be present. In order for the heat bath to give up heat to the
system, it must be slightly warmer; in order for it to take on heat from the sys-
tem, it must be slightly cooler. After a whole cycle has been passed through,
heat will have been transferred from the warmer a to the cooler b (Fig. 3.9).

Fig. 3.9. Heat transfer

Strictly reversible processes are in fact not processes which proceed con-
tinuously in time, but rather a sequence of equilibrium states. All processes
which occur in practice as continuous variations with time are irreversible;
they contain equilibration processes between perturbed equilibrium states.
In spite of their unrealistic character in a strict sense, reversible processes
play a major role in thermodynamics. While in thermodynamics, statements
about irreversible processes can be made only in the form of inequalities
which determine the direction of the process, for reversible processes one can
make precise predictions, which can also be achieved in practice as limiting
cases. To be sure, thermodynamics can also deliver precise predictions for
irreversible processes, namely for the relation between their initial and final
states, as we have seen for the case of the irreversible adiabatic expansion.

3.5.5 The Adiabatic Equation

Here, we want to first discuss generally the adiabatic equation and then to
apply it to ideal gases. We start from Eq. (3.2.23),

(
∂P

∂V

)

S

=
CP

CV

(
∂P

∂V

)

T

, (3.5.18)
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and define the ratio of the specific heats:

κ =
CP

CV
. (3.5.19)

According to (3.3.6), κ > 1, and therefore for every substance, the slope of
the adiabats, P = P (V, S = const.), is steeper than that of the isotherms,
P = P (V, T = const.).

For a classical ideal gas, we find κ=const.6 and
(

∂P
∂V

)
T

= −NkT
V 2 = −P

V .
It thus follows from (3.5.18)

(
∂P

∂V

)

S

= −κ
P

V
. (3.5.20)

The solution of this differential equation is

PV κ = const ,

and with the aid of the equation of state, we then find

TV κ−1 = const . (3.5.21)

For a monatomic ideal gas, we have κ =
3
2+1

3
2

= 5
3 , where we have made use

of (3.2.27).

3.6 The First and Second Laws of Thermodynamics

3.6.1 The First and the Second Law for Reversible and
Irreversible Processes

3.6.1.1 Quasistatic and in Particular Reversible Processes

We recall the formulation of the First and Second Laws of Thermodynamics
in Eqns. (3.1.3) and (3.1.5). In the case of reversible transitions between an
equilibrium state and a neighboring, infinitesimally close equilibrium state,
we have

dE = δQ − PdV + µdN (3.6.1)

with

δQ = TdS . (3.6.2)
6 This is evident for a monatomic classical ideal gas from (3.2.27). For a molecular

ideal gas as treated in Chap. 5, the specific heats are temperature independent
only in those temperature regions where particular internal degrees of freedom
are completely excited or not excited at all.
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Equations (3.6.1) and (3.6.2) are the mathematical formulations of the First
and Second Laws. The Second Law in the form of Eq. (3.6.2) holds for re-
versible (and thus necessarily quasistatic) processes. It is also valid for qua-
sistatic irreversible processes within those subsystems which are in equilib-
rium at every instant in time and in which only quasistatic transitions from an
equilibrium state to a neighboring equilibrium state take place. (An example
of this is the thermal equilibration of two bodies via a poor heat conductor
(see Sect. 3.6.3.1). The overall system is not in equilibrium, and the process
is irreversible. However, the equilibration takes place so slowly that the two
bodies within themselves are in equilibrium states at every moment in time).

3.6.1.2 Irreversible Processes

For arbitrary processes, the First Law holds in the form given in Eq. (3.1.3′):

dE = δQ + δW + δEN , (3.6.1′)

where δQ, δW , and δEN are the quantity of heat transferred, the work
performed on the system, and the increase in energy through addition of
matter.

In order to formulate the Second Law with complete generality, we re-
call the relation (2.3.4) for the entropy of the microcanonical ensemble and
consider the following situation: we start with two systems 1 and 2 which
are initially separated and are thus not in equilibrium with each other; their
entropies are S1 and S2. We now bring these two systems into contact. The
entropy of this nonequilibrium state is

Sinitial = S1 + S2 . (3.6.3)

Suppose the two systems to be insulated from their environment and their
total energy, volume, and particle number to be given by E, V and N . Now the
overall system passes into the microcanonical equilibrium state corresponding
to these macroscopic values. Owing to the additivity of entropy, the total
entropy after equilibrium has been reached is given by

S1+2(E, V, N) = S1(Ẽ1, Ṽ1, Ñ1) + S2(Ẽ2, Ṽ2, Ñ2) , (3.6.4)

where Ẽ1, Ṽ1, Ñ1 (Ẽ2, Ṽ2, Ñ2) are the most probable values of these quan-
tities in the subsystem 1 (2). Since the equilibrium entropy is a maximum
(Eq. 2.3.5), the following inequality holds:

S1 + S2 = Sinitial (3.6.5)

≤S1+2(E, V, N) = S1(Ẽ1, Ṽ1, Ñ1) + S2(Ẽ2, Ṽ2, Ñ2) .

Whenever the initial density matrix of the combined systems 1+2 is not
already equal to the microcanonical density matrix, the inequality sign holds.
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We now apply the inequality (3.6.5) to various physical situations.

(A) Let an isolated system be in a non-equilibrium state. We can decom-
pose it into subsystems which are in equilibrium within themselves and apply
the inequality (3.6.5). Then we find for the change ∆S in the total entropy

∆S > 0 . (3.6.6)

This inequality expresses the fact that the entropy of an isolated systems can
only increase and is also termed the Clausius principle.

(B) We consider two systems 1 and 2 which are in equilibrium within
themselves but are not in equilibrium with each other. Let their entropy
changes be denoted by ∆S1 and ∆S2. From the inequality (3.6.5), it follows
that

∆S1 + ∆S2 > 0 . (3.6.7)

We now assume that system 2 is a heat bath, which is large compared to
system 1 and which remains at the temperature T throughout the process.
The quantity of heat transferred to system 1 is denoted by ∆Q1. For system 2,
the process occurs quasistatically, so that its entropy change ∆S2 is related
to the heat transferred, −∆Q1, by

∆S2 = − 1
T

∆Q1 .

Inserting this into Eq. (3.6.7), we find

∆S1 >
1
T

∆Q1 . (3.6.8)

In all the preceding relations, the quantities ∆S and ∆Q are by no means
required to be small, but instead represent simply the change in the entropy
and the quantity of heat transferred.

In the preceding discussion, we have considered the initial state and as fi-
nal state a state of overall equilibrium. In fact, these inequalities hold also for
portions of the relaxation process. Each intermediate step can be represented
in terms of equilibrium states with constraints, whereby the limitations im-
posed by the constraints decrease in the course of time. At the same time,
the entropy increases. Thus, for each infinitesimal step in time, the change in
entropy of the isolated overall system is given by

dS ≥ 0 . (3.6.6′)

For the physical situation described under B, we have

dS1 ≥ 1
T

δQ1 . (3.6.8′)
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We now summarize the content of the First and Second Laws.

The First Law :

dE = δQ + δW + δEN (3.6.9)

Change of energy = heat transferred + work performed + energy change due
to transfer of matter; E is a state function.

The Second Law :

δQ ≤ TdS (3.6.10)

and S is a state function.
a) For reversible changes: δQ = TdS.
b) For irreversible changes: δQ < TdS.

Notes:

(i) The equals sign in Eq. (3.6.10) holds also for irreversible quasistatic pro-
cesses in those subregions which are in equilibrium in each step of the process
(see Sect. 3.6.3.1).
(ii) In (3.6.10), we have combined (3.6.6′) and (3.6.8′). The situation of the iso-
lated system (3.6.6) is included in (3.6.10), since in this case δQ = 0 (see the
example 3.6.3.1).
(iii) In many processes, the particle number remains constant (dN = 0). Therefore,
we often employ (3.6.9) considering only δQ and δW , without mentioning this
expressly each time.

We now wish to apply the Second Law to a process which leads from a
state A to a state B as indicated in Fig. 3.10. If we integrate (3.6.10), we
obtain

B∫

A

dS ≥
B∫

A

δQ

T

and from this,

SB − SA ≥
B∫

A

δQ

T
. (3.6.11)

For reversible processes, the equals sign holds; for irreversible ones, the in-
equality. In a reversible process, the state of the system can be completely
characterized at each moment in time by a point in the P–V -diagram. In
an irreversible process leading from one equilibrium state (possibly with con-
straints) A to another equilibrium state B, this is not in general the case.
This is indicated by the dashed line in Fig. 3.10.
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Fig. 3.10. The path of a process con-
necting two thermodynamic states A
and B

Fig. 3.11. A cyclic process, repre-
sented by a closed curve in the P −V -
diagram, which leads back to the start-
ing point (B = A), whereby at least
to some extent irreversible changes of
state occur.

We consider the following special cases:

(i) An adiabatic process: For an adiabatic process (δQ = 0), it follows from
(3.6.11) that

SB ≥ SA or ∆S ≥ 0 . (3.6.11′)

The entropy of a thermally isolated system cannot decrease. This state-
ment is more general than Eq. (3.6.6), where completely isolated systems
were assumed.

(ii) Cyclic processes: For a cyclic process, the final state is identical with the
initial state, B = A (Fig. 3.11). Then we have SB = SA and and it follows
from Eq. (3.6.11) for a cyclic process that the inequality

0 ≥
∮

δQ

T
(3.6.12)

holds, where the line integral
∮

is calculated along the closed curve of
Fig. 3.11, corresponding to the actual direction of the process.

∗3.6.2 Historical Formulations of the Laws of Thermodynamics
and other Remarks

The First Law

There exists no perpetual motion machine of the first kind (A perpetual mo-
tion machine of the first kind refers to a machine which operates periodically
and functions only as a source of energy). Energy is conserved and heat is only
a particular form of energy, or more precisely, energy transfer. The recogni-
tion of the fact that heat is only a form of energy and not a unique material
which can penetrate all material bodies was the accomplishment of Julius
Robert Mayer (a physician, 1814–1878) in 1842.
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James Prescott Joule (a brewer of beer) carried out experiments in the years
1843-1849 which demonstrated the equivalence of heat energy and the energy
of work

1 cal = 4.1840× 107 erg = 4.1840 Joule .

The First Law was mathematically formulated by Clausius:

δQ = dE + PdV .

The historical formulation quoted above follows from the First Law, which
contains the conservation of energy and the statement that E is a state
variable. Thus, if a machine has returned to its initial state, its energy must
be the same as before and it can therefore not have given up any energy to
its environment.

Second Law

Rudolf Clausius (1822–1888) in 1850 : Heat can never pass on its own from
a cooler reservoir to a warmer one.
William Thomson (Lord Kelvin, 1824–1907) in 1851: The impossibility of a
perpetual motion machine of the second kind. (A perpetual motion machine
of the second kind refers to a periodically operating machine, which only
extracts heat from a single reservoir and performs work.)
These formulations are equivalent to one another and to the mathematical
formulation.

Equivalent formulations of the Second Law.

The existence of a perpetual motion machine of the second kind could be used to
remove heat from a reservoir at the temperature T1. The resulting work could then
be used to heat a second reservoir at the higher temperature T2. The correctness
of Clausius’ statement thus implies the correctness of Kelvin’s statement.

If heat could flow from a colder bath to a warmer one, then one could use
this heat in a Carnot cycle (see Sect. 3.7.2) to perform work, whereby part of the
heat would once again be taken up by the cooler bath. In this overall process, only
heat would be extracted from the cooler bath and work would be performed. One
would thus have a perpetual motion machine of the second kind. The correctness
of Kelvin’s statement thus implies the correctness of Clausius’ statement.

The two verbal formulations of the Second Law, that of Clausius and that of
Kelvin, are thus equivalent. It remains to be demonstrated that Clausius’ statement
is equivalent to the differential form of the Second Law (Eq. 3.6.10). To this end,
we note that it will be shown in Sect. 3.6.3.1 from (3.6.10) that heat passes from a
warmer reservoir to a cooler one. Clausius’ statement follows from (3.6.10). Now we
must only demonstrate that the relation (3.6.10) follows from Clausius’ statement.
This can be seen as follows: if instead of (3.6.10), conversely TdS < δQ would
hold, then it would follow form the consideration of the quasistatic temperature
equilibration that heat would be transported from a cooler to a warmer bath;
i.e. that Clausius’ statement is false. The correctness of Clausius’ statement thus
implies the correctness of the mathematical formulation of the Second Law (3.6.10).
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All the formulations of the Second Law are equivalent. We have included these
historical considerations here because precisely their verbal formulations show the
connection to everyday consequences of the Second Law and because this type of
reasoning is typical of thermodynamics.

The Zeroth Law

When two systems are in thermal equilibrium with a third system, then they
are in equilibrium with one another.
Proof within statistical mechanics:
Systems 1, 2, and 3. Equilibrium of 1 with 3 implies that T1 = T3 and that
of 2 with 3 that T2 = T3; it follows from this that T1 = T2, i.e. 1 and 2 are
also in equilibrium with one another. The considerations for the pressure and
the chemical potential are exactly analogous.
This fact is of course very important in practice, since it makes it possible to
determine with the aid of thermometers and manometers whether two bodies
are at the same temperature and pressure and will remain in equilibrium or
not if they are brought into contact.

The Third Law

The Third Law (also called Nernst’s theorem) makes statements about the
temperature dependence of thermodynamic quantities in the limit T → 0; it
is discussed in the Appendix A.1. Its consequences are not as far-reaching as
those of the First and Second Laws. The vanishing of specific heats as T → 0
is a direct result of quantum mechanics. In this sense, its postulation in the
era of classical physics can be regarded as visionary.

3.6.3 Examples and Supplements to the Second Law

We now give a series of examples which clarify the preceding concepts and
general results, and which have also practical significance.

3.6.3.1 Quasistatic Temperature Equilibration

We consider two bodies at the temperatures T1 and T2 and with entropies S1

and S2. These two bodies are connected by a poor thermal conductor and
are insulated from their environment (Fig. 3.12). The two temperatures are
different: T1 ̸= T2; thus, the two bodies are not in equilibrium with each other.
Since the thermal conductor has a poor conductivity, all energy transfers
occur slowly and each subsystem is in thermal equilibrium at each moment
in time. Therefore, for a heat input δQ to body 1 and thus the equal but
opposite heat transfer −δQ from body 2, the Second Law applies to both
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subsystems in the form

dS1 =
δQ

T1
, dS2 = −δQ

T2
. (3.6.13)

Fig. 3.12. Quasistatic temperature equi-
libration of two bodies connected by a
poor conductor of heat

For the overall system, we have

dS1 + dS2 > 0 , (3.6.14)

since the total entropy increases during the transition to the equilibrium
state. If we insert (3.6.13) into (3.6.14), we obtain

δQ

(
1
T1

− 1
T2

)
> 0 . (3.6.15)

We take T2 > T1; then it follows from (3.6.13) that δQ > 0, i.e. heat is trans-
ferred from the warmer to the cooler container. We consider here the differ-
ential substeps, since the temperatures change in the course of the process.
The transfer of heat continues until the two temperatures have equalized; the
total amount of heat transferred from 2 to 1,

∫
δQ, is positive.

Also in the case of a non-quasistatic temperature equilibration, heat is
transferred from the warmer to the cooler body: if the two bodies mentioned
above are brought into contact (again, of course, isolated from their envi-
ronment, but without the barrier of a poor heat conductor), the final state
is the same as in the case of the quasistatic process. Thus also in the non-
quasistatic temperature equilibration, heat has passed from the warmer to
the cooler body.

3.6.3.2 The Joule–Thomson Process

The Joule–Thomson process consists of the controlled expansion of a gas
(cf. Fig. 3.13). Here, the stream of expanding gas is limited by a throttle
valve. The gas volume is bounded to the left and the right of the throttle by
the two sliding pistons S1 and S2, which produce the pressures P1 and P2 in
the left and right chambers, with P1 > P2. The process is assumed to occur
adiabatically, i.e. δQ = 0 during the entire process.

In the initial state (1), the gas in the left-hand chamber has the volume
V1 and the energy E1. In the final state, the gas is entirely in the right-hand
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Fig. 3.13. A Joule–Thomson pro-
cess, showing the sliding pistons S1

and S2 and the throttle valve T

chamber and has a volume V2 and energy E2. The left piston performs work
on the gas, while the gas performs work on the right piston and thus on the
environment. The difference of the internal energies is equal to the total work
performed on the system:

E2 − E1 =
2∫

1

dE =
2∫

1

δW =
0∫

V1

dV1(−P1) +
V2∫

0

dV2(−P2)

= P1V1 − P2V2 .

From this it follows that the enthalpy remains constant in the course of this
process:

H2 = H1 , (3.6.16)

where the definition Hi = Ei + PiVi was used.
For cryogenic engineering it is important to know whether the gas is

cooled by the controlled expansion. This is determined by the Joule–Thomson
coefficient:

(
∂T

∂P

)

H

= −
(

∂H
∂P

)
T(

∂H
∂T

)
P

= −
T

(
∂S
∂P

)
T

+ V

T
(

∂S
∂T

)
P

=
T

(
∂V
∂T

)
P
− V

CP
.

In the rearrangement, we have used (3.2.21), dH = TdS + V dP , and the
Maxwell relation (3.2.10). Inserting the thermal expansion coefficient α, we
find the following expression for the Joule–Thomson coefficient:

(
∂T

∂P

)

H

=
V

CP
(Tα − 1) . (3.6.17)

For an ideal gas, α = 1
T ; in this case, there is no change in the temperature

on expansion. For a real gas, either cooling or warming can occur. When
α > 1

T , the expansion leads to a cooling of the gas (positive Joule–Thomson
effect). When α < 1

T , then the expansion gives rise to a warming (negative
Joule–Thomson effect). The limit between these two effects is defined by the
inversion curve, which is given by

α =
1
T

. (3.6.18)
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We shall now calculate the inversion curve for a van der Waals gas, beginning
with the van der Waals equation of state (Chap. 5)

P =
kT

v − b
− a

v2
, v =

V

N
. (3.6.19)

We differentiate the equation of state with respect to temperature at constant
pressure

0 =
k

v − b
− kT

(v − b)2

(
∂v

∂T

)

P

+
2a

v3

(
∂v

∂T

)

P

.

In this expression, we insert the condition (3.6.18)

α ≡ 1
v

(
∂v

∂T

)

P

=
1
T

for
(

∂v
∂T

)
P

and thereby obtain 0 = k
v − k

v−b + 2a
v3

1
T (v − b). Using the van-der-

Waals equation again, we finally find for the inversion curve

0 = − b

v

(
P +

a

v2

)
+

2a

v3
(v − b) ,

that is

P =
2a

bv
− 3a

v2
. (3.6.20)

In the limit of low density, we can neglect the second term in (3.6.20) and
the inversion curve is then given by

P =
2a

bv
=

kTinv

v
, Tinv =

2a

bk
= 6.75 Tc . (3.6.21)

Here, Tc is the critical temperature which follows from the van der Waals
equation (5.4.13). For temperatures which are higher than the inversion tem-
perature Tinv, the Joule–Thomson effect is always negative. The inversion
temperature and other data for some gases are listed in Table I.4 in the
Appendix.

The change in entropy in the Joule–Thomson process is determined by
(

∂S

∂P

)

H

= −V

T
, (3.6.22)

as can be seen using dH = TdS +V dP = 0. Since the pressure decreases, we
obtain for the entropy change dS > 0, although δQ = 0. The Joule–Thomson
process is irreversible, since its initial state with differing pressures in the
two chambers is clearly not an equilibrium state.

The complete inversion curve from the van der Waals theory is shown in
Fig. 3.14a,b. Within the inversion curve, the expansion leads to cooling of
the gas.
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(a) The inversion curve for the Joule–
Thomson effect (upper solid curve).
The isotherm is for T = 6.75 Tc (dot-
dashed curve). The shaded region is
excluded, since in this region, the va-
por and liquid phases are always both
present.

(b) The inversion curve in the P -T
diagram.

Fig. 3.14. The inversion curve for the Joule–Thomson effect

3.6.3.3 Temperature Equilibration of Ideal Gases

We will now investigate the thermal equilibration of two monatomic ideal
gases (a and b). Suppose the two gases to be separated by a sliding piston
and insulated from their environment (Fig. 3.15).

Fig. 3.15. The thermal equilibration of two
ideal gases

The pressure of the two gases is taken to be equal, Pa = Pb = P , while
their temperatures are different in the initial state, Ta ̸= Tb. Their volumes
and particle numbers are given by Va, Vb and Na, Nb, so that the total volume
and total particle number are V = Va + Vb and N = Na + Nb. The entropy
of the initial state is given by

S = Sa +Sb = k

{
Na

(
5
2

+ log
Va

Naλ3
a

)
+ Nb

(
5
2

+ log
Vb

Nb λ3
b

)}
. (3.6.23)
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The temperature after the establishment of equilibrium, when the tempera-
tures of the two systems must approach the same value according to Chap. 2,
will be denoted by T .

Owing to the conservation of energy, we have 3
2NkT = 3

2NakTa+ 3
2NbkTb,

from which it follows that

T =
NaTa + NbTb

Na + Nb
= caTa + cbTb , (3.6.24)

where we have introduced the ratio of the particle numbers, ca,b = Na,b

N . We
recall the definition of the thermal wavelengths

λa,b =
h√

2πma,bkTa,b
, λ′

a,b =
h√

2πma,bkT
.

The entropy after the establishment of equilibrium is

S′ = kNa

{
5
2

+ log
V ′

a

Naλ′3
a

}
+ kNb

{
5
2

+ log
V ′

b

Nb λ′3
b

}
,

so that for the entropy increase, we find

S′ − S = kNa log
V ′

aλ3
a

Va λ′3
a

+ kNb log
V ′

b λ3
b

Vb λ′3
b

. (3.6.25)

We shall also show that the pressure remains unchanged. To this end, we
add the two equations of state of the subsystems before the establishment of
thermal equilibrium

VaP = NakTa , VbP = NbkTb (3.6.26a)

and obtain using (3.6.24) the expression

(Va + Vb)P = (Na + Nb)kT . (3.6.26b)

From the equations of state of the two subsystems after the establishment of
equilibrium

V ′
a,bP

′ = Na,bkT (3.6.26a′)

with V ′
a + V ′

b = V , it follows that

V P ′ = (Na + Nb)kT , (3.6.26b′)

i.e. P ′ = P . Incidentally, in (3.6.24) and (3.6.26b′), the fact is used that the
two monatomic gases have the same specific heat. Comparing (3.6.26b) and
(3.6.26b′), we find the volume ratios

V ′
a,b

Va,b
=

T

Ta,b
.
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From this we obtain

S′ − S =
5
2
k log

T Na+Nb

T Na
a T Nb

b

,

which finally yields

S′ − S =
5
2
kN log

T

T ca
a T cb

b

=
5
2
kN log

caTa + cbTb

T ca
a T cb

b

. (3.6.27)

Due to the convexity of the exponential function, we have

T ca
a T cb

b = exp(ca log Ta + cb log Tb) ≤ ca exp log Ta + cb exp log Tb

= caTa + cbTb = T ,

and thus it follows from (3.6.27) that S′ − S ≥ 0, i.e. the entropy increases
on thermal equilibration.
Note:

Following the equalization of temperatures, in which heat flows from the warmer
to the cooler parts of the system, the volumes are given by:

V ′
a =

Na

Na + Nb
V , V ′

b =
Nb

Na + Nb
V .

Together with Eq. (3.6.26b), this gives V ′
a/Va = T/Ta and V ′

b /Vb = T/Tb. The
energy which is put into subsystem a is ∆Ea = 3

2Nak(T − Ta).
The enthalpy increase in subsystem a is given by ∆Ha = 5

2Nak(T − Ta). Since the
process is isobaric, we have ∆Qa = ∆Ha. The work performed on subsystem a is
therefore equal to

∆Wa = ∆Ea − ∆Qa = −Nak(T − Ta) .

The warmer subsystem gives up heat. Since it would then be too rarefied for the
pressure P , it will be compressed, i.e. it takes on energy through the work performed
in this compression.

3.6.3.4 Entropy of Mixing

We now consider the process of mixing of two different ideal gases with the
masses ma and mb.
The temperatures and pressures of the gases are taken to be the same,

Ta = Tb = T , Pa = Pb = P .

From the equations of state,

VaP = NakT , VbP = NbkT
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Fig. 3.16. The mixing of two gases

it follows that

Na

Va
=

Nb

Vb
=

Na + Nb

Va + Vb
.

Using the thermal wavelength λa,b = h√
2πma,bkT

, the entropy when the gases

are separated by a partition is given by

S = Sa +Sb = k

{
Na

(
5
2

+ log
Va

Naλ3
a

)
+ Nb

(
5
2

+ log
Vb

Nb λ3
b

)}
. (3.6.28)

After removal of the partition and mixing of the gases, the value of the entropy
is

S′ = k

{
Na

(
5
2

+ log
Va + Vb

Naλ3
a

)
+ Nb

(
5
2

+ log
Va + Vb

Nb λ3
b

)}
. (3.6.29)

From Eqns. (3.6.28) and (3.6.29), we obtain the difference in the entropies:

S′ − S = k log
(Na + Nb)Na+Nb

NNa
a NNb

b

= k(Na + Nb) log
(

1
cca
a ccb

b

)
> 0 ,

where we have used the relative particle numbers

ca,b =
Na,b

Na + Nb
.

Since the argument of the logarithm is greater than 1, we find that the entropy
of mixing is positive,

e.g. Na = Nb , S′ − S = 2kNa log 2 .

The entropy of mixing always occurs when different gases interdiffuse, even
when they consist of different isotopes of the same element. When, in con-
trast, the gases a and b are identical, the value of the entropy on removing
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the partition is

S′
id = k(Na + Nb)

{
5
2

+ log
Va + Vb

(Na + Nb)λ3

}
(3.6.29′)

and λ = λa = λb. We then have

S′
id − S = k log

(Va + Vb)Na+Nb NNa
a NNb

b

(Na + Nb)Na+Nb V Na
a V Nb

b

= 0

making use of the equation of state; therefore, no entropy of mixing occurs.
This is due to the factor 1/N ! in the basic phase-space volume element in
Eqns. (2.2.2) and (2.2.3), which results from the indistinguishability of the
particles. Without this factor, Gibbs’ paradox would occur, i.e. we would
find a positive entropy of mixing for identical gases, as mentioned following
Eq. (2.2.3).

∗3.6.3.5 Heating a Room

Finally, we consider an example, based on one given by Sommerfeld.7 A room is
to be heated from 0◦C to 20◦C. What quantity of heat is required? How does the
energy content of the room change in the process?

If air can leave the room through leaks around the windows, for example, then
the process is isobaric, but the number of air molecules in the room will decrease
in the course of the heating process. The quantity of heat required depends on the
increase in temperature through the relation

δQ = CP dT , (3.6.30)

where CP is the heat capacity at constant pressure. In the temperature range that
we are considering, the rotational degrees of freedom of oxygen, O2, and nitrogen,
N2, are excited (see Chap. 5), so that under the assumption that air is an ideal gas,
we have

CP =
7
2
Nk , (3.6.31)

where N is the overall number of particles.
The total amount of heat required is found by integrating (3.6.31) between the

initial and final temperatures, T1 and T2:

Q =

T2Z

T1

dT CP . (3.6.32)

If we initially neglect the temperature dependence of the particle number, and thus
the heat capacity (3.6.31), we find

Q = CP (T2 − T1) =
7
2
N1k(T2 − T1) . (3.6.32′)

7 A. Sommerfeld, Thermodynamics and Statistical Mechanics: Lectures on Theo-
retical Physics, Vol. V, (Academic Press, New York, 1956)
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Here, we have denoted the particle number at T1 as N1 and taken it to be constant.
Equation (3.6.32′) will be a good approximation, as long as T2 ≈ T1.

If we wish to take into account the variation of the particle number within the
room (volume V ), we have to replace N in Eq. (3.6.31) by N from the equation of
state, N = PV/kT , and it follows that

Q =

T2Z

T1

dT
7
2

PV
T

=
7
2
PV log

T2

T1
=

7
2
N1kT1 log

T2

T1
. (3.6.33)

With log T2
T1

= T2
T1

−1+O
“`

T2
T1

−1
´2”

, we obtain from (3.6.33) for small temperature

differences the approximate formula (3.6.32′)

Q =
7
2
PV

T2 − T1

T1
= 3.5

„
106 dyn

cm2

«
106(V m3)

20
273

=
3.5 ×2
2.73

1011erg (V m3)

= 6 kcal (V m3).

It is instructive to compute the change in the energy content of the room on heating,
taking into account the fact that the rotational degrees of freedom are fully excited,
T ≫ Θr (see Chap. 5). Then the internal energy before and after the heating
procedure is

Ei =
5
2
NikTi − NikΘr

1
6

+ Niεel

E2 − E1 =
5
2
k(N2T2 − N1T1) −

1
6
PV Θr

„
1
T2

− 1
T1

«
+ PV

εel

k

„
1
T2

− 1
T1

«
.

(3.6.34)

The first term is exactly zero, and the second one is positive; the third, dominant
term is negative. The internal energy of the room actually decreases upon heating.
The heat input is given up to the outside world, in order to increase the temperature
in the room and thus the average kinetic energy of the remaining gas molecules.

Heating with a fixed particle number (a hermetically sealed room) requires
a quantity of heat Q = CV (T2 − T1) ≡ 5

2N1k(T2 − T1). For small temperature
differences T2 − T1, it is then more favorable first to heat the room to the final
temperature T2 and then to allow the pressure to decrease. The point of intersection
of the two curves (P, N) constant and P constant, with N variable (Fig. 3.17) at
T 0

2 is determined by

T 0
2 − T1

T1 log
T0
2

T1

=
CP

CV
.

A numerical estimate yields T 0
2 = 1.9 T1 for the point of intersection in Fig. 3.17,

i.e. at T1 = 273 K, T 0
2 = 519 K.

For any process of space heating, isolated heating is more favorable. The differ-
ence in the quantities of heat required is

∆Q ≈ (CP − CV )(T2 − T1) =
1

3.5
6 kcal (V m3) = 1.7 kcal (V m3) .
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Fig. 3.17. The quantity of heat required
for space heating: as an isobaric process
(solid curve), isochore (dashed curve), or
isobaric neglecting the decrease in particle
number (dot-dashed curve).

All of the above considerations have neglected the heat capacity of the walls.
They are applicable to a rapid heating of the air.

The change in pressure on heating a fixed amount of air by 20◦C is, however,

δP
P

=
δT
T

∼ 20
273

∼ 0.07 , i.e. δP ∼ 0.07 bar ∼ 0.07 kg/cm2 ∼ 700 kg/m2 !

∗3.6.3.6 The Irreversible, Quasistatic Gay-Lussac Experiment

We recall the different versions of the Gay-Lussac experiment. In the irreversible
form, we have ∆Q = 0 and ∆S > 0 (3.5.1). In the reversible case (isothermal
or adiabatic), using (3.5.9) and (3.5.14), the corresponding relation for reversible
processes is fulfilled.

It is instructive to carry out the Gay-Lussac experiment in a quasistatic, irre-
versible fashion. One can imagine that the expansion does not take place suddenly,
but instead is slowed by friction of the piston to the point that the gas always
remains in equilibrium. The frictional heat can then either be returned to the gas
or given up to the environment. We begin by treating the first possibility. Since
the frictional heat from the piston is returned to the gas, there is no change in
the environment after each step in the process. The final result corresponds to the
situation of the usual Gay-Lussac experiment. For the moment, we denote the gas
by an index 1 and the piston, which initially takes up the frictional heat, by 2. Then
the work which the gas performs on expansion by the volume change dV is given
by

δW1→2 = PdV .

This quantity of energy is passed by the piston to 1:

δQ2→1 = δW1→2 .

The energy change of the gas is dE = δQ2→1 − δW1→2 = 0. Since the gas is always
in equilibrium at each instant, the relation dE = TdS − PdV also holds and thus
we have for the entropy increase of the gas:

TdS = δQ2→1 > 0 .

The overall system of gas + piston transfers no heat to the environment and also
performs no work on the environment, i.e. δQ = 0 and δW = 0. Since the entropy
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of the piston remains the same (for simplicity, we consider an ideal gas, whose
temperature does not change), it follows that TdS > δQ.

Now we consider the situation that the frictional heat is passed to the outside
world. This means that δQ2→1 = 0 and thus TdS = 0, also dS = 0. The total
amount of heat given off to the environment (heat loss δQL) is

δQL = δW1→2 > 0 .

Here, again, the inequality −δQL < TdS is fulfilled, characteristic of the irreversible
process. The final state of the gas corresponds to that found for the reversible
adiabatic process. There, we found ∆S = 0, Q = 0, and W > 0. Now, ∆S = 0,
while QL > 0 and is equal to the W of the adiabatic, reversible process, from
Eq. (3.5.12).

3.6.4 Extremal Properties

In this section, we derive the extremal properties of the thermodynamic po-
tentials. From these, we shall obtain the equilibrium conditions for multi-
component systems in various phases and then again the inequalities (3.3.5)
and (3.3.6).

We assume in this section that no particle exchange with the environment
occurs, i.e. dNi = 0, apart from chemical reactions within the system. Con-
sider the system in general not yet to be in equilibrium; then for example in
an isolated system, the state is not characterized solely by E, V, and Ni , but
instead we need additional quantities xα, which give e.g. the concentrations of
the independent components in the different phases or the concentrations of
the components between which chemical reactions occur. Another situation
not in equilibrium is that of spatial inhomogeneities.8

We now however assume that equilibrium with respect to the temperature
and pressure is present, i.e. that the system is characterized by uniform (but
variable) T and P values. This assumption may be relaxed somewhat. For
the following derivation, it suffices that the system likewise be at the pressure
P at the stage when work is being performed by the pressure P , and when
it is exchanging heat with a reservoir at the temperature T , that it be at the
temperature T . (This permits e.g. inhomogeneous temperature distributions
during a chemical reaction in a subsystem.) Under these conditions, the First
Law, Eq (3.6.9), is given by dE = δQ − PdV .

8 As an example, one could imagine a piece of ice and a solution of salt in water at
P = 1 atm and −5◦C. Each component of this system is in equilibrium within
itself. If one brings them into contact, then a certain amount of the ice will melt
and some of the NaCl will diffuse into the ice until the concentrations are such
that the ice and the solution are in equilibrium (see the section on eutectics). The
initial state described here – a non-equilibrium state – is a typical example of
an inhibited equilibrium. As long as barriers impede (inhibit) particle exchange,
i.e. so long as only energy and volume changes are possible, this inhomogeneous
state can be described in terms of equilibrium thermodynamics.
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Our starting point is the Second Law, (3.6.10):

dS ≥ δQ

T
. (3.6.35)

We insert the First Law into this equation and obtain

dS ≥ 1
T

(dE + PdV ) . (3.6.36a)

We have used the principle of energy conservation from equilibrium ther-
modynamics here, which however also holds in non-equilibrium states. The
change in the energy is equal to the heat transferred plus the work performed.
The precondition is that during the process a particular, well-defined pressure
is present.

If E, V are held constant, then according to Eq. (3.6.36a), we have

dS ≥ 0 for E, V fixed ; (3.6.36b)

that is, an isolated system tends towards a maximum of the entropy. When a
non-equilibrium state is characterized by a parameter x, its entropy has the
form indicated in Fig. 3.18. It is maximal for the equilibrium value x0. The
parameter x could be e.g. the volume of the energy of a subsystem of the
isolated system considered.

One refers to a process or variation as virtual – that is, possible in principle
– if it is permitted by the conditions of a system. An inhomogeneous distri-
bution of the energies of the subsystems with constant total energy would,
to be sure, not occur spontaneously, but it is possible. In equilibrium, the
entropy is maximal with respect to all virtual processes.

We now consider the free enthalpy or Gibbs’ free energy,

G = E − TS + PV , (3.6.37)

which we define with Eq. (3.6.37) for non-equilibrium states just as for equi-
librium states. For the changes in such states, we find from (3.6.36a) that the
inequality

dG ≤ −SdT + V dP (3.6.38a)

holds. For the case that T and P are held constant, it follows from (3.6.38a)
that

dG ≤ 0 for T and P fixed, (3.6.38b)

i.e. the Gibbs’ free energy G tends towards a minimum. In the neighborhood
of the minimum (Fig. 3.19), we have for a virtual (in thought only) variation

δG = G(x0 + δx) − G(x0) =
1
2
G′′(x0)(δx)2 . (3.6.39)



122 3. Thermodynamics

Fig. 3.18. The entropy as a function
of a parameter x, with the equilibrium
value x0.

Fig. 3.19. The free enthalpy as a
function of a parameter.

The first-order terms vanish, therefore in first order we find for δx:

δG = 0 for T and P fixed.9 (3.6.38c)

One terms this condition stationarity. Since G is minimal at x0, we find

G′′(x0) > 0 . (3.6.40)

Analogously, one can show for the free energy (Helmholtz free energy) F =
E − TS and for the enthalpy H = E + PV that:

dF ≤ −SdT − PdV (3.6.41a)

and

dH ≤ TdS + V dP . (3.6.42a)

These potentials also tend towards minimum values at equilibrium under the
condition that their natural variables are held constant:

dF ≤ 0 for T and V fixed (3.6.41b)

and

dH ≤ 0 for S and P fixed . (3.6.42b)

As conditions for equilibrium, it then follows that

δF = 0 for T and V fixed (3.6.41c)

and

δH = 0 for S and P fixed . (3.6.42c)

9 This condition plays an important role in physical chemistry, since in chemical
processes, the pressure and the temperature are usually fixed.
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∗3.6.5 Thermodynamic Inequalities Derived from Maximization of
the Entropy

We consider a system whose energy is E and whose volume is V . We decom-
pose this system into two equal parts and investigate a virtual change of the
energy and the volume of subsystem 1 by δE1 and δV1. Correspondingly, the
values for subsystem 2 change by −δE1 and −δV1. The overall entropy before
the change is

S(E, V ) = S1

(
E

2
,
V

2

)
+ S2

(
E

2
,
V

2

)
. (3.6.43)

Therefore, the change of the entropy is given by

δS = S1

(
E

2
+ δE1,

V

2
+ δV1

)
+ S2

(
E

2
− δE1,

V

2
− δV1

)
− S(E, V )

=
(

∂S1

∂E1
− ∂S2

∂E2

)
δE1 +

(
∂S1

∂V1
− ∂S2

∂V2

)
δV1

+
1
2

(
∂2S1

∂E2
1

+
∂2S2

∂E2
2

)
(δE1)

2 +
1
2

(
∂2S1

∂V 2
1

+
∂2S2

∂V 2
2

)
(δV1)

2

+
(

∂2S1

∂E1∂V1
+

∂2S2

∂E2∂V2

)
δE1δV1 + . . .

(3.6.44)

From the stationarity of the entropy, δS = 0, it follows that the terms which
are linear in δE1 and δV1 must vanish. This means that in equilibrium the
temperature T and the pressure P of the subsystems must be equal

T1 = T2 , P1 = P2 ; (3.6.45a)

this is a result that is already familiar to us from equilibrium statistics.
If we permit also virtual variations of the particle numbers, δN1 and

−δN1, in the subsystems 1 and 2, then an additional term enters the second
line of (3.6.44):

(
∂S1
∂N1

− ∂S2
∂N2

)
δN1; and one obtains as an additional condition

for equilibrium the equality of the chemical potentials:

µ1 = µ2 . (3.6.45b)

Here, the two subsystems could also consist of different phases (e.g. solid and
liquid).

We note that the second derivatives of S1 and S2 in (3.6.44) are both
to be taken at the values E/2, V/2 and they are therefore equal. In the
equilibrium state, the entropy is maximal, according to (3.6.36b). From this
it follows that the coefficients of the quadratic form (3.6.44) obey the two
conditions
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∂2S1

∂E2
1

=
∂2S2

∂E2
2

≤ 0 (3.6.46a)

and

∂2S1

∂E2
1

∂2S1

∂V 2
1

−
(

∂2S1

∂E1∂V1

)2

≥ 0 . (3.6.46b)

We now leave off the index 1 and rearrange the left side of the first condition:

∂2S

∂E2
=

(
∂ 1

T

∂E

)

V

= − 1
T 2CV

. (3.6.47a)

The left side of the second condition, Eq. (3.6.46b), can be represented by a
Jacobian, and after rearrangement,

∂
(

∂S
∂E , ∂S

∂V

)

∂ (E, V )
=

∂
(

1
T , P

T

)

∂ (E, V )
=

∂
(

1
T , P

T

)

∂ (T, V )
∂ (T, V )
∂ (E, V )

= − 1
T 3

(
∂P

∂V

)

T

1
CV

=
1

T 3V κT CV
.

(3.6.47b)

If we insert the expressions (3.6.47a,b) into the inequalities (3.6.46a) and
(3.6.46b), we obtain

CV ≥ 0 , κT ≥ 0 , (3.6.48a,b)

which expresses the stability of the system. When heat is given up, the system
becomes cooler. On compression, the pressure increases.

Stability conditions of the type of (3.6.48a,b) are expressions of Le Chate-
lier’s principle: When a system is in a stable equilibrium state, every sponta-
neous change in its parameter leads to reactions which drive the system back
towards equilibrium.

The inequalities (3.6.48a,b) were already derived in Sect. 3.3 on the basis
of the positivity of the mean square deviations of the particle number and
the energy. The preceding derivation relates them within thermodynamics to
the stationarity of the entropy. The inequality CV ≥ 0 guarantees thermal
stability. If heat is transferred to part of a system, then its temperature
increases and it releases heat to its surroundings, thus again decreasing its
temperature. If its specific heat were negative, then the temperature of the
subsystem would decrease on input of heat, and more heat would flow in from
its surroundings, leading to a further temperature decrease. The least input of
heat would set off an instability. The inequality κT ≥ 0 guarantees mechanical
stability. A small expansion of the volume of a region results in a decrease in
its pressure, so that the surroundings, at higher pressure, compress the region
again. If however κT < 0, then the pressure would increase in the region and
the volume element would continue to expand.
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3.7 Cyclic Processes

The analysis of cyclic processes played an important role in the historical
development of thermodynamics and in the discovery of the Second Law of
thermodynamics. Even today, their understanding is interesting in principle
and in addition, it has eminent practical significance. Thermodynamics makes
statements concerning the efficiency of cyclic processes (periodically repeating
processes) of the most general kind, which are of importance both for heat
engines and thus for the energy economy, as well as for the energy balance of
biological systems.

3.7.1 General Considerations

In cyclic processes, the working substance, i.e. the system, returns at intervals
to its initial state (after each cycle). For practical reasons, in the steam engine,
and in the internal combustion engine, the working substance is replenished
after each cycle. We assume that the process takes place quasistatically; thus,
we can characterize the state of the system by two thermodynamic variables,
e.g. P and V or T and S. The process can be represented as a closed curve
in the P -V or the T -S plane (Fig. 3.20).

Fig. 3.20. A cyclic process:
(a) in the P -V diagram; (b) in
the T -S diagram

The work which is performed during one cycle is given by the line integral
along the closed curve

W = −W =
∮

PdV = A , (3.7.1)

which is equal to the enclosed area A within the curve representing the cyclic
process in the P -V diagram.

The heat taken up during one cycle is given by

Q =
∮

TdS = A . (3.7.2)

Since the system returns to its initial state after a cycle, thus in particular
the internal energy of the working substance is unchanged, it follows from
the principle of conservation of energy that

Q = W . (3.7.3)



126 3. Thermodynamics

The heat taken up is equal to the work performed on the surroundings. The
direction of the cyclic path and the area in the P -V and T -S diagrams are
thus the same. When the cyclic process runs in a clockwise direction (right-
handed process), then

⃝∨ Q = W > 0 (3.7.4a)

and one refers to a work engine. In the case that the process runs counter-
clockwise (left-handed process), we have

⃝∨ Q = W < 0 (3.7.4b)

and the machine acts as a heat pump or a refrigerator.

3.7.2 The Carnot Cycle

The Carnot cycle is of fundamental importance; its P -V and T -S diagrams
are shown in Fig. 3.21.

We initially discuss the process which runs clockwise, i.e. the work en-
gine. The starting point is point A in the diagram. The cycle is divided into
four operations: an isothermal expansion, an adiabatic expansion, an isother-
mal compression, and an adiabatic compression. The system is alternately
connected to heat baths at temperatures T2 and T1, where T2 > T1, and in
between it is insulated. The motion of the piston is shown in Fig. 3.22.

Fig. 3.21. A Carnot
cycle in (a) the P -V di-
agram and (b) the T -S
diagram

Fig. 3.22. The se-
quence of the Carnot
cycle
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1. Isothermal expansion: the system is brought into contact with the warmer
heat bath at the temperature T2. The quantity of heat

Q2 = T2(S2 − S1) (3.7.5a)

is taken up from the bath, while at the same time, work is performed on the
surroundings.

2. Adiabatic expansion: the system is thermally insulated. Through an
adiabatic expansion, work is performed on the outer world and the working
substance cools from T2 to the temperature T1.

3. Isothermal compression: the working substance is brought into thermal
contact with the heat bath at temperature T1 and through work performed
on it by the surroundings, it is compressed. The quantity of heat “taken up”
by the working substance

Q1 = T1(S1 − S2) < 0 (3.7.5b)

is negative. That is, the quantity |Q1| of heat is given up to the heat bath.
4. Adiabatic compression: employing work performed by the outside

world, the now once again thermally insulated working substance is com-
pressed and its temperature is thereby increased to T2.

After each cycle, the internal energy remains the same; therefore, the total
work performed on the surroundings is equal to the quantity of heat taken
up by the system, Q = Q1 + Q2; thus

W = Q = (T2 − T1)(S2 − S1) . (3.7.5c)

The thermal efficiency (= work performed/heat taken up from the warmer
heat bath) is defined as

η =
W
Q2

. (3.7.6a)

For the Carnot machine, we obtain

ηC = 1 − T1

T2
, (3.7.6b)

where the index C stands for Carnot. We see that ηC < 1. The general
validity of (3.7.6a) cannot be too strongly emphasized; it holds for any kind
of working substance. Later, we shall show that there is no cyclic process
whose efficiency is greater than that of the Carnot cycle.

The Inverse Carnot Cycle
Now, we consider the inverse Carnot cycle, in which the direction of the
operations is counter-clockwise (Fig. 3.23). In this case, for the quantities of
heat taken up from baths 2 and 1, we find
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Fig. 3.23. The inverse Carnot cycle

Q2 = T2(S1 − S2) < 0
Q1 = T1(S2 − S1) > 0 .

(3.7.7a,b)

The overall quantity of heat taken up by the system, Q, and the work per-
formed on the system, W , are then given by

Q = (T1 − T2)(S2 − S1) = −W < 0 . (3.7.8)

Work is performed by the outside world on the system. The warmer reservoir
is heated further, and the cooler one is cooled. Depending on whether the
purpose of the machine is to heat the warmer reservoir or to cool the colder
one, one defines the heating efficiency or the cooling efficiency.
The heating efficiency (= the heat transferred to bath 2/work performed) is

ηH
C =

−Q2

W =
T2

T2 − T1
> 1 . (3.7.9)

Since ηH
C > 1, this represents a more efficient method of heating than the

direct conversion of electrical energy or other source of work into heat (this
type of machine is called a heat pump). The formula however also shows
that the use of heat pumps is reasonable only as long as T2 ≈ T1; when the
temperature of the heat bath (e.g. the Arctic Ocean) T1 ≪ T2, it follows that
|Q2| ≈ |W|, i.e. it would be just as effective to convert the work directly into
heat.
The cooling efficiency (= the quantity of heat removed from the cooler reser-
voir/work performed) is

ηK
C =

Q1

W =
T1

T2 − T1
. (3.7.10)

For large-scale technical cooling applications, it is expedient to carry out the
cooling process in several steps, i.e. as a cascade.

3.7.3 General Cyclic Processes

We now take up a general cyclic process (Fig. 3.24), in which heat exchange
with the surroundings can take place at different temperatures, not neces-
sarily only at the maximum and minimum temperature. We shall show, that
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Fig. 3.24. The general cyclic process Fig. 3.25. The idealized (full curve)
and real (dashed curve) sequence of
the Carnot cycle

the efficiency η obeys the inequality

η ≤ ηC , (3.7.11)

where ηC the efficiency of a Carnot cycle operating between the two extreme
temperatures.

We decompose the process into sections with heat uptake (δQ > 0) and
heat output (δQ < 0), and also allow irreversible processes to take place

W = Q =
∫
⃝∨ δQ =

∫

δQ>0

δQ +
∫

δQ<0

δQ = Q2

>0

+ Q1

<0

.

It follows from the Second Law that

0 ≥
∫
⃝∨

δQ

T
=

∫

δQ>0

δQ

T
+

∫

δQ<0

δQ

T
≥ Q2

T2
+

Q1

T1
. (3.7.12)

Here, for the second inequality sign, we have used the inequality T1 ≤ T ≤ T2.
We thus obtain

Q1

Q2
≤ −T1

T2
. (3.7.13)

From this, we find for the efficiency of this process the inequality

η =
Q1 + Q2

Q2
= 1 +

Q1

Q2
≤ 1 − T1

T2
= ηC , (3.7.14)

whereby (3.7.11) is proven. The efficiency η is only then equal to that of
the Carnot cycle if the heat transfer occurs only at the minimum and the
maximum temperatures and if the process is carried out reversibly (the second
and first inequality signs in Eq. (3.7.12).

In the case of the real Carnot machine, also, there must be a small dif-
ference between the internal and the external pressure, in order to cause the
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process to take place at all (see Fig. 3.25). We recall the considerations at the
end of Sect. 3.5, which referred to Fig. 3.9. This leads to the result that W is
given by the area enclosed by the dashed curve. Therefore, the efficiency of
the real Carnot machine is somewhat less than the maximum value given by
(3.7.6b). Physics sets a universal limit here to the efficiency of industrially
applicable heat engines, but also to that of biological systems.

3.8 Phases of Single-Component Systems

The different chemical substances within a system are called components. In
the case of a single chemical substance, in contrast, one refers to a single-
component system or a pure system. The components of a system can occur in
different physical forms (structures), which are termed phases. In this section,
we consider single-component systems.

3.8.1 Phase-Boundary Curves

Every substance can occur in several different phases: solid, liquid, gaseous.
The solid and the liquid phases can further split into other phases with dif-
fering physical properties. Under which conditions can two phases occur in
equilibrium with each other? The condition for equilibrium, (2.7.4), or also
(3.6.45a,b) states that T , P and µ must be equal. Let µ1(T, P ) and µ2(T, P, )
be the chemical potentials of the first and the second phase; then we have

µ1(T, P ) = µ2(T, P ) . (3.8.1)

From this, we obtain the phase boundary curve

P = P0(T ) . (3.8.2)

The coexistence of two phases is possible along a curve in the P -T diagram.
Examples of phase boundaries are (see Fig 3.26): solid–liquid: the melting
curve; solid–gaseous: the sublimation curve; liquid–gaseous: the vapor pres-
sure curve; also called the evaporation curve. Fig. 3.26 shows a phase diagram
which is typical of most simple substances.

We first consider the process of evaporation on isobaric heating of the
liquid, e.g. at the pressure P0 in Fig. 3.27a. In the region 1, only the liquid
is present; at a temperature T (P0) (point 2), the liquid evaporates, and in
region 3, the substance is present in the gas phase.

For a complete characterization of the physical situation on the transition
line, we represent the evaporation process at constant pressure P0 in the T -V
diagram (Fig. 3.27b). In region 1, only liquid is present, and an input of heat
leads to an increase of the temperature and thermal expansion, until T (P0) is
reached. Further input of heat then goes into the conversion of liquid into gas
(region 2). Only when all of the liquid has evaporated does the temperature
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Fig. 3.26. The phases of a simple sub-
stance in the P -T diagram

Fig. 3.27. The evaporation process: (a) P -T diagram: the vapor-pressure curve;
(b) T -V diagram: coexistence region, bounded by the coexistence curve (solid line),
isobaric heating (dashed or dot-dashed)

once again increase (region 3). In the horizontal part of isobar 2, gas and
liquid are present as the fractions cG and cL,

cG + cL = 1 . (3.8.3)

The overall volume is

V = cGVG + cLVL = cGVG + (1 − cG)VL , (3.8.4)

where VG and VL are the volumes of the pure gas and liquid phases at the
evaporation temperature. It follows that

cG =
V − VL

VG − VL
. (3.8.5)

If we consider the evaporation process at a different pressure, we find a simi-
lar behavior. The region of horizontal isobars is called the coexistence region,
since here the liquid coexists with the gas. This region is bounded by the
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coexistence curve. When the pressure is increased, the difference between
the liquid and the gas phase becomes less and the coexistence region nar-
rows in the T -V diagram. The two branches of the coexistence curve join
at the critical point, whose temperature and pressure Tc and Pc are called
the critical temperature and critical pressure. For water, Tc = 647.3 K and
Pc = 221.36 bar. The critical temperatures of some other substances are col-
lected in Table I.4. At pressures above the critical pressure, there is no phase
transition between a more dense liquid and a less dense gas phase. In this
range, there is only a fluid phase which varies continuously with tempera-
ture. These facts are more clearly represented in a three-dimensional P -V -T
diagram.

At temperatures below Tc, the liquid phase can be reached by isothermal
compression. At temperatures above Tc, there is no phase transition from the
gaseous to the liquid phase. This fact was first demonstrated with substances
which are gaseous under normal conditions, O2, N2, . . ., in gas compression
experiments at extremely high pressures by Natterer10 (cf. the values of Tc in
Table I.4). The critical state was first investigated by Andrews11 using CO2.

In Fig. 3.28, the three-dimensional P -V -T diagram for a typical simple
substance like CO2 is drawn. The surface defined by P = P (V, T ) is called
the surface of the equation of state or the PVT surface. The regions of co-
existence of liquid-gas, solid-liquid, and solid-gas are clearly recognizable.
This substance contracts upon solidifying. In Fig. 3.28, the projections on
the P -T plane (i.e. the phase diagram) and on the P -V plane are also shown.
The numerical values for CO2 are given in the P -T diagram.

The situation already discussed for the liquid-gas transition is analogous
in the cases of sublimation and melting; however, for these phase transitions
there is no critical point. As can be seen from Figs. 3.26 and 3.28b, at the
triple point, the solid, liquid, and gas phases coexist. In Fig. 3.28a,c, where
the surface of the equation of state is plotted with respect to the extensive
variable V , the triple point becomes a triple line (see Sect. 3.8.4).

In Fig. 3.29, the phase diagram is also shown for a case in which the
substance expands upon solidifying, as is the case for water.

Notes:

a) It is usual to denote a gas in the neighborhood of the vapor-pressure curve as
vapor. Vapors are simply gases which deviate noticeably from the state of an ideal
gas, except at very low pressures. A vapor which is in equilibrium with its liquid is
termed ‘saturated’.

b) In the technical literature, the vapor-pressure curve is also called the evap-
oration curve, and the coexistence region is called the saturation region, while the
coexistence curve is called the saturation curve. On evaporation of a liquid, there
are also droplets of liquid floating in the vapor within the saturation region. These

10 I. Natterer, Sitzungsberichte der kaiserlichen Akademie der Wissenschaften,
mathem.-naturwiss. Classe, Vol. V, 351 (1850) and ibid., Vol. VI, 557 (1851);
and Sitzungsbericht der Wien. Akad. XII, 199 (1854)

11 Th. Andrews, Philos. Trans. 159, 11, 575 (1869)
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Fig. 3.28. CO2: (a) The surface of the equation of state P = P (V, T ) of a substance
which contracts on freezing. The isotherms are shown as solid curves and the isobars
are dashed. (b) The P -T diagram (phase diagram). Here, the numerical values for
CO2 are given; the drawing is however not to scale. (c) The P -V diagram.

droplets are called wet vapor. This ‘moist vapor’ vanishes only when the water
droplets evaporate, leaving a dry saturated vapor (VG in Fig. 3.27b). The expres-
sion “saturated” is due to the fact that the least cooling of the vapor leads to the
formation of water droplets, i.e. the vapor begins to condense. Vapor (gas) in the
pure gas phase (region 3 in Fig. 3.27) is also termed ‘superheated vapor’. It is in-
correct to call clouds of floating solid or liquid particles ‘vapor’ or ‘steam’ (e.g. a
“steaming” locomotive). Such clouds are correctly called fog or condensation clouds.
Water vapor is invisible.

c) The right-hand branch of the coexistence curve (see Fig. 3.27b) is also called
the condensation boundary and the left-hand branch the boiling boundary . Coming
from the gas phase, the first liquid droplets form at the condensation boundary, and
coming from the liquid phase, the first gas bubbles form at the boiling boundary.

d) To elucidate the concept of vapor pressure, we consider the following demon-
stration: take a cylindrical vessel containing a liquid, e.g. water, in its lower section.
A movable, airtight piston is initially held directly above the water surface. If the
piston is raised, keeping the temperature constant, then just enough water will
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Fig. 3.29. H2O: (a) The surface of the equation of state of a substance which
expands on freezing. (b) The P -T diagram (phase diagram). Here, the numerical
values for H2O are shown. The diagram is however not drawn to scale. (c) The
P -V diagram.

evaporate to produce a certain pressure in the free space which opens above the
water surface, independent of the volume of this space. The vapor is saturated
within this space. If the piston is again lowered, the vapor is not compressed, but
rather just enough of it condenses into the liquid phase to keep the vapor phase
saturated;cf. the isotherm in Fig. 3.29a.

e) The pressure (more precisely, the partial pressure; see p. 155) of the saturated
vapor above its liquid is nearly independent of whether other, different gases are
present above the liquid, e.g. air. Evaporation in this situation will be treated in
more detail later in Sect. 3.9.4.1.

3.8.2 The Clausius–Clapeyron Equation

3.8.2.1 Derivation

According to the discussion of the preceding section, in general the volume
and the entropy of the substance change upon passing through a phase bound-
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ary curve. The Clausius–Clapeyron equation gives a relation between this
change and the slope of the phase-boundary curve. These quantities are re-
lated to each other because the equality of the chemical potentials (3.8.1)
also implies the equality of the derivatives of the chemical potentials along
the phase boundary curve, and the latter can be expressed in terms of the
(specific) volumes and entropies.

In order to derive the Clausius–Clapeyron equation, we insert into the
equilibrium condition (3.8.1) its solution, (3.8.2), i.e. the phase-boundary
curve P0(T ):

µ1(T, P0(T )) = µ2(T, P0(T )) ,

and then take the derivative with respect to T ,
(

∂µ1

∂T

)

P

+
(

∂µ1

∂P

)

T

dP0

dT
=

(
∂µ2

∂T

)

P

+
(

∂µ2

∂P

)

T

dP0

dT
. (3.8.6)

We recall the two thermodynamic relations dG = −SdT + V dP + µdN and
G = µ(T, P )N , which are valid within each of the two homogeneous phases,
from which it follows that

S = −
(

∂µ

∂T

)

P

N , V =
(

∂µ

∂P

)

T

N . (3.8.7)

Applying this to the phases 1 and 2 with the chemical potentials µ1 and µ2,
we obtain from (3.8.6)

dP0

dT
=

∆S

∆V
, (3.8.8)

where the entropy and volume changes

∆S = S2 − S1 and ∆V = V2 − V1 (3.8.9a,b)

have been defined. Here, S1,2 and V1,2 are the entropies and volumes of the
substance consisting of N molecules in the phases 1 and 2 along the boundary
curve. ∆S and ∆V are the entropy and volume changes as a result of the
phase transition of the whole substance. The Clausius–Clapeyron equation
(3.8.8) expresses the slope of the phase-boundary curve in terms of the ratio
of the entropy and volume changes in the phase transition. The latent heat
QL is the quantity of heat which is required to convert the substance from
phase 1 to phase 2:

QL = T∆S . (3.8.10)

Inserting this definition into (3.8.8), we obtain the Clausius–Clapeyron equa-
tion in the following form:

dP0

dT
=

QL

T∆V
. (3.8.11)
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Remarks:

(i) Frequently, the right-hand side of the Clausius–Clapeyron equation,
(3.8.8) or (3.8.11), is expressed in terms of the entropies (latent heats) and
volumes of 1 g or 1 Mole of a substance.
(ii) In the transition from the low-temperature phase (1) to the high-
temperature phase (2), ∆V can be either positive or negative; however, it
always holds that ∆S > 0. In this connection we recall the process of isobaric
heating discussed in Sect. 3.8.1. In the coexistence region, the temperature
T remains constant, since the heat put into the system is consumed by the
phase transition. From (3.8.10), QL = T∆S > 0, it follows that ∆S > 0. This
can also be read off Fig. 3.34b, whose general form results from the concavity
of G and

(
∂G
∂T

)
P

= −S < 0.

3.8.2.2 Example Applications of the Clausius–Clapeyron
Equation:

We now wish to give some interesting examples of the application of the
Clausius–Clapeyron equation.

(i) Liquid → gaseous: since, according to the previous considerations, ∆S >
0 and the specific volume of the gas is larger than that of the liquid, ∆V > 0,
it follows that dP0

dT > 0, i.e. the boiling temperature increases with increasing
pressure (Table I.5 and Figs. 3.28(b) and 3.29(b)).
Table I.6 contains the heats of vaporization of some substances at their boiling
points under standard pressure, i.e. 760 Torr. Note the high value for water.
(ii) Solid → liquid: in the transition to the high-temperature phase, we have
always ∆S > 0. Usually, ∆V > 0; then it follows that dT

dP > 0. In the
case of water, ∆V < 0 and thus dT

dP < 0. The fact that ice floats on water
implies via the Clausius–Clapeyron equation that its melting point decreases
on increasing the pressure (Fig. 3.29).
Note: There are a few other substances which expand on melting, e.g. mercury
and bismuth. The large volume increase of water on melting (9.1%) is related to
the open structure of ice, containing voids (the bonding is due to the formation
of hydrogen bonds between the oxygen atoms, cf. Fig. 3.30). Therefore, the liquid
phase is more dense. Above 4◦C above the melting point Tm, the density of water
begins to decrease on cooling (water anomaly) since local ordering occurs already
at temperatures above Tm.
While as a rule a solid material sinks within its own liquid phase (melt), ice floats
on water, in such a way that about 9/10 of the ice is under the surface of the water.
This fact together with the density anomaly of water plays a very important role
in Nature and is fundamental for the existence of life on the Earth.
The volume change upon melting if ice is VL − VS = (1.00 − 1.091) cm3/g =
−0.091 cm3g−1. The latent heat of melting per g is Q = 80 cal/g = 80 ×
42.7 atm cm3/g. From this, it follows that the slope of the melting curve of ice
near 0◦C is

dP
dT

= − 80 ×42.7
273 ×0.091

atm
K

= −138 atm/K . (3.8.12)
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Fig. 3.30. The hexagonal structure of
ice. The oxygen atoms are shown; they are
connected to four neighbors via hydrogen
bonds

The melting curve as a function of the temperature is very steep. It requires a pres-
sure increase of 138 atm to lower the melting temperature by 1 K. This “freezing-
point depression”, small as it is, enters into a number of phenomena in daily life.
If a piece of ice at somewhat below 0◦ C is placed under increased pressure, it at
first begins to melt. The necessary heat of melting is taken from the ice itself, and
it therefore cools to a somewhat lower temperature, so that the melting process is
interrupted as long as no more heat enters the ice from its surroundings. This is the
so-called regelation of ice (= the alternating melting and freezing of ice caused by
changes in its temperature and pressure). Pressing together snow, which consists
of ice crystals, to make a snowball causes the snow to melt to a small extent due
to the increased pressure. When the pressure is released, it freezes again, and the
snow crystals are glued together. The slickness of ice is essentially due to the fact
that it melts at places where it is under pressure, so that between a sliding object
and the surface of the ice there is a thin layer of liquid water, which acts like a
lubricant, explaining e.g. the gliding motion of an ice skater. Part of the plastic-
ity of glacial ice and its slow motion, like that of a viscous liquid, are also due to
regelation of the ice. The lower portions of the glacier become movable as a result
of the pressure from the weight of the ice above, but they freeze again when the
pressure is released.

(iii) 3He, liquid → solid: the phase diagram of 3He is shown schematically
in Fig. 3.31. At low temperatures, there is an interval where the melting
curve falls. In this region, in the transition from liquid to solid (see the ar-
row in Fig. 3.31a), dP

dT < 0; furthermore, it is found experimentally that the
volume of the solid phase is smaller than that of the liquid (as is the usual
case), ∆V < 0. We thus find from the Clausius–Clapeyron equation (3.8.8)
∆S > 0, as expected from the general considerations in Remark (ii).
The Pomeranchuk effect: The fact that within the temperature interval
mentioned above, the entropy increases on solidification is called the Pomer-
anchuk effect. It is employed for the purpose of reaching low temperatures
(see Fig. 3.31b). Compression (dashed line) of liquid 3He leads to its solidifi-
cation and, because of ∆S > 0, to the uptake of heat. This causes a decrease
in the temperature of the substance. Compression therefore causes the phase
transition to proceed along the melting curve (see arrow in Fig. 3.31b).
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Fig. 3.31. The phase diagram of 3He. (a) Isobaric solidification in the range where
dP
dT < 0. (b) Pomeranchuk effect

This effect can be used to cool 3He; with it, temperatures down to 2×10−3 K
can be attained. The Pomeranchuk effect, however, has nearly no practical
significance in low-temperature physics today.The currently most important
methods for obtaining low temperatures are 3He-4He dilution (2×10−3−5×
10−3 K) and adiabatic demagnetization of copper nuclei (1.5 × 10−6 − 12 ×
10−6 K), where the temperatures obtained are shown in parentheses.

(iv) The sublimation curve: We consider a solid (1), which is in equilibrium
with a classical, ideal gas (2). For the volumes of the two phases, we have
V1 ≪ V2; then it follows from the Clausius–Clapeyron equation (3.8.11) that

dP

dT
=

QL

TV2
,

where QL represents the latent heat of sublimation. For V2, we insert the
ideal gas equation,

dP

dT
=

QLP

kNT 2
. (3.8.13)

This differential equation can be immediately integrated under the assump-
tion that QL is independent of temperature:

P = P0 e−q/kT , (3.8.14)

where q = QL

N is the heat of sublimation per particle. Equation (3.8.14) yields
the shape of the sublimation curve under the assumptions used.
The vapor pressure of most solid materials is rather small, and in fact in most
cases, no observable decrease with time in the amount of these substances due to
evaporation is detected. Only a very few solid materials exhibit a readily observable
sublimation and have as a result a noticeable vapor pressure, which increases with
increasing temperature; among them are some solid perfume substances. Numerical
values for the vapor pressure over ice and iodine are given in Tables I.8 and I.9.
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At temperatures well below 0◦ C and in dry air, one can observe a gradual disap-
pearance of snow, which is converted directly into water vapor by sublimation. The
reverse phenomenon is the direct formation of frost from water vapor in the air,
or the condensation of snow crystals in the cool upper layers of the atmosphere. If
iodine crystals are introduced into an evacuated glass vessel and a spot on the glass
wall is cooled, then solid iodine condenses from the iodine vapor which forms in the
vessel. Iodine crystals which are left standing in the open air, napthalene crystals
(“moth balls”), and certain mercury salts, including “sublimate” (HgCl2), among
others, gradually vanish due to sublimation.

3.8.3 The Convexity of the Free Energy and the Concavity
of the Free Enthalpy (Gibbs’ Free Energy)

We now return again to the gas-liquid transition, in order to discuss some
additional aspects of evaporation and the curvature of the thermodynamic
potentials. The coexistence region and the coexistence curve are clearly vis-
ible in the T -V diagram. Instead, one often uses a P -V diagram. From the
projection of the three-dimensional P -V -T diagram, we can see the shape
drawn in Fig. 3.32. From the shape of the isotherms in the P -V diagram,
the free energy can be determined analytically and graphically. Owing to(

∂F
∂V

)
T

= −P , it follows for the free energy that

Fig. 3.32. The isotherms PT (V ) and the
free energy as a function of the volume dur-
ing evaporation; the thin line is the coexis-
tence curve



140 3. Thermodynamics

Fig. 3.33. The determination of the
free enthalpy from the free energy by
construction

F (T, V ) − F (T, V0) = −
V∫

V0

dV ′PT (V ′) . (3.8.15)

One immediately sees that the isotherms in Fig. 3.32 lead qualitatively to the
volume dependence of the free energy which is drawn below. The free energy
is convex (curved upwards). The fundamental cause of this is the fact that
the compressibility is positive:

∂2F

∂V 2
= −∂P

∂V
∝ 1

κT
> 0 ,

while
(

∂2F

∂T 2

)

V

= −
(

∂S

∂T

)

V

∝ −CV < 0 . (3.8.16)

These inequalities are based upon the stability relations proved previously,
(3.3.5, 3.3.6), and (3.6.48a,b).

The free enthalpy or Gibbs’ free energy G(T, P ) = F + PV can be con-
structed from F (T, V ). Due to P = −

(
∂F
∂V

)
T
, G(T, P ) is obtained from

F (T, V ) by constructing a tangent to F (T, V ) with the slope −P (see
Fig. 3.33). The intersection of this tangent with the ordinate has the co-
ordinates

F (T, V ) − V

(
∂F

∂V

)

T

= F + V P = G(T, P ) . (3.8.17)

The result of this construction is drawn in Fig. 3.34.
The derivatives of the free enthalpy
(

∂G

∂P

)

T

= V and
(

∂G

∂T

)

P

= −S

yield the volume and the entropy. They are discontinuous at a phase tran-
sition, which results in a kink in the curves. Here, P0(T ) is the evaporation
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Fig. 3.34. The free enthalpy (Gibbs’ free energy) as a function of (a) the pressure
and (b) the temperature.

pressure at the temperature T , and T0(P ) is the evaporation temperature at
the pressure P . From this construction, one can also see that the free en-
thalpy is concave (Fig. 3.34). The curvatures are negative because κT > 0
and CP > 0. The signs of the slopes result from V > 0 and S > 0. It is
also readily seen from the figures that the entropy increases as a result of
a transition to a higher-temperature phase, and the volume decreases as a
result of a transition to a higher-pressure phase. These consequences of the
stability conditions hold quite generally. In the diagrams (3.34a,b), the terms
gas and liquid phases could be replaced by low-pressure and high-pressure or
high-temperature and low-temperature phases.

On melting, the latent heat must be added to the system, on freezing (solidify-
ing), it must be removed. When heat is put into or taken out of a system at constant
pressure, it is employed to convert the solid phase to the liquid or vice versa. In the
coexistence region, the temperature remains constant during these processes. This
is the reason why in late Autumn and early Spring the temperature near the Earth
remains close to zero degrees Celsius, the freezing point of water.

3.8.4 The Triple Point

At the triple point (Figs. 3.26 and 3.35), the solid, liquid and gas phases
coexist in equilibrium. The condition for equilibrium of the gaseous, liquid
and solid phases, or more generally for three phases 1, 2 and 3, is:

µ1(T, P ) = µ2(T, P ) = µ3(T, P ) , (3.8.18)

and it determines the triple point pressure and the triple point temperature
Pt, Tt.

In the P -T diagram, the triple point is in fact a single point. In the
T -V diagram it is represented by the horizontal line drawn in Fig. 3.35b.
Along this line, the three phases are in equilibrium. If the phase diagram is
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Fig. 3.35. The triple point (a) in a P -T diagram (the phases are denoted by 1, 2,
3. The coexistence regions are marked as 3-2 etc., i.e. denoting the coexistence of
phase 3 and phase 2 on the two branches of the coexistence curve.); (b) in a T -v
diagram; and (c) in a v-s diagram

represented in terms of two extensive variables, such as e.g. by V and S as
in Fig. 3.35c, then the triple point becomes a triangular area as is visible in
the figure. At each point on this triangle, the states of the three phases 1, 2,
and 3 corresponding to the vertices of the triangle coexist with one another.

We now want to describe this more precisely. Let s1, s2 and s3 be the
entropies per particle in the phases 1, 2 and 3 just at the triple point,
si = −

(
∂µi

∂T

)

P

∣∣
Tt,Pt

, and correspondingly, v1, v2, v3 are the specific volumes

vi =
(

∂µi

∂P

)

T

∣∣
Tt,Pt

. The points (si, vi) are shown in the s-v diagram as
points 1, 2, 3. Clearly, every pair of phases can coexist with each other;
the lines connecting the points 1 and 2 etc. yield the triangle with vertices 1,
2, and 3. The coexistence curves of two phases, e.g. 1 and 2, are found in the
s-v diagram from si(T ) = −

(
∂µi

∂T

)

P

∣∣
P0(T )

and vi(T ) =
(

∂µi

∂P

)

T

∣∣
P0(T )

with
i = 1 and 2 along with the associated phase-boundary curve P = P0(T ).
Here, the temperature is a parameter; points on the two branches of the co-
existence curves with the same value of T can coexist with each other. The
diagram in 3.35c is only schematic. The (by no means parallel) lines within
the two-phase coexistence areas show which of the pairs of single-component
states can coexist with each other on the two branches of the coexistence
line.

Now we turn to the interior of the triangular area in Fig. 3.35c. It is
immediately clear that the three triple-point phases 1, 2, 3 can coexist with
each other at the temperature Tt and pressure Pt in arbitrary quantities. This
also means that a given amount of the substance can be distributed among
these three phases in arbitrary fractions c1, c2, c3 (0 ≤ ci ≤ 1)

c1 + c2 + c3 = 1 , (3.8.19a)

and then will have the total specific entropy

c1s1 + c2s2 + c3s3 = s (3.8.19b)
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and the total specific volume

c1v1 + c2v2 + c3v3 = v . (3.8.19c)

From (3.8.19a,b,c), it follows that s and v lie within the triangle in Fig. 3.35c.
Conversely, every (heterogeneous) equilibrium state with the total specific
entropy s and specific volume v can exist within the triangle, where c1, c2, c3

follow from (3.8.19a–c). Eqns. (3.8.19a–c) can be interpreted by the following
center-of-gravity rule: let a point (s, v) within the triangle in the v-s diagram
(see Fig. 3.35c) be given. The fractions c1, c2, c3 must be chosen in such a
way that attributing masses c1, c2, c3 to the vertices 1, 2, 3 of the triangle
leads to a center of gravity at the position (s, v). This can be immediately
understood if one writes (3.8.19b,c) in the two-component form:

c1

(
v1

s1

)
+ c2

(
v2

s2

)
+ c3

(
v3

s3

)
=

(
v
s

)
. (3.8.20)

Remarks:

(i) Apart from the center-of-gravity rule, the linear equations can be solved
algebraically:

c1 =

∣∣∣∣∣∣

1 1 1
s s2 s3

v v2 v3

∣∣∣∣∣∣
∣∣∣∣∣∣

1 1 1
s1 s2 s3

v1 v2 v3

∣∣∣∣∣∣

, c2 =

∣∣∣∣∣∣

1 1 1
s1 s s3

v1 v v3

∣∣∣∣∣∣
∣∣∣∣∣∣

1 1 1
s1 s2 s3

v1 v2 v3

∣∣∣∣∣∣

, c3 =

∣∣∣∣∣∣

1 1 1
s1 s2 s
v1 v2 v

∣∣∣∣∣∣
∣∣∣∣∣∣

1 1 1
s1 s2 s3

v1 v2 v3

∣∣∣∣∣∣

.

(ii) Making use of the triple point gives a precise standard for a temperature
and a pressure, since the coexistence of the three phases can be verified
without a doubt. From Fig. 3.35c, it can also be seen that the triple point is
not a point as a function of the experimentally controllable parameters, but
rather the whole area of the triangle. The parameters which can be directly
varied from outside the system are not P and T , but rather the volume V
and the entropy S, which can be varied by performing work on the system or
by transferring heat to it. If heat is put into the system at the point marked
by a cross (Fig. 3.35c), then in the example of water, some ice would melt,
but the state would still remain within the triangle. This explains why the
triple point is insensitive to changes within wide limits and is therefore very
suitable as a temperature fixed point.

(iii) For water, Tt = 273.16 K and Pt = 4.58 Torr. As explained in Sect. 3.4,
the absolute temperature scale is determined by the triple point of water. In
order to reach the triple point, one simply needs to distill highly pure water
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Fig. 3.36. A triple-point cell: ice, wa-
ter, and water vapor are in equilibrium
with each other. A freezing mixture
in contact with the inner walls causes
some water to freeze there. It is then
replaced by the thermometer bulb, and
a film of liquid water forms on the in-
ner wall

into a container and to seal it off after removing all the air. One then has
water and water vapor in coexistence (coexistence region 1-2 in Fig. 3.35c).
Removing heat by means of a freezing mixture brings the system into the
triple-point range. As long as all three phases are present, the temperature
equals Tt (see Fig. 3.36).

3.9 Equilibrium in Multicomponent Systems

3.9.1 Generalization of the Thermodynamic Potentials

We consider a homogeneous mixture of n materials, or as one says in this
connection, components, whose particle numbers are N1, N2, . . . , Nn. We
first need to generalize the thermodynamic relations to this situation. To
this end, we refer to Chap. 2. Now, the phase-space volume and similarly
the entropy are functions of the energy, the volume, and all of the particle
numbers:

S = S(E, V, N1, . . . , Nn) . (3.9.1)

All the thermodynamic relations can be generalized to this case by replacing
N and µ by Ni and µi and summing over i. We define the chemical potential
of the ith material by

µi = −T

(
∂S

∂Ni

)

E,V,{Nk ̸=i}
(3.9.2a)

and, as before,

1
T

=
(

∂S

∂E

)

V,{Nk}
and

P

T
=

(
∂S

∂V

)

E,{Nk}
. (3.9.2b,c)
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Then for the differential of the entropy, we find

dS =
1
T

dE +
P

T
dV −

n∑

i=1

µi

T
dNi , (3.9.3)

and from it the First Law

dE = TdS − PdV +
n∑

i=1

µidNi (3.9.4)

for this mixture.
Die Gibbs–Duhem relation for homogeneous mixtures reads

E = TS − PV +
n∑

i=1

µiNi . (3.9.5)

It is obtained analogously to Sect. 3.1.3, by differentiating

αE = E(αS, αV, αN1, . . . , αNn) (3.9.6)

with respect to α. From (3.9.4) and (3.9.5), we find the differential form of
the Gibbs–Duhem relation for mixtures

−SdT + V dP −
n∑

i=1

Nidµi = 0 . (3.9.7)

It can be seen from this relation that of the n+2 variables (T, P, µ1, . . . , µn),
only n + 1 are independent.

The free enthalpy (Gibbs’ free energy) is defined by

G = E − TS + PV . (3.9.8)

From the First Law, (3.9.4), we obtain its differential form:

dG = −SdT + V dP +
n∑

i=1

µidNi . (3.9.9)

From (3.9.9), we can read off

S = −
(

∂G

∂T

)

P,{Nk}
, V =

(
∂G

∂P

)

T,{Nk}
, µi =

(
∂G

∂Ni

)

T,P,{Nk ̸=i}
.

(3.9.10)

For homogeneous mixtures, using the Gibbs–Duhem relation (3.9.5) we
find for the free enthalpy (3.9.8)

G =
n∑

i=1

µiNi . (3.9.11)
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Then we have

S = −
n∑

i=1

(
∂µi

∂T

)

P

Ni , V =
n∑

i=1

(
∂µi

∂P

)

T

Ni . (3.9.12)

The chemical potentials are intensive quantities and therefore depend only
on T , P and the n − 1 concentrations c1 = N1

N , . . . , cn−1 = Nn−1
N (N =∑n

i=1 Ni, cn = 1 − c1 − . . . − cn−1).
The grand canonical potential is defined by

Φ = E − TS −
n∑

i=1

µiNi . (3.9.13)

For its differential, we find using the First Law (3.9.4)

dΦ = −SdT − PdV −
n∑

i=1

Nidµi . (3.9.14)

For homogeneous mixtures, we obtain using the Gibbs–Duhem relation
(3.9.5)

Φ = −PV . (3.9.15)

The density matrix for mixtures depends on the total Hamiltonian and will
be introduced in Chap. 5.

3.9.2 Gibbs’ Phase Rule and Phase Equilibrium

We consider n chemically different materials (components), which can be in
r phases (Fig. 3.37) and between which no chemical reactions are assumed
to take place. The following equilibrium conditions hold:

Temperature T and pressure P must have uniform values in the whole
system. Furthermore, for each component i, the chemical potential must be
the same in each of the phases.

These equilibrium conditions can be derived directly by considering the
microcanonical ensemble, or also from the stationarity of the entropy.

Fig. 3.37. Equilibrium between 3 phases
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(i) As a first possibility, let us consider a microcanonical ensemble consist-
ing of n chemical substances, and decompose it into r parts. Calculating the
probability of a particular distribution of the energy, the volume and the par-
ticle numbers over these parts, one obtains for the most probable distribution
the equality of the temperature, pressure and the chemical potentials of each
component .
(ii) As a second possibility for deriving the equilibrium conditions, one can
start from the maximization of the entropy in equilibrium, (3.6.36b)

dS ≥ 1
T

(
dE + PdV −

n∑

i=1

µidNi

)
, (3.9.16)

and can then employ the resulting stationarity of the equilibrium state for
fixed E, V , and {Ni},

δS = 0 (3.9.17)

with respect to virtual variations. One can then proceed as in Sect. 3.6.5,
decomposing a system into two parts 1 and 2, and varying not only the
energy and the volume, but also the particle numbers [see (3.6.44)]:

δS =
(

∂S1

∂E1
− ∂S2

∂E2

)
δE1 +

(
∂S1

∂V1
− ∂S2

∂V2

)
δV1

+
∑

i

(
∂S1

∂Ni,1
− ∂S2

∂Ni,2

)
δNi,1 + . . . .

(3.9.18)

Here, Ni,1 (Ni,2) is the particle number of component i in the subsystem 1
(2).
From the condition of vanishing variation, the equality of the temperatures
and pressures follow:

T1 = T2 , P1 = P2 (3.9.19)

and furthermore ∂S1
∂Ni,1

= ∂S2
∂Ni,2

, i.e. the equality of the chemical potentials

µi,1 = µi,2 for i = 1, . . . , n . (3.9.20)

We have thus now derived the equilibrium conditions formulated at the
beginning of this section, and we wish to apply them to n chemical substances
in r phases (Fig. 3.37). In particular, we want to find out how many phases can
coexist in equilibrium. Along with the equality of temperature and pressure
in the whole system, from (3.9.20) the chemical potentials must also be equal,

µ(1)
1 = . . . = µ(r)

1 ,

. . . (3.9.21)
µ(1)

n = . . . = µ(r)
n .
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The upper index refers to the phases, and the lower one to the components.
Equations (3.9.21) represent all together n(r−1) conditions on the 2+(n−1)r
variables (T, P, c(1)

1 , . . . , c(1)
n−1, . . . , c

(r)
1 , . . . , c(r)

n−1).
The number of quantities which can be varied (i.e. the number of degrees of
freedom is therefore equal to f = 2 + (n − 1)r − n(r − 1):

f = 2 + n − r . (3.9.22)

This relation (3.9.22) is called Gibbs’ phase rule .
In this derivation we have assumed that each substance is present in all
r phases. We can easily relax this assumption. If for example substance 1
is not present in phase 1, then the condition on µ(1)

1 does not apply. The
particle number of component 1 then also no longer occurs as a variable in
phase 1. One thus has one condition and one variable less than before, and
Gibbs’ phase rule (3.9.22) still applies.12

Examples of Applications of Gibbs’ Phase Rule:

(i) For single-component system, n = 1:
r = 1, f = 2 T, P free
r = 2, f = 1 P = P0(T ) Phase-boundary curve
r = 3, f = 0 Fixed point: triple point.

(ii) An example for a two-component system, n = 2, is a mixture of sal
ammoniac and water, NH4Cl+H2O. The possible phases are: water vapor (it
contains practically no NH4Cl), the liquid mixture (solution), ice (containing
some of the salt), the salt (containing some H2O).

Possible coexisting phases are:

• liquid phase: r = 1, f = 3 (variables P, T, c)
• liquid phase + water vapor: r = 2, f = 2, variables P, T ; the concentration

is a function of P and T : c = c(P, T ).
• liquid phase + water vapor + one solid phase: r = 3, f = 1. Only one

variable, e.g. the temperature, is freely variable.
• liquid phase + vapor + ice + salt: r = 4, f = 0. This is the eutectic point.

The phase diagram of the liquid and the solid phases is shown in Fig. 3.38.
At the concentration 0, the melting point of pure ice can be seen, and at c = 1,
that of the pure salt. Since the freezing point of a solution is lowered (see
Chap. 5), we can understand the shape of the two branches of the freezing-
point curve as a function of the concentration. The two branches meet at the
eutectic point. In the regions ice-liq., ice and liquid, and in liq.-salt, liquid and
salt coexist along the horizontal lines. The concentration of NH4Cl in the ice
12 The number of degrees of freedom is a statement about the intensive variables;

there are however also variations of the extensive variables. For example, at
a triple point, f = 0, the entropy and the volume can vary within a triangle
(Sect. 3.8.4).
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is considerably lower than in the liquid mixture which is in equilibrium with
it. The solid phases often contain only the pure components; then the left-
hand and the right-hand limiting lines are identical with the two vertical lines
at c = 0 and c = 1. At the eutectic point, the liquid mixture is in equilibrium
with the ice and with the salt. If the concentration of a liquid is less than that
corresponding to the eutectic point, then ice forms on cooling the system. In
this process, the concentration in the liquid increases until finally the eutectic
concentration is reached, at which the liquid is converted to ice and salt. The
resulting mixture of salt and ice crystals is called the eutectic. At the eutectic
concentration, the liquid has its lowest freezing point.

Fig. 3.38. The phase diagram
of a mixture of sal ammoniac
(ammonium chloride) and wa-
ter. In the horizontally shaded
regions, ice and liquid, liquid
and solid salt, and finally ice
and solid salt coexist with each
other.

The phase diagram in Fig. 3.38 for the liquid and solid phases and the
corresponding interpretation using Gibbs’ phase rule can be applied to the fol-
lowing physical situations: (i) when the pressure is so low that also a gaseous
phase (not shown) is present; (ii) without the gas phase at constant pressure
P , in which case a degree of freedom is unavailable; or (iii) in the presence
of air at the pressure P and vapor dissolved in it with the partial pressure
cP .13 The concentration of the vapor c in the air enters the chemical poten-
tial as log cP (see Chap. 5). It adjusts itself in such a way that the chemical
potential of the water vapor is equal to the chemical potential in the liquid
mixture. It should be pointed out that owing to the term log c, the chemical
potential of the vapor dissolved in the air is lower than that of the pure vapor.
While at atmospheric pressure, boiling begins only at 100◦C, and then the
whole liquid phase is converted to vapor, here, even at very low temperatures
a sufficient amount enters the vapor phase to permit the log c term to bring
about the equalization of the chemical potentials.

The action of freezing mixtures becomes clear from the phase diagram 3.38.
For example, if NaCl and ice at a temperature of 0◦C are brought together, then
they are not in equilibrium. Some of the ice will melt, and the salt will dissolve
in the resulting liquid water. Its concentration is to be sure much too high to
be in equilibrium with the ice, so that more ice melts. In the melting process,

13 Gibbs’ phase rule is clearly still obeyed: compared to (ii), there is one component
(air) more and also one more phase (air-vapor mixture) present.
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heat is taken up, the entropy increases, and thus the temperature is lowered. This
process continues until the temperature of the eutectic point has been reached.
Then the ice, hydrated salt, NaCl·2H2O, and liquid with the eutectic concentration
are in equilibrium with each other. For NaCl and H2O, the eutectic temperature is
−21◦C. The resulting mixture is termed a freezing mixture. It can be used to hold
the temperature constant at −21◦C. Uptake of heat does not lead to an increase of
the temperature of the freezing mixture, but rather to continued melting of the ice
and dissolution of NaCl at a constant temperature.

Eutectic mixtures always occur when there is a miscibility gap between
the two solid phases and the free energy of the liquid mixture is lower than
that of the two solid phases (see problem 3.28). the melting point of the
eutectic mixture is then considerably lower than the melting points of the
two solid phases (see Table I.10).

3.9.3 Chemical Reactions, Thermodynamic Equilibrium and the
Law of Mass Action

In this section we consider systems with several components, in which the
particle numbers can change as a result of chemical reactions. We first de-
termine the general condition for chemical equilibrium and then investigate
mixtures of ideal gases.

3.9.3.1 The Condition for Chemical Equilibrium

Reaction equations, such as for example

2H2 + O2 # 2H2O , (3.9.23)

can in general be written in the form

n∑

j=1

νjAj = 0 , (3.9.24)

where the Aj are the chemical symbols and the stoichiometric coefficients νj

are (small) integers, which indicate the participation of the components in
the reaction. We will adopt the convention that left indicates positive and
right negative.

The reaction equation (3.9.24) contains neither any information about the
concentrations at which the Aj are present in thermodynamic and chemical
equilibrium at a given temperature and pressure, nor about the direction in
which the reaction will proceed. The change in the Gibbs free energy (≡ free
enthalpy) with particle number at fixed temperature T and fixed pressure P
for single-phase systems is14

14 Chemical reactions in systems consisting of several phases are treated in M.W.
Zemansky and R.H. Dittman, Heat and Thermodynamics, Mc Graw Hill, Auck-
land, Sixth Edition, 1987.
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dG =
n∑

j=1

µjdNj . (3.9.25)

In equilibrium, the Nj must be determined in such a way that G remains
stationary,

n∑

j=1

µjdNj = 0 . (3.9.26)

If an amount dM participates in the reaction, then dNj = νjdM . The con-
dition of stationarity then requires

n∑

j=1

µjνj = 0 . (3.9.27)

For every chemical reaction that is possible in the system, a relation of this
type holds. It suffices for a fundamental understanding to determine the
chemical equilibrium for a single reaction. The chemical potentials µj(T, P )
depend not only on the pressure and the temperature, but also on the rela-
tive particle numbers (concentrations). The latter adjust themselves in such
a way in chemical equilibrium that (3.9.27) is fulfilled.

In the case that substances which can react chemically are in thermal
equilibrium, but not in chemical equilibrium, then from the change in Gibbs’
free energy,

δG = δ
[∑

j

µj(T, P )νjM
]

(3.9.25′)

we can determine the direction which the reaction will take. Since G is a min-
imum at equilibrium, we must have δG ≤ 0; cf. Eq. (3.6.38b). The chemical
composition is shifted towards the direction of smaller free enthalpy or lower
chemical potentials.

Remarks:

(i) The condition for chemical equilibrium (3.9.27) can be interpreted to
mean that the chemical potential of a compound is equal to the sum of the
chemical potentials of its constituents.
(ii) The equilibrium condition (3.9.27) for the reaction (3.9.24) holds also
when the system consists of several phases which are in contact with each
other and between which the reactants can pass. This is shown by the equality
of the chemical potential of each component in all of the phases which are in
equilibrium with each other.
(iii) Eq. (3.9.27) can also be used to determine the equilibrium distribution
of elementary particles which are transformed into one another by reactions.
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For example, the distribution of electrons and positrons which are subject to
pair annihilation, e−+e+ # γ, can be found (see problem 3.31). These appli-
cations of statistical mechanics are important in cosmology, in the description
of the early stages of the Universe, and for the equilibria of elementary-
particle reactions in stars.

3.9.3.2 Mixtures of Ideal Gases

To continue the evaluation of the equilibrium condition (3.9.27), we require
information about the chemical potentials. In the following, we consider re-
actions in (classical) ideal gases. In Sect. 5.2, we show that the chemical
potential of particles of type j in a mixture of ideal molecular gases can be
written in the form

µj = fj(T ) + kT log cjP , (3.9.28a)

where cj = Nj

N holds and N is the total number of particles. The function
fj(T ) depends solely on temperature and contains the microscopic parameters
of the gas of type j. From (3.9.27) and (3.9.28a), it follows that

∏

j

eνj [fj(T )/kT+log(cjP )] = 1 . (3.9.29)

According to Sect. 5.2, Eq. (5.2.4′) is valid:

fj(T ) = ε0
el,j − cP,jT log kT − kT ζj . (3.9.28b)

Inserting (3.9.28b) into (3.9.29) yields the product of the powers of the con-
centrations:

∏

j

c
νj

j = K(T, P ) ≡ e
P

j νj(ζj−
ε0
el,j
kT ) (kT )

P
j cP,jνj/k P−

P
j νj ; (3.9.30)

where ε0
el,j is the electronic energy, cP,j the specific heat of component j at

constant pressure, and ζj is the chemical constant

ζj = log
2m3/2

j

kΘr,j(2π!2)3/2
. (3.9.31)

Here, we have assumed that Θr ≪ T ≪ Θv, with Θr and Θv the characteris-
tic temperatures for the rotational and vibrational degrees of freedom, Eqs.
(5.1.11) and (5.1.17). Equation (3.9.30) is the law of mass action for the con-
centrations. The function K(T, P ) is also termed the mass action constant.
The statement that

∏
j c

νj

j is a function of only T and P holds generally for
ideal mixtures µj(T, P, {ci}) = µj(T, P, cj = 1, ci = 0(i ̸= j)) + kT log cj .
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If, instead of the concentrations, we introduce the partial pressures (see
remark (i) at the end of this section)

Pj = cjP , (3.9.32)

then we obtain

∏

j

P
νj

j = KP (T ) ≡ e
P

j νj

„
ζj−

ε0
el,j
kT

«

(kT )
P

j cP,jνj/k , (3.9.30′)

the law of mass action of Guldberg and Waage15 for the partial pressures,
with KP (T ) independent of P .
We now find e.g. for the hydrogen-oxygen reaction of Eq. (3.9.23)

2H2 + O2 − 2H2O = 0 ,

with

νH2 = 2 , νO2 = 1 , νH2O = −2 , (3.9.33)

the relation

K(T, P ) =
[H2]2[O2]
[H2O]2

= const. e−q/kT T
P

j cP,jνj/k P−1 . (3.9.34)

Here, the concentrations cj = [Aj ] are represented by the corresponding
chemical symbols in square brackets, and we have used

q = 2ε0
H2

+ ε0
O2

− 2ε0
H2O > 0 ,

the heat of reaction at absolute zero, which is positive for the oxidation of
hydrogen. The degree of dissociation α is defined in terms of the concentra-
tions:

[H2O] = 1 − α , [O2] =
α

2
, [H2] = α .

It then follows from (3.9.32) that

α3

2(1 − α)2
∼ e−q/kT T

P
j cP,jνj/k P−1 , (3.9.35)

from which we can calculate α; α decreases exponentially with falling tem-
perature.
15 The law of mass action was stated by Guldberg and Waage in 1867 on the

basis of statistical considerations of reaction probabilities, and was later proved
thermodynamically for ideal gases by Gibbs, who made it more specific through
the calculation of K(T, P ).
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The law of mass action makes important statements about the conditions
under which the desired reactions can take place with optimum yields. It
may be necessary to employ a catalyst in order to shorten the reaction time;
however, what the equilibrium distribution of the reacting components will
be is determined simply by the reaction equation and the chemical potentials
of the constituents (components) – in the case of ideal gases, by Eq. (3.9.30).

The law of mass action has many applications in chemistry and technol-
ogy. As just one example, we consider here the pressure dependence of the
reaction equilibrium. From (3.9.30), it follows that the pressure derivative of
K(T, P ) is given by

1
K

∂K

∂P
=

∂ log K

∂P
= − 1

P

∑

i

νi , (3.9.36a)

where ν =
∑

i νi is the so called molar excess. From the equation of state
of mixtures of ideal gases (Eq. (5.2.3)), PV = kT

∑
i Ni, we obtain for the

changes ∆V and ∆N which accompany a reaction at constant T and P :

P∆V = kT
∑

i

∆Ni . (3.9.37a)

Let the number of individual reactions be ∆N , i.e. ∆Ni = νi∆N , then it
follows from (3.9.37a) that

− 1
P

∑

i

νi = − ∆V

kT∆N . (3.9.37b)

Taking ∆N = L (the Loschmidt/Avagadro number), then νi moles of each
component will react and it follows from (3.9.36a) and (3.9.37b) with the gas
constant R that

1
K

∂K

∂P
= −∆V

RT
. (3.9.36b)

Furthermore, ∆V =
∑

i νiVmol is the volume change in the course of the re-
action proceeding from right to left (for a reaction which is represented in the
form (3.9.23)). (The value of the molar volume Vmol is the same for every ideal
gas.) According to Eq. (3.9.36b) in connection with (3.9.30), a larger value
of K leads to an increase in the concentrations cj with positive νj , i.e. of
those substances which are on the left-hand side of the reaction equation.
Therefore, from (3.9.36b), a pressure increase leads to a shift of the equilib-
rium towards the side of the reaction equation corresponding to the smaller
volume. When ∆V = 0, the position of the equilibrium depends only upon
the temperature, e.g. in the hydrogen chloride reaction H2 + Cl2 # 2HCl.
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In a similar manner, one finds for the temperature dependence of K(T, P )
the result

∂ log K

∂T
=

∑
i νihi

RT 2
=

∆h

RT 2
. (3.9.38)

Here, hi is the molar enthalpy of the substance i and ∆h is the change of the
overall molar enthalpy when the reaction runs its course one time from right
to left in the reaction equation, c.f. problem 3.26.

An interesting and technically important application is Haber’s synthesis
of ammonia from nitrogen and hydrogen gas: the chemical reaction

N2 + 3H2 # 2NH3 (3.9.39)

is characterized by 1N2 + 3H2 − 2NH3 # 0 (ν =
∑

i νi = 2):

cN2
c3
H2

c2
NH3

= K(T, P ) = KP (T )P−2 . (3.9.40)

To obtain a high yield of NH3, the pressure must be made as high as possible.
Sommerfeld:16 “The extraordinary success with which this synthesis is now
carried out in industry is due to the complete understanding of the conditions
for thermodynamic equilibrium (Haber), to the mastery of the engineering
problems connected with high pressure (Bosch), and, finally, to the successful
selection of catalyzers which promote high reaction rates (Mittasch).”

Remarks:

(i) The partial pressures introduced in Eq. (3.9.32), Pj = cjP , with cj =
Nj/N , in accord with the equation of state of a mixture of ideal gases,
Eq. (5.2.3), obey the equations

V Pj = Njk T and P =
∑

i

Pi . (3.9.41)

(This fact is known as Dalton’s Law: the non-interacting gases in the mixture
produce partial pressures corresponding to their particle numbers, as if they
each occupy the entire available volume.)
(ii) Frequently, the law of mass action is expressed in terms of the particle
densities ρi = Ni/V :

∏

i

ρνi
i = Kρ(T ) ≡ (kT )

P
i νiKP (T ) . (3.9.30′)

16 A. Sommerfeld, Thermodynamics and Statistical Mechanics: Lectures on Theo-
retical Physics, Vol. V (Academic Press, New York, 1956), p. 86
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(iii) Now we turn to the direction which a reaction will take. If a mixture is
initially present with arbitrary densities, the direction in which the reaction
will proceed can be read off the law of mass action. Let ν1, ν2, . . . , νs be
positive and νs+1, νs+2, . . . , νn negative, so that the reaction equation (3.9.24)
takes on the form

νiAi #
n∑

i=s+1

|νi|Ai , (3.9.24′)

Assume that the product of the particle densities obeys the inequality

∏

i

ρνi
i ≡

s∏
i=1

ρνi
i

n∏
i=s+1

ρ|νi|
i

< Kρ(T ) , (3.9.42)

i.e. the system is not in chemical equilibrium. If the chemical reaction pro-
ceeds from right to left, the densities on the left will increase, and the fraction
in the inequality will become larger. Therefore, in the case (3.9.42), the reac-
tion will proceed from right to left. If, in contrast, the inequality was initially
reversed, with a > sign, then the reaction would proceed from left to right.
(iv) All chemical reactions exhibit a heat of reaction, i.e. they are accompa-
nied either by heat release (exothermic reactions) or by taking up of heat (en-
dothermic reactions). We recall that for isobaric processes, ∆Q = ∆H , and
the heat of reaction is equal to the change in the enthalpy; see the comment
following Eq. (3.1.12). The temperature dependence of the reaction equilib-
rium follows from Eq. (3.9.38). A temperature increase at constant pressure
shifts the equilibrium towards the side of the reaction equation where the
enthalpy is higher; or, expressed differently, it leads to a reaction in the di-
rection in which heat is taken up. As a rule, the electronic contribution O (eV)
dominates. Thus, at low temperatures, the enthalpy-rich side is practically
not present.

∗3.9.4 Vapor-pressure Increase by Other Gases
and by Surface Tension

3.9.4.1 The Evaporation of Water in Air

As discussed in detail in Sect. 3.8.1, a single-component system can evaporate
only along its vapor-pressure curve P0(T ), or, stated differently, only along
the vapor-pressure curve are the gaseous and the liquid phases in equilibrium.
If an additional gas is present, this means that there is one more degree of
freedom in Gibbs’ phase rule, so that a liquid can coexist with its vapor even
outside of P0(T ).

Here, we wish to investigate evaporation in the presence of additional
gases and in particular that of water under an air atmosphere. To this end
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we assume that the other gas is dissolved in the liquid phase to only a neg-
ligible extent. If the chemical potential of the liquid were independent of the
pressure, then the other gas would have no influence at all on the chemical
potential of the liquid; the partial pressure of the vapor would then have
to be identical with the vapor pressure of the pure substance – a statement
which is frequently made. In fact, the total pressure acts on the liquid, which
changes its chemical potential. The resulting increase of the vapor pressure
will be calculated here.

To begin, we note that
(

∂µL

∂P

)

T

=
V

N
(3.9.43)

is small, owing to the small specific volume vL = V
N of the liquid. When

the pressure is changed by ∆P , the chemical potential of the liquid changes
according to

µL(T, P + ∆P ) = µL(T, P ) + vL∆P + O(∆P 2) . (3.9.44)

From the Gibbs–Duhem relation, the chemical potential of the liquid is

µL = eL − TsL + PvL . (3.9.45)

Here, eL and sL refer to the internal energy and the entropy per particle.
When we can neglect the temperature and pressure dependence of eL, sL,
and vL, then (3.9.44) is valid with no further corrections.
The chemical potential of the vapor, assuming an ideal mixture17 , is

µvapor(T, P ) = µ0(T ) + kT log cP , (3.9.46)

where c is the concentration of the vapor in the gas phase, c = Nvapor
Nother+Nvapor

.
The vapor-pressure curve P0(T ) without additional gases follows from

µL(T, P0) = µ0(T ) + kT log P0 . (3.9.47)

With an additional gas, the pressure is composed of the pressure of the other
gas Pother and the partial pressure of the vapor, Pvapor = cP ; all together,
P = Pother+Pvapor. Then the equality of the chemical potentials in the liquid
and the gaseous phases is expressed by

µL(T, Pother + Pvapor) = µ0(T ) + kT log Pvapor .

Subtracting (3.9.47) from this, we find

17 See Sect. 5.2
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µL(T, Pother + Pvapor) − µL(T, P0) = kT log
(

Pvapor − P0

P0
+ 1

)

vL(Pother + Pvapor − P0) ≈ kT
Pvapor − P0

P0

vLPother =
(

kT

P0
− vL

)
(Pvapor − P0)

Pvapor − P0 =
vLPother

vG − vL
=

vL

vG − vL
(P − Pvapor) . (3.9.48)

From the second term in Eq. 3.9.48, it follows that the increase in vapor
pressure is given approximately by Pvapor −P0(T ) ≈ vL

vG
Pother, and the exact

expression is found to be

Pvapor = P0(T ) +
vL

vG
(P − P0(T )) . (3.9.49)

The partial pressure of the vapor is increased relative to the vapor-pressure
curve by vL

vG
× (P −P0(T )). Due to the smallness of the factor vL

vG
, the partial

pressure is still to a good approximation the same as the vapor pressure at
the temperature T . The most important result of these considerations is the
following: while a liquid under the pressure P at the temperature T is in
equilibrium with its vapor phase only for P = P0(T ); that is, for P > P0(T )
(or at temperatures below its boiling point) it exists only in liquid form, it is
also in equilibrium in this region of (P, T ) with its vapor when dissolved in
another gas.
We now discuss the evaporation of water or the sublimation of ice under an atmo-
sphere of air, see Fig. 3.39. The atmosphere predetermines a particular pressure
P . At each temperature T below the evaporation temperature determined by this
pressure (P > P0(T )), just enough water evaporates to make its partial pressure
equal that given by (3.9.49) (recall Pvapor = cP ). The concentration of the water
vapor is c = (P0(T ) + vL

vG
(P − P0(T )))/P .

In a free air atmosphere, the water vapor is transported away by diffusion or
by convection (wind), and more and more water must evaporate (vaporize).18 On

Fig. 3.39. The vapor pressure Pvapor

lies above the vapor-pressure curve
P0(T ) (dot-dashed curve)

18 As already mentioned, the above considerations are also applicable to sublima-
tion. When one cools water at 1 atm below 0◦C, it freezes to ice. This ice at
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increasing the temperature, the partial pressure of the water increases, until finally
it is equal to P . The vaporization which then results is called boiling.

For P = P0(T ), the liquid is in equilibrium with its pure vapor. Evaporation
then occurs not only at the liquid surface, but also within the liquid, in particular
at the walls of its container. There, bubbles of vapor are formed, which then rise to
the surface. Within these vapor bubbles, the vapor pressure is P0(T ), corresponding
to the temperature T . Since the vapor bubbles within the liquid are also subject to
the hydrostatic pressure of the liquid, their temperature must in fact be somewhat
higher than the boiling point under atmospheric pressure. If the liquid contains
nucleation centers (such as the fat globules in milk), at which vapor bubbles can
form more readily than in the pure liquid, then it will “boil over”.

The increase in the vapor pressure by increased external pressure, or as one
might say, by ‘pressing on it’, may seem surprising. The additional pressure causes
an increase in the release of molecules from the liquid, i.e. an increase in the partial
pressure.

3.9.4.2 Vapor-Pressure Increase by Surface Tension of Droplets

A further additional pressure is due to the surface tension and plays a role
in the evaporation of liquid droplets. We consider a liquid droplet of radius r.
When the radius is increased isothermally by an amount dr, the surface area
increases by 8πr dr, which leads to an energy increase of σ8πr dr, where σ is
the surface tension. Owing to the pressure difference p between the pressure
within the droplet and the pressure of the surrounding atmosphere, there is
a force p 4πr2 which acts outwardly on the surface. The total change of the
free energy is therefore

dF = δA = σ8πr dr − p 4πr2 dr . (3.9.50)

In equilibrium, the free energy of the droplet must be stationary, so that for
the pressure difference we find the following dependence on the radius:

p =
2σ

r
. (3.9.51)

Thus, small droplets have a higher vapor pressure than larger one. The vapor-
pressure increase due to the surface tension is from Eq. (3.9.48) now seen to
be

Pvapor − P0(T ) =
2σ

r

vL

vG − vL
(3.9.52)

inversely proportional to the radius of the droplet. In a mixture of small and
large droplets, the smaller ones are therefore consumed by the larger ones.

e.g. −10◦C is to be sure as a single-component system not in equilibrium with
the gas phase, but rather with the water vapor in the atmosphere at a partial
pressure of about P0(−10◦C), where P0(T ) represents the sublimation curve. For
this reason, frozen laundry dries, because ice sublimes in the atmosphere.
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Remarks:

(i) Small droplets evaporate more readily than liquids with a flat surface,
and conversely condensation occurs less easily on small droplets. This is the
reason why extended solid cooled surfaces promote the condensation of wa-
ter vapor more readily than small droplets do. The temperature at which
the condensation of water from the atmosphere onto extended surfaces (dew
formation) takes place is called the dew point. It depends on the partial pres-
sure of water vapor in the air, i.e. its degree of saturation, and can be used
to determine the amount of moisture in the air.
(ii) We consider the homogeneous condensation of a gas in free space without
surfaces. The temperature of the gas is taken to be T and the vapor pressure
at this temperature to be P0(T ). We assume that the pressure P of the gas is
greater than the vapor pressure; it is then referred to as supersaturated vapor.
For each degree of supersaturation, then, a critical radius can be defined from
(3.9.52):

rcr =
vL

vG

2σ

(P − P0(T ))
.

For droplets whose radius is smaller than rcr the vapor is not supersaturated.
Condensation can therefore not take place through the formation of very
small droplets, since their vapor pressures would be higher than P . Some
critical droplets must be formed through fluctuations in order that condensa-
tion can be initiated. Condensation is favored by additional attractive forces;
for example, in the air, there are always electrically-charged dust particles and
other impurities present, which as a result of their electrical forces promote
condensation, i.e. they act as nucleation centers for condensation.

Problems for Chapter 3

3.1 Read off the partial derivatives of the internal energy E with respect to its
natural variables from Eq. (3.1.3).

3.2 Show that

δg = αdx + β
x
y

dy

is not an exact differential: a) using the integrability conditions and b) by integra-
tion from P1 to P2 along the paths C1 and C2. Show that 1/x is an integrating
factor, df = δg/x.

3.3 Prove the chain rule (3.2.13) for Jacobians.

3.4 Derive the following relations:

CP

CV
=

κT

κS
,

„
∂T
∂V

«

S

= − T
CV

„
∂P
∂T

«

V

and

„
∂T
∂P

«

S

=
T

CP

„
∂V
∂T

«

P

.
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Fig. 3.40. Paths in the x-y diagram

3.5 Determine the work performed by an ideal gas, W (V ) =
R V

V1
dV P during a

reversible adiabatic expansion. From δQ = 0, it follows that dE = −PdV , and from

this the adiabatic equations for an ideal gas can be obtained: T = T1

`
V1
V

´2/3
and

P = NkT1
V

2/3
1

V 5/3 . They can be used to determine the work performed.

3.6 Show that the stability conditions (3.6.48a,b) follow from the maximalization
of the entropy.

3.7 One liter of an ideal gas expands reversibly and isothermally at (20◦C) from
an initial pressure of 20 atm to 1 atm. How large is the work performed in Joules?
What quantity of heat Q in calories must be transferred to the gas?

3.8 Show that the ratio of the entropy increase on heating of an ideal gas from T1

to T2 at constant pressure to that at constant volume is given by the ratio of the
specific heats.

3.9 A thermally insulated system is supposed to consist of 2 subsystems (TA, VA, P )
and (TB, VB , P ), which are separated by a movable, diathermal piston (Fig. 3.41(a).
The gases are ideal.
(a) Calculate the entropy change accompanying equalization of the temperatures
(irreversible process).
(b) Calculate the work performed in a quasistatic temperature equalization;
cf. Fig. 3.41(b).

(a) (b)

Fig. 3.41. For problem 3.9

3.10 Calculate the work obtained, W =
H

PdV , in a Carnot cycle using an ideal
gas, by evaluating the ring integral.

3.11 Compare the cooling efficiency of a Carnot cycle between the temperatures
T1 and T2 with that of two Carnot cycles operating between T1 and T3 and between
T3 and T2 (T1 < T3 < T2). Show that it is more favorable to decompose a cooling
process into several smaller steps.
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3.12 Discuss a Carnot cycle in which the working ‘substance’ is thermal radiation.
For this case, the following relations hold: E = σV T 4, pV = 1

3E, σ > 0.
(a) Derive the adiabatic equation. (b) Compute CV and CP .

3.13 Calculate the efficiency of the Joule cycle (see Fig. 3.42):

Result : η = 1 − (P2/P1)
(κ−1)/κ .

Compare this efficiency with that of the Carnot cycle (drawn in dashed lines), using
an ideal gas as working substance.

Fig. 3.42. The Joule cycle

3.14 Calculate the efficiency of the Diesel cycle (Fig. 3.43) Result:

η = 1 − 1
κ

(V2/V1)κ − (V3/V1)κ

(V2/V1) − (V3/V1)
.

Fig. 3.43. The Diesel cycle

3.15 Calculate for an ideal gas the change in the internal energy, the work per-
formed, and the quantity of heat transferred for the quasistatic processes along the
following paths from 1 to 2 (see Fig. 3.44)
(a) 1-A-2
(b) 1-B-2
(c) 1-C-2. What is the shape of the E(P, V ) surface?

Fig. 3.44. For problem 3.15
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3.16 Consider the socalled Stirling cycle, where a heat engine (with an ideal gas
as working substance) performs work according to the following quasistatic cycle:
(a) isothermal expansion at the temperature T1 from a volume V1 to a volume V2.
(b) cooling at constant volume V2 from T1 to T2.
(c) isothermal compression at the temperature T2 from V2 to V1.
(d) heating at constant volume from T2 to T1.
Determine the thermal efficiency η of this process!

3.17 The ratio of the specific volume of water to that of ice is 1.000:1.091 at 0◦C
and 1 atm. The heat of melting is 80 cal/g. Calculate the slope of the melting curve.

3.18 Integrate the Clausius–Clapeyron differential equation for the transition
liquid-gas, by making the simplifying assumption that the heat of transition is
constant, Vliquid can be neglected in comparison to Vgas, and that the equation of
state for ideal gases is applicable to the gas phase.

3.19 Consider the neighborhood of the triple point in a region where the limiting
curves can be approximated as straight lines. Show that α < π holds (see Fig. 3.45).
Hint: Use dP/dT = ∆S/∆V , and the fact that the slope of line 2 is greater than
that of line 3.

Fig. 3.45. The vicinity of a triple point

3.20 The latent heat of ice per unit mass is QL. A container holds a mixture
of water and ice at the freezing point (absolute temperature T0). An additional
amount of the water in the container (of mass m) is to be frozen using a cooling
apparatus. The heat output from the cooling apparatus is used to heat a body of
heat capacity C and initial temperature T0. What is the minimum quantity of heat
energy transferred from the apparatus to the body? (Assume C to be temperature
independent).

3.21 (a) Discuss the pressure dependence of the reaction N2+3H2 # 2NH3 (am-
monia synthesis). At what pressure is the yield of ammonia greatest?
(b) Discuss the thermal dissociation 2H2O # 2H2+O2. Show that an increase in
pressure works against the dissociation.

3.22 Give the details of the derivation of Eqs. (3.9.36a) and (3.9.36b).

3.23 Discuss the pressure and temperature dependence of the reaction

CO + 3H2 # CH4 + H2O .

3.24 Apply the law of mass action to the reaction H2+Cl2 # 2HCl.
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3.25 Derive the law of mass action for the particle densities

ρj = Nj/V (Eq. (3.9.30′)) .

3.26 Prove Eq. (3.9.38) for the temperature dependence of the mass-action con-
stant.

Hint: Show that H = G − T ∂G
∂T = T 2 ∂

∂T

`
G
T

´

and express the change in the free enthalpy

∆G =
X

i

µiνi

using Eq. (3.9.28), then insert the law of mass action (3.9.30) or (3.9.30’).

3.27 The Pomeranchuk effect. The entropy diagram for solid and liquid He3 has
the shape shown below 3 K. Note that the specific volumes of both phases do not
change within this temperature range. Draw P (T ) for the coexistence curves of the
phases.

Fig. 3.46. The Pomeranchuk effect

3.28 The (specific) free energies fα and fβ of two solid phases α and β with a
miscibility gap and the (specific) free energy fL of the liquid mixture are shown as
functions of the concentration c in Fig. 3.47.

Discuss the meaning of the dashed and solid double tangents. On lowering
the temperature, the free energy of the liquid phase is increased, i.e. fL is shifted
upwards relative to the two fixed branches of the free energy. Derive from this the
shape of the eutectic phase diagram.

Fig. 3.47. Liquid mixture
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3.29 A typical shape for the phase diagram of liquid and gaseous mixtures is shown
in Fig. 3.48.

The components A and B are completely miscible in both the gas phase and the
liquid phase. B has a higher boiling point than A. At a temperature in the interval
TA < T < TB , the gas phase is therefore richer in A than the liquid phase. Discuss
the boiling process for the initial concentration c0

(a) in the case that the liquid remains in contact with the gas phase: show that
vaporization takes place in the temperature interval T0 to Te.
(b) in the case that the vapor is pumped off: show that the vaporization takes place
in the interval T0 to TB .

Fig. 3.48. Bubble point and dew point lines

Remark: The curve which is made by the boiling curve (evaporation limit) and
the condensation curve together form the bubble point and dew point lines, a lens-
shaped closed curve. Its shape is of decisive importance for the efficiency of distilla-
tion processes. This ‘boiling lens’ can also take on much more complex shapes than
in Fig. 3.48, such as e.g. that shown in Fig. 3.49. A mixture with the concentration
ca is called azeotropic. For this concentration, the evaporation of the mixture oc-
curs exactly at the temperature Ta and not in a temperature interval. The eutectic
concentration is also special in this sense. Such a point occurs in an alcohol-water
mixture at 96%, which limits the distillation of alcohol.19

Fig. 3.49. Bubble point and dew point lines

19 Detailed information about phase diagrams of mixtures can be found in
M. Hansen, Constitution of Binary Alloys, McGraw Hill, 1983 und its supple-
ments. Further detailed discussions of the shape of phase diagrams are to be
found in L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics, Vol. V,
Statistical Physics, Pergamon Press 1980.
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3.30 The free energy of the liquid phase, fL, is drawn in Fig. (3.50) as a function
of the concentration, as well as that of the gas phase, fG. It is assumed that fL

is temperature independent and fG shifts upwards with decreasing temperature
(Fig. 3.50). Explain the occurrence of the ‘boiling lens’ in problem 3.29.

Fig. 3.50. Free energy

3.31 Consider the production of electron-positron pairs,

e+ + e− # γ .

Assume for simplicity that the chemical potential of the electrons and positrons
is given in the nonrelativistic limit, taking the rest energy into account, by µ =

mc2 + kT log λ3N
V : Show that for the particle number densities n± of e± that

n+n− = λ−6e−
2mc2

kT

holds and discuss the consequences.

3.32 Consider the boiling and condensation curves of a two-component liquid mix-
ture. Take the concentrations in the gaseous and liquid phases to be cG and cL.
Show that at the points where cG = cL (the azeotropic mixture) i.e. where the
boiling and condensation curves come together, for a fixed pressure P the following
relation holds:

dT
dc

= 0 ,

and for fixed T

dP
dc

= 0 ,

thus the slopes are horizontal.
Method: Start from the differential Gibbs-Duhem relations for the gas and the
liquid phases along the limiting curves.
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3.33 Determine the temperature of the atmosphere as a function of altitude. How
much does the temperature decrease per km of altitude? Compare your result for
the pressure P (z) with the barometric formula (see problem 2.15).
Method: Start with the force balance on a small volume of air. That gives

dP (z)
dz

= −mg P (z)/k · T (z) .

Assume that the temperature changes depend on the pressure changes of the air
(ideal gas) adiabatically dT (z)

T (z) = γ−1
γ

dP (z)
P . From this, one finds dT (z)

dz . Numerical

values: m = 29 g/mole, γ = 1.41.

3.34 In meteorology, the concept of a “homogeneous atmosphere” is used, where
ρ is taken to be constant. Determine the pressure and the temperature in such an
atmosphere as functions of the altitude. Calculate the entropy of the homogeneous
atmosphere and compare it with that of an isothermal atmosphere with the same
energy content. Could such a homogeneous atmosphere be stable?



4. Ideal Quantum Gases

In this chapter, we want to derive the thermodynamic properties of ideal
quantum gases, i.e. non-interacting particles, on the basis of quantum statis-
tics. This includes nonrelativistic fermions and bosons whose interactions may
be neglected, quasiparticles in condensed matter, and relativistic quanta, in
particular photons.

4.1 The Grand Potential

The calculation of the grand potential is found to be the most expedient way
to proceed. In order to have a concrete system in mind, we start from the
Hamiltonian for N non-interacting, nonrelativistic particles,

H =
N∑

i=1

1
2m

p2
i . (4.1.1)

We assume the particles to be enclosed in a cube of edge length L and vol-
ume V = L3, and apply periodic boundary conditions. The single-particle
eigenfunctions of the Hamiltonian are then the momentum eigenstates |p⟩
and are given in real space by

ϕp(x) = ⟨x|p⟩ =
1√
V

eip·x/! , (4.1.2a)

where the momentum quantum numbers can take on the values

p =
2π!
L

(ν1, ν2, ν3) , να = 0,±1, . . . , (4.1.2b)

and the single-particle kinetic energy is given by

εp =
p2

2m
. (4.1.2c)

For the complete characterization of the single-particle states, we must still
take the spin s into account. It is integral for bosons and half-integral for
fermions. The quantum number ms for the z-component of the spins has
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2s+1 possible values. We combine the two quantum numbers into one symbol,
p ≡ (p, ms) and find for the complete energy eigenstates

|p⟩ ≡ |p⟩ |ms⟩ . (4.1.2d)

In the treatment which follows, we could start from arbitrary non-
interacting Hamiltonians, which can also contain a potential and can depend
on the spin, as is the case for electrons in a magnetic field. We then still
denote the single-particle quantum numbers by p and the eigenvalue belong-
ing to the energy eigenstate |p⟩ by εp, but it need no longer be the same as
(4.1.2c). These states form the basis of the N -particle states for bosons and
fermions:

|p1, p2, . . . , pN⟩ = N
∑

P

(±1)P P |p1⟩ . . . |pN ⟩ . (4.1.3)

Here, the sum runs over all the permutations P of the numbers 1 to N .
The upper sign holds for bosons, (+1)P = 1, the lower sign for fermions.
(−1)P is equal to 1 for even permutations and −1 for odd permutations. The
bosonic states are completely symmetric, the fermionic states are completely
antisymmetric. As a result of the symmetrization operation, the state (4.1.3)
is completely characterized by its occupation numbers np, which indicate how
many of the N particles are in the state |p⟩. For bosons, np = 0, 1, 2, . . . can
assume all integer values from 0 to ∞. These particles are said to obey Bose–
Einstein statistics. For fermions, each single-particle state can be occupied at
most only once, np = 0, 1 (identical quantum numbers would yield zero due
to the antisymmetrization on the right-hand side of (4.1.3)). Such particles
are said to obey Fermi–Dirac statistics. The normalization factor in (4.1.3)
is N = 1√

N !
for fermions and N = (N ! np1 ! np2 ! . . .)−1/2 for bosons.1

For an N -particle state, the sum of all the np obeys

N =
∑

p

np , (4.1.4)

and the energy eigenvalue of this N -particle state is

E({np}) =
∑

p

npεp . (4.1.5)

We can now readily calculate the grand partition function (Sect. 2.7.2):
1 Note: for bosons, the state (4.1.3) can also be written in the form

(N !/np1 ! np2 ! . . .)−1/2P
P ′ P ′ |p1⟩ . . . |pN⟩, where the sum includes only those

permutations P ′ which lead to different terms.
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ZG ≡
∞∑

N=0

∑

{np}P
p np=N

e−β(E({np})−µN) =
∑

{np}

e−β
P

p(εp−µ)np

=
∏

p

∑

np

e−β(εp−µ)np =

⎧
⎪⎪⎨

⎪⎪⎩

∏

p

1
1 − e−β(εp−µ)

for bosons
∏

p

(
1 + e−β(εp−µ)

)
for fermions .

(4.1.6)

We give here some explanations relevant to (4.1.6). Here,
∑

{np} . . . ≡∏
p

∑
np

. . . refers to the multiple sum over all occupation numbers, whereby
each occupation number np takes on the allowed values (0,1 for fermions and
0,1,2, . . . for bosons). In this expression, p ≡ (p, ms) runs over all values
of p and ms. The calculation of the grand partition function requires that
one first sum over all the states allowed by a particular value of the particle
number N , and then over all particle numbers, N = 0, 1, 2, . . .. In the defi-
nition of ZG,

∑
{np} therefore enters with the constraint

∑
p np = N . Since

however in the end we must sum over all N , the expression after the second
equals sign is obtained; in it, the sum runs over all np independently of one
another. Here, we see that it is most straightforward to calculate the grand
partition function as compared to the other ensembles. For bosons, a product
of geometric series is obtained in (4.1.6); the condition for their convergence
requires that µ < εp for all p.

The grand potential follows from (4.1.6):

Φ = −β−1 log ZG = ±β−1
∑

p

log
(
1 ∓e−β(εp−µ)

)
, (4.1.7)

from which we can derive all the thermodynamic quantities of interest. Here,
and in what follows, the upper (lower) signs refer to bosons (fermions). For
the average particle number, we therefore find

N ≡ −
(

∂Φ

∂µ

)

β

=
∑

p

n(εp) , (4.1.8)

where we have introduced

n(εp) ≡
1

eβ(εp−µ) ∓1
; (4.1.9)

these are also referred to as the Bose or the Fermi distribution functions. We
now wish to show that n(εq) is the average occupation number of the state
|q⟩. To this end, we calculate the average value of nq:

⟨nq⟩ = Tr(ρGnq) =

∑
{np} e−β

P
p np(εp−µ)nq

∑
{np} e−β

P
p np(εp−µ)

=

∑
nq

e−βnq(εq−µ)nq
∑

nq
e−βnq(εq−µ)

= − ∂

∂x
log

∑

n

e−xn

∣∣∣∣
x=β(εq−µ)

= n(εq) ,
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which demonstrates the correctness of our assertion. We now return to the
calculation of the thermodynamic quantities. For the internal energy, we find
from (4.1.7)

E =
(

∂(Φβ)
∂β

)

βµ

=
∑

p

εpn(εp) , (4.1.10)

where in taking the derivative, the product βµ is held constant.

Remarks:

(i) In order to ensure that n(εp) ≥ 0 for every value of p, for bosons we require
that µ < 0 , and for an arbitrary energy spectrum, that µ < min(εp).

(ii) For e−β(εp−µ) ≪ 1 and s = 0, we obtain from (4.1.7)

Φ = −β−1
∑

p

e−β(εp−µ) = − z

β

V

(2π!)3

∫
d3p e−βp2/2m = − zV

βλ3
,

(4.1.11)

which is identical to the grand potential of a classical ideal gas,
Eq. (2.7.23). Here, the dispersion relation εp = p2/2m from Eq. (4.1.2c)
was used for the right-hand side of (4.1.11). In

z = eβµ , (4.1.12)

we have introduced the fugacity, and λ = h√
2πmkT

(Eq. (2.7.20)) denotes
the thermal wavelength. For s ̸= 0, an additional factor of (2s+1) would
occur after the second and third equals signs in Eq. (4.1.11).

(iii) The calculation of the grand partition function becomes even simpler if
we make use of the second-quantization formalism

ZG = Tr exp
(
−β(H − µN̂)

)
, (4.1.13a)

where the Hamiltonian and the particle number operator in second quan-
tization2 have the form

H =
∑

p

εp a†
pap (4.1.13b)

and

N̂ =
∑

p

a†
pap . (4.1.13c)

It then follows that

ZG = Tr
∏

p

e−β(εp−µ)a†
pap =

∏

p

∑

np

e−β(εp−µ)np (4.1.13d)

and thus we once again obtain (4.1.6).
2 See e.g. F. Schwabl, Advanced Quantum Mechanics, 3rd ed. (QM II), Springer,

2005, Chapter 1.
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According to Eq. (4.1.2b) we may associate with each of the discrete p values
a volume element of size ∆ = 2π!/L3. Hence, sums over p may be replaced
by integrals in the limit of large V . For the Hamiltonian of free particles
(4.1.1), this implies in (4.1.7) and (4.1.8)

∑

p

. . . = g
∑

p

. . . = g
1
∆

∑

p

∆ . . . = g
V

(2π!)3

∫
d3p . . . (4.1.14a)

with the degeneracy factor

g = 2s + 1 , (4.1.14b)

as a result of the spin-independence of the single-particle energy εp.
For the average particle number, we then find from (4.1.8)3

N =
gV

(2π!)3

∫
d3p n(εp) =

gV

2π2!3

∞∫

0

dp p2n(εp)

=
gV m3/2

21/2π2!3

∞∫

0

dε
√

ε

eβ(ε−µ) ∓1
, (4.1.15)

where we have introduced ε = p2/2m as integration variable. We also define
the specific volume

v = V/N (4.1.16)

and substitute x = βε, finally obtaining from (4.1.15)

1
v

=
1
λ3

2g√
π

∞∫

0

dx
x1/2

exz−1 ∓1
=

g

λ3

{
g3/2(z) for bosons
f3/2(z) for fermions .

(4.1.17)

In this expression, we have introduced the generalized ζ-functions, which are
defined by4

gν(z)
fν(z)

}
≡ 1

Γ (ν)

∞∫

0

dx
xν−1

exz−1 ∓1
. (4.1.18)

Similarly, from (4.1.7), we find
3 For bosons, we shall see in Sect. 4.4 that in a temperature range where µ → 0,

the term with p = 0 must be treated separately in making the transition from
the sum over momenta to the integral.

4 The gamma function is defined as Γ (ν) =
∞R
0

dt e−ttν−1 [Re ν > 0]. It obeys the

relation Γ (ν + 1) = ν Γ (ν).
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Φ = ± gV

(2π!)3β

∫
d3p log

(
1 ∓e−β(εp−µ)

)

= ± gV m3/2

21/2π2!3β

∞∫

0

dε
√

ε log
(
1 ∓e−β(ε−µ)

)
,

(4.1.19)

which, after integration by parts, leads to

Φ = −PV = −2
3

gV m3/2

21/2π2!3

∞∫

0

dε ε3/2

eβ(ε−µ) ∓1
= −gV kT

λ3

{
g5/2(z)
f5/2(z) , (4.1.19′)

where the upper lines holds for bosons and the lower line for fermions. The
expression (3.1.26), Φ = −PV , which is valid for homogeneous systems, was
also used here. From (4.1.10) we obtain for the internal energy

E =
gV

(2π!)3

∫
d3p εpn(εp) =

gV m3/2

21/2π2!3

∞∫

0

dε ε3/2

eβ(ε−µ) ∓1
. (4.1.20)

Comparison with (4.1.19′) yields, remarkably, the same relation

PV =
2
3
E (4.1.21)

as for the classical ideal gas. Additional general relations follow from the
homogeneity of Φ in T and µ. From (4.1.19′), (4.1.15), and (3.1.18), we obtain

P = −Φ

V
= −T 5/2ϕ

( µ

T

)
, N = V T 3/2n

( µ

T

)
, (4.1.22a,b)

S = −
(

∂Φ

∂T

)

V,µ

= V T 3/2s
( µ

T

)
, and

S

N
=

s(µ/T )
n(µ/T )

. (4.1.22c,d)

Using these results, we can readily derive the adiabatic equation. The con-
ditions S = const. and N = const., together with (4.1.22d), (4.1.22b) and
(4.1.22a), yield µ/T = const., V T 3/2 = const., PT−5/2 = const., and finally

PV 5/3 = const . (4.1.23)

The adiabatic equation has the same form as that for the classical ideal
gas, although most of the other thermodynamic quantities show different
behavior, such as for example cP /cV ̸= 5/3.

Following these preliminary general considerations, we wish to derive the
equation of state from (4.1.22a). To this end, we need to eliminate µ/T from
(4.1.22a) and replace it by the density N/V using (4.1.22b). The explicit
computation is carried out in 4.2 for the classical limit, and in 4.3 and 4.4
for low temperatures where quantum effects predominate.
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4.2 The Classical Limit z = eµ/kT ≪ 1

We first formulate the equation of state in the nearly-classical limit. To do
this, we expand the generalized ζ-functions g and f defined in (4.1.18) as
power series in z:

gν(z)
fν(z)

}
=

1
Γ (ν)

∞∫

0

dxxν−1e−xz
∞∑

k′=0

(±1)k′
e−xk′

zk′
=

∞∑

k=1

(±1)k+1zk

kν
,

(4.2.1)

where the upper lines (signs) hold for bosons and the lower for fermions.
Then Eq. (4.1.17) takes on the form

λ3

v
= g

∞∑

k=1

(±1)k+1zk

k3/2
= g

(
z ± z2

23/2
+ O

(
z3

))
. (4.2.2)

This equation can be solved iteratively for z:

z =
λ3

vg
∓ 1

23/2

(
λ3

vg

)2

+ O
((

λ3

v

)3
)

. (4.2.3)

Inserting this in the series for Φ which follows from (4.1.19′) and (4.2.1),

Φ = −gV kT

λ3

(
z ± z2

25/2
+ O

(
z3

))
, (4.2.4)

we can eliminate µ in favor of N and obtain the equation of state

PV = −Φ = NkT

(
1 ∓ λ3

25/2gv
+ O

((
λ3

v

)2
))

. (4.2.5)

The symmetrization (antisymmetrization) of the wavefunctions causes a re-
duction (increase) in the pressure in comparison to the classical ideal gas.
This acts like an attraction (repulsion) between the particles, which in fact
are non-interacting (formation of clusters in the case of bosons, exclusion
principle for fermions). For the chemical potential, we find from (4.1.12) and
(4.2.3), and making use of λ3

vg ≪ 1, the following expansion:

µ = kT log z = kT

[
log

λ3

gv
∓ 1

23/2

λ3

gv
. . .

]
, (4.2.6)

i.e. µ < 0. Furthermore, for the free energy F = Φ+µN , we find from (4.2.5)
and (4.2.6)

F = Fclass ∓kT
Nλ3

25/2gv
, (4.2.7a)



176 4. Ideal Quantum Gases

where

Fclass = NkT

(
−1 + log

λ3

gv

)
(4.2.7b)

is the free energy of the classical ideal gas.

Remarks:

(i) The quantum corrections are proportional to !3, since λ is proportional
to !. These corrections are also called exchange corrections, as they de-
pend only on the symmetry behavior of the wavefunctions (see also Ap-
pendix B).

(ii) The exchange corrections to the classical results at finite temperatures
are of the order of λ3/v. The classical equation of state holds for z ≪ 1
or λ ≪ v1/3, i.e. in the extremely dilute limit. This limit is the more
readily reached, the higher the temperature and the lower the density.
The occupation number in the classical limit is given by (cf. Fig. 4.1)

n(εp) ≈ e−βεpeβµ = e−βεp λ3

gv
≪ 1 . (4.2.8)

This classical limit (4.2.8) is equally valid for bosons and fermions. For
comparison, the Fermi distribution at T = 0 is also shown. Its signifi-
cance, as well as that of εF , will be discussed in Sect. 4.3 (Fig. 4.1).

(iii) Corresponding to the symmetry-dependent pressure change in (4.2.5),
the exchange effects lead to a modification of the free energy (4.2.7a).

Fig. 4.1. The occu-
pation number n(ε)
in the classical limit
(shaded). For com-
parison, the occupa-
tion of a degenerate
Fermi gas is also indi-
cated

4.3 The Nearly-degenerate Ideal Fermi Gas

In this and the following section, we consider the opposite limit, in which
quantum effects are predominant. Here, we must treat fermions and bosons
separately in Sect. 4.4. We first recall the properties of the ground state of
fermions, independently of their statistical mechanics.
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4.3.1 Ground State, T = 0 (Degeneracy)

We first deal with the ground state of a system of N fermions. It is obtained
at a temperature of zero Kelvin. In the ground state, the N lowest single-
particle states |p⟩ are each singly occupied. If the energy depends only on
the momentum p, every value of p occurs g-fold. For the dispersion relation
(4.1.2c), all the momenta within a sphere (the Fermi sphere), whose radius
is called the Fermi momentum pF (Fig. 4.2), are thus occupied. The particle
number is related to pF as follows:

N = g
∑

p≤ pF

1 = g
V

(2π!)3

∫
d3p Θ(pF − p) =

gV p3
F

6π2!3
. (4.3.1)

Fig. 4.2. The occupation of the momen-
tum states within the Fermi sphere

From (4.3.1), we find the following relation between the particle density
n = N

V and the Fermi momentum:

pF =
(

6π2

g

)1/3

! n1/3 . (4.3.2)

The single-particle energy corresponding to the Fermi momentum is called
the Fermi energy:

εF =
p2

F

2m
=

(
6π2

g

)2/3 !2

2m
n2/3 . (4.3.3)

For the ground-state energy, we find

E =
gV

(2π!)3

∫
d3p

p2

2m
Θ(pF − p) =

gV p5
F

20π2!3m
=

3
5

εF N . (4.3.4)
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From (4.1.21) and (4.3.4), the pressure of fermions at T = 0 is found to be

P =
2
5
εF n =

1
5

(
6π2

g

)2/3 !2

m
n5/3 . (4.3.5)

The degeneracy of the ground state is sufficiently small that the entropy and
the product TS vanish at T = 0 (see also (4.3.19)). From this, and using
(4.3.4) and (4.3.5), we obtain for the chemical potential using the Gibbs–
Duhem relation µ = 1

N (E + PV − TS):

µ = εF . (4.3.6)

This result is also evident from the form of the ground state, which implies
the occupation of all the levels up to the Fermi energy, from which it follows
that the Fermi distribution of a system of N fermions at T = 0 becomes
n(ε) = Θ(εF − ε). Clearly, one requires precisely the energy εF in order to
put one additional fermion into the system. The existence of the Fermi energy
is a result of the Pauli principle and is thus a quantum effect.

4.3.2 The Limit of Complete Degeneracy

We now calculate the thermodynamic properties in the limit of large µ/kT .
In Fig. 4.3, the Fermi distribution function

n(ε) =
1

e(ε−µ)/kT + 1
(4.3.7)

is shown for low temperatures. In comparison to a step function at the posi-
tion µ, it is broadened within a region kT . We shall see below that µ is equal
to εF only at T = 0. For T = 0, the Fermi distribution function degenerates
into a step function, so that one then speaks of a degenerate Fermi gas; at
low T one refers to a nearly-degenerate Fermi gas.

It is expedient to replace the prefactors in (4.1.19′) and (4.1.15) with the
Fermi energy (4.3.3)5; for the grand potential, one then obtains

Φ = −Nε−3/2
F

∞∫

0

dε ε3/2 n(ε) , (4.3.8)

and the formula for N becomes

1 =
3
2
ε−3/2

F

∞∫

0

dε ε1/2 n(ε) . (4.3.9)

5 In (4.3.8) and (4.3.14), Φ is expressed as usual in terms of its natural variables

T, V and µ, since Nε−3/2
F ∝ V . In (4.3.14′), the dependence on µ has been

substituted by T and N/V , using (4.3.13).
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Fig. 4.3. The Fermi distribu-
tion function n(ε) for low tem-
peratures, compared with the step
function Θ(µ − ε).

Fig. 4.4. The Fermi dis-
tribution function n(ε), and
n(ε) − Θ(µ − ε).

There thus still remain integrals of the type

I =
∞∫

0

dε f(ε)n(ε) (4.3.10)

to be computed. The method of evaluation at low temperatures was given by
Sommerfeld; I can be decomposed in the following manner:

I =

µ∫

0

dε f(ε) +
∞∫

0

dε f(ε)
[
n(ε) − Θ(µ − ε)

]

≈
µ∫

0

dε f(ε) +
∞∫

−∞

dε f(ε)
[
n(ε) − Θ(µ − ε)

]
(4.3.11)

and for T → 0, the limit of integration in the second term can be extended to
−∞ to a good approximation, since for negative ε , n(ε) = 1+O(e−(µ−ε)/kT ).6
One can see immediately from Fig. 4.4 that

(
n(ε)−Θ(µ−ε)

)
differs from zero

only in the neighborhood of ε = µ and is antisymmetric around µ.7 Therefore,
6 If f(ε) is in principle defined only for positive ε, one can e.g. define f(−ε) = f(ε);

the result depends on f(ε) only for positive ε.
7 1

ex+1 − Θ(−x) = 1 − 1
e−x+1

− Θ(−x) = −
h

1
e−x+1

− Θ(x)
i
.
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we expand f(ε) around the value µ in a Taylor series and introduce a new
integration variable, x = (ε − µ)/kT :

I =

µ∫

0

dε f(ε) +
∞∫

−∞

dx

[
1

ex + 1
− Θ(−x)

]
×

×
(
f ′(µ)

(
kT

)2
x +

f ′′′(µ)
3!

(
kT

)4
x3 + . . .

)

=

µ∫

0

dε f(ε) + 2
(
kT

)2
f ′(µ)

∞∫

0

dx
x

ex + 1
+

+
2
(
kT

)4

3!
f ′′′(µ)

∞∫

0

dx
x3

ex + 1
+ . . .

(since
[

1
ex+1 − Θ(−x)

]
is antisymmetric and = 1

ex+1 for x > 0). From this,
the general expansion in terms of the temperature follows, making use of the
integrals computed in Appendix D., Eq. (D.7) 8

I =

µ∫

0

dε f(ε) +
π2

6
(
kT

)2
f ′(µ) +

7π4

360
(
kT

)4
f ′′′(µ) + . . . . (4.3.12)

Applying this expansion to Eq. (4.3.9), we find

1 =
(

µ

εF

)3/2 {
1 +

π2

8

(
kT

µ

)2

+ O
(
T 4

)}
.

This equation can be solved iteratively for µ, yielding the chemical potential
as a function of T and N/V :

µ = εF

{
1 − π2

12

(
kT

εF

)2

+ O
(
T 4

)}
, (4.3.13)

where εF is given by (4.3.3). The chemical potential decreases with increasing
temperature, since then no longer all the states within the Fermi sphere are
occupied. In a similar way, we find for (4.3.8)

Φ = −Nε−3/2
F

{
2
5
µ5/2 +

π2

6
(
kT

)2 3
2
µ1/2 + . . .

}
, (4.3.14)

8 This series is an asymptotic expansion in T . An asymptotic series for a function
I(λ), I(λ) =

Pm
k=0 akλk + Rm(λ), is characterized by the following behavior of

the remainder: limλ→0 Rm(λ)/λm = 0, limm→∞ Rm(λ) = ∞. For small values
of λ, the function can be represented very accurately by a finite number of terms
in the series. The fact that the integral in (4.3.10) for functions f(ε) ∼ ε1/2

etc. cannot be expanded in a Taylor series can be immediately recognized, since
I diverges for T < 0.
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from which, inserting (4.3.13),9

Φ = −2
5
NεF

{
1 +

5π2

12

(
kT

εF

)2

+ O
(
T 4

)}
(4.3.14′)

or using P = −Φ/V , we obtain the equation of state. From (4.1.21), we find
immediately the internal energy

E =
3
2
PV =

3
5
NεF

{
1 +

5π2

12

(
kT

εF

)2

+ O
(
T 4

)}
. (4.3.15)

From this, we calculate the heat capacity at constant V and N :

CV = Nk
π2

2
T

TF
, (4.3.16)

where we have introduced the Fermi temperature

TF = εF /k . (4.3.17)

At low temperatures, (T ≪ TF ), the heat capacity is a linear function of the
temperature (Fig. 4.5). This behavior can be qualitatively understood in a
simple way: if one increases the temperature from zero to T , the energy of a
portion of the particles increases by kT . The number of particles which are
excited in this manner is limited to a shell of thickness kT around the Fermi
sphere, i.e. it is given by NkT/εF . All together, the energy increase is

δE ∼ kTN
kT

εF
, (4.3.16′)

from which, as in (4.3.16), we obtain CV ∼ kNT/TF . According to (4.3.14′),
the pressure is given by

P =
2
5

(
6π2

g

)2/3 !2

2m

(
N

V

)5/3 [
1 +

5π2

12

(
kT

εF

)2

+ . . .

]
. (4.3.14′′)

Due to the Pauli exclusion principle, there is a pressure increase at T = 0
relative to a classical ideal gas, as can be seen in Fig. 4.6. The isothermal
compressibility is then

κT = − 1
V

(
∂V

∂P

)

T

=
3(V/N)

2εF

[
1 − π2

12

(
kT

εF

)2

+ . . .

]
. (4.3.18)

9 If one requires the grand potential as a function of its natural variables, it is nec-
essary to substitute Nε−3/2

F = V g(2m)3/2/6π2!3 in (4.3.14). For the calculation
of CV and the equation of state, it is however expedient to employ T, V , and N
as variables.
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Fig. 4.5. The specific heat (heat ca-
pacity) of the ideal Fermi gas

Fig. 4.6. The pressure as a function
of the temperature for the ideal Fermi
gas (solid curve) and the ideal classical
gas (dashed)

For the entropy, we find for T ≪ TF

S = kN
π2

2
T

TF
(4.3.19)

with TS = E + PV − µN from (4.3.15), (4.3.14′) and (4.3.13) (cf. Ap-
pendix A.1, ‘Third Law’).

The chemical potential of an ideal Fermi gas with a fixed density can
be found from Eq. (4.3.9) and is shown in Fig. 4.7 as a function of the
temperature.

0.5 1.0 1.5
kT/ εF

-1

0

1

µ /
ε F

Fig. 4.7. The chemical potential of
the ideal Fermi gas at fixed density
as a function of the temperature.

Addenda:
(i) The Fermi temperature, also known as the degeneracy temperature,

TF [K] =
εF

k
= 3.85 ×10−38 1

m[g]

„
N

V [cm3]

«2/3

(4.3.20)

characterizes the thermodynamic behavior of fermions (see Table 4.1). For T ≪ TF ,
the system is nearly degenerate, while for T ≫ TF , the classical limit applies.
Fermi energies are usually quoted in electron volts (eV). Conversion to Kelvins is
accomplished using 1 eV=

∧11605 K .
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(ii) The density of states is defined as

ν(ε) =
V g

(2π!)3

Z
d3p δ(ε − εp) . (4.3.21)

We note that ν(ε) is determined merely by the dispersion relation and not by statis-
tics. The thermodynamic quantities do not depend on the details of the momentum
dependence of the energy levels, but only on their distribution, i.e. on the density
of states. Integrals over momentum space, whose integrands depend only on εp, can
be rearranged as follows:

Z
d3p f(εp) =

Z
dε

Z
d3p f(ε)δ(ε − εp) =

(2π!)3

V g

Z
dε ν(ε)f(ε) .

For example, the particle number can be expressed in terms of the density of states
in the form

N =

∞Z

−∞

dε ν(ε)n(ε) . (4.3.22)

For free electrons, we find from (4.3.21)

ν(ε) =
gV
4π2

„
2m
!2

« 3
2

ε1/2 =
3
2
N

ε1/2

ε3/2
F

. (4.3.23)

The dependence on ε1/2 shown in Fig. 4.8 is characteristic of nonrelativistic, non-
interacting material particles.

Fig. 4.8. The density of states for
free electrons in three dimensions

The derivations of the specific heat and the compressibility given above can be
generalized to the case of arbitrary densities of states ν(ε) by evaluating (4.3.9)
and (4.3.8) in terms of a general ν(ε). The results are

CV =
1
3
π2ν(εF )k2T + O

`
(T/TF )3

´
(4.3.24a)

and

κT =
V
N2

ν(εF ) + O
`
(T/TF )2

´
. (4.3.24b)
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The fact that only the value of the density of states at the Fermi energy is of
importance for the low-temperature behavior of the system was to be expected after
the discussion following equation (4.3.17). For (4.3.23), we find from (4.3.24a,b) once
again the results (4.3.16) and (4.3.18).
(iii) Degenerate Fermi liquids: physical examples of degenerate Fermi liquids are

listed in Table 4.1.

Table 4.1. Degenerate Fermi liquids: mass, density, Fermi temperature, Fermi
energy

Particles m[g] N/V [cm−3] TF [K] εF [eV]

Metal
electrons

0.91 ×10−27 1024 105 < 10

3He, P =
0–30 bar

5.01 ×10−24

m∗/m=2.8–5.5
(1.6–2.3)×1022 1.7–1.1 (1.5–0.9)×10−4

Neutrons
in the
Nucleus

1.67 ×10−24 0.11×1039

×
`

A−Z
A

´ 5.3×1011

×
`

A−Z
A

´ 2
3

46
`

A−Z
A

´ 2
3 ×106

Protons
in the
Nucleus

1.67 ×10−24 0.11 ×1039 Z
A 5.3 ×1011

`
Z
A

´ 2
3 46

`
Z
A

´ 2
3 ×106

Electrons
in White
Dwarf
Stars

0.91 ×10−27 1030 3 ×109 3 ×105

(iv) Coulomb interaction: electrons in metals are not free, but rather they
repel each other as a result of their Coulomb interactions

H =
∑

i

p2
i

2m
+

1
2

∑

i̸=j

e2

rij
. (4.3.25)

The following scaling of the Hamiltonian shows that the approximation of free
electrons is particularly reasonable for high densities. To see this, we carry
out the canonical transformation r′ = r/r0, p′ = p r0. The characteristic
length r0 is defined by 4π

3 r3
0N = V , i.e. r0 =

(
3V

4πN

)1/3. In terms of these new
variables, the Hamiltonian is

H =
1
r2
0

(∑

i

p′i
2

2m
+ r0

1
2

∑

i̸=j

e2

r′ij

)
. (4.3.25′)

The Coulomb interaction becomes less and less important relative to the
kinetic energy the smaller r0, i.e. the more dense the gas becomes.
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∗4.3.3 Real Fermions

In this section, we will consider real fermionic many-body systems: the con-
duction electrons in metals, liquid 3He, protons and neutrons in atomic nuclei,
electrons in white dwarf stars, neutrons in neutron stars. All of these fermions
interact; however, one can understand many of their properties without tak-
ing their interactions into account. In the following, we will deal with the
parameters mass, Fermi energy. and temperature and discuss the modifica-
tions which must be made as a result of the interactions (see also Table 4.1).

a) The Electron Gas in Solids

The alkali metals Li, Na, K, Rb, and Cs are monovalent (with a body-centered
cubic crystal structure); e.g. Na has a single 3s1 electron (Table 4.2). The
noble metals (face-centered cubic crystal structure) are

Copper Cu 4s13d10

Silver Ag 5s14d10

Gold Au 6s15d10 .
All of these elements have one valence electron per atom, which becomes a
conduction electron in the metal. The number of these quasi-free electrons is
equal to the number of atoms. The energy-momentum relation is to a good
approximation parabolic, εp = p2

2m .10

Table 4.2. Electrons in Metals; Element, Density, Fermi Energy, Fermi Tempera-
ture, γ/γtheor., Effective Mass

N/V [cm−3] εF [eV] TF [K] γ/γtheor. m∗/m

Li 4.6 ×1022 4.7 5.5 ×104 2.17 2.3
Na 2.5 3.1 3.7 1.21 1.3
K 1.34 2.1 2.4 1.23 1.2

Rb 1.08 1.8 2.1 1.22 1.3
Cs 0.86 1.5 1.8 1.35 1.5

Cu 8.5 7 8.2 1.39 1.3
Ag 5.76 5.5 6.4 1.00 1.1
Au 5.9 5.5 6.4 1.13 1.1

10 Remark concerning solid-state physics applications: for Na, we have 4π
3 ( pF

! )3 =
4π3N

V = 1
2VBrill., where VBrill. is the volume of the first Brillouin zone. The Fermi

sphere always lies within the Brillouin zone and thus never crosses the zone
boundary, where there are energy gaps and deformations of the Fermi surface.
The Fermi surface is therefore in practice spherical, ∆pF /pF ≈ 10−3. Even in
copper, where the 4s Fermi surface intersects the Brillouin zone of the fcc lattice,
the Fermi surface remains in most regions spherical to a good approximation.
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Fig. 4.9. The experimental determination of γ from the specific heat of gold
(D. L. Martin, Phys. Rev. 141, 576 (1966); ibid. 170, 650 (1968))

Taking account of the electron-electron interactions requires many-body
methods, which are not at our disposal here. The interaction of two electrons
is weakened by screening from the other electrons; in this sense, it is un-
derstandable that the interactions can be neglected to a first approximation
in treating many phenomena (e.g. Pauli paramagnetism; but not ferromag-
netism).

The total specific heat of a metal is composed of a contribution from the
electrons (Fig. 4.9) and from the phonons (lattice vibrations, see Sect 4.6):

CV

N
= γT + DT 3 .

Plotting CV
NT = γ+DT 2 vs. T 2, we can read γ off the ordinate. From (4.3.16),

the theoretical value of γ is γtheor = π2k2

2εF
. The deviations between theory

and experiment can be attributed to the fact that the electrons move in the
potential of the ions in the crystal and are subject to the influence of the
electron-electron interaction. The potential and the electron-electron inter-
action lead among other things to an effective mass m∗ for the electrons,
i.e. the dispersion relation is approximately given by εp = p2

2m ∗ . This effective
mass can be larger or smaller than the mass of free electrons.

b) The Fermi Liquid 3He

3He has a nuclear spin of I = 1
2 , a mass m = 5.01×10−24g, a particle density

of n = 1.6 × 1022 cm−3 at P = 0, and a mass density of 0.081 g cm−3. It
follows that εF = 4.2× 10−4eV and TF = 4.9K. The interactions of the 3He
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Fig. 4.10. The phase
diagram of 3He

atoms lead to an effective mass which at the pressures P = 0 and P = 30
bar is given by m∗ = 2.8 m and m∗ = 5.5 m. Hence the Fermi temperature
for P = 30, TF ≈ 1 K, is reduced relative to a fictitious non-interacting 3He
gas. The particle densities at these pressures are n = 1.6 × 1023 cm−3 and
n = 2.3 × 1022 cm−3. The interaction between the helium atoms is short-
ranged, in contrast to the electron-electron interaction. The small mass of
the helium atoms leads to large zero-point oscillations; for this reason, 3He,
like 4He, remains a liquid at pressures below ∼ 30 bar, even at T → 0. 3He
and 4He are termed quantum liquids. At 10−3 K, a phase transition into the
superfluid state takes place (l = 1, s = 1) with formation of BCS pairs.11
In the superconductivity of metals, the Cooper pairs formed by the electrons
have l = 0 and s = 0. The relatively complex phase diagram of 3He is shown
in Fig. 4.10.11

c) Nuclear Matter

A further example of many-body systems containing fermions are the neu-
trons and protons in the nucleus, which both have masses of about m =
1.67 × 10−24g. The nuclear radius depends on the nucleon number A via
R = 1.3 × 10−13A1/3cm. The nuclear volume is V = 4π

3 R3 = 4π
3 (1.3)3 ×

10−39 A cm3 = 9.2 × 10−39 A cm3. A is the overall number of nucleons and
Z the number of protons in the nucleus. Nuclear matter12 occurs not only
within large atomic nuclei, but also in neutron stars, where however also the
gravitational interactions must be taken into account.

11 D. Vollhardt and P. Wölfle, The Superfluid Phases of Helium 3 , Taylor & Francis,
London, 1990

12 A.L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems,
McGraw-Hill, New York 1971
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d) White Dwarfs

The properties of the (nearly) free electron gas are indeed of fundamental
importance for the stability of the white dwarfs which can occur at the final
stages of stellar evolution.13 The first such white dwarf to be identified, Sir-
ius B, was predicted by Bessel as a companion of Sirius.
Mass ≈ M⊙= 1.99 × 1033g
Radius 0.01R⊙, R⊙= 7 × 1010cm
Density ≈ 107 ρ⊙= 107 g/cm3, ρ⊙= 1g/cm3

ρSirius B ≈ 0.69 × 105g/cm3

Central temperature ≈ 107 K ≈ T⊙
White dwarfs consist of ionized nuclei and free electrons. Helium can still be
burned in white dwarfs. The Fermi temperature is TF ≈ 3 · 109 K, so that the
electron gas is highly degenerate. The high zero-point pressure of the electron
gas opposes the gravitational attraction of the nuclei which compresses the
star. The electrons can in fact be regarded as free; their Coulomb repulsion
is negligible at these high pressures.

∗e) The Landau Theory of Fermi Liquids

The characteristic temperature dependences found for ideal Fermi gases at
low temperatures remain in effect in the presence of interactions. This is the
result of Landau’s Fermi liquid theory, which is based on physical arguments
that can also be justified in terms of microscopic quantum-mechanical many-
body theory. We give only a sketch of this theory, including its essential
results, and refer the reader to more detailed literature14. One first considers
13 An often-used classification of the stars in astronomy is based on their positions in

the Hertzsprung–Russell diagram, in which their magnitudes are plotted against
their colors (equivalent to their surface temperatures). Most stars lie on the so
called main sequence. These stars have masses ranging from about one tenth of
the Sun’s mass up to a sixty-fold solar mass in the evolutionary stages in which
hydrogen is converted to helium by nuclear fusion (‘burning’). During about 90%
of their evolution, the stars stay on the main sequence – as long as nuclear fusion
and gravitational attraction are in balance. When the fusion processes come to
an end as their ‘fuel’ is exhausted, gravitational forces become predominant. In
their further evolution, the stars become red giants and finally contract to one of
the following end stages: in stars with less than 1.4 solar masses, the compression
process is brought to a halt by the increase of the Fermi energy of the electrons,
and a white dwarf is formed, consisting mainly of helium and electrons. Stars
with two- or threefold solar masses end their contraction after passing through
intermediate phases as neutron stars. Above three or four solar masses, the Fermi
energy of the neutrons is no longer able to stop the compression process, and a
black hole results.

14 A detailed description of Landau’s Fermi liquid theory can be found in D. Pines
and P. Nozières, The Theory of Quantum Liquids, W.A. Benjamin, New York
1966, as well as in J. Wilks, The Properties of Liquid and Solid Helium, Clarendon
Press, Oxford, 1967. See also J. Wilks and D. S. Betts, An Introduction to Liquid
Helium, Oxford University Press, 2nd ed., Oxford, (1987).
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the ground state of the ideal Fermi gas, and the ground state with an addi-
tional particle (of momentum p); then the interaction is ‘switched on’. The
ideal ground state becomes a modified ground state and the state with the
additional particle becomes the modified ground state plus an excited quan-
tum (a quasiparticle of momentum p). The energy of the quantum, ε(p), is
shifted relative to ε0(p) ≡ p2/2m. Since every non-interacting single-particle
state is only singly occupied, there are also no multiply-occupied quasiparticle
states; i.e. the quasiparticles also obey Fermi–Dirac statistics.

When several quasiparticles are excited, their energy also depends upon
the number δn(p) of the other excitations

ε(p) = ε0(p) +
∑

p′

F(p,p′)δn(p′) . (4.3.26)

The average occupation number takes a similar form to that of ideal fermions,
owing to the fermionic character of the quasiparticles:

np =
1

e(ε(p)−µ)/kT + 1
, (4.3.27)

where, according to (4.3.26), ε(p) itself depends on the occupation number.
This relation is usually derived in the present context by maximizing the
entropy expression found in problem 4.2, which can be obtained from purely
combinatorial considerations. At low temperatures, the quasiparticles are ex-
cited only near the Fermi energy, and due to the occupied states and energy
conservation, the phase space for scattering processes is severely limited. Al-
though the interactions are by no means necessarily weak, the scattering rate
vanishes with temperature as 1

τ ∼ T 2, i.e. the quasiparticles are practically
stable particles.

The interaction between the quasiparticles can be written in the form

F(p, σ;p′, σ′) = fs(p,p′) + σ · σ′fa(p,p′) (4.3.28a)

with the Pauli spin matrices σ. Since only momenta in the neighborhood of
the Fermi momentum contribute, we introduce

fs,a(p,p′) = fs,a(χ) (4.3.28b)

and

F s,a(χ) = ν(εF )fs,a(χ) =
V m∗pF

π2!3
fs,a(χ) , (4.3.28c)

where χ is the angle between p and p′ and ν(εF ) is the density of states. A
series expansion in terms of Legendre polynomials leads to

F s,a(χ) =
∑

l

F s,a
l Pl(cosχ) = 1 + F s,a

1 cosχ + . . . . (4.3.28d)

The F s
l and F a

l are the spin-symmetric and spin-antisymmetric Landau pa-
rameters; the F a

l result from the exchange interaction.
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Due to the Fermi character of the quasiparticles, which at low temperatures
can be excited only near the Fermi energy, it is clear from the qualitative
estimate (4.3.16′) that the specific heat of the Fermi liquid will also have a
linear temperature dependence. In detail, one obtains for the specific heat,
the compressibility, and the magnetic susceptibility:

CV =
1
3
π2ν(εF ) k2T , (4.3.29a)

κT =
V

N2

ν(εF )
1 + F s

0

, (4.3.29b)

χ = µ2
B

ν(εF )N
1 + F a

0

, (4.3.29c)

with the density of states ν(εF ) = V m ∗ pF

π2!3 and the effective mass ratio

m∗

m
= 1 +

1
3
F s

1 . (4.3.29d)

The structure of the results is the same as for ideal fermions.

4.4 The Bose–Einstein Condensation

In this section, we investigate the low-temperature behavior of a nonrelativis-
tic ideal Bose gas of spin s = 0, i.e. g = 1 and

εp =
p2

2m
. (4.4.1)

In their ground state, non-interacting bosons all occupy the energetically
lowest single-particle state; their low-temperature behavior is therefore quite
different from that of fermions. Between the high-temperature phase, where
the bosons are distributed over the whole spectrum of momentum values,
corresponding to the Bose distribution function, and the phase in which the
(p = 0) state is macroscopically occupied (at T = 0, all the particles are
in this state), a phase transition takes place. This so called Bose–Einstein
condensation of an ideal Bose gas was predicted by Einstein15 on the basis
of the statistical considerations of Bose, nearly seventy years before it was
observed experimentally.

We first refer to the results of Sect 4.1, where we found for the particle
density, i.e. for the reciprocal of the specific volume, in Eq. (4.1.17):

λ3

v
= g3/2(z) (4.4.2a)

15 A. Einstein, Sitzber. Kgl. Preuss. Akad. Wiss. 1924, 261, (1924), ibid. 1925, 3
(1925); S. Bose, Z. Phys. 26, 178 (1924)
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with λ = !
√

2π/mkT and, using (4.2.1),

g3/2(z) =
2√
π

∞∫

0

dx
x1/2

exz−1 − 1
=

∞∑

k=1

zk

k3/2
. (4.4.2b)

According to Remark (i) in Sect. 4.1, the fugacity of bosons z = eµ/kT is
limited to z ≤ 1. The maximum value of the function g3/2(z), which is shown
in Fig. 4.11, is then given by g3/2(1) = ζ(3/2) = 2.612.

Fig. 4.11. The function g3/2(z). Fig. 4.12. The fugacity z as a func-
tion of v/λ3

In the following, we take the particle number and the volume, and thus the
specific volume v, to be fixed at given values. Then from Eq. (4.4.2a), we can
calculate z as a function of T , or, more expediently, of vλ−3. On lowering the
temperature, v

λ3 decreases and z therefore increases, until finally at v
λ3 = 1

2.612
it reaches its maximum value z = 1 (Fig. 4.12). This defines a characteristic
temperature

kTc(v) =
2π!2/m

(2.612 v)2/3
. (4.4.3)

When z approaches 1, we must be more careful in taking the limit of
∑

p →∫
d3p used in (4.1.14a) and (4.1.15). This is also indicated by the fact that

(4.4.2a) would imply for z = 1 that at temperatures below Tc(v), the density
1
v must decrease with decreasing temperature. From (4.4.2a), there would
appear to no longer be enough space for all the particles. Clearly, we have
to treat the (p = 0) term in the sum in (4.1.8), which diverges for z → 1,
separately:

N =
1

z−1 − 1
+

∑

p ̸=0

n(εp) =
1

z−1 − 1
+

V

(2π!)3

∫
d3p n(εp) .

The p = 0 state for fermions did not require any special treatment, since the
average occupation numbers can have at most the value 1. Even for bosons,
this modification is important only at T < Tc(v) and leads at T = 0 to the
complete occupation of the p = 0 state, in agreement with the ground state
which we described above.
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We thus obtain for bosons, instead of (4.4.2a):

N =
1

z−1 − 1
+ N

v

λ3
g3/2(z) , (4.4.4)

or, using Eq. (4.4.3),

N =
1

z−1 − 1
+ N

(
T

Tc(v)

)3/2 g3/2(z)
g3/2(1)

. (4.4.4′)

The overall particle number N is thus the sum of the number of particles in
the ground state

N0 =
1

z−1 − 1
(4.4.5a)

and the numbers in the excited states

N ′ = N

(
T

Tc(v)

)3/2 g3/2(z)
g3/2(1)

. (4.4.5b)

For T > Tc(v), Eq. (4.4.4′) yields a value for z of z < 1. The first term on
the right-hand side of (4.4.4′) is therefore finite and can be neglected relative
to N . Our initial considerations thus hold here; in particular, z follows from

g3/2(z) = 2.612
(

Tc(v)
T

)3/2

for T > Tc(v) . (4.4.5c)

For T < Tc(v), from Eq. (4.4.4′), z = 1−O(1/N), so that all of the particles
which are no longer in excited states can find sufficient ‘space’ to enter the
ground state. When z is so close to 1, we can set z = 1 in the second term
and obtain

N0 = N

(
1 −

(
T

Tc(v)

)3/2
)

.

Defining the condensate fraction in the thermodynamic limit by

ν0 = lim
N→∞

v fixed

N0

N
, (4.4.6)

we find in summary

ν0 =

{
0 T > Tc(v)

1 −
(

T
Tc(v)

)3/2
T < Tc(v) .

(4.4.7)

This phenomenon is called the Bose–Einstein condensation. Below Tc(v), the
ground state p = 0 is macroscopically occupied. The temperature depen-
dence of ν0 and

√
ν0 is shown in Fig. 4.13. The quantities ν0 and

√
ν0 are
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Fig. 4.13. The relative number of par-
ticles in the condensate and its square
root as functions of the temperature

Fig. 4.14. The transition tempera-
ture as a function of the specific vol-
ume

characteristic of the condensation or the ordering of the system. For reasons
which will become clear later, one refers to

√
ν0 as the order parameter. In

the neighborhood of Tc,
√

ν0 goes to zero as
√

ν0 ∝
√

Tc − T . (4.4.7′)

In Fig. 4.14, we show the transition temperature as a function of the specific
volume. The higher the density (i.e. the smaller the specific volume), the
higher the transition temperature Tc(v) at which the Bose–Einstein conden-
sation takes place.
Remark: One might ask whether the next higher terms in the sum

P
p n(εp) could

not also be macroscopically occupied. The following estimate however shows that
n(εp) ≪ n(0) for p ̸= 0. Consider e.g. the momentum p =

`
2π!
L , 0, 0

´
, for which

1
V

1

eβp2
1/2mz−1 − 1

<
1
V

1

eβp2
1/2m − 1

<
2m

V βp2
1

∼ O(V −1/3)

holds, while 1
V

1
z−1−1

∼ O(1) .

There is no change in the grand potential compared to the integral represen-
tation (4.1.19′), since for the term with p = 0 in the thermodynamic limit,
it follows that

lim
V →∞

1
V

log(1 − z(V )) = lim
V →∞

1
V

log
1
V

= 0 .

Therefore, the pressure is given by (4.1.19′) as before, where z for T > Tc(v)
follows from (4.4.5c), and for T < Tc(v) it is given by z = 1. Thus finally the
pressure of the ideal Bose gas is

P =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

kT

λ3
g5/2(z) T > Tc

kT

λ3
1.342 T < Tc

, (4.4.8)
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Fig. 4.15. The functions g3/2(z) and
g5/2(z). In the limit z → 0, the functions
become asymptotically identical, g3/2(z) ≈
g5/2(z) ≈ z.

Fig. 4.16. The equation of
state of the ideal Bose gas.
The isochores are shown for
decreasing values of v. For T <
Tc(v), the pressure is P =
kT
λ3 1.342.

with g5/2(1) = ζ
(

5
2

)
= 1.342. If we insert z from (4.4.4) here, we obtain the

equation of state. For T > Tc, using (4.4.5c), we can write (4.4.8) in the form

P =
kT

v

g5/2(z)
g3/2(z)

. (4.4.9)

The functions g5/2(z) and g3/2(z) are drawn in Fig. 4.15. The shape of the
equation of state can be qualitatively seen from them. For small values of
z, g5/2(z) ≈ g3/2(z), so that for large v and high T , we obtain again from
(4.4.9) the classical equation of state (see Fig. 4.16). On approaching Tc(v),
it becomes increasingly noticeable that g5/2(z) < g3/2(z). At Tc(v), the iso-
chores converge into the curve P = kT

λ3 1.342, which represents the pressure
for T < Tc(v). All together, this leads to the equation of state corresponding
to the isochores in Fig. 4.16.

For the entropy, we find16

S =
(

∂PV

∂T

)

V,µ

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Nk

(
5
2

v

λ3
g5/2(z) − log z

)
T > Tc

Nk
5
2

g5/2(1)
g3/2(1)

(
T

Tc

)3/2

T < Tc

, (4.4.10)

16 Note that d
dz gν(z) = 1

z gν−1(z).
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Fig. 4.17. The heat capacity = N×
the specific heat of an ideal Bose gas

1 2 3
T/Tc

-3

-2

-1
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1

2

µ/
kT

c(
υ)

Fig. 4.18. The chemical potential of
the ideal Bose gas at a fixed density
as a function of the temperature

and, after some calculation, we obtain for the heat capacity at constant vol-
ume

CV = T

(
∂S

∂T

)

N,V

= Nk

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

15
4

v

λ3
g5/2(z) − 9

4
g3/2(z)
g1/2(z)

T > Tc

15
4

g5/2(1)
g3/2(1)

(
T

Tc

)3/2

T < Tc .

. (4.4.11)

The entropy and the specific heat vary as T 3/2 at low T . Only the excited
states contribute to the entropy and the internal energy; the entropy of the
condensate is zero. At T = Tc, the specific heat of the ideal Bose gas has a
cusp (Fig. 4.17).

From Eq. (4.4.4) or from Fig. 4.12, one can obtain the chemical potential,
shown in Fig. 4.18 as a function of the temperature.

At Tλ = 2.18 K, the so called lambda point, 4He exhibits a phase transi-
tion into the superfluid state (see Fig. 4.19). If we could neglect the interac-
tions of the helium atoms, the temperature of a Bose–Einstein condensation
would be Tc(v) = 3.14 K, using the specific volume of helium in (4.4.3). The
interactions are however very important, and it would be incorrect to iden-
tify the phase transition into the superfluid state with the Bose–Einstein
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Fig. 4.19. The phase diagram of 4He
(schematic). Below 2.18 K, a phase
transition from the normal liquid He I
phase into the superfluid He II phase
takes place

Fig. 4.20. The experimental specific
heat of 4He, showing the characteristic
lambda anomaly

condensation treated above. The superfluid state in three-dimensional he-
lium is indeed also created by a condensation (macroscopic occupation) of
the p = 0 state, but at T = 0, the fraction of condensate is only 8%. The
specific heat (Fig. 4.20) exhibits a λ anomaly (which gives the transition its
name), i.e. an approximately logarithmic singularity. The typical excitation
spectrum and the hydrodynamic behavior as described by the two-fluid model
are compatible only with an interacting Bose system (Sect. 4.7.1).

Another Bose gas, which is more ideal than helium and in which one can
likewise expect a Bose–Einstein condensation – which has been extensively
searched for experimentally – is atomic hydrogen in a strong magnetic field
(the spin polarization of the hydrogen electrons prevents recombination to
molecular H2). Because of the difficulty of suppressing recombination of H
to H2, over a period of many years it however proved impossible to prepare
atomic hydrogen at a sufficient density. The development of atom traps has
recently permitted remarkable progress in this area.

The Bose–Einstein condensation was first observed, 70 years after its orig-
inal prediction, in a gas consisting of around 2000 spin-polarized 87 Rb atoms,
which were enclosed in a quadrupole trap.17 ,18 The transition temperature is
at 170 × 10−9 K. One might at first raise the objection that at low tempera-
tures the alkali atoms should form a solid; however, a metastable gaseous state
can be maintained within the trap even at temperatures in the nanokelvin
range. In the initial experiments, the condensed state could be kept for about
ten seconds. Similar results were obtained with a gas consisting of 2 × 105

17 M. H. Anderson, J. R. Ensher, M.R. Matthews, C. E. Wieman, and E.A. Cornell,
Science 269, 198 (1995)

18 See also G.P. Collins, Physics Today, August 1995, 17.
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spin-polarized 7 Li atoms.19 In this case, the condensation temperature is
Tc ≈ 400×10−9 K. In 87 Rb, the s-wave scattering length is positive, while in
7 Li, it is negative. However, even in 7 Li, the gas phase does not collapse into
a condensed phase, in any case not within the spatially inhomogeneous atom
trap.19 Finally, it also proved possible to produce and maintain a conden-
sate containing more than 108 atoms of atomic hydrogen, with a transition
temperature of about 50 µK, for up to 5 seconds.20

4.5 The Photon Gas

4.5.1 Properties of Photons

We next want to determine the thermal properties of the radiation field. To
start with, we list some of the characteristic properties of photons.

(i) Photons obey the dispersion relation εp = c|p| = !ck and are bosons
with a spin s = 1. Since they are completely relativistic particles (m = 0, v =
c), their spins have only two possible orientations, i.e. parallel or antiparallel
to p, corresponding to right-hand or left-hand circularly polarized light (0 and
π are the only angles which are Lorentz invariant). The degeneracy factor for
photons is therefore g = 2.
(ii) The mutual interactions of photons are practically zero, as one can
see from the following argument: to lowest order, the interaction consists
of the scattering of two photons γ1 and γ2 into the final states γ3 and
γ4; see Fig. 4.21a. In this process, for example photon γ1 decays into a
virtual electron-positron pair, photon γ2 is absorbed by the positron, the
electron emits photon γ3 and recombines with the positron to give photon
γ4. The scattering cross-section for this process is extremely small, of order
σ ≈ 10−50 cm2. The mean collision time can be calculated from the scattering
cross-section as follows: in the time ∆t, a photon traverses the distance c∆t.
We thus consider the cylinder shown in Fig. 4.21b, whose basal area is equal
to the scattering cross-section and whose length is the velocity of light ×∆t.
A photon interacts within the time ∆t with all other photons which are in
the volume c σ ∆t, roughly speaking. Let N be the total number of photons
within the volume V (which depends on the temperature and which we still
have to determine; see the end of Sect. 4.5.4). Then a photon interacts with
c σ N/V particles per unit time. Thus the mean collision time (time between
two collisions on average) τ is determined by

τ =
(V/N)

cσ
= 1040 sec

cm3

V

N
.

19 C. C. Bradley, C. A. Sackett, J. J. Tollett, and R.G. Hulet, Phys. Rev. Lett. 75,
1687 (1995)

20 D. Kleppner, Th. Greytak et al., Phys. Rev. Lett. 81, 3811 (1998)
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Fig. 4.21. (a) Photon-photon scattering (dashed lines: photons; solid lines: electron
and positron). (b) Scattering cross-section and mean collision time

The value of the mean collision time is approximately τ ≈ 1031 sec at room
temperature and τ ≈ 1018 sec at the temperature of the Sun’s interior (107 K).
Even at the temperature in the center of the Sun, the interaction of the pho-
tons it negligible. In comparison, the age of the Universe is ∼ 1017 sec. Photons
do indeed constitute an ideal quantum gas.
The interaction with the surrounding matter is crucial in order to establish
equilibrium within the radiation field. The establishment of equilibrium in
the photon gas is brought about by absorption and emission of photons by
matter. In the following, we will investigate the radiation field within a cavity
of volume V and temperature T , and without loss of generality of our consid-
erations, we take the quantization volume to be cubical in shape (the shape
is irrelevant for short wavelengths, and the long waves have a low statistical
weight).
(iii) The number of photons is not conserved. Photons are emitted and ab-
sorbed by the material of the cavity walls. From the quantum-field descrip-
tion of photons it follows that each wavenumber and polarization direction
corresponds to a harmonic oscillator. The Hamiltonian thus has the form

H =
∑

p,λ

εpn̂p,λ ≡
∑

p,λ

εpa†
p,λap,λ , p ̸= 0 , (4.5.1)

where n̂p,λ = a†
p,λap,λ is the occupation number operator for the momen-

tum p and the direction of polarization λ; also, a†
p,λ, ap,λ are the creation

and annihilation operators for a photon in the state p, λ. We note that in
the Hamiltonian of the radiation field, there is no zero-point energy, which is
automatically accomplished in quantum field theory by defining the Hamil-
tonian in terms of normal-ordered products.21

21 C. Itzykson, J.-B. Zuber, Quantum Field Theory, McGraw-Hill; see also QM II.
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4.5.2 The Canonical Partition Function

The canonical partition function is given by (np,λ = 0, 1, 2, . . .):

Z = Tr e−βH =
∑

{np,λ}

e−β
P

p εpnp,λ =

⎡

⎣
∏

p ̸=0

1
1 − e−βεp

⎤

⎦
2

. (4.5.2)

Here, there is no condition on the number of photons, since it is not fixed.
In (4.5.2), the power 2 enters due to the two possible polarizations λ. With
this expression, we find for the free energy

F (T, V ) = −kT log Z = 2kT
∑

p ̸=0

log
(
1 − e−εp/kT

)

=
2V

β

∫
d3p

(2π!)3
log(1 − e−βεp) =

V (kT )4

π2(!c)3

∞∫

0

dxx2 log(1 − e−x) .

(4.5.3)

The sum has been converted to an integral according to (4.1.14a). For the
integral in (4.5.3), we find after integration by parts

∞∫

0

dxx2 log(1 − e−x) = −1
3

∞∫

0

dxx3

ex − 1
= −2

∞∑

n=1

1
n4

≡ −2ζ(4) = −π4

45
,

where ζ(n) is Riemann’s ζ-function (Eqs. (D.2) and (D.3)), so that for F , we
have finally

F (T, V ) = −V (kT )4

(!c)3
π2

45
= −4σ

3c
V T 4 (4.5.4)

with the Stefan–Boltzmann constant

σ ≡ π2k4

60!3c2
= 5.67 × 10−8 J sec−1 m−2 K−4 . (4.5.5)

From (4.5.4), we obtain the entropy:

S = −
(

∂F

∂T

)

V

=
16σ

3c
V T 3 , (4.5.6a)

the internal energy (caloric equation of state)

E = F + TS =
4σ

c
V T 4 , (4.5.6b)

and the pressure (thermal equation of state)
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P = −
(

∂F

∂V

)

T

=
4σ

3c
T 4 , (4.5.6c)

and finally the heat capacity

CV = T

(
∂S

∂T

)

V

=
16σ

c
V T 3 . (4.5.7)

Because of the relativistic dispersion, for photons

E = 3PV

holds instead of 3
2PV . Eq. (4.5.6b) is called the Stefan–Boltzmann law: the

internal energy of the radiation field increases as the fourth power of the
temperature. The radiation pressure (4.5.6c) is very low, except at extremely
high temperatures. At 105 K, the temperature produced by the a nuclear
explosion, it is P = 0.25 bar, and at 107 K, the Sun’s central temperature, it
is P = 25 × 106 bar.

4.5.3 Planck’s Radiation Law

We now wish to discuss some of the characteristics of the radiation field. The
average occupation number of the state (p, λ) is given by

⟨np,λ⟩ =
1

eεp/kT − 1
(4.5.8a)

with εp = !ωp = cp, since

⟨np,λ⟩ ≡
Tr e−βH n̂p,λ

Tr e−βH
=

∞∑
np,λ=0

np,λe−np,λεp/kT

∞∑
np,λ=0

e−np,λεp/kT

can be evaluated analogously to Eq. (4.1.9). The average occupation number
(4.5.8a) corresponds to that of atomic or molecular free bosons, Eq. (4.1.9),
with µ = 0.

The number of occupied states in a differential element d3p within a fixed
volume is therefore (see (4.1.14a)):

⟨np,λ⟩
2V

(2π!)3
d3p , (4.5.8b)

and in the interval [p, p + dp], it is

⟨np,λ⟩
V

π2!3
p2 dp . (4.5.8c)
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It follows from this that the number of occupied states in the interval [ω, ω +
dω] is equal to

V

π2c3

ω2dω

e!ω/kT − 1
. (4.5.8d)

The spectral energy density u(ω) is defined as the energy per unit volume
and frequency, i.e. as the product of (4.5.8d) with !ω/V :

u(ω) =
!

π2c3

ω3

e!ω/kT − 1
. (4.5.9)

This is the famous Planck radiation law (1900), which initiated the develop-
ment of quantum mechanics.

We now want to discuss these results in detail. The occupation number
(4.5.8a) for photons diverges for p → 0 as 1/p (see Fig. 4.22), since the
energy of the photons goes to zero when p → 0. Because the density of states
in three dimensions is proportional to ω2, this divergence is irrelevant to the
energy content of the radiation field. The spectral energy density is shown in
Fig 4.22.

Fig. 4.22. The photon number as
a function of !ω/kT (dot-dashed
curve). The spectral energy den-
sity as a function of !ω/kT (solid
curve).

As a function of !ω, it shows a maximum at

!ωmax = 2.82 kT , (4.5.10)

i.e. around three times the thermal energy. The maximum shifts proportion-
ally to the temperature. Equation (4.5.10), Wien’s displacement law (1893),
played an important role in the historical development of the theory of the
radiation field, leading to the discovery of Planck’s quantum of action. In
Fig. 4.23, we show u(ω, T ) for different temperatures T .
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Fig. 4.23. Planck’s law for three tem-
peratures, T1 < T2 < T3

We now consider the limiting cases of Planck’s radiation law:

(i) !ω ≪ kT : for low frequencies, we find using (4.5.9) that

u(ω) =
kTω2

π2c3
; (4.5.11)

the Rayleigh–Jeans radiation law. This is the classical low-energy limit. This
result of classical physics represented one of the principal problems in the
theory of the radiation field. Aside from the fact that it agreed with experi-
ment only for very low frequencies, it was also fundamentally unacceptable:
for according to (4.5.11), in the high-frequency limit ω → ∞, it leads to a
divergence in u(ω), the so called ultraviolet catastrophe. This would in turn
imply an infinite energy content of the cavity radiation,

∫ ∞
0 dω u(ω) = ∞.

(ii) !ω ≫ kT : In the high-frequency limit, we find from (4.5.9) that

u(ω) =
!ω3

π2c3
e−!ω/kT . (4.5.12)

The energy density decreases exponentially with increasing frequency. This
empirically derived relation is known as Wien’s law. In his first derivation,
Planck farsightedly obtained (4.5.9) by interpolating the corresponding en-
tropies between equations (4.5.11) and (4.5.12).

Often, the energy density is expressed in terms of the wavelength λ: starting
from ω = ck = 2πc

λ , we obtain dω = − 2πc
λ2 dλ. Therefore, the energy per unit volume

in the interval [λ, λ + dλ] is given by

dEλ

V
= u

„
ω =

2πc
λ

« ˛̨
˛̨dω
dλ

˛̨
˛̨ dλ =

16π2!c dλ

λ5
“
e

2π!c
kT λ − 1

” , (4.5.13)

where we have inserted (4.5.9). The energy density as a function of the wavelength
dEλ
dλ has its maximum at the value λmax, determined by

2π!c
kTλmax

= 4.965 . (4.5.14)
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We will now calculate the radiation which emerges from an opening in
the cavity at the temperature T . To do this, we first note that the radiation
within the cavity is completely isotropic. The emitted thermal radiation at a
frequency ω into a solid angle dΩ is therefore u(ω)dΩ

4π . The radiation energy
which emerges per unit time onto a unit surface is

I(ω, T ) =
1
4π

∫
dΩ c u(ω) cosϑ =

1
4π

2π∫

0

dϕ

1∫

0

dη η c u(ω) =
c

4
u(ω) . (4.5.15)

The integration over the solid angle dΩ extends over only one hemisphere
(see Fig. 4.24). The total radiated power per unit surface (the energy flux) is
then

IE(T ) =
∫

dω I(ω, T ) = σT 4 , (4.5.16)

where again the Stefan–Boltzmann constant σ from Eq. (4.5.5) enters the
expression.

Fig. 4.24. The radiation emis-
sion per unit surface area from
a cavity radiator (black body)

A body which completely absorbs all the radiation falling upon it is called
a black body. A small opening in the wall of a cavity whose walls are good
absorbers is the ideal realization of a black body. The emission from such an
opening calculated above is thus the radiation emitted by a black body. As
an approximation, Eqns. (4.5.15,16) are also used to describe the radiation
from celestial bodies.

Remark: The Universe is pervaded by the so called cosmic background radiation
discovered by Penzias and Wilson, which corresponds according to Planck’s law to
a temperature of 2.73 K. It is a remainder from the earliest times of the Universe,
around 300,000 years after the Big Bang, when the temperature of the cosmos had
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already cooled to about 3000 K. Previous to this time, the radiation was in thermal
equilibrium with the matter. At temperatures of 3000 K and below, the electrons
bond to atomic nuclei to form atoms, so that the cosmos became transparent to
this radiation and it was practically decoupled from the matter in the Universe.
The expansion of the Universe by a factor of about one thousand then led to a
corresponding increase of all wavelengths due to the red shift, and thus to a Planck
distribution at an effective temperature of 2.73 K.

∗4.5.4 Supplemental Remarks

Let us now interpret the properties of the photon gas in a physical sense and
compare it with other gases.
The mean photon number is given by

N = 2
∑

p

′ 1
ecp/kT − 1

=
V

π2c3

∞∫

0

dω ω2

e!ω/kT − 1

=
V (kT )3

π2c3!3

∞∫

0

dxx2

ex − 1
=

2ζ(3)
π2

V

(
kT

!c

)3

,

where the value p = 0 is excluded in
∑′

p. Inserting ζ(3), we obtain

N = 0.244 V

(
kT

!c

)3

. (4.5.17)

Combining this with (4.5.6c) and (4.5.6a) and inserting approximate numer-
ical values shows a formal similarity to the classical ideal gas:

PV = 0.9 NkT (4.5.18)
S = 3.6 Nk , (4.5.19)

where N is however always given by (4.5.17) and does not have a fixed value.
The pressure per particle is of about the same order of magnitude as in the
classical ideal gas.
The thermal wavelength of the photon gas is found to be

λT =
2π

kmax
=

2π!c

2.82 kT
=

0.510
T [K]

[cm] . (4.5.20)

With the numerical factor 0.510, λT is obtained in units of cm. Inserting into
(4.5.17), we find

N = 0.244
(

2π

2.82

)3 V

λ3
T

= 2.70
V

λ3
T

. (4.5.21)

For the classical ideal gas, V
Nλ3

T
≫ 1; in contrast, the average spacing of the

photons (V/N)1/3 is, from (4.5.21), of the order of magnitude of λT , and
therefore, they must be treated quantum mechanically.
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At room temperature, i.e. T = 300 K, λT = 1.7×10−3 cm and the density
is N

V = 5.5×108 cm−3. At the temperature of the interior of the Sun, i.e. T ≈
107 K, λT = 5.1 × 10−8 cm and the density is N

V = 2.0 × 1022 cm−3. In
comparison, the wavelength of visible light is in the range λ = 10−4 cm.
Note: If the photon had a finite rest mass m, then we would have g = 3. In
that case, a factor of 3

2 would enter the Stefan–Boltzmann law. The exper-
imentally demonstrated validity of the Stefan–Boltzmann law implies that
either m = 0, or that the longitudinal photons do not couple to matter.

The chemical potential: The chemical potential of the photon gas can be com-
puted from the Gibbs–Duhem relation E = TS − PV + µN , since we are dealing
with a homogeneous system:

µ =
1
N

(E − TS + PV ) =
1
N

„
4 − 16

3
+

4
3

«
σV T 3

3c
≡ 0 . (4.5.22)

The chemical potential of the photon gas is identical to 0 for all temperatures,
because the number of photons is not fixed, but rather adjusts itself to the tem-
perature and the volume. Photons are absorbed and emitted by the surrounding
matter, the walls of the cavity. In general, the chemical potential of particles and
quasiparticles such as phonons, whose particle numbers are not subject to a con-
servation law, is zero. For example we consider the free energy of a fictitious con-
stant number of photons (phonons etc.), F (T, V, NPh). since the number of photons
(phonons) is not fixed, it will adjust itself in such a way that the free energy is

minimized,
“

∂F
∂NPh

”

T,V
= 0. This is however just the expression for the chemical

potential, which therefore vanishes: µ = 0. We could have just as well started from

the maximization of the entropy,
“

∂S
∂NPh

”

E,V
= − µ

T = 0.

∗4.5.5 Fluctuations in the Particle Number of Fermions and Bosons

Now that we have become acquainted with the statistical properties of various
quantum gases, that is of fermions and bosons (including photons, whose
particle-number distribution is characterized by µ = 0), we now want to
investigate the fluctuations of their particle numbers. For this purpose, we
begin with the grand potential

Φ = −β−1 log
∑

{np}

e−β
P

p np(εp−µ) . (4.5.23)

Taking the derivative of Φ with respect to εq yields the mean value of nq:

∂Φ

∂εq
=

∑
{np}

nqe−β
P

p np(εp−µ)

∑
{np}

e−β
P

p np(εp−µ)
= ⟨nq⟩ . (4.5.24)
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The second derivative of Φ yields the mean square deviation

∂2Φ

∂ε2
q

= −β
{〈

n2
q

〉
− ⟨nq⟩2

}
≡ −β(∆nq)2 . (4.5.25)

Thus, using ex

ex∓1 = 1 ± 1
ex∓1 , we obtain

(∆nq)2 = −β−1 ∂⟨nq⟩
∂εq

=
eβ(εq−µ)

(
eβ(εq−µ) ∓1

)2 = ⟨nq⟩
(
1 ± ⟨nq⟩

)
. (4.5.26)

For fermions, the mean square deviation is always small. In the range of
occupied states, where ⟨nq⟩ = 1, ∆nq is zero; and in the region of small ⟨nq⟩,
∆nq ≈ ⟨nq⟩1/2.
Remark: For bosons, the fluctuations can become very large. In the case of large
occupation numbers, we have ∆nq ∼ ⟨n(q)⟩ and the relative deviation approaches
one. This is a consequence of the tendency of bosons to cluster in the same state.
These strong fluctuations are also found in a spatial sense. If N bosons are enclosed
in a volume of L3, then the mean number of bosons in a subvolume a3 is given by
n̄ = Na3/L3. In the case that a ≪ λ, where λ is the extent of the wavefunctions
of the bosons, one finds the mean square deviation of the particle number (∆Na3)2

within the subvolume to be22

(∆Na3)2 = n̄(n̄ + 1) .

For comparison, we recall the quite different behavior of classical particles, which
obey a Poisson distribution (see Sect. 1.5.1). The probability of finding n particles
in the subvolume a3 for a/L ≪ 1 and N → ∞ is then

Pn = e−n̄ n̄n

n!

with n̄ = Na3/L3, from which it follows that

(∆n)2 = n2 − n̄2 =
X

n

Pnn2 − n̄2 = n̄ .

The deviations of the counting rates of bosons from the Poisson law have been
experimentally verified using intense photon beams.23

4.6 Phonons in Solids

4.6.1 The Harmonic Hamiltonian

We recall the mechanics of a linear chain consisting of N particles of mass m
which are coupled to their nearest neighbors by springs of force constant f .
In the harmonic approximation, its Hamilton function takes on the form
22 A detailed discussion of the tendency of bosons to cluster in regions where their

wavefunctions overlap may be found in E.M. Henley and W. Thirring, Elemen-
tary Quantum Field Theory, McGraw Hill, New York 1962, p. 52ff.

23 R.Hanbury Brown and R.Q. Twiss, Nature 177, 27 (1956).
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H = W0 +
∑

n

[
m

2
u̇2

n +
f

2
(un − un−1)2

]
. (4.6.1)

One obtains expression (4.6.1) by starting from the Hamilton function of
N particles whose positions are denoted by xn. Their equilibrium positions
are x0

n, where for an infinite chain or a finite chain with periodic boundary
conditions, the equilibrium positions have exact translational invariance and
the distance between neighboring equilibrium positions is given by the lattice
constant a = x0

n+1 − x0
n. One then introduces the displacements from the

equilibrium positions, un = xn − x0
n, and expands in terms of the un. The

quantity W0 is given by the value of the overall potential energy W ({xn}) of
the chain in the equilibrium positions. Applying the canonical transformation

un =
1√
Nm

∑

k

eikanQk , mu̇n =
√

m

N

∑

k

e−ikanPk , (4.6.2)

we can transform H into a sum of uncoupled harmonic oscillators

H = W0 +
∑

k

1
2
(PkP−k + ω2

kQkQ−k) , (4.6.1′)

where the frequencies are related to the wavenumber via

ωk = 2

√
f

m
sin

ka

2
. (4.6.3)

The Qk are called normal coordinates and the Pk normal momenta. The Qk

and Pk are conjugate variables, which we will take to be quantum-mechanical
operators in what follows. In the quantum representation, commutation rules
hold:

[un, mu̇n′ ] = i!δnn′ , [un, un′ ] = [mu̇n, mu̇n′ ] = 0

which in turn imply that

[Qk, Pk′ ] = i!δkk′ , [Qk, Qk′ ] = [Pk, Pk′ ] = 0 ;

furthermore, we have Q†
k = Q−k and P †

k = P−k . Finally, by introducing
the creation and annihilation operators

Qk =
√

!
2ωk

(
ak + a†

−k

)
, Pk = −i

√
!ωk

2
(
a−k − a†

k

)
, (4.6.4)

we obtain

H = W0 +
∑

k

!ωk

(
n̂k +

1
2

)
(4.6.1′′)
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with the occupation (number) operator

n̂k = a†
kak (4.6.5)

and [ak , a†
k′ ] = δkk′ , [ak, ak′ ] = [a†

k, a†
k′ ] = 0.

In this form, we can readily generalize the Hamiltonian to three dimensions.
In a three-dimensional crystal with one atom per unit cell, there are three
lattice vibrations for each wavenumber, one longitudinal (l) and two trans-
verse (t1, t2) (see Fig. 4.25). If the unit cell contains s atoms, there are 3s
lattice vibrational modes. These are composed of the three acoustic modes,
whose frequencies vanish at k = 0, and the 3(s − 1) optical phonon modes,
whose frequencies are finite at k = 0.24

Fig. 4.25. The phonon
frequencies in a crystal
with one atom per unit
cell

We shall limit ourselves to the simple case of a single atom per unit cell,
i.e. to Bravais-lattice crystals. Then, according to our above considerations,
the Hamiltonian is given by:

H = W0(V ) +
∑

k,λ

!ωk,λ

(
n̂k,λ +

1
2

)
. (4.6.6)

Here, we have characterized the lattice vibrations in terms of their wavevector
k and their polarization λ. The associated frequency is ωk,λ and the oper-
ator for the occupation number is n̂k,λ. The potential energy W0(V ) in the
equilibrium lattice locations of the crystal depends on its lattice constant, or,
equivalently when the number of particles is fixed, on the volume. For brevity,
we combine the wavevector and the polarization into the form k ≡ (k, λ). In a
lattice with a total of N atoms, there are 3N vibrational degrees of freedom.

24 See e.g. J. M. Ziman, Principles of the Theory of Solids, 2nd edition, Cambridge
University Press, 1972.
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4.6.2 Thermodynamic Properties

In analogy to the calculation for photons, we find for the free energy

F = −kT log Z = W0(V ) +
∑

k

[
!ωk

2
+ kT log

(
1 − e−!ωk/kT

)]
. (4.6.7)

The internal energy is found from

E = −T 2

(
∂

∂T

F

T

)

V

, (4.6.8)

thus

E = W0(V ) +
∑

k

!ωk

2
+

∑

k

!ωk
1

e!ωk/kT − 1
. (4.6.8′)

It is again expedient for the case of phonons to introduce the normalized
density of states

g(ω) =
1

3N

∑

k

δ(ω − ωk) , (4.6.9)

where the prefactor has been chosen so that
∞∫

0

dω g(ω) = 1 . (4.6.10)

Using the density of states, the internal energy can be written in the form:

E = W0(V ) + E0 + 3N

∞∫

0

dω g(ω)
!ω

e!ω/kT − 1
, (4.6.11)

where we have used E0 =
∑

k !ωk/2 to denote the zero-point energy of the
phonons. For the thermodynamic quantities, the precise dependence of the
phonon frequencies on wavenumber is not important, but instead only their
distribution, i.e. the density of states.

Now, in order to determine the thermodynamic quantities such as the
internal energy, we first have to calculate the density of states, g(ω). For
small k, the frequency of the longitudinal phonons is ωk,l = clk, and that of
the transverse phonons is ωk,t = ctk, the latter doubly degenerate; here, cl

and ct are the longitudinal and transverse velocities of sound. Inserting these
expressions into (4.6.9), we find

g(ω) =
V

3N

1
2π2

∫
dk k2[δ(ω − clk) + 2δ(ω − ctk)] =

V

N

ω2

6π2

(
1
c3
l

+
2
c3
t

)
.

(4.6.12)
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Equation (4.6.12) applies only to low frequencies, i.e. in the range where
the phonon dispersion relation is in fact linear. In this frequency range, the
density of states is proportional to ω2, as was also the case for photons.
Using (4.6.12), we can now compute the thermodynamic quantities for low
temperatures, since in this temperature range. only low-frequency phonons
are thermally excited. In the high-temperature limit, as we shall see, the
detailed shape of the phonon spectrum is unimportant; instead, only the
total number of vibrational modes is relevant. We can therefore treat this
case immediately, also (Eq. 4.6.14). At low temperatures only low frequencies
contribute, since frequencies ω ≫ kT/! are suppressed by the exponential
function in the integral (4.6.11). Thus the low-frequency result (4.6.12) for
g(ω) can be used. Corresponding to the calculation for photons, we find

E = W0(V ) + E0 +
V π2k4

30!3

(
1
c3
l

+
2
c3
t

)
T 4 . (4.6.13)

At high temperatures, i.e. temperatures which are much higher than !ωmax/k,
where ωmax is the maximum frequency of the phonons, we find for all frequen-
cies at which g(ω) is nonvanishing that

(
e!ω/kT − 1

)−1 ≈ kT
!ω , and therefore,

it follows from (4.6.11) and (4.6.10) that

E = W0(V ) + E0 + 3NkT . (4.6.14)

Taking the derivative with respect to temperature, we obtain from (4.6.13)
and (4.6.14) in the low-temperature limit

CV ∼ T 3 ; (4.6.15)

this is Debye’s law. In the high-temperature limit, we have

CV ≈ 3Nk , (4.6.16)

the law of Dulong–Petit. At low temperatures, the specific heat is proportional
to T 3, while at high temperatures, it is equal to the number of degrees of
freedom times the Boltzmann constant.

In order to determine the specific heat over the whole range of tempera-
tures, we require the normalized density of states g(ω) for the whole frequency
range. The typical shape of g(ω) for a Bravais crystal24 is shown in Fig. 4.26.
At small values of ω, the ω2 behavior is clearly visible. Above the maximum
frequency, g(ω) becomes zero. In intermediate regions, the density of states
exhibits characteristic structures, so called van Hove singularities24 which
result from the maxima, minima, and saddle points of the phonon dispersion
relation; their typical form is shown in Fig. 4.27.

An interpolation formula which is adequate for many purposes can be
obtained by approximating the density of states using the Debye approxima-
tion:
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Fig. 4.26. The phonon density of
states g(ω). Solid curve: a realistic
density of states; dashed curve: the
Debye approximation

Fig. 4.27. A phonon dispersion rela-
tion with maxima, minima, and sad-
dle points, which express themselves
in the density of states as van Hove
singularities

gD(ω) =
3ω2

ω3
D

Θ(ωD − ω) , (4.6.17a)

with

1
ω3

D

=
1

18π2

V

N

(
1
c3
l

+
2
c3
t

)
. (4.6.17b)

With the aid of (4.6.17a), the low-frequency expression (4.6.12) is extended
to cover the whole range of frequencies and is cut off at the so called Debye
frequency ωD, which is chosen in such a way that (4.6.10) is obeyed. The
Debye approximation is also shown in Fig. 4.26.

Inserting (4.6.17a) into (4.6.11), we obtain

E = W0(V ) + E0 + 3Nk T D

(
!ωD

kT

)
(4.6.18)

with

D(x) =
3
x3

x∫

0

dy y3

ey − 1
. (4.6.19)

Taking the temperature derivative of (4.6.18), we obtain an expression for
the specific heat, which interpolates between the two limiting cases of the
Debye and the Dulong-Petit values (see Fig. 4.28).

∗4.6.3 Anharmonic Effects
and the Mie–Grüneisen Equation of State

So far, we have treated only the harmonic approximation. In fact, the Hamil-
tonian for phonons in a crystal also contains anharmonic terms, e.g.



212 4. Ideal Quantum Gases

Fig. 4.28. The heat capacity of a
monatomic insulator. At low temper-
atures, CV ∼ T 3; at high tempera-
tures, it is constant

Hint =
∑

k1,k2

c(k1, k2)Qk1Qk2Q−k1−k2

with coefficients c(k1, k2). Terms of this type and higher powers arise from
the expansion of the interaction potential in terms of the displacements of the
lattice components. These nonlinear terms are responsible for (i) the ther-
mal expansion of crystals, (ii) the occurrence of a linear term in the specific
heat at high T , (iii) phonon damping, and (iv) a finite thermal conductivity.
These terms are also decisive for structural phase transitions. A systematic
treatment of these phenomena requires perturbation-theory methods. The an-
harmonic terms have the effect that the frequencies ωk depend on the lattice
constants, i.e. on the volume V of the crystal. This effect of the anharmonicity
can be taken into account approximately by introducing a minor extension
to the harmonic theory of the preceding subsection for the derivation of the
equation of state.

We take the volume derivative of the free energy F . In addition to the
potential energy W0 of the equilibrium configuration, also ωk, owing to the
anharmonicities, depends on the volume V ; therefore, we find for the pressure

P = −
(

∂F

∂V

)

T

= −∂W0

∂V
−

∑

k

!ωk

(
1
2

+
1

e!ωk/kT − 1

)
∂ log ωk

∂V
. (4.6.20)

For simplicity, we assume that the logarithmic derivative of ωk with respect
to the volume is the same for all wavenumbers (the Grüneisen assumption):

∂ log ωk

∂V
=

1
V

∂ log ωk

∂ log V
= −γ

1
V

. (4.6.21)

The material constant γ which occurs here is called the Grüneisen constant.
The negative sign indicates that the frequencies become smaller on expansion
of the lattice. We now insert (4.6.21) into (4.6.20) and compare with (4.6.8′),
thus obtaining, with EPh = E − W0, the Mie–Grüneisen equation of state:

P = −∂W0

∂V
+ γ

EPh

V
. (4.6.22)

This formula applies to insulating crystals in which there are no electronic
excitations and the thermal behavior is determined solely by the phonons.
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From the Mie–Grüneisen equation of state, the various thermodynamic
derivatives can be obtained, such as the thermal pressure coefficient (3.2.5)

β =
(

∂P

∂T

)

V

= γCV (T )/V (4.6.23)

and the linear expansion coefficient (cf. Appendix I., Table I.3)

αl =
1

3V

(
∂V

∂T

)

P

, (4.6.24)

which, owing to
(

∂P
∂T

)
V

= −
(

∂V
∂T

)
P

/ (
∂V
∂P

)
T
≡ ( ∂V

∂T )
P

κT V , can also be given in
the form

αl =
1
3
βκT . (4.6.25)

In this last relation, at low temperatures the compressibility can be replaced
by

κT (0) = − 1
V

(
∂V

∂P

)

T=0

=
(

V
∂2W0

∂V 2

)−1

. (4.6.26)

At low temperatures, from Eqns. (4.6.23) and (4.6.25), the coefficient of ther-
mal expansion and the thermal pressure coefficient of an insulator, as well as
the specific heat, are proportional to the third power of the temperature:

α ∝ β ∝ T 3 .

As a result of the thermodynamic relationship of the specific heats (3.2.24), we
find CP −CV ∝ T 7 . Therefore, at temperatures below the Debye temperature,
the isobaric and the isochoral specific heats are practically equal.

In analogy to the phonons, one can determine the thermodynamic proper-
ties of other quasiparticles. Magnons in antiferromagnetic materials likewise
have a linear dispersion relation at small values of k and therefore, their
contribution to the specific heat is also proportional to T 3. Magnons in ferro-
magnets have a quadratic dispersion relation ∼ k2, leading to a specific heat
∼ T 3/2.

4.7 Phonons und Rotons in He II

4.7.1 The Excitations (Quasiparticles) of He II

At the conclusion of our treatment of the Bose–Einstein condensation in 4.4,
we discussed the phase diagram of 4He. In the He II phase below Tλ = 2.18 K,
4He undergoes a condensation. States with the wavenumber 0 are occupied
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macroscopically. In the language of second quantization, this means that the
expectation value of the field operator ψ(x) is finite. The order parameter
here is ⟨ψ(x)⟩.25 The excitation spectrum is then quite different from that
of a system of free bosons. We shall not enter into the quantum-mechanical
theory here, but instead use the experimental results as starting point. At
low temperatures, only the lowest excitations are relevant. In Fig. 4.29, we
show the excitations as determined by neutron scattering.

Fig. 4.29. The quasiparticle excita-
tions in superfluid 4He: phonons and
rotons after Henshaw and Woods.26

The excitation spectrum exhibits the following characteristics: for small val-
ues of p, the excitation energy depends linearly on the momentum

εp = cp . (4.7.1a)

In this region, the excitations are called phonons, whose velocity of sound
is c = 238 m/sec. A second characteristic of the excitation spectrum is a
minimum at p0 = 1.91 Å−1!. In this range, the excitations are called rotons,
and they can be represented by

εp = ∆ +
(|p|− p0)2

2µ
, (4.7.1b)

25 We have

a0 |φ0(N)⟩ =
√

N |φ0(N − 1)⟩ ≈
√

N |φ0(N)⟩

a†
0 |φ0(N)⟩ =

√
N + 1 |φ0(N + 1)⟩ ≈

√
N |φ0(N)⟩ ,

since due to the macroscopic occupation of the ground state, N ≫ 1. See for
example QM II, Sect. 3.2.2.

26 D.G. Henshaw and A.D. Woods, Phys. Rev. 121, 1266 (1961)
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with an effective mass µ = 0.16 mHe and an energy gap ∆/k = 8.6 K. These
properties of the dispersion relations will make themselves apparent in the
thermodynamic properties.

4.7.2 Thermal Properties

At low temperatures, the number of excitations is small, and their inter-
actions can be neglected. Since the 4He atoms are bosons, the quasiparti-
cles in this system are also bosons.27 We emphasize that the quasiparticles
in Eqns. (4.7.1a) and (4.7.1b) are collective density excitations, which have
nothing to do with the motions of individual helium atoms.

As a result of the Bose character and due to the fact that the number of
quasiparticles is not conserved, i.e. the chemical potential is zero, we find for
the mean occupation number

n(εp) =
(
eβεp − 1

)−1
. (4.7.2)

From this, the free energy follows:

F (T, V ) =
kTV

(2π!)3

∫
d3p log

(
1 − e−βεp

)
, (4.7.3a)

and for the average number of quasiparticles

NQP(T, V ) =
V

(2π!)3

∫
d3p n(εp) (4.7.3b)

and the internal energy

E(T, V ) =
V

(2π!)3

∫
d3p εpn(εp) . (4.7.3c)

At low temperatures, only the phonons and rotons contribute in (4.7.3a)
through (4.7.3c), since only they are thermally excited. The contribution of
the phonons in this limit is given by

Fph = −π2V (kT )4

90(!c)3
, or Eph =

π2V (kT )4

30(!c)3
. (4.7.4a,b)

From this, we find for the heat capacity at constant volume:

CV =
2π2V k4T 3

15(!c)3
. (4.7.4c)

27 In contrast, in interacting fermion systems there can be both Fermi and Bose
quasiparticles. The particle number of bosonic quasiparticles is in general not
fixed. Additional quasiparticles can be created; since the changes in the angular
momentum of every quantum-mechanical system must be integral, these excita-
tions must have integral spins.
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Due to the gap in the roton energy (4.7.1b), the roton occupation number at
low temperatures T ≤ 2 K can be approximated by n(εp) ≈ e−βεp , and we
find for the average number of rotons

Nr ≈
V

(2π!)3

∫
d3p e−βεp =

V

2π2!3

∞∫

0

dp p2 e−βεp

=
V

2π2!3
e−β∆

∞∫

0

dp p2 e−β(p−p0)
2/2µ

≈ V

2π2!3
e−β∆p2

0

∞∫

−∞

dp e−β(p−p0)
2/2µ =

V p2
0

2π2!3

(
2πµkT

)1/2 e−β∆ .

(4.7.5a)

The contribution of the rotons to the internal energy is

Er ≈
V

(2π!)3

∫
d3p εp e−βεp = − ∂

∂β
Nr =

(
∆ +

kT

2

)
Nr , (4.7.5b)

from which we obtain the specific heat

Cr = k

(
3
4

+
∆

kT
+

(
∆

kT

)2
)

Nr , (4.7.5c)

where from (4.7.5a), Nr goes exponentially to zero for T → 0. In Fig. 4.30,
the specific heat is drawn in a log-log plot as a function of the temperature.
The straight line follows the T 3 law from Eq. (4.7.4c). Above 0.6 K, the roton
contribution (4.7.5c) becomes apparent.

Fig. 4.30. The specific heat of
helium II under the saturated
vapor pressure (Wiebes, Niels-
Hakkenberg and Kramers).
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∗4.7.3 Superfluidity and the Two-Fluid Model

The condensation of helium and the resulting quasiparticle dispersion rela-
tion (Eq. 4.7.1a,b, Fig. 4.29) have important consequences for the dynamic
behavior of 4He in its He II phase. Superfluidity and its description in terms
of the two-fluid model are among them. To see this, we consider the flow
of helium through a tube in two different inertial frames. In frame K, the
tube is at rest and the liquid is flowing at the velocity −v. In frame K0, we
suppose the helium to be at rest, while the tube moves with the velocity v
(see Fig. 4.31).

Fig. 4.31. Superflu-
id helium in the rest
frame of the tube, K,
and in the rest frame
of the liquid, K0

The total energies (E, E0) and the total momenta (P,P0) of the liquid in
the two frames (K,K0) are related by a Galilei transformation.

P = P0 − Mv (4.7.6a)

E = E0 − P0 · v +
Mv2

2
. (4.7.6b)

Here, we have used the notation
∑

i

pi = P ,
∑

i

pi0 = P0 ,
∑

i

mi = M . (4.7.6c)

One can derive (4.7.6a,b) by applying the Galilei transformation for the individual
particles

xi = xi0 − vt , pi = pi0 − mv .

This gives for the total momentum

P =
X

pi =
X

(pi0 − mv) = P0 − Mv

and for the total energy

E =
X

i

1
2m

p2
i +

X

⟨i,j⟩

V (xi − xj) =
X

i

m
2

“pi0

m
− v

”2
+
X

⟨i,j⟩

V (xi0 − xj0)

=
X

i

p2
i0

2m
− P0 · v +

M
2

v2 +
X

⟨i,j⟩

V (xi0 − xj0) = E0 − P0 · v +
M
2

v2 .
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In an ordinary liquid, any flow which might initially be present is damped by
friction. Seen from the frame K0, this means that in the liquid, excitations
are created which move along with the walls of the tube, so that in the course
of time more and more of the liquid is pulled along with the moving tube.
Seen from the tube frame K, this process implies that the flowing liquid is
slowed down. The energy of the liquid must simultaneously decrease in order
for such excitations to occur at all. We now need to investigate whether for
the particular excitation spectrum of He II, Fig. 4.29, the flowing liquid can
reduce its energy by the creation of excitations.

Is it energetically favorable to excite quasiparticles? We first consider
helium at the temperature T = 0, i.e. in its ground state. In the ground
state, energy and momentum in the frame K0 are given by

Eg
0 and P0 = 0 . (4.7.7a)

It follows for these quantities in the frame K:

Eg = Eg
0 +

Mv2

2
and P = −Mv . (4.7.7b)

If a quasiparticle with momentum p and energy εp is created, the energy and
the momentum in the frame K0 have the values

E0 = Eg
0 + εp and P0 = p , (4.7.7c)

and from (4.7.6a,b) we find for the energy in the frame K:

E = Eg
0 + εp − p · v +

Mv2

2
and P = p − Mv . (4.7.7d)

The excitation energy in K (the tube frame) is thus

∆E = εp − p · v . (4.7.8)

∆E is the energy change of the liquid due to the appearance of an excitation
in frame K. Only when ∆E < 0 does the flowing liquid reduce its energy.
Since ε − pv is a minimum when p is parallel to v, the inequality

v >
ε

p
(4.7.9a)

must be obeyed for an excitation to occur. From (4.7.9a) we find the critical
velocity (Fig. 4.32)

vc =
(

ε

p

)

min

≈ 60 m/sec . (4.7.9b)

If the flow velocity is smaller than vc, no quasiparticles will be excited and
the liquid flows unimpeded and loss-free through the tube. This phenomenon
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Fig. 4.32. Quasiparticles and the
critical velocity

is called superfluidity. The occurrence of a finite critical velocity is closely
connected to the shape of the excitation spectrum, which has a finite group
velocity at p = 0 and is everywhere greater than zero (Fig. 4.32).
The value (4.7.9b) of the critical velocity is observed for the motion of ions
in He II. The critical velocity for flow in capillaries is much smaller than vc,
since vortices occur already at lower velocities; we have not considered these
excitations here.

A corresponding argument holds also for the formation of additional exci-
tations at nonzero temperatures. At finite temperatures, thermal excitations
of quasiparticles are present. What effect do they have? The quasiparticles
will be in equilibrium with the moving tube and will have the average veloc-
ity of the frame K0, v. The condensate, i.e. the superfluid component, is at
rest in K0. The quasiparticles have momentum p and an excitation energy
of εp in K0. The mean number of these quasiparticles is n(εp − p · v). (One
has to apply the equilibrium distribution functions in the frame in which the
quasiparticle gas is at rest! – and there, the excitation energy is εp − p · v).
The momentum of the quasiparticle gas in K0 is given by

P0 =
V

(2π!)3

∫
d3ppn(εp − p · v) . (4.7.10)

For low velocities, we can expand (4.7.10) in terms of v. Using
∫

d3ppn(εp) =
0 and terminating the expansion at first order in v, we find

P0 ≈ −V

(2π!)3

∫
d3pp(p · v)

∂n

∂εp
=

−V

(2π!)3
v

1
3

∫
d3p p2 ∂n

∂εp
,

where
∫

d3 p pi pj f(|p|) = 1
3δij

∫
d3 pp2f(|p|) was used. At low T , it suffices

to take the phonon contribution in this equation into account, i.e.

P0,ph = − 4πV

(2π!)3
v

1
3c5

∞∫

0

dε ε4 ∂n

∂ε
. (4.7.11)

After integration by parts and replacement of 4π
∫

dε ε2/c3 by
∫

d3p, one
obtains
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P0,ph =
V

(2π!)3
v

4
3c2

∫
d3p εpn(εp) .

We write this result in the form

P0,ph = V ρn,ph v , (4.7.12)

where we have defined the normal fluid density by

ρn,ph =
4
3

Eph

V c2
=

2π2

45
(kT )4

!3c5
; (4.7.13)

compare (4.7.4b). In (4.7.13), the phonon contribution to ρn is evaluated.
The contribution of the rotons is given by

ρn,r =
p2
0

3kT

Nr

V
. (4.7.14)

Eq. (4.7.14) follows from (4.7.10) using similar approximations as in the de-
termination of Nr in Eq. (4.7.5a). One calls ρn = ρn,ph+ρn,r the mass density
of the normal component. Only this portion of the density reaches equilibrium
with the walls.

Using (4.7.10) and (4.7.12), the total momentum per unit volume, P0/V ,
is found to be given by

P0/V = ρnv . (4.7.15)

We now carry out a Galilei transformation from the frame K0, in which the
condensate is at rest, to a frame in which the condensate is moving at the
velocity vs. The quasiparticle gas, i.e. the normal component, has the velocity
vn = v + vs in this reference frame. The momentum is found from (4.7.15)
by adding ρvs due to the Galilei transformation:

P/V = ρvs + ρnv .

If we substitute v = vn − vs, we can write the momentum in the form

P/V = ρsvs + ρnvn , (4.7.16)

where the superfluid density is defined by

ρs = ρ − ρn . (4.7.17)

Similarly, the free energy in the frame K0 can be calculated, and from it,
by means of a Galilei transformation, the free energy per unit volume of the
flowing liquid in the frame in which the superfluid component is moving at
vs (problem 4.23):

F (T, V,vs,vn)/V = F (T, V )/V +
1
2
ρsv2

s +
1
2
ρnv2

n , (4.7.18)

where the free energy of the liquid at rest, F (T, V ) is given by (4.7.3a) and
the relations which follow it.
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Fig. 4.33. The superfluid and the
normal density ρs and ρn in He II
as functions of the temperature, mea-
sured using the motion of a torsional
oscillator by Andronikaschvili.

The hydrodynamic behavior of the helium in the He II phase is as would be
expected if the helium consisted of two fluids, a normal fluid with the density
ρn, which reaches equilibrium with obstacles such as the inner wall of a tube in
which it is flowing, and a superfluid with the density ρs, which flows without
resistance. When T → 0, ρs → ρ and ρn → 0; for T → Tλ ρs → 0 and
ρn → ρ. This theoretical picture, the two–fluid model of Tisza and Landau,
was experimentally confirmed by Andronikaschvili, among others (Fig. 4.33).
It provides the theoretical basis for the fascinating macroscopic properties of
superfluid helium.

Problems for Chapter 4

4.1 Demonstrate the validity of equations (4.3.24a) and (4.3.24b).

4.2 Show that the entropy of an ideal Bose (Fermi) gas can be formulated as
follows:

S = k
X

p

“
−⟨np⟩ log ⟨np⟩±

`
1 ± ⟨np⟩

´
log
`
1 ± ⟨np⟩

´”
.

Consider this expression in the classical limit, also, as well as in the limit T → 0.

4.3 Calculate CV , CP , κT , and α for ideal Bose and Fermi gases in the limit of
extreme dilution up to the order !3.

4.4 Estimate the Fermi energies (in eV) and the Fermi temperatures (in K) for the

following systems (in the free–particle approximation: εF =
!2

2m

„
N
V

«2/3„6π2

g

«2/3

):

(a) Electrons in metal
(b) Neutrons in a heavy nucleus
(c) 3He in liquid 3He (V/N = 46.2 Å3).
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4.5 Consider a one–dimensional electron gas (S = 1/2), consisting of N particles
confined to the interval (0, L).
(a) What are the values of the Fermi momentum pF and the Fermi energy εF ?
(b) Calculate, in analogy to Sect. 4.3, µ = µ(T, N/L).

Result: pF = π!N
L , µ = εF

h
1 + π2

12

“
kT
εF

”2
+ O(T 4)

i
.

Give a qualitative explanation of the different sign of the temperature dependence
when compared to the three-dimensional case.

4.6 Calculate the chemical potential µ(T, N/V ) for a two-dimensional Fermi gas.

4.7 Determine the mean square deviation (∆N)2 =
˙
N2
¸
− ⟨N⟩2 of the number

of electrons for an electron gas in the limit of zero temperature.

4.8 Calculate the isothermal compressibility (Eq. (4.3.18)) of the electron gas at
low temperatures, starting from the formula (4.3.14′) for the pressure, P = 2

5
εF N

V +
π2

6
(kT )2

εF

N
V . Compare with the mean square deviation of the particle number found

in problem 4.7.

4.9 Compute the free energy of the nearly degenerate Fermi gas, as well as α and
CP .

4.10 Calculate for a completely relativistic Fermi gas (εp = pc)
(a) the grand potential Φ
(b) the thermal equation of state
(c) the specific heat CV .
Consider also the limiting case of very low temperatures.

4.11 (a) Calculate the ground state energy of a relativistic electron gas,
Ep =

p
(mec2)2 + (pc)2, in a white dwarf star, which contains N electrons and N/2

helium nuclei (at rest), and give the zero–point pressure for the two limiting cases

xF ≪ 1 : P0 =
mec

2

v5
x2

F

xF ≫ 1 : P0 =
mec

2

v4
xF

„
1 − 1

x2
F

«
;

xF = pF
mec . How does the pressure depend on the radius R of the star?

(b) Derive the relation between the mass M of the star and its radius R for the
two cases xF ≪ 1 and xF ≫ 1, and show that a white dwarf can have no greater
mass than

M0 =
9mp

64

r
3π
α3

„
!c

γm2
p

«3/2

.

α ∼ 1 ,

G = 6.7 ×10−8dyncm2g−2 Gravitational constant

mp = 1.7 ×10−24g Proton mass

(c) If a star of a given mass M = 2mpN is compressed to a (finite) radius R, then
its energy is reduced by the self–energy Eg of gravitation, which for a homogeneous
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mass distribution has the form Eg = −αGM2/R, where α is a number of the order
of 1. From

dE0

dV
+

dR
dV

dEg

dR
= 0

you can determine the equilibrium radius, with dE0 = −P0(R) 4πR2dR as the
differential of the ground–state energy.

4.12 Show that in a two–dimensional ideal Bose gas, there can be no Bose–Einstein
condensation.

4.13 Prove the formulas (4.4.10) and (4.4.11) for the entropy and the specific heat
of an ideal Bose gas.

4.14 Compute the internal energy of the ideal Bose gas for T < Tc(v). From the
result, determine the specific heat (heat capacity) and compare it with Eq. (4.4.11).

4.15 Show for bosons with εp = aps and µ = 0 that the specific heat at low
temperatures varies as T 3/s in three dimensions. In the special case of s = 2, this
yields the specific heat of a ferromagnet where these bosons are spin waves.

4.16 Show that the maximum in Planck’s formula for the energy distribution u(ω)
is at ωmax = 2.82 kT

! ; see (4.5.10).

4.17 Confirm that the energy flux IE(T ) which is emitted by a black body of tem-
perature T into one hemisphere is given by (Eq. (4.5.16)), IE(T ) ≡ energy emitted

cm2 sec
=

cE
4V = σT 4, starting from the energy current density

jE =
1
V

X

p,λ

c
p
p

εp⟨np,λ⟩ .

The energy flux IE per unit area through a surface element of df is jE df
|df| .

4.18 The energy flux which reaches the Earth from the Sun is equal to b =
0, 136 Joule sec−1 cm−2 (without absorption losses, for perpendicular incidence).
b is called the solar constant.
(a) Show that the total emission from the Sun is equal to 4 ×1026 Joule sec−1.
(b) Calculate the surface temperature of the Sun under the assumption that it
radiates as a black body (T ∼ 6000 K).
RS = 7 ×1010cm, RSE = 1AU= 1.5 ×1013cm

4.19 Phonons in a solid: calculate the contribution of the so called optical phonons
to the specific heat of a solid, taking the dispersion relation of the vibrations to be
ε(k) = ωE (Einstein model).

4.20 Calculate the frequency distribution corresponding to Equation (4.6.17a) for
a one- or a two–dimensional lattice. How does the specific heat behave at low
temperatures in these cases? (examples of low–dimensional systems are selenium
(one–dimensional chains) and graphite (layered structure)).



224 4. Ideal Quantum Gases

4.21 The pressure of a solid is given by P = − ∂W0
∂V + γ

Eph
V (see (4.6.22)). Show,

under the assumption that W0(V ) = (V −V0)
2/2χ0V0 for V ∼ V0 and χ0CV T ≪ V0,

that the thermal expansion (at constant P ∼ 0) can be expressed as

α ≡ 1
V

„
∂V
∂T

«
=

γχ0CV

V0
and CP − CV =

γ2χ0C2
V T

V0
.

4.22 Specific heat of metals: compare the contributions of phonons and electrons.
Show that the linear contribution to the specific heat becomes predominant only
at T < T ∗ = 0.14θD

p
θD/TF . Estimate T ∗ for typical values of θD and TF .

4.23 Superfluid helium: show that in a coordinate frame in which the superfluid
component is at rest, the free energy F = E − TS is given by

Φv + ρnv2 , where Φv =
1
β

X

p

log
h
1 − e−β(εp−p·v)

i
.

Expand Φv and show also that in the system in which the superfluid component is
moving at a velocity vs,

F = Φ0 +
ρnv2

n

2
+

ρsv
2
s

2
; vn = v + vs .

Hint: In determining the free energy F , note that the distribution function
n for the quasiparticles with energy εp is equal to n(εp − p · v).

4.24 Ideal Bose and Fermi gases in the canonical ensemble:
(a) Calculate the canonical partition function for ideal Bose and Fermi gases.
(b) Calculate the average occupation number in the canonical ensemble.
Suggestion: instead of ZN , compute the quantity

Z(x) =
∞X

N=0

xNZN

and determine ZN using ZN = 1
2πi

H Z(x)
xN+1 dx, where the path in the complex x

plane encircles the origin, but includes no singularities of Z(x). Use the saddle–
point method for evaluating the integral.

4.25 Calculate the chemical potential µ for the atomic limit of the Hubbard model,

H = U
NX

i=1

ni↑ni↓ ,

where ni↑ = c†i↑ci↑ is the number operator for electrons in the state i (at lattice

site i) and σ = + 1
2 . (In the general case, which is not under consideration here, the

Hubbard model is given by:

H =
X

ijσ

tijc
†
iσcjσ + U

X

i

ni↑ni↓ . )
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In this chapter, we consider real gases, that is we take the interactions of the
atoms or molecules and their structures into account. In the first section, the
extension from the classical ideal gas will involve only including the internal
degrees of freedom. In the second section, we consider mixtures of such ideal
gases. The following sections take the interactions of the molecules into ac-
count, leading to the virial expansion and the van der Waals theory of the
liquid and the gaseous phases. We will pay special attention to the transition
between these two phases. In the final section, we investigate mixtures. This
chapter also contains references to every-day physics. It touches on bordering
areas with applications in physical chemistry, biology, and technology.

5.1 The Ideal Molecular Gas

5.1.1 The Hamiltonian and the Partition Function

We consider a gas consisting of N molecules, enumerated by the index n.
In addition to their translational degrees of freedom, which we take to be
classical as before, we now must consider the internal degrees of freedom
(rotation, vibration, electronic excitation). The mutual interactions of the
molecules will be neglected. The overall Hamiltonian contains the transla-
tional energy (kinetic energy of the molecular motion) and the Hamiltonian
for the internal degrees of freedom Hi,n, summed over all the molecules:

H =
N∑

n=1

(
p2

n

2m
+ Hi,n

)
. (5.1.1)

The eigenvalues of Hi,n are the internal energy levels εi,n. The partition
function is given by

Z(T, V, N) =
V N

(2π!)3NN !

∫
d3p1 . . . d3pN e−

P
n p2

n/2mkT
∏

n

∑

εi,n

e−εi,n/kT .

The classical treatment of the translational degrees of freedom, represented
by the partition integral over momenta, is justified when the specific volume
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is much larger than the cube of the thermal wavelength λ = 2π!/
√

2πmkT
(Chap. 4). Since the internal energy levels εi,n ≡ εi are identical for all of the
molecules, it follows that

Z(T, V, N) =
1

N !
[Ztr(1)Zi]N =

1
N !

[
V

λ3
Zi

]N

, (5.1.2)

where Zi =
∑

εi
e−εi/kT is the partition function over the internal degrees of

freedom and Ztr(1) is the translational partition integral for a single molecule.
From (5.1.2), we find the free energy, using the Stirling approximation for
large N :

F = −kT log Z ≈ −NkT

[
1 + log

V

Nλ3
+ log Zi

]
. (5.1.3)

From (5.1.3), we obtain the equation of state

P = −
(

∂F

∂V

)

T,N

=
NkT

V
, (5.1.4)

which is the same as that of a monatomic gas, since the internal degrees of
freedom do not depend on V . For the entropy, we have

S = −
(

∂F

∂T

)

V,N

= Nk

[
5
2

+ log
V

Nλ3
+ log Zi + T

∂ log Zi

∂T

]
, (5.1.5a)

and from it, we obtain the internal energy,

E = F + TS = NkT

[
3
2

+ T
∂ log Zi

∂T

]
. (5.1.5b)

The caloric equation of state (5.1.5b) is altered by the internal degrees of
freedom compared to that of a monatomic gas. Likewise, the internal degrees
of freedom express themselves in the heat capacity at constant volume,

CV =
(

∂E

∂T

)

V,N

= Nk

[
3
2

+
∂

∂T
T 2 ∂ log Zi

∂T

]
. (5.1.6)

Finally, we give also the chemical potential for later applications:

µ =
(

∂F

∂N

)

T,V

= −kT log
(

V

Nλ3
Zi

)
; (5.1.5c)

it agrees with µ = 1
N (F + PV ), since we are dealing with a homogeneous

system.
To continue the evaluation, we need to investigate the contributions due

to the internal degrees of freedom. The energy levels of the internal degrees
of freedom are composed of three contributions:
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εi = εel + εrot + εvib . (5.1.7)

Here, εel refers to the electronic energy including the Coulomb repulsion of the
nuclei relative to the energy of widely separated atoms. εrot is the rotational
energy and εvib is the vibrational energy of the molecules.

We consider diatomic molecules containing two different atoms (e.g. HCl;
for identical atoms, cf. Sect. 5.1.4). Then the rotational energy has the form1

εrot =
!2l(l + 1)

2I
, (5.1.8a)

where l is the angular momentum quantum number and I = mredR2
0 the

moment of inertia, depending on the reduced mass mred and the distance
between the atomic nuclei, R0.2 The vibrational energy εvib takes the form1

εvib = !ω

(
n +

1
2

)
, (5.1.8b)

where ω is the frequency of the molecular vibration and n = 0, 1, 2, . . .. The
electronic energy levels εel can be compared to the dissociation energy εDiss.
Since we want to consider non-dissociated molecules, i.e. we require that
kT ≪ εDiss, and on the other hand the excitation energies of the lowest
electronic levels are of the same order of magnitude as εDiss, it follows from
the condition kT ≪ εDiss that the electrons must be in their ground state,
whose energy we denote by ε0

el. Then we have

Zi = exp
(
− ε0

el

kT

)
ZrotZvib . (5.1.9)

We now consider in that order the rotational part Zrot and the vibrational
part Zvib of the partition function.

5.1.2 The Rotational Contribution

Since the rotational energy εrot (5.1.8a) does not depend on the quantum
number m (the z component of the angular momentum), the sum over m
just yields a factor (2l+1), and only the sum over l remains, which runs over
all the natural numbers

Zrot =
∞∑

l=0

(2l + 1) exp
(
− l(l + 1)Θr

2T

)
. (5.1.10)

1 In general, the moment of inertia I and the vibration frequency ω depend2on l.
The latter dependence leads to a coupling of the rotational and the vibrational
degrees of freedom. For the following evaluation we have assumed that these
dependences are weak and can be neglected.

2 See e.g. QM I
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Here, we have introduced the characteristic temperature

Θr =
!2

Ik
. (5.1.11)

We next consider two limiting cases:

T ≪ Θr: At low temperatures, only the smallest values of l contribute in
(5.1.10)

Zrot = 1 + 3 e−Θr/T + 5 e−3Θr/T + O
(
e−6Θr/T

)
. (5.1.12)

T ≫ Θr: At high temperatures, the sum must be carried out over all l
values, leading to

Zrot = 2
T

Θr
+

1
3

+
1
30

Θr

T
+ O

((Θr

T

)2
)

. (5.1.13)

To prove (5.1.13), one uses the Euler–MacLaurin summation formula3

∞X

l=0

f(l) =

∞Z

0

dl f(l) +
1
2
f(0) +

n−1X

k=1

(−1)kBk

(2k)!
f (2k−1)(0) + Restn , (5.1.14)

for the special case that f(∞) = f ′(∞) = . . . = 0. The first Bernoulli numbers Bn

are given by B1 = 1
6 , B2 = 1

30 . The first term in (5.1.14) yields just the classical
result

∞Z

0

dl f(l) =

∞Z

0

dl (2l+1) exp

„
− l(l + 1)

2
Θr

T

«
= 2

∞Z

0

dx e−x Θr
T = 2

T
Θr

, (5.1.15)

which one would also obtain by treating the rotational energy classically instead of
quantum-mechanically.4 The further terms are found via

f(0) = 1 , f ′(0) = 2 − Θr

2T
, f ′′′(0) = −6

Θr

T
+ 3

„
Θr

T

«2

− 1
8

„
Θr

T

«3

,

from which, using (5.1.14), we obtain the expansion (5.1.13).

From (5.1.12) and (5.1.13), we find for the logarithm of the partition
function after expanding:
3 Whittaker, Watson, A Modern Course of Analysis, Cambridge at the Clarendon

Press; V. I. Smirnow, A Course of Higher Mathematics, Pergamon Press, Oxford
1964: Vol. III, Part 2, p. 290.

4 See e.g. A. Sommerfeld, Thermodynamics and Statistical Physics, Academic
Press, NY 1950

Zrot =
4πI2

(2π!)2

Z
dω1

Z
dω2 e−

βI
2 (ω2

1+ω2
2) =

2IkT
!2

.
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log Zrot =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3 e−Θr/T − 9
2

e−2Θr/T + O
(
e−3Θr/T

)
T ≪ Θr

log
(2T

Θr

)
+

Θr

6T
+

1
360

(Θr

T

)2
+ O

((Θr

T

)3
)

T ≫ Θr .

(5.1.16a)

From this result, the contribution of the rotational degrees of freedom to the
internal energy can be calculated:

Erot = NkT 2 ∂

∂T
log Zrot

=

⎧
⎪⎪⎨

⎪⎪⎩

3Nk Θr

(
e−Θr/T − 3 e−2Θr/T + . . .

)
T ≪ Θr

NkT
(
1 − Θr

6T
− 1

180

(Θr

T

)2
+ . . .

)
T ≫ Θr .

(5.1.16b)

The contribution to the heat capacity at constant volume is then

Crot
V = Nk

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3
(Θr

T

)2
e−Θr/T

(
1 − 6 e−Θr/T + . . .

)
T ≪ Θr

1 +
1

180

(Θr

T

)2
+ . . . T ≫ Θr .

(5.1.16c)

In Fig. 5.1, we show the rotational contribution to the specific heat.

Fig. 5.1. The rotational contribution
to the specific heat

At low temperatures, the rotational degrees of freedom are not thermally
excited. Only at T ≈ Θr/2 do the rotational levels contribute. At high tem-
peratures, i.e. in the classical region, the two rotational degrees of freedom
make a contribution of 2kT/2 to the internal energy. Only with the aid of
quantum mechanics did it become possible to understand why, in contradic-
tion to the equipartition theorem of classical physics, the specific heat per
molecule can differ from the number of degrees of freedom multiplied by k/2.
The rotational contribution to the specific heat has a maximum of 1.1 at the
temperature 0.81 Θr/2 . For HCl, Θr/2 is found to be 15.02 K.
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5.1.3 The Vibrational Contribution

We now come to the vibrational contribution, for which we introduce a char-
acteristic temperature defined by

!ω = kΘv . (5.1.17)

We obtain the well-known partition function of a harmonic oscillator

Zvib =
∞∑

n=0

e−(n+ 1
2 ) Θv

T =
e−Θv/2T

1 − e−Θv/T
, (5.1.18)

whose logarithm is given by log Zvib = −Θv
2T − log

(
1 − e−Θv/T

)
. From it, we

find for the internal energy:

Evib = Nk T 2 ∂

∂T
log Zvib = Nk Θv

[
1
2

+
1

eΘv/T − 1

]
, (5.1.19a)

and for the vibrational contribution to the heat capacity at constant volume

Cvib
V = Nk

Θ2
v

T 2

eΘv/T

[
eΘv/T − 1

]2 = Nk
Θ2

v

T 2

1
[2sinh Θv/2T ]2

. (5.1.19b)

At low and high temperatures, from (5.1.19b) we obtain the limiting cases

Cvib
V

Nk
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(Θv

T

)2
e−Θv/T + . . . T ≪ Θv

1 − 1
12

(Θv

T

)2
+ . . . T ≫ Θv .

(5.1.19c)

The excited vibrational energy levels are noticeably populated only at tem-
peratures above Θv. The specific heat (5.1.19b) is shown in Fig. 5.2.

Fig. 5.2. The vibration-
al part of the specific heat
(Eq. (5.1.19b))

The contribution of the electronic energy ε0
el to the partition function,

free energy, internal energy, entropy, and to the chemical potential is, from
(5.1.9):
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Zel = e−ε0
el/kT , Fel = Nε0

el , Eel = Nε0
el , Sel = 0 , µel = ε0

el .

(5.1.20)

These contributions play a role in chemical reactions, where the (outer) elec-
tronic shells of the atoms undergo complete restructuring.

In a diatomic molecular gas, there are three degrees of freedom due to
translation, two degrees of freedom of rotation, and one vibrational degree
of freedom, which counts double (E = p2

2m + m
2 ω2x2; kinetic and potential

energy each contribute 1
2 kT ). The classical specific heat is therefore 7k/2, as

is observed experimentally at high temperatures. All together, this gives the
temperature dependence of the specific heat as shown in Fig. 5.3. The curve is
not continued down to a temperature of T = 0, since there the approximation
of a classical ideal gas is certainly no longer valid.

Fig. 5.3. The specific
heat of a molecular
gas at constant volume
(schematic)

The rotational levels correspond to a wavelength of λ = 0.1 − 1 cm and
lie in the far infrared and microwave regions, while the vibrational levels
at wavelengths of λ = 2 × 10−3 − 3 × 10−3 cm are in the infrared. The
corresponding energies are 10−3−10−4 eV and 0.06−0.04 eV, resp. (Fig. 5.4).
One electron volt corresponds to about 11000 K (1 K =∧ 0.86171 × 10−4 eV).
Some values of Θr and Θv are collected in Table 5.1.

In more complicated molecules, there are three rotational degrees of free-
dom and more vibrational degrees of freedom (for n atoms, in general 3n− 6
vibrational degrees of freedom, and for linear molecules, 3n − 5). In precise
experiments, the coupling between the vibrational and rotational degrees of
freedom and the anharmonicities in the vibrational degrees of freedom are
also detected.

H2 HD D2 HCl O2

1
2Θr [K] 85 64 43 15 2

Θv [K] 6100 5300 4300 4100 2200

Table 5.1. The values of
Θr/2 and Θv for several
molecules



232 5. Real Gases, Liquids, and Solutions

Fig. 5.4. The structure of the
rotational and vibrational levels
(schematic)

∗5.1.4 The Influence of the Nuclear Spin

We emphasize from the outset that here, we make the assumption that the
electronic ground state has zero orbital and spin angular momenta. For nu-
clei A and B, which have different nuclear spins SA and SB, one obtains
an additional factor in the partition function, (2SA + 1)(2SB + 1), i.e.Zi →
(2SA + 1)(2SB + 1)Zi. This leads to an additional term in the free en-
ergy per molecule of −kT log(2SA + 1)(2SB + 1), and to a contribution of
k log(2SA + 1)(2SB + 1) to the entropy, i.e. a change of the chemical con-
stants by log(2SA + 1)(2SB + 1) (see Eq. (3.9.29) and (5.2.5′)). As a result,
the internal energy and the specific heats remain unchanged.

For molecules such as H2, D2, O2 which contain identical atoms, one must
observe the Pauli principle. We consider the case of H2, where the spin of the
individual nuclei is SN = 1/2.

Ortho hydrogen molecule: Nuclear spin triplet (Stot = 1); the spatial
wavefunction of the nuclei is antisymmetric
(l = odd (u))

Para hydrogen molecule: Nuclear spin singlet (Stot = 0); the spatial
wavefunction of the nuclei is symmetric (l =
even (g))

Zu =
∑

l odd(u)

(2l + 1) exp
(
− l(l + 1)

2
Θr

T

)
(5.1.21a)

Zg =
∑

l even(g)

(2l + 1) exp
(
− l(l + 1)

2
Θr

T

)
. (5.1.21b)
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In complete equilibrium, we have

Z = 3Zu + Zg .

At T = 0, the equilibrium state is the ground state l = 0, i.e. a para state.
In fact, owing to the slowness of the transition between the two spin states
at T = 0, a mixture of ortho and para hydrogen will be obtained. At high
temperatures, Zu ≈ Zg ≈ 1

2Zrot = T
Θr

holds and the mixing ratio of ortho to
para hydrogen is 3:1. If we start from this state and cool the sample, then,
leaving ortho-para conversion out of consideration, H2 consists of a mixture
of two types of molecules: 3

4N ortho and 1
4N para hydrogen, and the partition

function of this (metastable) non-equilibrium state is

Z = (Zu)3/4(Zg)1/4 . (5.1.22)

Then for the specific heat, we obtain

Crot
V =

3
4
Crot

V o +
1
4
Crot

V p . (5.1.23)

In Fig. 5.5, the rotational parts of the specific heat in the metastable state
(3
4 ortho and 1

4 para), as well as for the case of complete equilibrium, are
shown. The establishment of equilibrium can be accelerated by using cata-
lysts.

Fig. 5.5. The rotational part of the
specific heat of diatomic molecules
such as H2: equilibrium (solid curve),
metastable mixture (dashed)

In deuterium molecules, D2, the nuclear spin per atom is S = 1,5 which
can couple in the molecule to ortho deuterium with a total spin of 2 or 0
and para deuterium with a total spin of 1. The degeneracy of these states
is 6 and 3. The associated orbital angular momenta are even (g) and odd
(u). The partition function, corresponding to Eq. (5.1.21a-b), is given by
Z = 6Zg + 3Zu.

5 QM I, page 187
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∗5.2 Mixtures of Ideal Molecular Gases

In this section, we investigate the thermodynamic properties of mixtures of
molecular gases. The different types of particles (elements), of which there
are supposed to be n, are enumerated by the index j. Then Nj refers to the
particle number, λj = h

(2πmjkT )1/2 is the thermal wavelength, cj = Nj

N the
concentration, ε0

el,j the electronic ground state energy, Zj the overall partition
function (see (5.1.2)), and Zi,j the partition function for the internal degrees
of freedom of the particles of type j. Here, in contrast to (5.1.9), the electronic
part is separated out. The total number of particles is N =

∑
j Nj .

The overall partition function of this non-interacting system is

Z =
n∏

j=1

Zj , (5.2.1)

and from it we find the free energy

F = −kT
∑

j

Nj

[
1 + log

V Zi,j

Njλ3
j

]
+

∑

j

ε0
el,jNj . (5.2.2)

From (5.2.2), we obtain the pressure, P = −
(

∂F
∂V

)
T,{Nj}

,

P =
kT

V

∑

j

Nj =
kTN

V
. (5.2.3)

The equation of state (5.2.3) is identical to that of the monatomic ideal gas,
since the pressure is due to the translational degrees of freedom. For the
chemical potential µj of the component j (Sect. 3.9.1), we find

µj =
(

∂F

∂Nj

)

T,V

= −kT log
V Zi,j

Njλ3
j

+ ε0
el,j ; (5.2.4)

or, if we use the pressure from (5.2.3) instead of the volume,

µj = −kT log
kTZi,j

cjPλ3
j

+ ε0
el,j . (5.2.4′)

We now assume that the rotational degrees of freedom are completely un-
frozen, but not the vibrational degrees of freedom (Θr ≪ T ≪ Θv). Then
inserting Zi,j = Zrot,j = 2T

Θr,j
(see Eq. (5.1.13)) into (5.2.4′) yields

µj = ε0
el,j −

7
2
kT log kT − kT log

m3/2
j

21/2π3/2!3kΘr,j
+ kT log cjP . (5.2.5)

We have taken the fact that the masses and the characteristic temperatures
depend on the type of particle j into consideration here. The pressure enters
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the chemical potential of the component j in the combination cjP = Pj

(partial pressure). The chemical potential (5.2.5) is a special case of the
general form

µj = ε0
el,j − cP,jT log kT − kT ζj + kT log cjP . (5.2.5′)

For diatomic molecules in the temperature range mentioned above, cP,j =
7k/2. The ζj are called chemical constants; they enter into the law of mass
action (see Chap. 3.9.3). For the entropy, we find

S = −
∑

j

Nj

(
∂µj

∂T

)

P,{Ni}

=
∑

j

(cP,j log kT + cP,j + kζj − k log cjP )Nj , (5.2.6)

from which one can see that the coefficient cP,j is the specific heat at constant
pressure of the component j.

Remarks to Sections 5.1 and 5.2: In the preceding sections, we have de-
scribed the essential effects of the internal degrees of freedom of molecular gases.
We now add some supplementary remarks about additional effects which depend
upon the particular atomic structure.

(i) We first consider monatomic gases. The only internal degrees of freedom are
electronic. In the noble gases, the electronic ground state has L = S = 0 and is
thus not degenerate. The excited levels lie about 20 eV above the ground state,
corresponding to a temperature of 200.000 K higher; in practice, they are therefore
not thermally populated, and all the atoms remain in their ground state. One can
also say that the electronic degrees of freedom are “frozen out”. The nuclear spin
SN leads to a degeneracy factor (2SN + 1). Relative to pointlike classical particles,
the partition function contains an additional factor (2SN + 1)e−ε0/kT , which gives
rise to a contribution to the free energy of ε0 − kT log(2SN + 1). This leads to an
additional term of k log(2SN +1) in the entropy, but not to a change in the specific
heat.
(ii) The excitation energies of other atoms are not as high as in the case of the noble
gases, e.g. 2.1 eV for Na, or 24.000 K, but still, the excited states are not thermally
populated. When the electronic shell of the atom has a nonzero S, but still L = 0,
this leads together with the nuclear spin to a degeneracy factor of (2S+1)(2SN +1).
The free energy then contains the additional term ε0 − kT log((2SN + 1)(2S + 1))
with the consequences discussed above. Here, to be sure, one must consider the
magnetic interaction between the nuclear and the electronic moments, which leads
to the hyperfine interaction. This is e.g. in hydrogen of the order of 6 ×10−6 eV,
leading to the well-known 21 cm line. The corresponding characteristic temperature
is 0.07 K. The hyperfine splitting can therefore be completely neglected in the gas
phase.
(iii) In the case that both the spin S and the orbital angular momentum L are
nonzero, the ground state is (2S + 1)(2L + 1)-fold degenerate; this degeneracy is
partially lifted by the spin-orbit coupling. The energy eigenvalues depend on the
total angular momentum J , which takes on values between S + L and |S − L|.
For example, monatomic halogens in their ground state have S = 1

2 and L = 1,
according to Hund’s first two rules. Because of the spin-orbit coupling, in the ground
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state J = 3
2 , and the levels with J = 1

2 have a higher energy. For e.g. chlorine,
the doubly-degenerate 2P1/2 level lies δε = 0.11 eV above the 4-fold degenerate
2P3/2 ground state level. This corresponds to a temperature of δε

k = 1270 K. The

partition function now contains a factor Zel = 4 e−ε0/kT + 2 e−(ε0+δε)/kT due to
the internal fine-structure degrees of freedom, which leads to an additional term in

the free energy of −kT log Zel = ε0−kT log
“
4 + 2 e−

δε
kT

”
. This yields the following

electronic contribution to the specific heat:

Cel
V = Nk

2
`

δε
kT

´2
e

δε
kT

“
2 e

δε
kT + 1

”2 .

For T ≪ δε/k, Zel = 4, only the four lowest levels are populated, and Cel
V = 0.

For T ≫ δε/k, Zel = 6, and all six levels are equally occupied, so that Cel
V = 0.

For temperatures between these extremes, Cel
V passes through a maximum at about

δε/k. Both at low and at high temperatures, the fine structure levels express them-
selves only in the degeneracy factors, but do not contribute to the specific heat. One
should note however that monatomic Cl is present only at very high temperatures,
and otherwise bonds to give Cl2.
(iv) In diatomic molecules, in many cases the lowest electronic state is not degener-
ate and the excited electronic levels are far from ε0. The internal partition function
contains only the factor e−ε0/kT due to the electrons. There are, however, molecules
which have a finite orbital angular momentum Λ or spin. This is the case in NO,
for example. Since the orbital angular momentum has two possible orientations rel-
ative to the molecular axis, a factor of 2 in the partition function results. A finite
electronic spin leads to a factor (2S+1). For S ̸= 0 and Λ ̸= 0, there are again
fine-structure effects which can be of the right order of magnitude to influence the
thermodynamic properties. The resulting expressions take the same form as those
in Remark (iii). A special case is that of the oxygen molecule, O2. Its ground state
3Σ has zero orbital angular momentum and spin S = 1; it is thus a triplet without
fine structure. The first excited level 1∆ is doubly degenerate and lies relatively
near at δε = 0.97 eV =

∧ 11300 K, so that it can be populated at high temperatures.

These electronic configurations lead to a factor of e
−ε0
kT
`
3+2 e

−δε
kT
´

in the partition
function, with the consequences discussed in Remark (iii).

5.3 The Virial Expansion

5.3.1 Derivation

We now investigate a real gas, in which the particles interact with each other.
In this case, the partition function can no longer be exactly calculated. For its
evaluation, as a first step we will describe the virial expansion, an expansion
in terms of the density. The grand partition function ZG can be decomposed
into the contributions for 0,1,2, etc. particles

ZG = Tr e−(H−µN)/kT = 1+Z(T, V, 1) eµ/kT +Z(T, V, 2) e2µ/kT +. . . , (5.3.1)

where ZN ≡ Z(T, V, N) represents the partition function for N particles.
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From it, we obtain the grand potential, making use of the Taylor series ex-
pansion of the logarithm

Φ = −kT log ZG = −kT
[
Z1eµ/kT +

(
Z2 −

1
2
Z2

1

)
e2µ/kT + . . .

]
, (5.3.2)

where the logarithm has been expanded in powers of the fugacity z = eµ/kT .
Taking the derivatives of (5.3.2) with respect to the chemical potential, we
obtain the mean particle number

N̄ = −
(

∂Φ

∂µ

)

T,V

= Z1eµ/kT + 2
(
Z2 −

1
2
Z2

1

)
e2µ/kT + . . . . (5.3.3)

Eq. (5.3.3) can be solved iteratively for eµ/kT , with the result

eµ/kT =
N̄

Z1
−

2
(
Z2 − 1

2Z2
1

)

Z1

(
N̄

Z1

)2

+ . . . . (5.3.4)

Eq. (5.3.4) represents a series expansion of eµ/kT in terms of the density,
since Z1 ∼ V . Inserting (5.3.4) into Φ has the effect that Φ is given in terms
of T, V, N̄ instead of its natural variables T, V, µ, which is favorable for con-
structing the equation of state:

Φ = −kT
[
N̄ −

(
Z2 −

1
2
Z2

1

) N̄2

Z2
1

+ . . .
]

. (5.3.5)

These are the first terms of the so called virial expansion. By application
of the Gibbs–Duhem relation Φ = −PV , one can go from it directly to the
expansion of the equation of state in terms of the particle number density
ρ = N̄/V

P = kTρ
[
1 + B(T )ρ + C(T )ρ2 + . . .

]
. (5.3.6)

The coefficient of ρn in square brackets is called the (n+1)th virial coefficient.
The leading correction to the equation of state of an ideal gas is determined
by the second virial coefficient

B = −
(
Z2 −

1
2
Z2

1

)
V/Z2

1 . (5.3.7)

This expression holds both in classical and in quantum mechanics.

Note: in the classical limit the integrations over momentum can be carried out,
and (5.3.1) is simplified as follows:

ZG(T, V, µ) =
∞X

N=0

eβµN

N !λ3N
Q(T, V, N) . (5.3.8)
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Here, Q(T,V, N) is the configurational part of the partition function
Z(T, V, N)

Q(T, V, N) =

Z

V

d3Nx e−β
P

i<j vij =

Z

V

d3Nx
Y

i<j

(1 + fij) =

=

Z

V

d3Nx [1 + (f12 + f13 + . . .) + (f12f13 + . . .) + . . .]
(5.3.9)

with fij = e−βvij −1. In this expression,
P

i<j ≡ 1
2

P
i

P
j ̸=i refers to the sum over

all pairs of particles. One can see from this that the virial expansion represents an
expansion in terms of r3

0/v, where r0 is the range of the potential. The classical
expansion is valid for λ ≪ r0 ≪ v1/3; see Eqs. (B.39a) and (B.39b) in Appendix
B. Equation (5.3.9) can be used as the basis of a systematic graph-theoretical
expansion (Ursell and Mayer 1939).

5.3.2 The Classical Approximation for the Second Virial
Coefficient

In the case of a classical gas, one finds for the partition function for N particles

ZN =
1

N !h3N

∫
d3p1 . . . d3pN

∫
d3x1 . . . d3xN e(

P
i p2

i /2m+v(x1,...,xN )/kT ) ;

(5.3.10a)

after integrating over the 3N momenta, this becomes

ZN =
1

λ3NN !

∫
d3x1 . . . d3xN e−v(x1,...,xN )/kT , (5.3.10b)

where v(x1, . . . ,xN ) is the total potential of the N particles. The integrals
over xi are restricted to the volume V . If no external potential is present, and
the system is translationally invariant, so that the two-particle interaction
depends only upon x1 − x2, we find from (5.3.10b)

Z1 =
1
λ3

∫
d3x1 e0 =

V

λ3
(5.3.11a)

and

Z2 =
1

2λ6

∫
d3x1 d3x2 e−v(x1−x2)/kT =

V

2λ6

∫
d3y e−v(y)/kT . (5.3.11b)

This gives for the second virial coefficient (5.3.7):

B = −1
2

∫
d3y f(y) = −1

2

∫
d3y

(
e−v(y)/kT − 1

)
(5.3.12)

with f(y) = e−v(y)/kT − 1. To proceed, we now require the two-particle
potential v(y), also known as the pair potential. In Fig. 5.6, as an example, the
Lennard–Jones potential is shown; it finds applications in theoretical models
for the description of gases and liquids and it is defined in Eq. (5.3.16).
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Fig. 5.6. The Lennard–Jones potential as an ex-
ample of a pair potential v(y), Eq. (5.3.16)

5.3.2.1 A Qualitative Estimate of B(T )

A typical characteristic of realistic potentials is the strong increase for over-
lapping atomic shells and the attractive interaction at larger distances. A
typical shape is shown in Fig. 5.7. Up to the so called ‘hard-core’ radius σ,
the potential is infinite, and outside this radius it is weakly negative. Thus
the shape of f(r) as shown in Fig. 5.7 results.

If we can now assume that in the region of the negative potential,
∣∣∣v(x)

kT

∣∣∣ ≪
1, then we find for the function in (5.3.12)

f(x) =

⎧
⎨

⎩
−1 |x| < σ

−v(x)
kT

|x| ≥ σ
. (5.3.13)

From this, we obtain the second virial coefficient:

B(T ) ≈ −1
2

[
−4π

3
σ3 + 4π

∞∫

σ

dr r2(−v(r))/kT
]

= b − a

kT
, (5.3.14)

where

b =
2π

3
σ3 = 4

4π

3
r3
0 (5.3.15a)

denotes the fourfold molecular volume. For hard spheres of radius r0, σ = 2r0

and

a = −2π

∞∫

σ

dr r2v(r) = −1
2

∫
d3x v(x)Θ(r − σ) . (5.3.15b)

The result (5.3.14) for B(T ) is drawn in Fig. 5.8. In fact, B(T ) decreases again
at higher temperatures, since the potential in Nature, unlike the artificial case
of infinitely hard spheres, is not infinitely high (see Fig. 5.9).

Remark: From the experimental determination of the temperature depen-
dence of the virial coefficients, we can gain information about the potential.
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Fig. 5.7. A typical pair potential v(r)
(solid curve) and the associated f(r)
(dashed).

Fig. 5.8. The second virial coefficient
from the approximate relation (5.3.14)

Examples:
Lennard–Jones potential ((12-6)-potential):

v(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

. (5.3.16)

exp-6-Potential :

v(r) = ε

[
exp

(
a − r

σ1

)
−

(σ2

r

)6
]

. (5.3.17)

The exp-6-potential is a special case of the so called Buckingham potential,
which also contains a term ∝ −r−8.

5.3.2.2 The Lennard–Jones Potential

We will now discuss the second virial coefficient in the case of a Lennard–
Jones potential

v(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

.

It proves expedient to introduce the dimensionless variables r∗ = r/σ and
T ∗ = kT/ε. Integrating (5.3.12) by parts yields

B(T ) =
2π

3
σ3 4

T ∗

∫
dr∗ r∗2

[
12

r∗12 − 6
r∗6

]
e−

4
T ∗ [ 1

r ∗ 12 − 1
r ∗ 6 ] . (5.3.18)

Expansion of the factor exp
(

4
T ∗ r ∗ 6

)
in terms of 4

T ∗ r ∗ 6 leads to

B(T ) = −2π

3
σ3

∞∑

j=0

2j−3/2

j!
Γ

(
2j − 1

4

)
T ∗−(2j+1)/4

=
2π

3
σ3

[
1.73

T ∗1/4
− 2.56

T ∗3/4
− 0.87

T ∗5/4
− . . .

] (5.3.19)
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Fig. 5.9. The reduced second virial coefficient B∗ = 3B/2πLσ3 for the Lennard–
Jones potential. L denotes the Loschmidt number (Avagadro’s number, L =
6.0221367 · 1023mol−1); after Hirschfelder et al.6 and R. J. Lunbeck, Dissertation,
Amsterdam 1950

(see Hirschfelder et al.6 Eq. (3.63)); the series converges quickly at large T ∗.
In Fig. 5.9, the reduced second virial coefficient is shown as a function of T ∗.

Remarks:

(i) The agreement for the noble gases Ne, Ar, Kr, Xe after adjustment of σ
and ε is good.

(ii) At T ∗ > 100, the decrease in B(T ) is experimentally somewhat greater
than predicted by the Lennard–Jones interaction (i.e. the repulsion is
weaker).

(iii) An improved fit to the experimental values is obtained with the exp-6-
potential (5.3.17).

(iv) The possibility of representing the second virial coefficients for classical
gases in a unified form by introducing dimensionless quantities is an
expression of the so called law of corresponding states (see Sect. 5.4.3).

5.3.3 Quantum Corrections to the Virial Coefficients

The quantum-mechanical expression for the second virial coefficient B(T )
is given by (5.3.7), where the partition functions occurring there are to be
computed quantum mechanically. The quantum corrections to B(T ) and the
6 T. O. Hirschfelder, Ch. F. Curtiss and R.B. Bird, Molecular Theory of Gases and

Liquids, John Wiley and Sons, Inc., New York 1954
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other virial coefficients are of two kinds: There are corrections which result
from statistics (Bose or Fermi statistics). In addition, there are corrections
which arise from the non-commutativity of quantum mechanical observables.
The corrections due to statistics are of the order of

B = ∓ λ3

25/2
∝ !3 for bosons

fermions , (5.3.20)

as one can see from Sect. 4.2 or Eq. (B.43). The interaction quantum correc-
tions, according to Eq. (B.46), take the form

Bqm =
∫

d3y e−v(y)/kT (∇v(y))2
!2

24m(kT )2
, (5.3.21)

and are thus of the order of !2. The lowest-order correction given in (5.3.21)
results from the non-commutativity of p2 and v(x).

We show in Appendix B.33 that the second virial coefficient can be related
to the time which the colliding particles spend within their mutual potential.
The shorter this time, the more closely the gas obeys the classical equation
of state for an ideal gas.

5.4 The Van der Waals Equation of State

5.4.1 Derivation

We now turn to the derivation of the equation of state of a classical, real
(i.e. interacting) gas. We assume that the interactions of the gas atoms
(molecules) consist only of a two-particle potential, which can be decom-
posed into a hard-core (H.C.) part, vH.C.(y) for |y| ≤ σ, and an attractive
part, w(y) (see Fig. 5.7):

v(y) = vH.C.(y) + w(y) . (5.4.1)

The expression “hard core” means that the gas molecules repel each other at
short distances like impenetrable hard spheres, which is in fact approximately
the case in Nature.

Our task is now to determine the partition function, for which after car-
rying out the integrations over momenta we obtain

Z(T, V, N) =
1

λ3NN !

∫
d3x1 . . .

∫
d3xN e−

P
i<j v(xi−xj)/kT . (5.4.2)

We still have to compute the configurational part. This can of course not
be carried out exactly, but instead contains some intuitive approximations.
Let us first ignore the attractive interaction and consider only the hard-core
potential. This yields in the partition function for many particles:
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∫

d3x1 . . . d3xN e−
P

i<j vH.C.(xij)/kT ≈ (V − V0)N . (5.4.3)

This result can be made plausible as follows: if the hard-core radius were zero,
σ = 0, then the integration in (5.4.3) would give simply V N ; for a finite σ,
each particle has only V − V0 available, where V0 is the volume occupied by
the other N − 1 particles. This is not exact, since the size of the free volume
(V − V0) depends on the configuration, as can be seen from Fig. 5.10. In
(5.4.3), V0 is to be understood the occupied volume for typical configurations
which have a large statistical weight. Then, one can imagine carrying out the
integrations in (5.4.3) successively, obtaining a factor V −V0 for each particle.

Referring to Fig. 5.10, we can find the following bounds for V0 with a particle num-
ber N : the smallest V0 is obtained for spherical closest packing, V min

0 = 4
√

2 r3
0N =

5.65 r3
0N . The largest V0 is found when the spheres of radius 2r0 do not overlap,

i.e. V max
0 = 8 4π

3 r3
0N = 33.51 r3

0N . The actual V0 will lie between these extremes
and can be determined as below from the comparison with the virial expansion,

namely V0 = bN = 4 4π
3 r3

0N = 16.75 r3
0N .

Using (5.4.3), we can cast the partition function (5.4.2) in the form

Z(T, V, N) =
(V − V0)N

λ3NN !

∫
d3x1 . . .

∫
d3xN e−H.C.e−

P
i<j w(xi−xj)/kT

∫
d3x1 . . .

∫
d3xN e−H.C.

.

(5.4.4)

Here, H.C. stands for the sum of all contributions from the hard-core poten-
tial divided by kT . The second fraction can be interpreted as the average
of exp

{
−

∑
i<j w(xi − xj)/kT

}
in a gas which experiences only hard-core

interactions. Before we treat this in more detail, we want to consider the
second exponent more closely. For potentials whose range is much greater
than σ and the distance between particles, it follows approximately that the
potential acting on j due to the other particles,

Fig. 5.10. Two configurations of three atoms within the volume V . In the first
configuration, V0 is larger than in the second. The center of gravity of an additional
atom must be located outside the dashed circles. In the second configuration (closer
packing), there will be more space for an additional atom (spheres of radius r0 are
represented by solid circles, spheres of radius σ = 2r0 by dashed circles)



244 5. Real Gases, Liquids, and Solutions

∑
i̸=j w(xi − xj) ≈ (N − 1)

∫
d3x
V w(x), i.e. the sum over all pairs

∑

i<j

w(xi − xj) ≡
1
2

∑

i

∑

i̸=j

w(xi − xj) ≈
1
2
N(N − 1)w̄ ≈ 1

2
N2w̄ (5.4.5a)

with

w̄ =
1
V

∫
d3x w(x) ≡ −2a

V
. (5.4.5b)

Thus we find for the partition function

Z(T, V, N) =
(V − V0)N

λ3NN !
e−

N(N−1)
2

w̄
kT =

(V − V0)N

λ3NN !
e

N2a
V kT . (5.4.6)

In this calculation, the attractive part of the potential was replaced by its av-
erage value. Here, as in the molecular field theory for ferromagnetism which
will be treated in the next chapter, we are using an “average-potential ap-
proximation”.

Before we discuss the thermodynamic consequences of (5.4.6), we return
once more to (5.4.4) and the note which followed it. The last factor can be
written using a cumulant expansion, Eq. (1.2.16′), in the form

〈
e−

P
i<j w(xi−xj)/kT

〉

H.C.
= exp

{
−

〈∑

i<j

w(xi − xj)/kT
〉

H.C.

+
1
2

(〈(∑

i<j

w(xi − xj)/kT
)2〉

H.C.

−
〈∑

i<j

w(xi − xj)/kT
〉2

H.C.

)
+. . .

}
.

(5.4.7)

The average values ⟨ ⟩H.C. are taken with respect to the canonical distribution
function of the total hard-core potential. Therefore,

〈∑
i<j w(xi − xj)

〉

H.C.
refers to the average of the attractive potential in the “free” volume allowed
by the interaction of hard spheres. Under the assumption made earlier that
the range is much greater than the hard-core radius σ and the particle dis-
tance, we again find (5.4.5a,b) and (5.4.6). The second term in the cumulant
series (5.4.7) represents the mean square deviation of the attractive inter-
actions. The higher the temperature, the more dominant the term w̄/kT
becomes.

From (5.4.6), using N ! ≃NNe−N
√

2πN , we obtain the free energy,

F = −kTN log
e(V − V0)

λ3N
− N2a

V
, (5.4.8)

the pressure (the thermal equation of state),

P = −
(

∂F

∂V

)

T,N

=
kTN

V − V0
− N2a

V 2
, (5.4.9)
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and, with E = −T 2
(

∂
∂T

F
T

)
V,N

, the internal energy (caloric equation of state),

E =
3
2
NkT − N2a

V
. (5.4.10)

Finally, we can relate V0 to the second virial coefficient. To do this, we expand
(5.4.9) in terms of 1/V and identify the result with the virial expansion (5.3.6)
and (5.3.14):

P =
kTN

V

[
1 +

V0

V
− aN

kTV
+ . . .

]
≡ kTN

V

[
1 +

(
b − a

kT

) N

V
+ . . .

]
.

From this, we obtain

V0 = Nb , (5.4.11)

where b is the contribution to the second virial coefficient which results from
the repulsive part of the potential. Inserting in (5.4.9), we find

P =
kT

v − b
− a

v2
, (5.4.12)

where on the right-hand side, the specific volume v = V/N was introduced.
Equation (5.4.12) or equivalently (5.4.9) is the van der Waals equation of
state for real gases,7 and (5.4.10) is the associated caloric equation of state.

Remarks:

(i) The van der Waals equation (5.4.12) has, in comparison to the ideal gas
equation P = kT/v, the following properties: the volume v is replaced
by v − b, the free volume. For v = b, the pressure would become infinite.
This modification with respect to the ideal gas is caused by the repulsive
part of the potential.

(ii) The attractive interaction causes a reduction in the pressure via the
term −a/v2. This reduction becomes relatively more important as the
temperature is lowered.

(iii) We make another comparison of the van der Waals equation to the ideal gas
equation by writing (5.4.12) in the form

“
P +

a
v2

”
(v − b) = kT .

Compared to Pv = kT , the specific volume v has been decreased by b, because
the molecules are not pointlike, but instead occupy their own finite volumes.
The mutual attraction of the molecules leads at a given pressure to a reduction
of the volume; it thus acts like an additional pressure term. One can also readily
understand the proportionality of this term to 1/v2. If one considers the surface
layer of a liquid, it experiences a kind of attractive force from the deeper-lying
layers, which must be proportional to the square of the density, since if the
density were increased, the number of molecules in each layer would increase
in proportion to the density, and the attractive force per unit area would thus
increase proportionally to 1/v2.

7 Johannes Dietrich van der Waals, 1837-1923: equation of state formulated 1873,
Nobel prize 1910
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The combined action of the two terms in the van der Waals equation
results in qualitatively different shapes for the isotherms at low (T1, T2) and
at high (T3, T4) temperatures. The family of van der Waals isotherms is shown
in Fig. 5.11. For T > Tc, the isotherms are monotonic, while for T < Tc, they
are S-shaped; the significance of this will be discussed below.

Fig. 5.11. The van der Waals
isotherms in dimensionless units
P/Pc and v/vc

We see immediately that on the so called critical isotherm, there is a critical
point, at which the first and second derivatives vanish, i.e. a horizontal point
of inflection. The critical point Tc, Pc, Vc thus follows from ∂P

∂V = ∂2P
∂V 2 = 0.

This leads to the two conditions − kT
(v−b)2 + 2a

v3 = 0, kT
(v−b)3 − 3a

v4 = 0, from
which the values

vc = 3b , kTc =
8
27

a

b
, Pc =

a

27b2
(5.4.13)

are obtained. The dimensionless ratio

kTc

Pcvc
=

8
3

= 2.6̇ (5.4.14)

follows from this. The experimental value is found to be somewhat larger.
Note: It is apparent even from the derivation that the van der Waals equation can
have only approximate validity. This is true of both the reduction of the repulsion
effects to an effective molecular volume b, and of the replacement of the attractive
(negative) part of the potential by its average value. The latter approximation
improves as the range of the interactions increases. In the derivation, correlation
effects were neglected, which is questionable especially in the neighborhood of the
critical point, where strong density fluctuations will occur (see below). However, the
van der Waals equation, in part with empirically modified van der Waals constants
a and b, is able to give a qualitative description of condensation and of the behavior
in the neighborhood of the critical point. There are numerous variations on the van
der Waals equation; e.g. Clausius suggested the equation
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Fig. 5.12. Isotherms for carbonic acid ob-
tained from Clausius’ equation of state.
From M. Planck, Thermodynamik, Veit &
Comp, Leipzig, 1897, page 14

P =
kT

v − a
− c

T (v + b)2
.

The plot of its isotherms shown in Fig. 5.12 is similar to that obtained from the

van der Waals theory.

5.4.2 The Maxwell Construction

At temperatures below Tc , the van der Waals isotherms have a typical S-
shape (Fig. 5.12). The regions in which (∂P/∂V )T > 0, i.e. the free energy is
not convex and therefore the stability criterion (3.6.48b) is not obeyed, are
particularly disturbing. The equation of state definitely requires modification
in these regions. We now wish to consider the free energy within the van
der Waals theory. As we finally shall see, an inhomogeneous state containing
liquid and gaseous phases has a lower free energy. In Fig. 5.13, a van der Waals
isotherm and below it the associated free energy f(T, v) = F (T, V )/N are
plotted. Although the lower figure can be directly read off from Eq. (5.4.8),
it is instructive and useful for further discussion to determine the typical
shape of the specific free energy from the isotherms P (T, v) by integration of
P = −

(
∂f
∂v

)

T
over volume:

f(T, v) = f(T, va) −
v∫

va

dv′ P (T, v′) . (5.4.15)
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Fig. 5.13. A van der Waals isotherm and
the corresponding free energy in the di-
mensionless units P/Pc, v/vc and f/kTc.
The free energy of the heterogeneous state
(dashed) is lower than the van der Waals
free energy (solid curve)

The integration is carried out from an arbitrary initial value va of the specific
volume up to v. We now draw in a horizontal line intersecting the van der
Waals isotherm in such a way that the two shaded areas are equal. The
pressure which corresponds to this line is denoted by P0. This construction
yields the two volume values v1 and v2. The values of the free energy at the
volumes v1,2 will be denoted by f1,2 = f(T, v1,2). At the volumes v1 and v2,
the pressure assumes the value P0 and therefore the slope of f(T, v) at these
points has the value −P0. As a reference for the graphical determination
of the free energy, we draw a straight line through (v1, f1) with its slope
equal to −P0 (shown as a dashed line). If the pressure had the value P0

throughout the whole interval between v1 and v2, then the free energy would
be f1 − P0(v − v1). We can now readily see that the free energy which is
shown in Fig. 5.13 follows from P (T, v), since the van der Waals isotherm
to the right of v1 initially falls below the horizontal line P = P0. Thus the
negative integral, i.e. the free energy which corresponds to the van der Waals
isotherm, lies above the dashed line. Only when the volume v2 has been
reached is f2 ≡ f(T, v2) = f1 − P0(v2 − v1), owing to the equal areas which
were presupposed in drawing the horizontal line, and the two curves meet
again. Due to P0 = −∂f

∂v

∣∣
v1

= −∂f
∂v

∣∣
v2

, the (dashed) line with slope −P0 is
precisely the double tangent to the curve f(T, v). Since P > P0 for v < v1
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and P < P0 for v > v2, f in these regions also lies above the double tangent.
In Fig. 5.13 we can see that the free energy calculated in the van der Waals
theory is not convex everywhere,

(
0 > ∂2f

∂v2 = −∂P
∂v = 1

κT

)
; this violates the

thermodynamic inequality (3.3.5).
For comparison, we next consider a two-phase, heterogeneous system,

whose entire material content is divided into a fraction c1 = v2−v
v2−v1

in the
state (v1, T ) and a fraction c2 = v−v1

v2−v1
in the state (v2, T ). These states have

the same pressure and temperature and can exist in mutual equilibrium. Since
the free energy of this inhomogeneous state is given by the linear combination
c1f1 + c2f2 of f1 and f2, it lies on the dashed line.8 Thus, the free energy of
this inhomogeneous state is lower than that from the van der Waals theory.
In the interval [v1, v2] (two-phase region), the substance divides into two
phases, the liquid phase with temperature and volume (T, v1), and the gas
phase with (T, v2). The pressure in this interval is P0. The real isotherm is
obtained from the van der Waals isotherm by replacing the S-shaped portion
by the horizontal line at P = P0, which divides the area equally. Outside the
interval [v1, v2], the van der Waals isotherm is unchanged. This construction
of the equation of state from the van der Waals theory is called the Maxwell
construction. The values of v1 and v2 depend on the temperature of the
isotherm considered, i.e. v1 = v1(T ) and v2 = v2(T ). As T approaches Tc,
the interval [v1(T ), v2(T )] becomes smaller and smaller; as the temperature
decreases below Tc, the interval becomes larger. Correspondingly, the pressure
P0(T ) increases or decreases. In Fig. 5.14, the Maxwell construction for a
family of van der Waals isotherms is shown. The points (P0(T ), v1(T )) and

Fig. 5.14. Van der Waals isotherms, showing the Maxwell construction and the
resulting coexistence curve (heavy curve) in the dimensionless units P/Pc and v/vc,
as well as the free energy f

8 c1 + c2 = 1 , v1c1 + v2c2 = v , c1f1 + c2f2 = c1f1 + c2(f1 − P0(v2 − v1)) =
f1 − P0(v − v1).
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(P0(T ), v2(T )) form the liquid branch and the gas branch of the coexistence
curve (heavy curves in Fig. 5.14). The region within the coexistence curve is
called the coexistence region or two-phase region. In this region the isotherms
are horizontal, the state is heterogeneous, and it consists of both the liquid
and gaseous phases from the two limiting points of the coexistence region.

Remarks:

(i) In Fig. 5.15, the PV T -surface which follows from the Maxwell construc-
tion is shown schematically. The van der Waals equation of state and the
conclusions which can be drawn from it are in accord with the general
considerations concerning the liquid-gas phase transition in the frame-
work of thermodynamics which we gave in Sect. 3.8.1.

Fig. 5.15. The surface
of the equation of state
from the van der Waals
theory with the Maxwell
equal-area construction
(schematic). Along with
three isotherms at tem-
peratures T1 < Tc < T2,
the coexistence curve
(surface) and its projec-
tion on the T -V plane are
shown

(ii) The chemical potentials µ = f + Pv of the two coexisting liquid and
gaseous phases are equal.

(iii) Kac, Uhlenbeck and Hemmer9 calculated the partition function exactly for a
one-dimensional model with an infinite-range potential

v(x) =

(
∞ |x| < x0

−κe−κ|x| |x| > x0
and κ → 0 .

The result is an equation of state which is qualitatively the same as in the
van der Waals theory. In the coexistence region, instead of the S-shaped curve,
horizontal isotherms are found immediately.

(iv) A derivation of the van der Waals equation for long-range potentials akin to
L. S. Ornstein’s, in which the volume is divided up into cells and the most
probable occupation number in each cell is calculated, was given by van Kam-
pen10. The homogeneous and heterogeneous stable states were found. Within
the coexistence region, the heterogeneous states – which are described by the
horizontal line in the Maxwell construction – are absolutely stable. The two
homogeneous states, represented by the S-shaped van der Waals isotherms, are
metastable, as long as ∂P

∂v < 0, and describe the superheated liquid and the
supercooled vapor.

9 M. Kac, G.E. Uhlenbeck and P.C. Hemmer, J. Math. Phys. 4, 216 (1963)
10 N.G. van Kampen, Phys. Rev. 135, A362 (1964)
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5.4.3 The Law of Corresponding States

If one divides the van der Waals equation by Pc = a
27 b2 and uses the reduced

variables P ∗ = P
Pc

, V ∗ = v
vc

, T ∗ = T
Tc

, then a dimensionless form of the
equation is obtained:

P ∗ =
8T ∗

3V ∗ − 1
− 3

V ∗2 . (5.4.16)

In these units, the equation of state is the same for all substances. Substances
with the same P ∗, V ∗ and thus T ∗ are in corresponding states. Eq. (5.4.16)
is called the “law of corresponding states”; it can also be cast in the form

P ∗V ∗

T ∗ =
8

3 − P ∗

T ∗ · T ∗

P ∗ V ∗

− 3P ∗

T ∗2

T ∗

P ∗V ∗ .

This means that P ∗V ∗/T ∗ as a function of P ∗ yields a family of curves with
the parameter T ∗. All the data from a variety of liquids at fixed T ∗ lie on a
single curve (Fig. 5.16). This holds even beyond the validity range of the van
der Waals equation. Experiments show that liquids behave similarly when
P, V and T are measured in units of Pc, Vc and Tc. This is illustrated for a
series of different substances in Fig. 5.16.

Fig. 5.16. The law of corresponding states.11

5.4.4 The Vicinity of the Critical Point

We now want to discuss the van der Waals equation in the vicinity of its
critical point. To do this, we write the results in a form which makes the
11 G. J. Su, Ind. Engng. Chem. analyt. Edn. 38, 803 (1946)
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analogy to other phase transitions transparent. The usefulness of this form
will become completely clear in connection with the treatment of ferromag-
nets in the next chapter. The equation of state in the neighborhood of the
critical point can be obtained by introducing the variables

∆P = P − Pc , ∆v = v − vc , ∆T = T − Tc (5.4.17)
and expanding the van der Waals equation (5.4.12) in terms of ∆v and ∆T :

P =
k(Tc + ∆T )

2b + ∆v
− a

(3b + ∆v)2

=
k(Tc + ∆T )

2b

„
1 − ∆v

2b
+
“∆v

2b

”2
−
“∆v

2b

”3
+
“∆v

2b

”4
∓. . .

«

− a
9b2

„
1 − 2

∆v
3b

+ 3
“∆v

3b

”2
− 4
“∆v

3b

”3
+ 5
“∆v

3b

”4
∓. . .

«
.

From this expansion, we find the equation of state in the immediate neigh-
borhood of its critical point12

∆P ∗ = 4 ∆T ∗ − 6 ∆T ∗∆v∗ − 3
2

(∆v∗)3 + . . . ; (5.4.18)

it is in this approximation antisymmetric with respect to ∆v∗, see Fig. 5.17.

Fig. 5.17. The coexistence curve in the vicinity of the critical point. Due to the
term 4 ∆T ∗ in the equation of state (5.4.18), the coexistence region is inclined with
respect to the V -T plane. The isotherm shown is already so far from the critical
point that it is no longer strictly antisymmetric

12 The term ∆T (∆v)2 and especially higher-order terms can be neglected in the
leading calculation of the coexistence curve, since it is effectively of order (∆T )2

in comparison to ∼ (∆T )3/2 for the terms which were taken into account. The
corrections to the leading critical behavior will be summarized at the end of
this section. In Eq. (5.4.18), for clarity we use the reduced variables defined just
before Eq. (5.4.16): ∆P ∗ = ∆P/Pc etc.
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The Vapor-Pressure Curve: We obtain the vapor-pressure curve by pro-
jecting the coexistence region onto the P -T plane. Owing to the antisymmetry
of the van der Waals isotherms with respect to ∆v∗ in the neighborhood of
Tc (Eq. 5.4.18), we can easily determine the location of the two-phase region
by setting ∆v∗ = 0 (cf. Fig. 5.17),

∆P ∗ = 4 ∆T ∗ . (5.4.19)

The Coexistence Curve:
The coexistence curve is the projection of the coexistence region onto the V -T
plane. Inserting (5.4.19) into (5.4.18), we obtain the equation 0 = 6∆T ∗∆v∗+
3/2 (∆v∗)3 with the solutions

∆v∗G = −∆v∗L =
√

4(−∆T ∗) + O(∆T ∗) (5.4.20)

for T < Tc. For T < Tc, the substance can no longer occur with a single
density, but instead splits up into a less dense gaseous phase and a denser
liquid phase (cf. Sect. 3.8). ∆v∗G and ∆v∗L represent the two values of the
order parameter for this phase transition (see Chap. 7).

The Specific Heat:
T > Tc : From Eq. (5.4.10), the internal energy is found to be E = 3

2NkT −
aN2

V .
Therefore, the specific heat at constant volume outside the coexistence region
is

CV =
3
2
Nk , (5.4.21a)

as for an ideal gas. We now imagine that we can cool a system with precisely
the critical density. Above Tc it has the homogeneous density 1/vc, while
below Tc, it divides into the two fractions (as in (5.4.20)) cG = vc−vL

vG−vL
and

cL = vG−vc
vG−vL

with a gaseous phase and a liquid phase. T < Tc : below Tc, the

internal energy is given by

E

N
=

3
2
kT − a

(
cG

vG
+

cL

vL

)
=

3
2
kT − a

vc + ∆vG + ∆vL

(vc + ∆vG)(vc + ∆vL)
. (5.4.21b)

If we insert (5.4.20), or, anticipating later results, (5.4.29),13 we obtain

E = N

(
3
2
kT − a

vc
+

9
2
k(T − Tc) +

56
25

a

vc

(
T − Tc

Tc

)2

+ O
(
(∆T )5/2

))
.

13 With (5.4.20), one finds only the jump in the specific heat; in order to determine
the linear term in (5.4.21b) as well, one must continue the expansion of vG and
∆vL, Eq. (5.4.27). Including these higher terms, the coexistence curve is not
symmetric.
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Fig. 5.18. The specific heat in the neigh-
borhood of the critical point of the van der
Waals liquid

The specific heat

CV =
3
2
Nk +

9
2
Nk

(
1 +

28
25

T − Tc

Tc
+ . . .

)
for T < Tc (5.4.21c)

exhibits a discontinuity (see Fig. 5.18).

The Critical Isotherm:
In order to determine the critical isotherm, we set ∆T ∗ = 0 in (5.4.18). The
critical isotherm

∆P ∗ = −3
2
(∆v∗)3 (5.4.22)

is a parabola of third order; it passes through the critical point horizontally,
which implies divergence of the isothermal compressibility.

The Compressibility:
To calculate the isothermal compressibility κT = − 1

V

(
∂V
∂P

)
T
, we determine

N

(
∂P ∗

∂V ∗

)

T

= −6 ∆T ∗ − 9
2
(∆v∗)2 (5.4.23)

from the van der Waals equation (5.4.18). For T > Tc, we find along the
critical isochores (∆v∗ = 0)

κT =
1

6Pc

1
∆T ∗ =

Tc

6Pc

1
∆T

. (5.4.24a)

For T < Tc, along the coexistence curve (i.e. ∆v∗ = ∆v∗G = −∆v∗L), using
Eq. (5.4.20), we obtain the result N

(
∂P ∗

∂V ∗

)

T
= −6 ∆T ∗− 9

2 (∆v∗G)2 = 24 ∆T ∗,
that is

κT =
Tc

12Pc

1
(−∆T )

. (5.4.24b)
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The isothermal compressibility diverges in the van der Waals theory above
and below the critical temperature as (T − Tc)−1. The accompanying long-
range density fluctuations lead to an increase in light scattering in the forward
direction (critical opalescence; see (9.4.51)).

Summary:
Comparison with experiments shows that liquids in the neighborhood of
their critical points exhibit singular behavior, similar to the results described
above. The coexistence line obeys a power law; however the exponent is not
1/2, but instead β ≈ 0.326; the specific heat is in fact divergent, and is char-
acterized by a critical exponent α. The critical isotherm obeys ∆P ∼ ∆vδ

and the isothermal compressibility is κT ∼ |T − Tc|−γ . Table 5.2 contains
a summary of the results of the van der Waals theory and the power laws
which are in general observed in Nature. The exponents β, α, δ, and γ are
called critical exponents. The specific heat shows a discontinuity according
to the van der Waals theory, as shown in Fig. 5.18. It is thus of the order of
(T − Tc)0 just to the left and to the right of the transition. The index d of
the exponent 0 in Table 5.2 refers to this discontinuity. Compare Eq. (7.1.1).

Table 5.2. Critical Behavior according to the van der Waals Theory

Physical van der Waals Critical Temperature
quantity behavior range

∆vG = −∆vL ∼ (Tc − T )
1
2 (Tc − T )β T < Tc

cV ∼ (T − Tc)
0d |Tc − T |−α T ≷ Tc

∆P ∼ (∆v)3 (∆v)δ T = Tc

κT ∼ |T − Tc|−1 |T − Tc|−γ T ≷ Tc

The Latent Heat Finally, we will determine the latent heat just below
the critical temperature. The latent heat can be written using the Clausius–
Clapeyron equation (3.8.8) in the form:

q = T (sG − sL) = T
∂P0

∂T
(vG − vL) = T

∂P0

∂T
(∆vG − ∆vL) .

Here, sG and sL refer to the entropies per particle of the gas and liquid
phases and ∂P0

∂T is the slope of the vaporization curve at the corresponding
point. In the vicinity of the critical point, to leading order we can set T ∂P0

∂T ≈
Tc

∂P0
∂T

∣∣
c.p.

, where (∂P0/∂T )c.p. is the slope of the evaporation curve at the
critical point.

q = 2Tc

(
∂P

∂T

)

c.p.

∆vG . (5.4.25)
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The slope of the vapor-pressure curve at Tc is finite (cf. Fig. 5.17 and
Eq. (5.4.19)). Thus the latent heat decreases on approaching Tc according
to the same power law as the order parameter, i.e. q ∝ (Tc − T )β; in the van
der Waals theory, β = 1

2 .
By means of the thermodynamic relation (3.2.24) CP −CV = −T

(
∂P
∂T

)2

V

/
(

∂P
∂V

)
T
, we can also determine the critical behavior of the specific heat at

constant pressure. Since
(

∂P
∂T

)
V

is finite, the right-hand side behaves like the
isothermal compressibility κT , and because CV is only discontinuous or at
most weakly singular, it follows in general that

CP ∼ κT ∝ (T − Tc)−γ ; (5.4.26)

for a van der Waals liquid, γ = 1.

∗Higher-Order Corrections to Eq. (5.4.18)
For clarity, we use the reduced quantities defined in (5.4.16). Then the van der
Waals equation becomes

∆P ∗ = 4∆T ∗ − 6∆T ∗∆v∗ + 9∆T ∗`∆v∗´2 −
“3

2
+

27
2

∆T ∗
”`

∆v∗´3

+
“21

4
+

81
4

∆T ∗
”`

∆v∗´4 +
“99

8
+

243
8

∆T ∗
”`

∆v∗´5 + O
“`

∆v∗´6” .

(5.4.27)

The coexistence curve ∆v∗
G/L and the vapor-pressure curve, which we denote here

by ∆P ∗
0 (∆T ∗), are found from the van der Waals equation:

∆P ∗`∆T ∗, ∆v∗
G

´
= ∆P ∗`∆T ∗, ∆v∗

L

´
= 0

with the Maxwell construction

∆v ∗
GZ

∆v ∗
L

d
`
∆v∗´ `∆P ∗ − ∆P ∗

0 (∆T ∗)
´

= 0 .

For the vapor-pressure curve in the van der Waals theory, we obtain

∆P ∗
0 = 4∆T ∗ +

24
5

`
−∆T ∗´2 + O

“`
−∆T ∗´5/2

”
, (5.4.28)

and for the coexistence curve:

∆v∗
G = 2

√
−∆T ∗ +

18
5

`
−∆T ∗´+ X

`
−∆T ∗´3/2

+ O
`
(∆T ∗)2

´

∆v∗
L = −2

√
−∆T ∗ +

18
5

`
−∆T ∗´+ Y

`
−∆T ∗´3/2

+ O
`
(∆T ∗)2

´ (5.4.29)

(with X − Y = 294
25 , see problem 5.6). In contrast to the ferromagnetic phase

transition, the order parameter is not exactly symmetric; instead, it is symmetric
only near Tc, compare Eq. (5.4.20).
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The internal energy is:

E
N

=
3
2
kT − a

vc

„
1 − 4∆T ∗ − 56

25

`
∆T ∗´2 + O

“
|∆T ∗|5/2

”«
(5.4.30)

and the heat capacity is:

CV =
3
2
Nk +

9
2
Nk

„
1 − 28

25
|∆T ∗| + O

“
|∆T ∗|3/2

”«
. (5.4.31)

For the calculation of the specific heat, only the difference X − Y = 294/25 enters.

The vapor-pressure curve is no longer linear in ∆T ∗, and the coexistence curve is

no longer symmetric with respect to the critical volume.

5.5 Dilute Solutions

5.5.1 The Partition Function and the Chemical Potentials

We consider a solution where the solvent consists of N particles and the
solute of N ′ atoms (molecules), so that the concentration is given by

c =
N ′

N
≪ 1 .

We shall calculate the properties of such a solution by employing the grand
partition function14

ZG(T, V, µ, µ′) =
∞∑

n′=0

Zn′(T, V, µ)z′n
′

= Z0(T, V, µ) + z′Z1(T, V, µ) + O
(
z′

2)
. (5.5.1)

It depends upon the chemical potentials of the solvent, µ, and of the solute,
µ′. Since the solute is present only at a very low concentration, we have
µ′ ≪ 0 and therefore the fugacity z′ = eµ′/kT ≪ 1. In (5.5.1), Z0(T, V, µ)
means the grand partition function of the pure solvent and Z1(T, V, µ) that
of the solvent and a dissolved molecule.

From these expressions we find for the total pressure

−P =
Φ

V
= −kT

V
log ZG = ϕ0(T, µ) + z′ϕ1(T, µ) + O

(
z′

2)
, (5.5.2)

where ϕ0 = −kT
V log Z0 and ϕ1 = −kT

V
Z1
Z0

. In (5.5.2), ϕ0(T, µ) is the con-
tribution of the pure solvent and the second term is the correction due to
14 Here, Zn′(T, V, µ) =

P∞
n=0 Trn Trn′e−β(Hn+H′

n′+Wn′n−µn), where Trn and Trn′

refer to the traces over n- and n′-particle states of the solvent and the solute,
respectively. The Hamiltonians of these subsystems and their interactions are
denoted by Hn, H ′

n′ and Wn′n.
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the dissolved solute. Here, Z1 and therefore ϕ1 depend on the interactions
of the dissolved molecules with the solvent, but not however on the mutual
interactions of the dissolved molecules. We shall now express the chemical
potential µ in terms of the pressure. To this end, we use the inverse function
ϕ−1

0 at fixed T , i.e. ϕ−1
0 (T, ϕ0(T, µ)) = µ, obtaining

µ = ϕ−1
0 (T,−P − z′ϕ1(T, µ))

= ϕ−1
0 (T,−P ) − z′

ϕ1(T, ϕ−1
0 (T,−P ))

∂ϕ0
∂µ

∣∣
µ=ϕ−1

0 (T,−P )

+ O
(
z′

2)
.

(5.5.3)

The (mean) particle numbers are

N = −∂Φ

∂µ
= −V

∂ϕ0(T, µ)
∂µ

+ O(z′) (5.5.4a)

N ′ = − ∂Φ

∂µ′ = −z′V

kT
ϕ1(T, µ) + O

(
z′

2)
. (5.5.4b)

Inserting this into (5.5.3), we finally obtain

µ(T, P, c) = µ0(T, P ) − kT c + O(c2) , (5.5.5)

where µ0(T, P ) ≡ ϕ−1
0 (T,−P ) is the chemical potential of the pure solvent as

a function of T and P . From (5.5.4b) and (5.5.4a), we find for the chemical
potential of the solute:

µ′ = kT log z′ = kT log
(

−N ′kT

V ϕ1(T, µ)

)
+ O

(
z′

2)

= kT log
N ′kT ∂ϕ0(T,µ)

∂µ

Nϕ1(T, µ)
+ O(z′) ;

(5.5.6)

and finally, using (5.5.5),

µ′(T, P, c) = kT log c + g(T, P ) + O(c) . (5.5.7)

In the function g(T, P ) = kT log(kT/υ0(T, P )ϕ1(T, µ0(T, P ))), which de-
pends only on the thermodynamic variables T and P , the interactions of
the dissolved molecules with the solvent also enter.

The simple dependences of the chemical potentials on the concentration
are valid so long as one chooses T and P as independent variables. From
(5.5.5), we can calculate the pressure as a function of T and µ. To do this, we
use P0(T, µ), the inverse function of µ0(T, P ), and rewrite (5.5.5) as follows:

µ = µ0(T, P0(T, µ) + (P − P0(T, µ))) − kT c ;

we then expand in terms of P−P0(T, µ) and use the fact that µ0(T, P0(T, µ)) =
µ holds for the pure solvent:
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µ = µ +
(

∂µ0

∂P

)

T

(P − P0(T, µ)) − kT c .

From the Gibbs-Duhem relation, we know that
(

∂µ0
∂P

)

T
= v0(P, T ) = v +

O(c2), from which it follows that

P = P0(T, µ) +
c

v
kT + O(c2) , (5.5.8)

where v is the specific volume of the solvent. The interactions of the dissolved
atoms with the solvent do not enter into P (T, µ, c) and µ(T, P, c) to the order
we are considering, although we have not made any constraining assumptions
about the nature of the interactions.
∗An Alternate Derivation of (5.5.6) and (5.5.7)
in the Canonical Ensemble
We again consider a system with two types of particles which are present in the
amounts (particle numbers) N and N ′, where the concentration of the latter type,

c = N′

N ≪ 1, is very small. The mutual interactions of the dissolved atoms can
be neglected in dilute solutions. The interaction of the solvent with the solute is
denoted by WN′N . Furthermore, the solute is treated classically. We initially make
no assumptions regarding the solvent; in particular, it can be in any phase (solid,
liquid, gaseous).

The partition function of the overall system then takes the form

Z = Tr e−HN /kT
Z

dΓN′

N ′! h3N′ e−(H′
N′+WN′N )/kT

=
“
Tr e−HN /kT

” 1

N ′! λ′3N

fiZ
d3x1 . . . d3xN′ e−(VN′+WN′N )/kT

fl
,

(5.5.9a)

where λ′ is the thermal wavelength of the dissolved substance. HN and H ′
N′ are the

Hamiltonians for the solvent and the solute molecules, VN′ denotes the interactions
of the solute molecules, and WN′N is the interaction of the solvent with the solute.
A configurational contribution also enters into (5.5.9a):

Zconf =

Z
d3x1 . . . d3xN′

D
e−(VN′+WN′N )/kT

E

≡
R

d3x1 . . . d3xN′ Tr e−HN /kT e−(VN′+WN′N )/kT

Tr e−HN /kT
.

(5.5.9b)

The trace runs over all the degrees of freedom of the solvent. When the latter must
be treated quantum-mechanically, WN′N also contains an additional contribution
due to the nonvanishing commutator of HN and the interactions. VN′ depends on
the {x′} and WN′N on the {x′} and {x} (coordinates of the solute molecules and
the solvent). We assume that the interactions are short-ranged; then VN′ can be
neglected for all the typical configurations of the dissolved solute molecules:

D
e−(VN′+WN′N )/kT

E
≈
D
e−WN′N /kT

E

= e
−⟨WN′N⟩/kT+ 1

2

D
(W2

N′N−⟨WN′N⟩2)
E

/(kT )2± ...

= e
−

PN′
n′=0

` ⟨Wn′N ⟩
kT − 1

2(kT )2

D
(W2

n′N
−⟨Wn′N⟩2)

E
± ...
´

= e−N′ψ(T,V/N) . (5.5.9c)
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Here, Wn′N denotes the interaction of molecule n′ with the N molecules of the
solvent. In Eq. (5.5.9c), a cumulant expansion was carried out and we have taken
into account that the overlap of the interactions of different molecules vanishes for
all of the typical configurations. Owing to translational invariance, the expectation
values ⟨Wn′N ⟩ etc. are furthermore independent of x′ and are the same for all n′. We
thus find for each of the dissolved molecules a factor e−ψ(T,V/N), where ψ depends
on the temperature and the specific volume of the solvent. It follows from (5.5.9c)
that the partition function (5.5.9a) is

Z =
“
Tr e−HN /kT

” 1
N ′!

„
V

λ′3 ψ(T, V/N)

«N′

. (5.5.10)

This result has the following physical meaning: the dissolved molecules behave like
an ideal gas. They are subject at every point to the same potential from the sur-
rounding solvent atoms, i.e. they are moving in a position-independent effective
potential kTψ(T, V/N), whose value depends on the interactions, the temperature,
and the density. The free energy therefore assumes the form

F (T, V, N, N ′) = F0(T, V, N) − kTN ′ log
eV

N ′λ′3 − N ′γ(T, V/N) , (5.5.11)

where F0(T, V ) = −kT log Tr e−HN /kT is the free energy of the pure solvent and
γ(T, V/N) = kT log ψ(T, V/N) is due to the interactions of the dissolved atoms
with the solvent. From (5.5.11), we find for the pressure

P = −
„

∂F
∂V

«

T,N,N′
= P0(T, V/N) +

kTN ′

V
+ N ′

„
∂

∂V
γ

«

T,N

= P0(T, v) +
kTc
v

+ c

„
∂
∂v

γ(T, v)

«

T

,

(5.5.12)

where c = N′

N and v = V
N were employed.

We could calculate the chemical potentials from (5.5.11) as functions of T and
v. In practice, however, one is usually dealing with physical conditions which fix the
pressure instead of the specific volume. In order to obtain the chemical potentials
as functions of the pressure, it is expedient to use the free enthalpy (Gibbs free
energy). It is found from (5.5.11) and (5.5.12) to be

G = F +PV = G0(T, P, N)−kTN ′
„

log
eV

N ′λ′3 − 1

«
−N ′

„
γ − V

∂γ
∂V

«
, (5.5.13)

where P0(T, v) and G0(T, P, N) are the corresponding quantities for the pure sol-
vent. From Equation (5.5.12), one can compute v as a function of P, T and c,

v = v0(T, P ) + O
`
N ′/N

´
.

If we insert this in (5.5.13), we find an expression for the free enthalpy of the form

G(T, P, N, N ′) = G0(T, P, N)−kTN ′
“
log

N
N ′−1

”
+N ′g(T,P )+O

„
N ′2

N

«
, (5.5.14)

where g(T,P ) =
“
−kT log v

λ′3 −
`
γ − V ∂γ

∂V

´”˛̨˛̨
v=v0(T,P )

. Now we can compute the

two chemical potentials as functions of T, P and c. For the chemical potential of the
solvent, µ(T, P, c) =

`
∂G
∂N

´
T,P,N′ , the result to leading order in the concentration is
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µ(T, P, c) = µ0(T, P ) − kTc + O
`
c2´ . (5.5.15)

For the chemical potential of the solute, we find from (5.5.14)

µ′(T, P, c) =

„
∂G
∂N ′

«

N,P,T

= −kT log
1
c

+ g(T, P ) + O
`
c
´

. (5.5.16)

The results (5.5.15) and (5.5.16) agree with those found in the framework of the

grand canonical ensemble (5.5.5) and (5.5.7).

5.5.2 Osmotic Pressure

We let two solutions of the same substances (e.g. salt in water) be separated
by a semipermeable membrane (Fig. 5.19). An example of a semipermeable
membrane is a cell membrane.

Fig. 5.19. A membrane which allows only
the solvent to pass through (= semiperme-
able) separates the two solutions. · = sol-
vent, • = solute; concentrations c1 and c2

The semipermeable membrane allows only the solvent to pass through. There-
fore, in chambers 1 and 2, there will be different concentrations c1 and c2.
In equilibrium, the chemical potentials of the solvent on both sides of the
membrane are equal, but not those of the solute. The osmotic pressure is
defined by the pressure difference

∆P = P1 − P2 .

From (5.5.8), we can calculate the pressure on both sides of the membrane,
and since in equilibrium, the chemical potentials of the solvent are equal,
µ1 = µ2, it follows that the pressure difference is

∆P =
c1 − c2

v
kT . (5.5.17)

The van’t Hoff formula is obtained as a special case for c2 = 0, c1 = c, when
only the pure solvent is present on one side of the membrane:

∆P =
c

v
kT =

N ′

V
kT . (5.5.17′)

Here, N ′ refers to the number of dissolved molecules in chamber 1 and V to
its volume.



262 5. Real Gases, Liquids, and Solutions

Notes:

(i) Equation (5.5.17′) holds for small concentrations independently of the
nature of the solvent and the solute. We point out the formal similarity
between the van’t Hoff formula (5.5.17′) and the ideal gas equation. The
osmotic pressure of a dilute solution of n moles of the dissolved substance
is equal to the pressure that n moles of an ideal gas would exert on the
walls of the overall volume V of solution and solvent.

(ii) One can gain a physical understanding of the origin of the osmotic pres-
sure as follows: the concentrated part of the solution has a tendency to
expand into the less concentrated region, and thus to equalize the con-
centrations.

(iii) For an aqueous solution of concentration c = 0.01, the osmotic pressure
at room temperature amounts to ∆P = 13.3 bar.

∗5.5.3 Solutions of Hydrogen in Metals (Nb, Pd,...)

We now apply the results of Sect. 5.5.1 to an important practical example, the
solution of hydrogen in metals such as Nb, Pd,. . . (Fig. 5.20). In the gas phase,
hydrogen occurs in molecular form as H2, while in metals, it dissociates. We
thus have a case of chemical equilibrium, see Sect. 3.9.3.

Fig. 5.20. Solution of hydrogen in metals: atomic
hydrogen in a metal is represented by a dot, while
molecular hydrogen in the surrounding gas phase is
represented by a pair of dots.

The chemical potential of molecular hydrogen gas is

µH2 = −kT

[
log

V

Nλ3
H2

+ log Zi

]
= −kT

[
log

kT

Pλ3
H2

+ log Zi

]
, (5.5.18)

where Zi also contains the electronic contribution to the partition function
(Eq. (5.1.5c)). The chemical potential of atomic hydrogen dissolved in a metal
is, according to Eq. (5.5.7), given by

µH = kT log c + g(T, P ) . (5.5.19)

The metals mentioned can be used for hydrogen storage. The condition for
chemical equilibrium (3.9.26) is in this case 2µH = µH2 ; this yields the equi-
librium concentration:
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c = e(µH2/2−g(T,P ))/kT =
(

Pλ3
H2

kT

) 1
2

Z
− 1

2
i exp

(
−2g(T, P ) + εel

2kT

)
. (5.5.20)

Since g(T, P ) depends only weakly on P , the concentration of undissolved
hydrogen is c ∼ P

1
2 . This dependence is known as Sievert’s law .

5.5.4 Freezing-Point Depression, Boiling-Point Elevation,
and Vapor-Pressure Reduction

Before we turn to a quantitative treatment of freezing-point depression,
boiling-point elevation, and vapor-pressure reduction, we begin with a qual-
itative discussion of these phenomena. The free enthalpy of the liquid phase
of a solution is lowered, according to Eq. (5.5.5), relative to its value in the
pure solvent, an effect which can be interpreted in terms of an increase in en-
tropy. The free enthalpies of the solid and gaseous phases remain unchanged.
In Fig. 5.21, G(T, P ) is shown qualitatively as a function of the temperature
and the pressure, keeping in mind its convexity, and assuming that the dis-
solved substance is soluble only in the liquid phase. The solid curve describes
the pure solvent, while the change due to the dissolved substance is described
by the chain curve. As a rule, the concentration of the solute in the liquid
phase is largest and the associated entropy increase leads to a reduction of the
free enthalpy. From these two diagrams, the depression of the freezing point,
the elevation of the boiling point, and the reduction in the vapor pressure
can be read off.

Fig. 5.21. The change in the free enthalpy on solution of a substance which dis-
solves to a notable extent only in the liquid phase. The solid curve is for the pure
solvent, the chain curve for the solution. We can recognize the freezing-point de-
pression, the boiling-point elevation, and the vapor-pressure reduction

Next we turn to the analytic treatment of these phenomena. We first
consider the melting process. The concentrations of the dissolved substance
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in the liquid and solid phases are cL and cS.15 The chemical potentials of
the solvent in the liquid and the solid phase are denoted by µL and µS, and
correspondingly in the pure system by µL

0 and µS
0 . From Eq. (5.5.5), we find

that

µL = µL
0 (P, T ) − kT cL

and

µS = µS
0(P, T ) − kT cS .

In equilibrium, the chemical potentials of the solvent must be equal, µL = µS,
from which it follows that16

µL
0 (P, T ) − kT cL = µS

0(P, T ) − kT cS . (5.5.21)

For the pure solute, we obtain the melting curve, i.e. the relation between
the melting pressure P0 and the melting temperature T0, from

µL
0 (P0, T0) = µS

0(P0, T0) . (5.5.22)

Let (P0, T0) be a point on the melting curve of the pure solvent. Then consider
a point (P, T ) on the melting curve which obeys (5.5.21), and which is shifted
relative to (P0, T0) by ∆P and ∆T , that is

P = P0 + ∆P , T = T0 + ∆T .

If we expand Eq. (5.5.21) in terms of ∆P and ∆T , and use (5.5.22), we find
the following relation

∂µL
0

∂P

∣∣∣∣
0

∆P +
∂µL

0

∂T

∣∣∣∣
0

∆T − kT cL =
∂µS

0

∂P

∣∣∣∣
0

∆P +
∂µS

0

∂T

∣∣∣∣
0

∆T − kT cS . (5.5.23)

We now recall that G = µN = E − TS + PV , and using it we obtain

dG = −SdT + V dP + µdN = d(µN) = µdN + Ndµ ,
(

∂µ

∂P

)

T,N

=
V

N
= v,

(
∂µ

∂T

)

P,N

= − S

N
= −s .

The derivatives in (5.5.23) can therefore be expressed in terms of the volumes
per molecule vL and vS, and the entropies per molecule sL and sS in the liquid
and solid phases of the pure solvent,
15 Since two phases and two components are present, the number of degrees of

freedom is two (Gibbs’ phase rule). One can for example fix the temperature and
one concentration; then the other concentration and the pressure are determined.

16 The chemical potentials of the solute must of course also be equal. From this fact,
we can for example express the concentration in the solid phase, cS, in terms of
T and cL. We shall, however, not need the exact value of cS, since cS ≪ cL is
negligible.
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−(sS − sL)∆T + (vS − vL)∆P = (cS − cL)kT . (5.5.24)

Finally, we introduce the heat of melting q = T (sL − sS), thus obtaining

q

T
∆T + (vS − vL)∆P = (cS − cL)kT . (5.5.25)

The change in the transition temperature ∆T at a given pressure is obtained
from (5.5.25), by setting P = P0 or ∆P = 0:

∆T =
kT 2

q
(cS − cL) . (5.5.26)

As a rule, the concentration in the solid phase is much lower than that in the
liquid phase, i.e. cS ≪ cL; then (5.5.26) simplifies to

∆T = −kT 2

q
cL < 0 . (5.5.26′)

Since the entropy of the liquid is larger, or on melting, heat is absorbed, it
follows that q > 0. As a result, the dissolution of a substance gives rise to a
freezing-point depression.

Note: On solidification of a liquid, at first (5.5.26′) holds, with the initial concen-
tration cL. Since however pure solvent precipitates out in solid form, the concen-

tration cL increases, so that it requires further cooling to allow the freezing process

to continue. Freezing of a solution thus occurs over a finite temperature interval.

The above results can be transferred directly to the evaporation process .
To do this, we make the replacements

L → G , S → L

and obtain from (5.5.25) for the liquid phase (L) and the gas phase (G) the
relation

q

T
∆T + (vL − vG)∆P = (cL − cG)kT . (5.5.27)

Setting ∆P = 0 in (5.5.27), we find

∆T =
kT 2

q
(cL − cG) ≈ kT 2

q
cL > 0 , (5.5.28)

a boiling-point elevation. In the last equation, cL ≫ cG was assumed (this no
longer holds near the critical point).

Setting ∆T = 0 in (5.5.27), we find

∆P =
cL − cG

vL − vG
kT ≈ −cL − cG

vG
kT , (5.5.29)
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a vapor-pressure reduction. When the gas phase contains only the vapor of
the pure solvent, (5.5.29) simplifies to

∆P = − cL

vG
kT . (5.5.30)

Inserting the ideal gas equation, PvG = kT , we have

∆P = −cLP = −cL(P0 + ∆P ) .

Rearrangement of the last equation yields the relative pressure change:

∆P

P0
= − cL

1 + cL
≈ −cL , (5.5.31)

known as Raoult’s law . The relative vapor-pressure reduction increases lin-
early with the concentration of the dissolved substance. The results derived
here are in agreement with the qualitative considerations given at the begin-
ning of this subsection.

Problems for Chapter 5

5.1 The rotational motion of a diatomic molecule is described by the angular
variables ϑ and ϕ and the canonically conjugate momenta pϑ and pϕ with the

Hamilton function H =
p2

ϑ
2I + 1

2I sin2 ϑ
p2

ϕ. Calculate the classical partition function
for the canonical ensemble.
Result: Zrot = 2T

Θr
(see footnote 4 to Eq. (5.1.15)).

5.2 Confirm the formulas (5.4.13) for the critical pressure, the critical volume,
and the critical temperature of a van der Waals gas and the expansion (5.4.18) of
P (T, V ) around the critical point up to the third order in ∆v.

5.3 The expansion of the van der Waals equation in the vicinity of the critical
point:
(a) Why is it permissible in the determination of the leading order to leave off the
term ∆T (∆V )2 in comparison to (∆V )3?
(b) Calculate the correction O

`
∆T
´

to the coexistence curve.
(c) Calculate the correction O

`
(T − Tc)

2
´

to the internal energy.

5.4 The equation of state for a van der Waals gas is given in terms of reduced
variables in Eq. (5.4.16).
Calculate the position of the inversion points (Chap. 3) in the p∗, T ∗ diagram.
Where is the maximum of the curve?

5.5 Calculate the jump in the specific heat cv for a van der Waals gas at a specific
volume of v ̸= vc.

5.6 Show in general and for the van der Waals equation that κs and cv exhibit the
same behavior for T → Tc.
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5.7 Consider two metals 1 and 2 (with melting points T1, T2 and temperature
independent heats of melting q1, q2), which form ideal mixtures in the liquid
phase (i.e. as for small concentrations over the whole concentration range). In the
solid phase these metals are not miscible. Calculate the eutectic point TE (see also
Sect. 3.9.2).
Hint: Set up the equilibrium conditions between pure solid phase 1 or 2 and the
liquid phase. From these, the concentrations are determined:

ci = eλi , where λi =
qi

kTi

„
1 − Ti

T

«
; i = 1, 2

using

∂(G/T )
∂T

= −H/T 2 , qi = ∆Hi , G = µN .

5.8 Apply the van’t Hoff formula (5.5.17′) to the following simple example: the
concentration of the dissolved substance is taken to be c = 0.01, the solvent is
water (at 20◦C); use ρH2O = 1g/cm3 (20◦C). Find the osmotic pressure ∆P .



6. Magnetism

In this chapter, we will deal with the fundamental phenomenon of magnetism.
We begin the first section by setting up the density matrix, starting from the
Hamiltonian, and using it to derive the thermodynamic relations for magnetic
systems. Then we continue with the treatment of diamagnetic and paramag-
netic substances (Curie and Pauli paramagnetism). Finally, in Sect. 6.5.1, we
investigate ferromagnetism. The basic properties of magnetic phase transi-
tions will be studied in the molecular-field approximation (Curie–Weiss law,
Ornstein-Zernike correlation function, etc.). The results obtained will form
the starting point for the renormalization group theory of critical phenomena
which is dealt with in the following chapter.

6.1 The Density Matrix and Thermodynamics

6.1.1 The Hamiltonian and the Canonical Density Matrix

We first summarize some facts about magnetic properties as known from
electrodynamics and quantum mechanics. The Hamiltonian for N electrons
in a magnetic field H = curl A is:

H =
N∑

i=1

1
2m

(
pi −

e

c
A (xi)

)2
− µspin

i ·H (xi) + WCoul. (6.1.1)

The index i enumerates the electrons. The canonical momentum of the ith
electron is pi and the kinetic momentum is mvi = pi − e

cA (xi). The charge
and the magnetic moment are given by1

e = −e0 , µspin
i = −geµB

! Si , (6.1.2a)

where along with the elementary charge e0, the Bohr magneton

µB =
e0!
2mc

= 0.927 · 10−20 erg
Gauss

= 0.927 · 10−23 J
T

(6.1.2b)

1 QM I, p. 186
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as well as the Landé-g-factor or the spectroscopic splitting factor of the elec-
tron

ge = 2.0023 (6.1.2c)

were introduced. The quantity γ = ege
2mc = − geµB

! is called the magnetome-
chanical ratio or gyromagnetic ratio. The last term in (6.1.1) stands for the
Coulomb interaction of the electrons with each other and with the nuclei.

The dipole-dipole interaction of the spins is neglected here. Its conse-
quences, such as the demagnetizing field, will be considered in Sect. 6.6; see
also remark (ii) at the end of Sect. 6.6.3. We assume that the magnetic field
H is produced by some external sources. In vacuum, B = H holds. We use
here the magnetic field H, corresponding to the more customary practice in
the literature on magnetism. The current-density operator is thus given by2

j (x) ≡ −c
δH

δA (x)
=

N∑

i=1

{
e

2m

[(
pi −

e

c
A (xi)

)
, δ (x− xi)

]

+

+c curl
(
µspin

i δ (x − xi)
)}

(6.1.3)

with [A, B]+ = AB + BA. The current density contains a contribution from
the electronic orbital motion and a spin contribution.

For the total magnetic moment , one obtains3,4:

µ ≡ 1
2c

∫
d3x x× j (x) =

N∑

i=1

{ e

2mc
xi ×

(
pi −

e

c
A (xi)

)
+ µspin

i

}
. (6.1.4)

When H is uniform, Eq. (6.1.4) can also be written in the form

µ = −∂H

∂H
. (6.1.5)

The magnetic moment of the ith electron for a uniform magnetic field (see
Remark (iv) in Sect. 6.1.3) is – according to Eq. (6.1.4) – given by

µi = µspin
i +

e

2mc
Li − e2

2mc2
xi × A (xi)

=
e

2mc
(Li + geSi) − e2

4mc2

(
H x2

i − xi (xi ·H)
)

.

(6.1.6)

2 The intermediate steps which lead to (6.1.3)–(6.1.5) will be given at the end of
this section.

3 J. D. Jackson, Classical Electrodynamics, 2nd edition, John Wiley and sons, New
York, 1975, p. 18.

4 Magnetic moments are denoted throughout by µ, except for the spin magnetic
moments of elementary particles which are termed µspin.
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If H = Hez, then (for a single particle) it follows that

µi z =
e

2mc
(Li + geSi)z − e2H

4mc2

(
x2

i + y2
i

)
= −∂H

∂H
,

and the Hamiltonian is5

H =
N∑

i=1

{
p2

i

2m
− e

2mc
(Li + 2Si)z H +

e2H2

8mc2

(
x2

i + y2
i

)}
+WCoul. (6.1.7)

Here, we have used ge = 2.
We now wish to set up the density matrices for magnetic systems; we

can follow the steps in Chap. 2 to do this. An isolated magnetic system is
described by a microcanonical ensemble,

ρMC = δ (H − E) /Ω (E,H) with Ω (E,H) = Tr δ(H − E),

where, for the Hamiltonian, (6.1.1) is to be inserted. If the magnetic system
is in contact with a heat bath, with which it can exchange energy, then one
finds for the magnetic subsystem, just as in Chap. 2, the canonical density
matrix

ρ =
1
Z

e−H/kT . (6.1.8)

The normalization factor is given by the partition function

Z = Tr e−H/kT . (6.1.9a)

The canonical parameters (natural variables) are here the temperature, whose
reciprocal is defined as in Chap. 2 in the microcanonical ensemble as the
derivative of the entropy of the heat bath with respect to its energy, and the
external magnetic field H.6 Correspondingly, the canonical free energy,

F (T,H) = −kT log Z , (6.1.9b)

is a function of T and H. The entropy S and the internal energy E are, by
definition, calculated from

S = −k ⟨log ρ⟩ =
1
T

(E − F ) , (6.1.10)

5 See e.g. QM I, Sect. 7.2.
6 In this chapter we limit our considerations to magnetic effects. Therefore, the

particle number and the volume are treated as fixed. For phenomena such as
magnetostriction, it is necessary to consider also the dependence of the free
energy on the volume and more generally on the deformation tensor of the solid
(see also the remark in 6.1.2.4).
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and

E = ⟨H⟩ . (6.1.11)

The magnetic moment of the entire body is defined as the thermal average of
the total quantum-mechanical magnetic moment

M ≡ ⟨µ⟩ = −
〈

∂H

∂H

〉
. (6.1.12)

The magnetization M is defined as the magnetic moment per unit volume,
i.e. for a uniformly magnetized body

M =
1
V

M (6.1.13a)

and, in general,

M =
∫

d3xM(x) . (6.1.13b)

For the differential of F , we find from (6.1.9)−(6.1.10)

dF = (F − E)
dT

T
− M · dH ≡ −SdT − M · dH , (6.1.14a)

that is
(

∂F

∂T

)

H

= −S and
(

∂F

∂H

)

T

= −M. (6.1.14b)

Using equation (6.1.10), one can express the internal energy E in terms of F
and S and obtain from (6.1.14a) the First Law for magnetic systems:

dE = TdS − MdH . (6.1.15)

The internal energy E contains the interaction of the magnetic moments
with the magnetic field (see (6.1.7)). Compared to a gas, we have to make
the following formal replacements in the First Law: V → H, P → M. Along
with the (canonical) free energy F (T,H), we introduce also the Helmholtz
free energy7

A (T, M) = F (T,H) + M · H . (6.1.16)

Its differential is

dA = −SdT + HdM , (6.1.17a)

i.e.
(

∂A

∂T

)

M

= −S and
(

∂A

∂M

)

T

= H . (6.1.17b)

7 The notation of the magnetic potentials is not uniform in the literature. This is
true not only of the choice of symbols; even the potential F (T,H), which depends
on H, is sometimes referred to as the Helmholtz free energy.
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6.1.2 Thermodynamic Relations

∗6.1.2.1 Thermodynamic Potentials

At this point, we summarize the definitions of the two potentials introduced
in the preceding subsection. The following compilation, which indicates the
systematic structure of the material, can be skipped over in a first reading:

F = F (T,H) = E − TS , dF = −SdT − M dH (6.1.18a)
A = A(T, M) = E − TS + M · H , dA = −SdT + H dM . (6.1.18b)

In comparison to liquids, the thermodynamic variables here are T,H and
M instead of T , P and V . The thermodynamic relations listed can be read
off from the corresponding relations for liquids by making the substitutions
V → −M and P → H. There is also another analogy between magnetic
systems and liquids: the density matrix of the grand potential contains the
term −µN , which in a magnetic system corresponds to −H·M. Particularly in
the low-temperature region, where the properties of a magnetic system can be
described in terms of spin waves (magnons), this analogy is useful. There, the
value of the magnetization is determined by the number of thermally-excited
spin waves. Therefore, we find the correspondence M ↔ N and H ↔ µ. Of
course the Maxwell relations follow from (6.1.15) and (6.1.18a,b)

(
∂T

∂H

)

S

= −
(

∂M

∂S

)

H

,

(
∂S

∂H

)

T

=
(

∂M

∂T

)

H

. (6.1.19)

∗6.1.2.2 Magnetic Response Functions, Specific Heats,
and Susceptibilities

Analogously to the specific heats of liquids, we define here the specific heats
CM and CH (at constant M and H) as8

CM ≡ T

(
∂S

∂T

)

M

= −T

(
∂2A

∂T 2

)

M

(6.1.20a)

CH ≡ T

(
∂S

∂T

)

H

=
(

∂E

∂T

)

H

= −T

(
∂2F

∂T 2

)

H

. (6.1.20b)

Instead of the compressibilities as for liquids, in the magnetic case one has
the isothermal susceptibility

χT ≡
(

∂M

∂H

)

T

= − 1
V

(
∂2F

∂H2

)

T

(6.1.21a)

8 To keep the notation simple, we will often write H and M as H and M , making
the assumption that M is parallel to H and that H and M are the components
in the direction of H.
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and the adiabatic susceptibility

χS ≡
(

∂M

∂H

)

S

=
1
V

(
∂2E

∂H2

)

S

. (6.1.21b)

In analogy to Chap. 3, one finds that

CH − CM = TV α2
H/χT , (6.1.22a)

χT − χS = TV α2
H/CH (6.1.22b)

and

CH

CM
=

χT

χS
. (6.1.22c)

Here, we have defined

αH ≡
(

∂M

∂T

)

H

. (6.1.23)

Eq. (6.1.22a) can also be rewritten as

CH − CM = TV α2
M χT , (6.1.22d)

where

αM =
(

∂H

∂T

)

M

= −αH

χT
(6.1.22e)

was used.

∗6.1.2.3 Stability Criteria and the Convexity of the Free Energy

One can also derive inequalities of the type (3.3.5) and (3.3.6) for the mag-
netic susceptibilities and the specific heats:

χT ≥ 0 , CH ≥ 0 and CM ≥ 0 . (6.1.24a,b,c)

To derive these inequalities on a statistical-mechanical basis, we assume that
the Hamiltonian has the form

H = H0 − µ ·H , (6.1.25)

where H thus enters only linearly and µ commutes with H. It then follows
that

χT =
1
V

(
∂⟨µ⟩
∂H

)

T

=
1
V

(
∂

∂H

Tr e−βHµ

Tr e−βH

)

T

=
β

V

〈
(µ − ⟨µ⟩)2

〉
≥ 0 (6.1.26a)
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and

CH =
(

∂

∂T
⟨H⟩

)

H

=
(

∂

∂T

Tr e−βHH

Tr e−βH

)

H

=
1

kT 2

〈
(H − ⟨H⟩)2

〉
≥ 0 ,

(6.1.26b)

with which we have demonstrated (6.1.24a) and (6.1.24b). Eq. (6.1.24c) can
be shown by taking the second derivative of

A(T, M) = F (T, H) + HM

with respect to the temperature at constant M (problem 6.1). As a result,
F (T, H) is concave9 in T and in H , while A(T, M) is concave in T and convex
in M:

((
∂2A
∂T 2

)

H
= −CM

T ≤ 0 ,
(

∂2A
∂M2

)

T
=

(
∂H
∂M

)
T

= 1/χT ≥ 0
)
.

In this derivation, we have used the fact that the Hamiltonian H has the
general form (6.1.25), and therefore, diamagnetic effects (proportional to H2)
are negligible.
Remark: In analogy to the extremal properties treated in Sect. 3.6.4, the canonical

free energy F for fixed T and H in magnetic systems strives towards a minimal

value, as does the Helmholtz free energy A for fixed T and M . At these minima,
the stationarity conditions δF = 0 and δA = 0 hold, i.e.:

dF < 0 when T and H are fixed, and dA < 0 when T and M are fixed.

6.1.2.4 Internal Energy

E ≡ ⟨H⟩ is the internal energy, which is found in a natural manner from
statistical mechanics. It contains the energy of the material including the
effects of the electromagnetic field, but not the field energy itself. It is usual
to introduce a second internal energy, also, which we denote by U and which
is defined as

U = E + M · H ; (6.1.27a)

it thus has the complete differential

dU = TdS + HdM . (6.1.27b)

From this, we derive

T =
(

∂U

∂S

)

M

, H =
(

∂U

∂M

)

S

(6.1.27c)

and the Maxwell relation
(

∂H
∂S

)

M

=
(

∂T

∂M

)

S

. (6.1.28)

9 See also R.B. Griffiths, J. Math. Phys. 5, 1215 (1964). In fact, it is
sufficient for the proof of (6.1.24a) to show that µ enters H linearly.
Cf. M.E. Fisher, Rep. Progr. Phys. XXX, 615 (1967), p. 644.
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Remarks:

(i) As was emphasized in footnote 5, throughout this chapter the particle
number and the volume are treated as fixed. In the case of variable volume
and variable particle number, the generalization of the First Law takes on
the form

dU = TdS − PdV + µdN + HdM (6.1.29)

and, correspondingly,

dE = TdS − PdV + µdN − MdH . (6.1.30)

The grand potential

Φ(T, V, µ,H) = −kT log Tr e−β(H−µN) (6.1.31a)

then has the differential

dΦ = −SdT − PdV − µdN − MdH , (6.1.31b)

where the chemical potential µ is not to be confused with the microscopic
magnetic moment µ.
(ii) We note that the free energies of the crystalline solid are not rotation-
ally invariant, but instead are invariant only with respect to rotations of
the corresponding point group. Therefore, the susceptibility χij = ∂Mi

∂Hj
is

a second-rank tensor. In this textbook, we present the essential statistical
methods, but we forgo a discussion of the details of solid-state physics or ele-
ment specific aspects. The methods presented here should permit the reader
to master the complications which arise in treating real, individual problems.

6.1.3 Supplementary Remarks

(i) The Bohr–van Leeuwen Theorem.
The content of the Bohr–van Leeuwen theorem is the nonexistence of mag-
netism in classical statistics.
The classical partition function for a charged particle in the electromagnetic
field is given by

Zcl =
∫

d3Np
∫

d3Nx

(2π!)3NN !
e−H({pi− e

c A(xi)},{xi})/kT . (6.1.32)

Making the substitution p′
i = pi − e

cA (xi), we can see that Zcl becomes
independent of A and thus also of H . Then we have M = − ∂F

∂H = 0, and
χ = − 1

V
∂2F
∂H2 = 0. Since the spin is also a quantum-mechanical phenomenon,

dia-, para-, and ferromagnetism are likewise quantum phenomena. One might
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ask how this statement can be reconciled with the ‘classical’ Langevin para-
magnetism which will be discussed below. In the latter, a large but fixed
value of the angular momentum is assumed, so that a non-classical feature
is introduced into the theory. In classical physics, angular momenta, atomic
radii, etc. vary continuously and without limits.10
(ii) Here, we append the simple intermediate computations leading to (6.1.3)–
(6.1.5). In (6.1.3), we need to evaluate −c δH

δA(x) . The first term in (6.1.1) evidently

leads to the first term in (6.1.3). In the component of the current jα, taking the
derivative of the second term leads to

c
δ

δAα(x)

NX

i=1

µspin
i · curlA(xi) = c

δ
δAα (x)

NX

i=1

µspin
iβ ϵβγδ

∂
∂xiγ

Aδ (xi) =

= c
NX

i=1

µspin
iβ ϵβγδ

∂
∂xiγ

δ (x − xi) δαδ = c

 
NX

i=1

rot
h
µspin

i δ (x − xi)
i!

α

.

Pairs of Greek indices imply a summation. Since the derivative of the third term in
(6.1.1) yields zero, we have demonstrated (6.1.3).
(iii) In (6.1.4), the first term is obtained in a readily-apparent manner from the
first term in (6.1.3). For the second term, we carry out an integration by parts and
use ∂δxβ = δδβ, obtaining

1
2

NX

i=1

„Z
d3x x ×curl

h
µspin

i δ (x − xi)
i«

α

=

=
1
2

NX

i=1

Z
d3x ϵαβγ xβ ϵγδρ ∂δ

h
µspin

iρ δ (x− xi)
i

=

= −1
2

NX

i=1

Z
d3x ϵαβγ ϵγδρ δδβµspin

iρ δ (x − xi) =

= −1
2

NX

i=1

Z
d3x (−2δαρ) µspin

iρ δ (x − xi) =
NX

i=1

µspin
iα ,

with which we have demonstrated (6.1.4).
(iv) Finally, we show the validity of (6.1.5).
We can write the vector potential of a uniform magnetic field in the form
A = 1

2H ×x, since curlA = 1
2 (H (∇ · x) − (H ·∇)x) yields H. To obtain the

derivative, we use 1
2 ϵσατ xiτ for the derivative with respect to Hα after the second

equals sign below, finding

− ∂H

∂Hα
= −

NX

i=1

2
2m

“
pi −

e
c
A
”

σ

“
−e

c

” ∂
∂Hα

1
2

ϵσρτ Hρxiτ + µspin
iα =

=
e

2mc

NX

i=1

“
xi ×

“
pi −

e
c
A
””

α
+ µspin

iα ,

(6.1.33)

which is in fact the right-hand side of (6.1.4).

10 A detailed discussion of this theorem and the original literature citations are to
be found in J.H. van Vleck, The Theory of Electric and Magnetic Susceptibility,
Oxford, University Press, 1932.
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In the Hamiltonian (6.1.1), WCoul contains the mutual Coulomb interaction
of the electrons and their interactions with the nuclei. The thermodynamic
relations derived in Sect. (6.1.2) are thus generally valid; in particular, they
apply to ferromagnets, since there the decisive exchange interaction is merely
a consequence of the Coulomb interactions together with Fermi–Dirac statis-
tics.

In addition to the interactions included in (6.1.1), there are also the mag-
netic dipole interaction between magnetic moments and the spin-orbit inter-
action,11 which lead among other things to anisotropy effects . The derived
thermodynamic relations also hold for these more general cases, whereby
the susceptibilities and specific heats become shape-dependent owing to the
long-range dipole interactions. In Sect. 6.6, we will take up the effects of
the dipole interactions in more details. For elliptical samples, the internal
magnetic field is uniform, Hi = H − DM, where D is the demagnetizing
tensor (or simply the appropriate demagnetizing factor, if the field is applied
along one of the principal axes). We will see that instead of the susceptibil-
ity with respect to the external field H, one can employ the susceptibility
with respect to the macroscopic internal field, and that this susceptibility
is shape-independent.12 In the following four sections, which deal with basic
statistical-mechanical aspects, we leave the dipole interactions out of con-
sideration; this is indeed quantitatively justified in many situations. In the
next two sections 6.2 and 6.3, we deal with the magnetic properties of non-
interacting atoms and ions; these can be situated within solids. The angular
momentum quantum numbers of individual atoms in their ground states are
determined by Hund’s rules.13

6.2 The Diamagnetism of Atoms

We consider atoms or ions with closed electronic shells, such as for exam-
ple helium and the other noble gases or the alkali halides. In this case,
the quantum numbers of the orbital angular momentum and the total spin
in the ground state are zero, S = 0 and L = 0, and as a result the to-
tal angular momentum J = L + S is also J = 0.14 Therefore, we have
11 The spin-orbit interaction ∝ L · S leads in effective spin models to anisotropic

interactions. The orbital angular momentum is influenced by the crystal field of
the lattice, transferring the anisotropy of the lattice to the spin.

12 For non-elliptical samples, the magnetization is not uniform. In this case, ∂M
∂H

depends on position within the sample and has only a local significance. It is
then expedient to introduce a total susceptibility χtot

T,S =
`

∂M
∂H

´
T,S

, which differs

from (6.1.33) in the homogeneous case only by a factor of V .
13 See e.g. QM I, Chap. 13 and Table I.12
14 The diamagnetic contribution is also present in other atoms, but in the mag-

netic fields which are available in the laboratory, it is negligible compared to the
paramagnetic contribution.
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L |0⟩ = S |0⟩ = J |0⟩ = 0, where |0⟩ designates the ground state. The param-
agnetic contribution to the Hamiltonian (6.1.7) thus vanishes in every order
of perturbation theory. It suffices to treat the remaining diamagnetic term
in (6.1.7) in first-order perturbation theory, since all the excited states lie at
much higher energies. Owing to the rotational symmetry of the wavefunc-
tions of closed shells, we find ⟨0|

∑
i

(
x2

i + y2
i

)
|0⟩ = 2

3 ⟨0|
∑

i r2
i |0⟩ and, for

the energy shift of the ground state,

E1 =
e2H2

12mc2
⟨0|

∑

i

r2
i |0⟩ . (6.2.1)

From this it follows for the magnetic moment and the susceptibility of a single
atom:

⟨µz⟩ = −∂E1

∂H
= −

e2 ⟨0|
∑

i r2
i |0⟩

6mc2
H, χ =

∂⟨µz⟩
∂H

= −
e2 ⟨0|

∑
i r2

i |0⟩
6mc2

,

(6.2.2)

where the sums run over all the electrons in the atom. The magnetic moment
is directed oppositely to the applied field and the susceptibility is negative.
We can estimate the magnitude of this so called Langevin diamagnetism using
the Bohr radius:

χ = −25 × 10−20 × 10−16

6 × 10−27 × 1021
cm3 ≈ −5 × 10−30cm3,

χ per mole = −5 × 10−30 × 6 × 1023 cm3

mole
≈ −3 × 10−6 cm3

mole
.

The experimental values of the molar susceptibility of the noble gases are
collected in Table 6.1.

Table 6.1. Molar susceptibilities of the noble gases

He Ne Ar Kr Xe

χ in 10−6 cm3/mole -1.9 -7.2 -15.4 -28.0 -43.0

An intuitively apparent interpretation of this diamagnetic susceptibility runs
as follows: the field H induces an additional current ∆j = −er∆ω, whereby the
orbital frequency of the electronic motion increases by the Larmor frequency ∆ω =
eH
2mc . The sign of this change corresponds to Lenz’s law, so that both the magnetic
moment µz and the induced magnetic field are opposite to the applied field H:

µz ∼ r∆j
2c

∼ −r2∆ωe
2c

∼ −e2r2H
4mc2

.

We also note that the result (6.2.2) is proportional to the square of the Bohr radius
and therefore to the fourth power of !, confirming the quantum nature of magnetic
phenomena.
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6.3 The Paramagnetism of Non-coupled Magnetic
Moments

Atoms and ions with an odd number of electrons, e.g. Na, as well as atoms
and ions with partially filled inner shells, e.g. Mn2+, Gd3+, or U4+ (transition
elements, ions which are isoelectronic with transition elements, rare-earth and
actinide elements) have nonvanishing magnetic moments even when H = 0,

µ =
e

2mc
(L + ge S) =

e

2mc
(J + S) (ge = 2) . (6.3.1)

Here, J = L + S is the total angular momentum operator. For relatively low
external magnetic fields (i.e. e!H/mc ≪ spin-orbit coupling)) with H applied
along the z-axis, the theory of the Zeeman effect15 gives the energy-level shifts

∆EMJ = gµBMJH , (6.3.2)

where MJ runs over the values MJ = −J, . . . , J16 and the Landé factor

g = 1 +
J(J + 1) + S(S + 1) − L(L + 1)

2J(J + 1)
(6.3.3)

was used. Familiar special cases are L = 0 : g = 2, MJ ≡ MS = ± 1
2 and

S = 0 : g = 1, MJ ≡ ML = −L, . . . , L.
The Landé factor can be made plausible in the classical picture where L and S
precess independently around the spatially fixed direction of the constant of the
motion J. Then we find:

(L + 2S)z =
J · (L + 2S)

|J|
Jz

|J| = Jz
J2 + J · S

J2

= Jz

 
1 +

S2 + 1
2

`
J2 − L2 − S2

´

J2

!
.

The partition function then becomes

Z =

(
J∑

m=−J

e−ηm

)N

=
(

sinh η (2J + 1) /2
sinh η/2

)N

, (6.3.4)

with the abbreviation

η =
gµBH

kT
. (6.3.5)

Here, we have used the fact that
15 Cf. e.g. QM I, Sect. 14.2
16 J = L + S, Jz |mj⟩ = !mj |mj⟩
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J∑

m=−J

e−ηm = e−ηJ
2J∑

r=0

eηr = e−ηJ eη(2J+1) − 1
eη − 1

=
(

sinh η (2J + 1) /2
sinh η/2

)
.

For the free energy, we find from (6.3.4)

F (T, H) = −kTN log
{

sinh η (2J + 1) /2
sinh η/2

}
, (6.3.6)

from which we obtain the magnetization

M = − 1
V

∂F

∂H
= ngµBJBJ (η) (6.3.7)

(n = N
V ). The magnetization is oriented parallel to the magnetic field H. In

Eq. (6.3.7) we have introduced the Brillouin function BJ , which is defined
as

BJ(η) =
1
J

{
(J +

1
2
) coth η(J +

1
2
) − 1

2
coth

η

2

}
(6.3.8)

(Fig. 6.1). We now consider the asymptotic limiting cases:

η → 0 : coth η =
1
η

+
η

3
+ O

(
η3

)
, BJ (η) =

J + 1
3

η + O
(
η3

)

(6.3.9a)

and

η → ∞ : BJ (∞) = 1. (6.3.9b)

Fig. 6.1. The Brillouin function for J = 1/2, 1, 3/2, 2,∞ as a function of x =
gµBJH

kT = ηJ . For classical momentsB∞ is identical to the Langevin function
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Inserting (6.3.9a) into (6.3.7), we obtain for low applied fields (H ≪ kT/JgµB)

M = n (gµB)2
J(J + 1)H

3kT
, (6.3.10a)

while from (6.3.9b), for high fields (H ≫ kT/JgµB,), we find

M = ngµBJ (6.3.10b)

This signifies complete alignment (saturation) of the magnetic moments. An
important special case is represented by spin- 1

2 systems. Setting J = 1
2 in

(6.3.8), we find

B 1
2

(η) = 2 coth η − coth
η

2
=

(
cosh2 η

2 + sinh2 η
2

)

sinh η
2 cosh η

2

−
cosh η

2

sinh η
2

= tanh
η

2
.

(6.3.11)

This result can be more directly obtained by using the fact that for spin
S = 1/2, the partition function of a spin is given by Z = 2 coshη/2 and
the average value of the magnetization by M = ngµBZ−1 sinh η/2. Letting
J = ∞, while at the same time gµB → 0, so that µ = gµBJ remains finite,
we find

B∞ (η) = coth ηJ − 1
ηJ

= coth
µH

kT
− kT

µH
. (6.3.12a)

B∞ (η) is called the Langevin function for classical magnetic moments µ;
together with (6.3.7), it determines the magnetization

M = nµ

(
coth

µH

kT
− kT

µH

)
(6.3.12b)

of “classical” magnetic moments of magnitude µ. A classical magnetic mo-
ment µ can be oriented in any direction in space; its energy is E = −µH cosϑ,
where ϑ is the angle between the field H and the magnetic moment µ. The
classical partition function for one particle is Z =

∫
dΩ e−E/kT and leads via

(6.1.9b) once again to (6.3.12b). Finally, for the susceptibility we obtain

χ = n (gµB)2
J

kT
B′

J(η) . (6.3.13)

In small magnetic fields H ≪ kT
JgµB

, this gives the Curie law

χCurie = n (gµB)2
J(J + 1)

3kT
. (6.3.14)

The magnetic behavior of non-coupled moments characterized by (6.3.7),
(6.3.13), and (6.3.14) is termed paramagnetism. The Curie law is typical of
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Fig. 6.2. The entropy, the in-
ternal energy, and the specific
heat of a spin- 1

2 paramagnet

preexisting elementary magnetic moments which need only be oriented by the
applied field, in contrast to the polarization of harmonic oscillators, whose
moments are induced by the field (cf. problem 6.4).

We include a remark about the magnitudes. The diamagnetic susceptibil-
ity per mole, from the estimate which follows Eq. (6.2.2), is equal to about
χmole ≈ −10−5cm3/mole. The paramagnetic susceptibility at room temper-
ature is roughly 500 times larger, i.e. χmole ≈ 10−2–10−3cm3/mole. The
entropy of a paramagnet is

S = −
(

∂F

∂T

)

H

= Nk

(
log

(
sinh η(2J+1)

2

sinh η
2

)
− ηJBJ(η)

)
. (6.3.15)

For spin 1
2 , (6.3.15) simplifies to

S = Nk

(
log

(
2 cosh

µBH

kT

)
− µBH

kT
tanh

µBH

kT

)
(6.3.16)

with the limiting case

S = Nk log 2 for H → 0 . (6.3.16′)

The entropy, the internal energy, and the specific heat of the paramagnet
are reproduced in Figs. 6.2a,b,c. The bump in the specific heat is typical of
2-level systems and is called a Schottky anomaly in connection with defects.
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Van Vleck paramagnetism: The quantum number of the total angular momen-
tum also becomes zero, J = 0, when a shell has just one electron less than half full.
In this case, according to Eq. (6.3.2) we have indeed ⟨0|J+S |0⟩ = 0, but the para-
magnetic term in (6.1.7) yields a nonzero contribution in second order perturbation
theory. Together with the diamagnetic term, one obtains for the energy shift of the
ground state

∆E0 = −
X

n

| ⟨0| (L + 2S) · H |n⟩ |2

En − E0
+

e2H2

8mc2
⟨0|
X

i

(x2
i + y2

i ) |0⟩ . (6.3.17)

The first, paramagnetic term, named for van Vleck17 , which also plays a role in the
magnetism of molecules18, competes with the diamagnetic term.

6.4 Pauli Spin Paramagnetism

We consider now a free, three-dimensional electron gas in a magnetic field
and restrict ourselves initially to the coupling of the magnetic field to the
electron spins. The energy eigenvalues are then given by Eq. (6.1.7):

ϵp± =
p2

2m
± 1

2
geµBH . (6.4.1)

The energy levels are split by the magnetic field. Electrons whose spins are
aligned parallel to the field have higher energies, and these states are therefore
less occupied (see Fig. 6.3).

Fig. 6.3. Orientation (a) of the spins, and (b) of the magnetic moments. (c) The
energy as a function of p (on the left for positive spins and on the right for negative
spins)

17 J. H. van Vleck, The Theory of Magnetic and Electric Susceptiblities, Oxford
University Press, 1932.

18 Ch. Kittel, Introduction to Solid State Physics, Third edition, John Wiley, New
York, 1967
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The number of electrons in the two states is found to be

N± =
V

(2π!)3

∫
d3p n

(
p2

2m
± 1

2
geµBH

)
=

∞∫

0

dϵ
1
2
ν(ϵ)n

(
ϵ ± 1

2
geµBH

)
,

(6.4.2)

where the density of states has been introduced:

ν(ϵ) =
gV

(2π!)3

∫
d3p δ(ϵ − ϵp) = N

3
2

ϵ1/2

ϵ3/2
F

; (6.4.3)

it fulfills the normalization condition
∫ ϵF

0 dϵ ν(ϵ) = N . In the case that
geµBH ≪ µ ≈ ϵF , we can expand in terms of H :

N± =
∞∫

0

dϵ
1
2
ν(ϵ)

[
n (ϵ) ± n′ (ϵ)

1
2
geµBH + O

(
H2

)]
. (6.4.4)

For the magnetization, using the above result we obtain:

M = −µB(N+ − N−)/V = −µ2
BH

V

∞∫

0

dϵ ν(ϵ)n′(ϵ) + O
(
H3

)
, (6.4.5)

where we have set ge = 2. For T → 0, we find from (6.4.5) the magnetization

M = µ2
Bν(ϵF )H/V + O

(
H3

)
=

3
2
µB

2 NH

V ϵF
+ O

(
H3

)
(6.4.6)

and the magnetic susceptibility

χP =
3
2
µ2

B
N

V ϵF
+ O

(
H2

)
. (6.4.7)

This result describes the phenomenon of Pauli spin paramagnetism.

Supplementary remarks:

(i) For T ̸= 0, we must take the change of the chemical potential into
account, making use of the Sommerfeld expansion:

N =
∞∫

0

dϵ ν(ϵ)n(ϵ) + O
(
H2

)
=

µ∫

0

dϵ ν(ϵ) +
π2 (kT )2

6
ν′(µ) + O

(
H2, T 4

)

=
ϵF∫

0

dϵ ν(ϵ) + (µ − ϵF ) ν(ϵF ) +
π2 (kT )2

6
ν′(ϵF ) + O

(
H2, T 4

)
. (6.4.8)

Since the first term on the right-hand side is equal to N , we write

µ − ϵF = −π2(kT )2

6
ν′(ϵF )
ν(ϵF )

+ O
(
H2, T 4

)
. (6.4.9)
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Integrating by parts, we obtain from (6.4.5) and (6.4.9)

M =
µ2

BH

V

∞∫

0

dϵ ν′(ϵ)n(ϵ) + O
(
H3

)

=
µ2

BH

V

[
ν(µ) +

π2 (kT )2

6
ν′′(µ) + O

(
H3, T 4

)
]

(6.4.10)

=
µ2

BH

V

[
ν(ϵF ) − π2 (kT )2

6

(
ν′(ϵF )2

ν(ϵF )
− ν′′(ϵF )

)]
+ O

(
H3, T 4

)
.

(ii) The Pauli susceptibility (6.4.7) can be interpreted similarly to the linear
specific heat of a Fermi gas (see Sect. 4.3.2):

χP = χCurie
ν(ϵF )

N
kT = µ2

B ν(ϵF )/V . (6.4.11)

Naively, one might expect that the susceptibility of N electrons would be
equal to the Curie susceptibility χCurie from Eq. (6.3.14) and therefore would
diverge as 1/T . It was Pauli’s accomplishment to realize that not all of the
electrons contribute, but instead only those near the Fermi energy. The num-
ber of thermally excitable electrons is kT ν(ϵF ).
(iii) The Landau quasiparticle interaction (see Sect. 4.3.3e, Eq. 4.3.29c)
yields

χP =
µ2

B ν(ϵF )
V (1 + Fa)

. (6.4.12)

In this expression, Fa is an antisymmetric combination of the interaction
parameters.19
(iv) In addition to Pauli spin paramagnetism, the electronic orbital motions
give rise to Landau diamagnetism 20

χL = − e2kF

12π2mc2
. (6.4.13)

For a free electron gas, χL = − 1
3χP . The lattice effects in a crystal have differ-

ing consequences for χL and χP . Eq. (6.4.13) holds for free electrons neglect-
ing the Zeeman term. The magnetic susceptibility for free spin- 1

2 fermions is
composed of three parts: it is the sum

χ = χP + χL + χOsc .

19 D. Pines and Ph. Nozières, The Theory of Quantum Liquids Vol. I: Normal Fermi
Liquids, W.A. Benjamin, New York 1966, p. 25

20 See e.g. D. Wagner, Introduction to the Theory of Magnetism, Pergamon Press,
Oxford, 1972.
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χOsc is an oscillatory part, which becomes important at high magnetic fields
H and is responsible for de Haas–van Alphen oscillations.
(v) Fig. 6.3c can also be read differently from the description given above.
If one introduces the densities of states for spin ±!/2

ν± (ϵ) =
V

(2π!)3

∫
d3p δ(ϵ − ϵp± )

=
V

(2π!)3

∫
d3p δ

(
ϵ −

( p2

2m
± 1

2
geµBH

))

=
mV

2π2!3

∞∫

0

dp p Θ
(
ϵ ∓1

2
geµBH

)
δ

(
p −

√
2m

(
ϵ ∓1

2
geµBH

))

= N
3

4ϵ3/2
F

Θ
(
ϵ ∓1

2
geµBH

)(
ϵ ∓1

2
geµBH

)1/2
,

then the solid curves which are drawn on the left and the right also refer to
ν+(ϵ) and ν−(ϵ).

6.5 Ferromagnetism

6.5.1 The Exchange Interaction

Ferromagnetism and antiferromagnetism are based on variations of the ex-
change interaction, which is a consequence of the Pauli principle and the
Coulomb interaction (cf. the remark following Eq. (6.1.33)). In the simplest
case of the exchange interaction of two electrons, two atoms or two molecules
with the spins S1 and S2, the interaction has the form ±J S1 · S2, where J
is a positive constant which depends on the distance between the spins. The
exchange constant ±J is determined by the overlap integrals, containing the
Coulomb interaction.21 When the exchange energy is negative,

E = −J S1 · S2 , (6.5.1a)

then a parallel spin orientation is favored. This leads in a solid to ferro-
magnetism (Fig. 6.4b); then below the Curie temperature Tc, a spontaneous
magnetization occurs within the solid. When the exchange energy is positive,

E = J S1 · S2 , (6.5.1b)

then an antiparallel spin orientation is preferred. In a suitable lattice struc-
ture, this can lead to an antiferromagnetic state: below the Néel temperature
TN , an alternating (staggered) magnetic order occurs (Fig. 6.4c). Above the
21 See Chaps. 13 and 15, QM I
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Fig. 6.4. A crystal lattice of magnetic ions. The spin Sl is located at the posi-
tion xl, and l denumerates the lattice sites. (a) the paramagnetic state; (b) the
ferromagnetic state; (c) the antiferromagnetic state.

respective transition temperature (TC or TN ), a paramagnetic state occurs
(Fig. 6.4a). The exchange interaction is, to be sure, short-ranged; but owing
to its electrostatic origin it is in general considerably stronger than the dipole-
dipole interaction. Examples of ferromagnetic materials are Fe, Ni, EuO; and
typical antiferromagnetic materials are MnF2 and RbMnF3.
In the rest of this section, we turn to the situation described by equation
(6.5.1a), i.e. to ferromagnetism, and return to (6.5.1b) only in the discussion
of phase transitions. We now imagine that the magnetic ions are located on
a simple cubic lattice with lattice constant a, and that a negative exchange
interaction (J > 0) acts between them (Fig. 6.4a). The lattice sites are enu-
merated by the index l. The position of the lth ion is denoted by xl and its
spin is Sl. All the pairwise interaction energies of the form (6.5.1a) contribute
to the total Hamiltonian 22:

H = −1
2

∑

l,l′

Jll′ Sl · Sl′ . (6.5.2)

Here, we have denoted the exchange interaction between the spins at the
lattice sites l and l′ by Jll′ . The sum runs over all l and l′, whereby the
factor 1/2 guarantees that each pair of spins is counted only once in (6.5.2).
The exchange interaction obeys Jll′ = Jl′l, and we set Jll = 0 so that we
do not need to exclude the occurrence of the same l-values in the sum. The
Hamiltonian (6.5.2) represents the Heisenberg model 23. Since only scalar
products of spin vectors occur, it has the following important property: H

22 In fact, there are also interactions within a solid between more than just two
spins, which we however neglect here.

23 The direct exchange described above occurs only when the moments are near
enough so that their wavefunctions overlap. More frequently, one finds an in-
direct exchange, which couples more distant moments. The latter acts via an
intermediate link, which can be a quasi-free electron in a metal or a bound elec-
tron in an insulator. The resulting interaction is called in the first case the RKKY
(Rudermann, Kittel, Kasuya, Yosida) interaction and in the second, it is referred
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is invariant with respect to a common rotation of all the spin vectors. No
direction is especially distinguished and therefore the ferromagnetic order
which can occur may point in any arbitrary direction. Which direction is
in fact chosen by the system is determined by small anisotropy energies or
by an external magnetic field. In many substances, this rotational invariance
is nearly ideally realized, e.g. in EuO, EuS, Fe and in the antiferromagnet
RbMnF3. In other cases, the anisotropy of the crystal structure may have
the effect that the magnetic moments orient in only two directions, e.g. along
the positive and negative z-axis, instead of in an arbitrary spatial direction.
This situation can be described by the Ising model

H = −1
2

∑

l,l′

Jll′S
z
l Sz

l′ . (6.5.3)

This model is considerably simpler than the Heisenberg model (6.5.2), since
the Hamiltonian is diagonal in the spin eigenstates of Sz

l . But even for (6.5.3),
the evaluation of the partition function is in general not trivial. As we shall
see, the one-dimensional Ising model can be solved exactly in an elementary
way for an interaction restricted to the nearest neighbors. The solution of the
two-dimensional model, i.e. the calculation of the partition function, requires
special algebraic or graph-theoretical methods, and in three dimensions the
model has yet to be solved exactly. When the lattice contains N sites, then
the partition function Z = Tr e−βH has contributions from all together 2N

configurations (every spin can take on the two values ±!/2 independently of
all the others). A naive summation over all these configurations is possible
even for the Ising model only in one dimension. In order to understand the
essential physical effects which accompany ferromagnetism, in the next sec-
tion we will apply the molecular field approximation. It can be carried out
for all problems related to ordering. We will demonstrate it using the Ising
model as an example.

6.5.2 The Molecular Field Approximation for the Ising Model

We consider the Hamiltonian of the Ising model in an external magnetic field

H = −1
2

∑

l,l′

J(l − l′)σl σl′ − h
∑

l

σl . (6.5.4)

to as superexchange (see e.g. C. M. Hurd, Contemp. Phys. 23, 469 (1982)). Also
in cases where direct exchange is not predominant and even for itinerant magnets
(with 3d and 4s electrons which are not localized, but instead form bands), the
magnetic phenomena, in particular their behavior near the phase transition, can
be described using an effective Heisenberg model. A derivation of the Heisenberg
model from the Hubbard model can be found in D.C. Mattis, The Theory of
Magnetism, Harper and Row, New York, 1965.
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In comparison to (6.5.3), equation (6.5.4) contains some changes of notation.
Instead of the spin operators Sz

l , we have introduced the Pauli spin matrices
σz

l and use the eigenstates of the σz
l as basis functions; their eigenvalues are

σl = ±1 for every l .

The Hamiltonian becomes simply a function of (commuting) numbers. By
writing the exchange interaction in the form J(l − l′) (J(l − l′) = J(l′ − l) =
Jll′!2/4, J(0) = 0), we express the fact that the system is translationally
invariant, i.e. J(l− l′) depends only on the distance between the lattice sites.
The effect of an applied magnetic field is represented by the term −h

∑
l σl.

The factor − 1
2gµB has been combined with the magnetic field H into h =

− 1
2gµBH ; the sign convention for h is chosen so that the σl are aligned parallel

to it.
Due to the translational invariance of the Hamiltonian, it proves to be

expedient for later use to introduce the Fourier transform of the exchange
coupling,

J̃(k) =
∑

l

J(l)e−ik·xl . (6.5.5)

Frequently, we will require J̃(k) for small wavenumbers k. Due to the finite
range of J(l − l′), we can expand the exponential functions in (6.5.5)

J̃(k) =
∑

l

J(l) − 1
2

∑

l

(k · xl)
2J(l) + . . . . (6.5.5′)

For cubic and square lattices, and in general when reflection symmetry is
present, the linear term in k makes no contribution.

We can interpret the Hamiltonian (6.5.4) in the following manner: for
some configuration of all the spins σl′ , a local field

hl = h +
∑

l′

J(l − l′)σl′ (6.5.6)

acts on an arbitrarily chosen spin σl. If hl were a fixed applied field, we could
immediately write down the partition function for the spin σl. Here, however,
the field hl depends on the configuration of the spins and the value of σl itself
enters into the local fields which act upon its neighbors. In order to avoid this
difficulty by means of an approximation, we replace the local field (6.5.6) by
its average value, i.e. by the mean field

⟨hl⟩ = h +
∑

l′

J(l − l′)⟨σl′ ⟩ = h + J̃(0)m . (6.5.7)

In the second part of this equation, we have introduced the average value

m = ⟨σl⟩ , (6.5.8)
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which is position-independent, owing to the translational invariance of the
Hamiltonian; thus m refers to the average magnetization per lattice site (per
spin). Furthermore, we use the abbreviation

J̃ ≡ J̃(0) ≡
∑

l

J(l) (6.5.9)

for the Fourier transform at k = 0 (see (6.5.5′)). Eq. (6.5.7) contains, in
addition to the external field, the molecular field J̃m. The density matrix
then has the simplified form

ρ ∝
∏

l

eσl(h+J̃m)/kT .

Formally, we have reduced the problem to that of a paramagnet, where the
molecular field must still be determined self-consistently from the magneti-
zation (6.5.8).

We still want to derive the molecular field approximation, justified above
with intuitive arguments, in a more formal manner. We start with an ar-
bitrary interaction term in (6.5.4), −J(l − l′)σlσl′ , and rewrite it up to a
prefactor as follows:

σlσl′ =
(
⟨σl⟩ + σl − ⟨σl⟩

)(
⟨σl′⟩ + σl′ − ⟨σl′ ⟩

)

= ⟨σl⟩⟨σl′ ⟩ + ⟨σl⟩
(
σl′ − ⟨σl′ ⟩

)

+ ⟨σl′⟩
(
σl − ⟨σl⟩

)
+

(
σl − ⟨σl⟩

)(
σl′ − ⟨σl′⟩

)
.

(6.5.10)

Here, we have ordered the terms in powers of the deviation from the mean
value. We now neglect terms which are nonlinear in these fluctuations. This
yields the following approximate replacements:

σlσl′ → −⟨σl⟩⟨σl′⟩ + ⟨σl⟩σl′ + ⟨σl′ ⟩σl , (6.5.10′)

which lead from (6.5.4) to the Hamiltonian in the molecular field approxima-
tion

HMFT =
1
2
m2 N J̃(0) −

∑

l

σl

(
h + J̃(0)m

)
. (6.5.11)

We refer to the Remarks for comments about the validity and admissibility
of this approximation. With the simplified Hamiltonian (6.5.11), we obtain
the density matrix

ρMFT = Z−1
MFT eβ[Pl σl(h+J̃m)− 1

2 m2J̃N] (6.5.12)
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and the partition function

ZMFT = Tr eβ[Pl σl(h+J̃m)− 1
2 m2J̃N] =

∏

l

(
∑

σl=± 1

eβσl(h+J̃m)

)
e−

1
2 βm2J̃N

(6.5.13)

in the molecular field approximation, where Tr ≡
∑

{σl=± 1}. We thus find
for (6.5.13)

ZMFT =
(
e−

1
2 βm2J̃2 cosh β

(
h + J̃m

))N
. (6.5.13′)

Using m = 1
N kT ∂

∂h log ZMFT, we obtain the equation of state in the molecular
field approximation:

m = tanh
(
β(J̃m + h)

)
, (6.5.14)

which is an implicit equation for m. Compared to the equation of state of
a paramagnet, the field h is amplified by the internal molecular field J̃m.
As we shall see later, (6.5.14) can be solved analytically for h. It is however
instructive to solve (6.5.14) first for limiting cases. To do this, it will prove
expedient to introduce the following abbreviations:

Tc =
J̃

k
and τ =

T − Tc

Tc
. (6.5.15)

We will immediately see that Tc has the significance of the transition tem-
perature, the Curie temperature. Above Tc, the magnetization is zero in the
absence of an applied field; below this temperature, it increases continuously
with decreasing temperature to a finite value. We first determine the behav-
ior in the neighborhood of Tc, where we can expand in terms of τ, h and m.

a) h = 0:
For zero applied field and in the vicinity of Tc, (6.5.14) can be expanded in
a Taylor series,

m = tanhβJ̃m =
Tc

T
m − 1

3

(
Tc

T
m

)3

+ . . . (6.5.16)

which can be cut off at the third order so as to retain the leading term of the
solution. The solutions of (6.5.16) are

m = 0 for T > Tc (6.5.17a)

and

m = ±m0 , m0 =
√

3(−τ)1/2 for T < Tc . (6.5.17b)
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The first solution, m = 0, is found for all temperatures, the second only for
T ≤ Tc, i.e. τ ≤ 0. Since the free energy of the second solution is smaller (see
below and in Fig. 6.9), it is the stable solution below Tc. From these consid-
erations we find the temperature ranges given in (6.5.17). For T ≤ Tc, the
spontaneous magnetization, denoted as m0, is observed (6.5.17b); it follows
a square-root law (Fig. 6.5). This quantity is called the order parameter of
the ferromagnetic phase transition.

Fig. 6.5. The spontaneous magnetization
(solid curve), and the magnetization in an
applied field (dashed). The spontaneous
magnetization in the Ising model has two
possible orientations, +m0 or −m0

b) h and τ nonzero:
for small h and τ and thus small m, the expansion of (6.5.14)

m

(
1 − Tc

T

)
=

h

kT
− 1

3

(
h

kT
+

Tc

T
m

)3

+ . . . ,

leads to the magnetic equation of state

h

kTc
= τ m +

1
3
m3 (6.5.18)

in the neighborhood of Tc. An applied magnetic field produces a finite magne-
tization even above Tc and leads qualitatively to the dashed curve in Fig. 6.5.
c) τ = 0 :
exactly at Tc, we find from (6.5.18) the critical isotherm:

m =
(

3h

kTc

)1/3

, h ∼ m3 . (6.5.19)

d) Susceptibility for small τ :
we now compute the isothermal magnetic susceptibility χ =

(
∂m
∂h

)
T
, by dif-

ferentiating the equation of state (6.5.18) with respect to h

1
kTc

= τχ + m2χ . (6.5.20)

In the limit h → 0, we can insert the spontaneous magnetization (6.5.17) into
(6.5.20) and obtain for the isothermal magnetic susceptibility
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Fig. 6.6. The magnetic suscep-
tibility (6.5.21): the Curie–Weiss
law

χ =
1/kTc

τ + m2
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1/k

(T − Tc)
T > Tc

1/k

2(Tc − T )
T < Tc

; (6.5.21)

this is the Curie–Weiss law shown in Fig. 6.6.
Remark: We can understand the divergent susceptibility at Tc by starting from
the Curie law for paramagnetic spins (6.3.10a), adding the internal molecular field
J̃m to the field h, and then determining the magnetization from it:

m =
1

kT
(h + J̃m) → m

h
=

1/k
T − Tc

. (6.5.22)

Following these limiting cases, we solve (6.5.14) generally. We first discuss
the graphical solution of this equation, referring to Fig. 6.7.
e) A graphical solution of the equation m = tanh

(
β(h + J̃m)

)

To find a graphical solution, it is expedient to introduce the auxiliary variable
y = m + h

kTc
. Then one finds m as a function of h by determining the

intersection of the line y − h
kTc

with tanhTc
T y:

m = y − h

kTc
= tanh

Tc

T
y .

For T ≥ Tc, Fig. 6.7a exhibits exactly one intersection for each value of
h. This yields the monotonically varying curve for T ≥ Tc in Fig. 6.8. For
T < Tc, from Fig. 6.7b the slope of tanhTc

T y at y = 0 is greater than 1 and
therefore we find three intersections for small absolute values of h, while the
solution for high fields remains unique. This leads to the function for T < Tc

which is shown in Fig. 6.8.
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Fig. 6.7. The graphical solution of Eq. (6.5.14).

Fig. 6.8. The magnetic
equation of state in the
molecular field approxi-
mation (6.5.23). The dot-
ted vertical line on the m-
axis represents the inho-
mogeneous state (6.5.28)

For small h, m(h) is not uniquely determined. Particularly noticeable is the
fact that the S-shaped curve m(h) contains a section with negative slope,
i.e. negative susceptibility. In order to clarify the stability of the solution, we
need to consider the free energy. We first note that for large h, the magneti-
zation approaches its saturation value (Fig. 6.7).

In fact, one can immediately compute the function h(m) from Eq. (6.5.14)
analytically, since from

β(J̃m + h) = arctanhm ≡ 1
2

log
1 + m

1 − m

the equation of state

h = −kTcm +
kT

2
log

1 + m

1 − m
(6.5.23)

follows. Its shape is shown in Fig. 6.8 for T ≶Tc at the two values T = 0.8 Tc

and 1.2 Tc taken as examples, in agreement with the graphical construction.



296 6. Magnetism

As mentioned above, for a given field h, the value of the magnetization below
Tc is not everywhere unique; e.g. for h = 0, the three values 0 and ±m0 occur.
In order to find out which parts of the equation of state are physically stable,
we must investigate the free energy.

The free energy in the molecular field approximation, F = −kT log ZMFT,
per lattice site and in units of the Boltzmann constant, is given from (6.5.13′)
by

f(T, h) =
F

Nk
=

1
2
Tcm

2 − T log
{
2 cosh

(
(Tcm + h/k)/T

)}

≈ 1
2
(T − Tc)m2 +

Tc

12
m4 − mh/k − T log 2 .

(6.5.24)

We give here in the first line the complete expression, and in the second line
the expansion in terms of m, h and T −Tc, which applies in the neighborhood
of the phase transition. Here, m = m(h) must still be inserted.

From (6.5.24), the heat capacity at vanishing applied field (for T ≈ Tc)
can be found:

ch=0 = −NkT
∂2f

∂T 2

∣∣∣∣
h=0

=

{
0 T > Tc
3
2Nk T

Tc
T < Tc

;

here, a jump of magnitude ∆ch=0 = 3
2Nk is seen. We calculate directly the

Helmholtz free energy

a(T, m) = f + mh/k

=
1
2
Tcm

2 − T log
{
2 cosh

(
(Tcm + h/k)/T

)}
+ mh/k ,

(6.5.25)

in which h = h(m) is to be inserted. From the determining equation for m
(6.5.14), it follows that

T log
{
2 cosh

(
(Tcm + h/k)/T

)}
=

= T log 2 + T log

(
1

1 − tanh2((Tcm + h/k)/T
)
)1/2

= T log 2 − T

2
log(1 − m2) .

Combining this with (6.5.23) and inserting into (6.5.25), we obtain

a(T, m) = −1
2
Tcm

2 − T log 2 +
1
2
T log(1 − m2) +

Tm

2
log

1 + m

1 − m

≈ −T log 2 +
1
2
(Tc − T )m2 +

Tc

12
m4 ;

(6.5.26)
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Fig. 6.9. The Helmholtz
free energy in the molec-
ular field approximation
above and below Tc, for
T = 0.8 Tc and T =
1.2 Tc.

here, the second line holds near Tc. The Helmholtz free energy above and
below Tc is shown in Fig. 6.9.
We first wish to point out the similarity of the free energy for T < Tc with
that of the van der Waals gas. For temperatures T < Tc, there is a region
in a(T, m) which violates the stability criterion (6.1.24a). The magnetization
can be read off from Fig. 6.9 using

h = k

(
∂a

∂m

)

T

, (6.5.27)

by drawing a tangent with the slope h to the function a(T, m). Above Tc,
this construction gives a unique answer; below Tc, however, it is unique only
for a sufficiently strong applied field. We continue the discussion of the low-
temperature phase and determine the reorientation of the magnetization on
changing the direction of the applied magnetic field, starting with a magnetic
field h for which only a single value of the magnetization results from the
tangent construction. Lowering the field causes m to decrease until at h = 0,
the value m0 is obtained. Exactly the same tangent, namely that with slope
zero, applies to the point −m0. Regions of magnetization m0 and −m0 can
therefore be present in equilibrium with each another. When a fraction c of the
body has the magnetization −m0 and a fraction 1− c has the magnetization
m0, then for 0 ≤ c ≤ 1 the average magnetization is

m = −cm0 + (1 − c)m0 = (1 − 2c)m0 (6.5.28)

in the interval between −m0 and m0.
The free energy of this inhomogeneously magnetized object is a(m0) (dot-

ted line in Fig. 6.9), and is thus lower than the part of the molecular-field so-
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lution which arches upwards and which corresponds to a homogeneous state
in the coexistence region of the two states +m0 and −m0. In the inter-
val [−m0, m0], the system does not enter the homogeneous state with its
higher free energy, but instead breaks up into domains24 which according to
Eq. (6.5.28) yield all together the magnetization m. We remind the reader
of the analogy to the Maxwell construction in the case of a van der Waals
liquid.

For completeness, we compare the free energies of the magnetization states
belonging to a small but nonzero h. Without loss of generality we can assume
that h is positive. Along with the positive magnetization, for small h there are
also two solutions of (6.5.27) with negative magnetizations. It is clear from
Fig. 6.9 that the latter two have higher free energies than the solution with
positive magnetization. For a positive (negative) magnetic field, the state
with positive (negative) magnetization is thermodynamically stable. The S-
shaped part of the equation of state (for T < Tc) in Fig. 6.8 is thus replaced
by the dotted vertical line.

Finally, we give the entropy in the molecular field approximation:

s =
S

Nk
= −

(
∂a

∂T

)

m

= −
[
1 + m

2
log

1 + m

2
+

1 − m

2
log

1 − m

2

]
; (6.5.29)

it depends only on the average magnetization m.
The internal energy is given by

e =
E

Nk
= a − mh/k + Ts = −1

2
Tcm

2 − mh/k . (6.5.30)

This can be more readily seen from (6.5.11) by taking an average value ⟨H⟩
with the density matrix (6.5.12). From h = k ∂a(T,m)

∂m it again follows that
m = tanhTcm+h/k

T , i.e. we recover Eq. (6.5.14).

Remarks:

(i) The molecular field approximation can also be applied to other models,
for example the Heisenberg model, and also for quite different cooperative
phenomena. The results are completely analogous.
(ii) The effect of the remaining spins on an arbitrarily chosen spin is replaced
in molecular field theory be a mean field. In the case of a short-range inter-
action, the real field configuration will deviate considerably from this mean
value. The more long-ranged the interaction, the more spins contribute to
the local field, and the more closely it thus approaches the average field. The
24 The number of domains can be greater than just two. When there are only

a few domains, the interface energy is negligible in comparison to the gain in
volume energy; see problem 7.6. In reality, the dipole interaction, anisotropies
and inhomogeneities in the crystal play a role in the formation of domains.
They form in such a way that the energy including that of the magnetic field is
minimized.
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molecular field approximation is therefore exact in the limit of long-range
interactions (see also problem 6.13, the Weiss model). We note here the anal-
ogy between the molecular field theory and the Hartree-Fock theory of atoms
and other many-body systems.
(iii) We want to point out another aspect of the molecular field approxima-
tion: its results do not depend at all on the dimensionality. This contradicts
intuition and also exact calculations. In the case of short-range interactions,
one-dimensional systems in fact do not undergo a phase transition; there are
too few neighbors to lead to a cooperative ordering phenomenon.
(iv) In the next chapter, we shall turn to a detailed comparison of the gas-
liquid transition and the ferromagnetic transition. We point out here in antic-
ipation that the van der Waals liquid and the ferromagnet show quite similar
behavior in the immediate vicinity of their critical points in the molecular
field approximation; e.g. (ρG − ρc) ∼ (Tc − T )1/2 and M0 ∼ (Tc − T )1/2, and
likewise, the isothermal compressibility and the magnetic susceptibility both
diverge as (Tc − T )−1. This similarity is not surprising; in both cases, the
interactions with the other gas atoms or spins is replaced by a mean field
which is determined self-consistently from the ensuing equation of state.
(v) If one compares the critical power laws (6.5.17), (6.5.19), and (6.5.21)
with experiments, with the exact solution of the two-dimensional Ising model,
and with numerical results from computer simulations or series expansions,
it is found that in fact qualitatively similar power laws hold, but the critical
exponents are different from those found in the molecular field theory. The
lower the dimensionality, the greater the deviations found. Instead of (6.5.17),
(6.5.19), and (6.5.21), one finds generalized power laws:

m0 ∼|τ |β T < Tc, (6.5.31a)

m ∼h1/δ T = Tc , (6.5.31b)

χ ∼ |τ |−γ T ≷ Tc , (6.5.31c)

ch ∼ |τ |−α T ≷ Tc . (6.5.31d)

The critical exponents β, δ, γ and α which occur in these expressions in general
differ from their molecular field values 1/2, 3, 1 and 0 (corresponding to the
jump). For instance, in the two-dimensional Ising model, β = 1/8, δ = 15, γ =
7/4, and α = 0 (logarithmic).
Remarkably, the values of the critical exponents do not depend on the lattice
structure, but only on the dimensionality of the system. All Ising systems
with short-range forces have the same critical exponents in d dimensions.
Here, we have an example of the so called universality. The critical behavior
depends on only a very few quantities, such as the dimensionality of the
system, the number of components of the order parameter and the symmetry
of the Hamiltonian. Heisenberg ferromagnets have different critical exponents
from Ising ferromagnets, but within these groups, they are all the same. With
these remarks about the actual behavior in the neighborhood of a critical
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point, we will close the discussion. In particular, we postpone the description
of additional analogies between phase transitions to the next chapter. We
now return to the molecular field approximation and use it to compute the
magnetic susceptibility and the position-dependent spin correlation function.

6.5.3 Correlation Functions and Susceptibility

In this subsection, we shall consider the Ising model in the presence of a
spatially varying applied magnetic field hl. The Hamiltonian is then given by

H = H0 −
∑

l

hlσl = −1
2

∑

l,l′

J (l − l′)σlσl′ −
∑

l

hlσl . (6.5.32)

The magnetization per spin at position l now depends on the lattice site l:

ml = ⟨σl⟩ ≡ Tr
[
e−βH σl

]
/Tr e−βH . (6.5.33)

We first define the susceptibility

χ (xl,xl′) =
∂ml

∂hl′
, (6.5.34)

which describes the response at the site l to a change in the field at the site l′.
The correlation function is defined as

G (xl,xl′ ) ≡ ⟨σlσl′⟩ − ⟨σl⟩⟨σl′⟩
= ⟨(σl − ⟨σl⟩)(σl′ − ⟨σl′⟩)⟩ . (6.5.35)

The correlation function (6.5.35) is a measure of how strongly the deviations
from the mean values at the sites l and l′ are correlated with each other.
Susceptibility and correlation function are related through the important
fluctuation-response theorem

χ(xl,xl′) =
1

kT
G (xl,xl′) . (6.5.36)

This theorem (6.5.36) can be derived by taking the derivative of (6.5.33) with
respect to hl′ .
For a translationally invariant system, we have

χ(xl,xl′)|{hl=0} = χ (xl − xl′) and G(xl,xl′)|{hl=0} = G (xl − xl′) .

(6.5.37)

At small fields hl, we find (m′
l ≡ ml − m)

m′
l =

∑

l′

χ (xl − xl′ )hl′ . (6.5.38)
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A periodic field

hl = hqeiqxl (6.5.39)

therefore gives rise to a magnetization of the form

m′
l = eiqxl

∑

l′

χ (xl − xl′) e−iq(xl−xl′)hq = χ (q) eiqxl hq , (6.5.40)

where

χ (q) =
∑

l′

χ (xl − xl′ ) e−iq(xl−xl′) =
1

kT

∑

l

G (xl) e−iqxl (6.5.41)

is the Fourier transform of the susceptibility, and following the equals sign
(6.5.36) has been inserted. In particular for q = 0, we find the following
relation between the uniform susceptibility and the correlation function:

χ ≡ χ (0) =
1

kT

∑

l

G (xl) . (6.5.42)

Since the correlation function (6.5.35) can never be greater than 1, (|σl| =
1), and is in no case divergent, the divergence of the uniform susceptibility,
Eq. (6.5.21) (i.e. the susceptibility referred to a spatially uniform field) can
only be due to the fact that the correlations at Tc attain an infinitely long
range.

6.5.4 The Ornstein–Zernike Correlation Function

We now want to calculate the correlation function introduced in the previous
section within the molecular field approximation. As before, we denote the
field by hl, so that the mean value ml = ⟨σl⟩ is also site dependent. In the
molecular-field approximation, the density matrix is given by

ρMFT = Z−1 exp
[
β

∑

l

σl(hl +
∑

l′

J(l − l′)⟨σl′⟩)
]
. (6.5.43)

The Fourier transform of the exchange coupling, which we take to be short-
ranged, can be written for small wavenumbers as

J̃(k) ≡
∑

l

J(l)e−ikxl ≈ J̃ − k2 1
6

∑

l

x2
l J(l) ≡ J̃ − k2J . (6.5.44)

Here, we have replaced the exponential function by its Taylor series. Due to
the mirror symmetry of a cubic lattice, J (−l) = J (l), and therefore there is
no linear term in k. Furthermore, we have

∑
l

(k · xl)
2 J (l) = 1

3k2
∑
l

x2
l J (l) .
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The constant J is defined by

J =
1
6

∑

l

x2
l J(l) . (6.5.45)

Using the density matrix (6.5.43), we obtain for the mean value of σl, in
analogy to (6.5.14) in Sect. 6.5.2, the result

⟨σl⟩ = tanh
[
β(hl +

∑

l′

J(l − l′)⟨σl′⟩)
]

. (6.5.46)

We now take the derivative ∂
∂hl′

of the last equation (6.5.46),and finally set
all the hl′ = 0, obtaining for the susceptibility:

χ(xl − xl′ ) =
1

cosh2 [ β
∑

l′′ J(l − l′′)m]
×

×
(
βδll′ + β

∑

l′′

J(l − l′′)χ(xl′′ − xl′)
) (6.5.47)

The Fourier-transformed susceptibility (6.5.41) is obtained from (6.5.47), re-
calling the convolution theorem:

χ(q) =
1

cosh2 βJ̃m

(
β + βJ̃(q)χ(q)

)
. (6.5.48)

Furthermore, using cosh2 βJ̃m = 1
1−tanh2βJ̃m

= 1
1−m2 , where we have in-

serted the determining equation for m, Eq. (6.5.16), we obtain the general
result

χ(q) =
β

1
1−m2 − βJ̃(q)

. (6.5.49)

From this last equation, together with (6.5.15) and (6.5.44), we find in the
neighborhood of Tc:

χ (q) =
β

1 − Tc
T + m2

0 + Jq2

kT

for T ≈ Tc (6.5.50)

or also

χ (q) =
1

J (q2 + ξ−2)
, (6.5.50′)

where the correlation length

ξ =
(

J

kTc

) 1
2

{
τ−1/2 T > Tc

(−2τ)−1/2 T < Tc
(6.5.51)
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has been introduced, with τ = (T − Tc) /Tc. The susceptibility in real space
is obtained by inverting the Fourier transform:

χ(xl − xl′ ) =
1
N

∑

q

χ(q)eiq(xl−xl′) =
V

N(2π)3

∫
d3q χ(q) eiq(xl−xl′) .

(6.5.52)

For the second equals sign it was assumed that the system is macroscopic, so
that the sum over q can be replaced by an integral (cf. (4.1.2b) and (4.1.14a)
with p/! → q) .

To compute the susceptibility for large distances it suffices to make use of
the result for χ(q) at small values of q (Eq. (6.5.50′)); then with the lattice
constant a we find

χ (xl − xl′ ) =
a3

(2π)3

∫
d3q

eiq(xl−xl′)

J (q2 + ξ−2)
=

a3e−|xl−xl′ |/ξ

4πJ |xl − xl′ |
. (6.5.53)

From χ calculated in this way, we find the correlation function via (6.5.37):

G (x) = kTχ (x) =
kTa3e−|x|/ξ

4πJ |x| , (6.5.53′)

which in this context is called the Ornstein–Zernike correlation function. The
Ornstein–Zernike correlation function and its Fourier transform are shown in
Fig. 6.10 and Fig. 6.11 for the temperatures T = 1.01 Tc and T = Tc. In these
figures, the correlation length ξ at T = 1.01 Tc is also indicated. The quantity
ξ0 is defined by ξ0 = (J/kTc)

1/2, according to (6.5.48). At large distances χ(x)
decreases exponentially as 1

|x| e−|x|/ξ. The correlation length ξ characterizes

Fig. 6.10. The Ornstein–Zernike cor-
relation function for T = 1.01 Tc and
for T = Tc. Distances are measured in
units of ξ0 = (J/kTc)

1/2.

Fig. 6.11. The Fourier transform of
the Ornstein–Zernike susceptibility for
T = 1.01 Tc and for T = Tc. The re-
ciprocal of the correlation length for
T = 1.01 Tc is indicated by the arrow.
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the typical length over which the spin fluctuations are correlated. For |x| ≫ ξ,
G (x) is practically zero. At Tc, ξ = ∞, and G (x) obeys the power law

G (x) =
kTcv

4πJ |x| (6.5.54)

with the volume of the unit cell v = a3. χ(q) varies as 1/q2 for ξ−1 ≪ q and
for q = 0, it is identical with the Curie–Weiss susceptibility. On approaching
Tc, χ (0) becomes larger and larger. We note further that the continuum
theory and thus (6.5.50′) and (6.5.52) apply only to the case when |x| ≫ a.
An important experimental tool for the investigation of magnetic phenom-
ena is neutron scattering. The magnetic moment of the neutron interacts
with the field produced by the magnetic moments in the solid and is there-
fore sensitive to magnetic structure and to static and dynamic fluctuations.
The elastic scattering cross-section is proportional to the static susceptibil-
ity χ(q). Here, q is the momentum transfer, q = kin − kout, where kin(out)

are the wave numbers of the incident and scattered neutrons. The increase
of χ(q) at small q for T → Tc leads to intense forward scattering. This is
termed critical opalescence near the Curie temperature, in analogy to the
corresponding phenomenon in light scattering near the critical point of the
gas-liquid transition.

The correlation length ξ diverges at the critical point; the correlations
become more and more long-ranged as Tc is approached. Therefore, statistical
fluctuations of the magnetic moments are correlated with each other over
larger and larger regions. Furthermore, a field acting at the position x induces
a polarization not only at that position, but also up to a distance ξ, as a result
of (6.5.37). The increase of the correlations can also be recognized in the spin
configurations illustrated in Fig. 6.12. Here, ‘snapshots’ from a computer
simulation of the Ising model are shown. White pixels represent σ = +1 and
black pixels are for σ = −1. At twice the transition temperature, the spins
are correlated only over very short distances (of a few lattice constants).
At T = 1.1 Tc, the increase of the correlation length is clearly recognizable.

Fig. 6.12. A ‘snapshot’ of the spin configuration of a two-dimensional Ising model
at T = 2 Tc, T = 1.1 Tc and T = Tc. White pixels represent σ = +1, and black
pixels refer to σ = −1.



6.5 Ferromagnetism 305

Along with very small clusters, both the black and the white clusters can
be made out up to the correlation length ξ (T = 1.1 Tc). At T = Tc, ξ = ∞.
In the figure, one sees two large white and black clusters. If the area viewed
were to be enlarged, it would become clear that these are themselves located
within an even larger cluster, which itself is only a member of a still larger
cluster. There are thus correlated regions on all length scales. We observe
here a scale invariance to which we shall return later. When we enlarge the
unit of length, the larger clusters become smaller clusters, but since there are
clusters up to infinitely large dimensions, the picture remains the same.
The Ornstein–Zernike theory (6.5.51) and (6.5.53′) reproduces the correct
behavior qualitatively. The correlation length diverges however in reality as
ξ = ξ0τ−ν , where in general ν ̸= 1

2 , and also the shape of G(x) differs from
(6.5.53′) (see Chap. 7).

∗6.5.5 Continuum Representation

6.5.5.1 Correlation Functions and Susceptibilities

It is instructive to derive the results obtained in the preceding sections in a contin-
uum representation. The formulas which occur in this derivation will also allow a
direct comparison with the Ginzburg–Landau theory, which we will treat later (in
Chap. 7). Critical anomalies occur at large wavelengths. In order to describe this
region, it is sufficient and expedient to go to a continuum formulation:

hl → h (x) , σl → σ (x) , ml → m(x) ,
X

l

hlσl →
Z

d3x
v

h (x)σ (x) .
(6.5.55)

Here, a is the lattice constant and v = a3 is the volume of the unit cell. The sum over
l becomes an integral over x in the limit v → ∞. The partial derivative becomes a
functional derivative25 (v → 0)

δm (x)
δh (x′)

=
1
v

∂ml

∂hl′
etc., e.g.

δh (x)
δh (x′)

= δ
`
x − x′´ . (6.5.56)

For the susceptibility and correlation function we thus obtain from (6.5.34)

χ
`
x− x′´ = v

δm (x)
δh (x′)

=
∂ml

∂hl′
=

1
kT

G
`
x− x′´ . (6.5.57)

For small h (x), we find

m (x) =

Z
d3x′

v
χ
`
x− x′´ h

`
x′´ . (6.5.58)

25 The general definition of the functional derivative is to be found in W. I. Smirnov,
A Course of Higher Mathematics, Vol. V, Pergamon Press, Oxford 1964 or in
QM I, Sect. 13.3.1
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A periodic field

h
`
x′´ = hq eiqx′

(6.5.59)

induces a magnetization of the form

m (x) = eiqx
Z

d3x′

v
χ
`
x − x′´ e−iq(x−x′) hq = χ (q) eiqx hq , (6.5.60)

where

χ (q) =

Z
d3y
v

χ (y) e−iqy =
1

kTv

Z
d3y e−iqy G (y) (6.5.61)

is the Fourier transform of the susceptibility, and after the second equals sign, we
have made use of (6.5.37). In particular, for q = 0, we find the following relation
between the uniform susceptibility and the correlation function:

χ ≡ χ (0) =
1

kTv

Z
d3y G (y) . (6.5.62)

6.5.5.2 The Ornstein–Zernike Correlation Function

As before, the field h (x) and with it also the mean value ⟨σ(x)⟩ are position depen-
dent. The density matrix in the molecular field approximation and in the continuum
representation is given by:

ρMFT = Z−1 exp

»
β

Z
d3x
v

σ (x)

„
h (x) +

Z
d3x′

v
J
`
x − x′´ ˙σ

`
x′´¸

«–
. (6.5.63)

The Fourier transform of the exchange coupling for small wavenumbers assumes
the form

J̃ (k) =

Z
d3x
v

J (x) e−ik·x ≈ J̃ − 1
6
k2
Z

d3x
v

x2J(x) ≡ J̃ − k2J , (6.5.64)

where the exponential function has been replaced by its Taylor expansion. Owing
to the spherical symmetry of the exchange interaction J(x) ≡ J(|x|), there is no
linear term in k and we find

R
d3x (kx)2 J (x) = 1

3k
2
R

d3x x2J (x). The constant
J is defined by J = 1

6v

R
d3x x2 J (x). The inverse transform of (6.5.64) yields

J (x) = v
“
J̃ + J∇2

”
δ (x) . (6.5.65)

For phenomena at small k or large distances, the real position dependence of the
exchange interaction can be replaced by (6.5.65). We insert this into (6.5.63) and
obtain the mean value of σ (x), analogously to (6.5.14) in Sect. 6.5.2:

⟨σ (x)⟩ = tanh
h
β
“
h (x) + J̃ ⟨σ (x)⟩ + J∇2⟨σ(x)⟩

”i
. (6.5.66)

In the neighborhood of Tc, we can carry out an expansion similar to that in (6.5.16),
m (x) ≡ ⟨σ (x)⟩,

τm (x) − J
kTc

∇2m (x) +
1
3
m (x)3 =

h (x)
kTc

, (6.5.67)



6.6 The Dipole Interaction, Shape Dependence, Internal and External Fields 307

with τ = (T − Tc) /Tc, where the second term on the left-hand side occurs due to the
spatial inhomogeneity of the magnetization. The equations of the continuum limit
can be obtained from the corresponding equations of the discrete representation
at any step, e.g. (6.5.67) follows from (6.5.46), by carrying out the substitutions

⟨σl⟩ = ml → m (x) , J (l) → J (x) =
“
J̃ + J∇2

”
δ (x).

Now we take the functional derivative δ
δh(x′) of the last equation, (6.5.67),

»
τ − J

kTc
∇2 + m2

0

–
χ
`
x− x′´ = vδ

`
x− x′´ /kTc . (6.5.68)

Since the susceptibility is calculated in the limit h → 0, the spontaneous magne-
tization m0, which is given by the molecular-field expressions (6.5.17a,b), appears
on the left side. The solution of this differential equation, which also occurs in
connection with the Yukawa potential, is given in three dimensions by

χ
`
x− x′´ =

v e−|x−x′|/ξ

4πJ |x − x′| . (6.5.69)

The Fourier transform is

χ (q) =
1

J (q2 + ξ−2)
. (6.5.70)

In this expression, we have introduced the correlation length:

ξ =

„
J

kTc

«1/2
(

τ−1/2 T > Tc

(−2τ )−1/2 T < Tc .
(6.5.71)

The results thus obtained agree with those of the previous section; for their discus-
sion, we refer to that section.

∗6.6 The Dipole Interaction, Shape Dependence, Internal
and External Fields

6.6.1 The Hamiltonian

In this section, we investigate the influence of the dipole interaction. The
total Hamiltonian for the magnetic moments µl is given by

H ≡ H0({µl}) + Hd({µl}) −
∑

l

µlHa . (6.6.1)

H0 contains the exchange interaction between the magnetic moments and
Hd represents the dipole interaction

Hd =
1
2

∑

l,l′

Aαβ
ll′ µα

l µβ
l′

=
1
2

∑

l,l′

(
δαβ

|xl − xl′ |3
−

3(xl − xl′)α(xl − xl′ )β

|xl − xl′ |5

)
µα

l µβ
l′ ,

(6.6.2)

and Ha is the externally applied magnetic field. The dipole interaction is long-
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ranged, in contrast to the exchange interaction; it decreases as the third power
of the distance. Although the dipole interaction is in general considerably
weaker than the exchange interaction – its interaction energy corresponds to
a temperature of about26 1K – it plays an important role for some phenomena
due to its long range and also due to its anisotropy.

The goal of this section is to obtain predictions about the free energy and
its derivatives for the Hamiltonian (6.6.1),

F (T, Ha) = −kT log Tr e−H/kT (6.6.3)

and to analyze the modifications which result from including the dipole inter-
action. Before we turn to the microscopic theory, we wish to derive some ele-
mentary consequences of classical magnetostatics for thermodynamics; their
justification within the framework of statistical mechanics will be given at
the end of this section.

6.6.2 Thermodynamics and Magnetostatics

6.6.2.1 The Demagnetizing Field

It is well known from electrodynamics27 (magnetostatics) that in a magne-
tized body, in addition to the externally applied field Ha, there is a demagne-
tizing field Hd which results from the dipole fields of the individual magnetic
moments, so that the effective field in the interior of the magnet, Hi,

Hi = Ha + Hd , (6.6.4a)

is in general different from Ha. The field Hd is uniform only in ellipsoids and
their limiting shapes, and we will thus limit ourselves as usual to this type of
bodies . For ellipsoids, the demagnetizing field has the form Hd = −D M and
thus the (macroscopic) field in the interior of the body is

Hi = Ha − D M . (6.6.4b)

Here, D is the demagnetizing tensor and M is the magnetization (per unit
volume). When Ha is applied along one of the principal axes, D can be
interpreted as the appropriate demagnetizing factor in Eq. (6.6.4b). For Ha

and therefore M parallel to the axis of a long cylindrical body, D = 0; for Ha

and M perpendicular to an infinitely extended thin sheet, D = 4π; and for a
sphere, D = 4π

3 . The value of the internal field thus depends on the shape of
the sample and the direction of the applied field.
26 See e.g. the estimate in N.W. Ashcroft and N.D. Mermin, Solid State Physics,

Holt, Rinehart and Winston, New York, 1976, p. 673.
27 A. Sommerfeld, Electrodynamics, Academic Press, New York 1952; R. Becker

and F. Sauter, Theorie der Elektrizität , Vol. 1, 21st Edition, p. 52, Teubner,
Stuttgart, 1973; R. Becker, Electromagnetic Fields and Interactions, Blaisdell,
1964; J. D. Jackson, Classical Electrodynamics, 2nd edition, John Wiley, New
York, 1975.
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6.6.2.2 Magnetic Susceptibilities

We now need to distinguish between the susceptibility relative to the applied
field, χa(Ha) = ∂M

∂Ha
, and the susceptibility relative to the internal field,

χi(Hi) = ∂M
∂Hi

. We consider for the moment only fields in the direction of
the principal axes, so that we do not need to take the tensor character of
the susceptibilities into account. We emphasize that the usual definition in
electrodynamics is the second one. This is due to the fact that χi(Hi) is a
pure materials property28, and that owing to curlHi = 4π

c j, the field Hi can
be controlled in the core of a coil by varying the current density j.

Taking the derivative of Eq. (6.6.4b) with respect to M , one obtains the
relation between the two susceptibilities:

1
χi(Hi)

=
1

χa(Ha)
− D . (6.6.5a)

It is physically clear that the susceptibility χi(Hi) relative to the internal
field Hi acting in the interior of the body is a specific materials parameter
which is independent of the shape, and that therefore the shape dependence
of χa (Ha)

χa(Ha) =
χi(Hi)

1 + Dχi(Hi)
(6.6.5b)

results form the occurrence of D in (6.6.5b) and (6.6.4b).29
If the field is not applied along one of the principal axes of the ellipsoid,

one can derive the tensor relation by taking the derivative of the component
α of (6.6.4b) with respect to Mβ:

(
χ−1

i

)
αβ

=
(
χ−1

a

)
αβ

− Dαβ . (6.6.5c)

Relations of the type (6.6.5a–c) can be found in the classical thermodynamic
literature.30

28 In the literature on magnetism, χi(Hi) is called the true susceptibility and
χa(Ha) the apparent susceptibility. E. Kneller, Ferromagnetismus, Springer,
Berlin, 1962, p. 97.

29 When χi %10−4, as in many practical situations, the demagnetization correction
can be neglected. On the other hand, there are also cases in which the shape of
the object can become important. In paramagnetic salts, χi increases at low
temperatures according to Curie’s law, and it can become of the order of 1; in
superconductors, 4πχi = −1 (perfect diamagnetism or Meissner effect).

30 R. Becker and W. Döring, Ferromagnetismus, Springer, Berlin, 1939, p. 8;
A.B. Pippard, Elements of Classical Thermodynamics, Cambridge at the Uni-
versity Press 1964, p. 66.
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6.6.2.3 Free Energies and Specific Heats

Starting from the free energy F (T, Ha) with the differential

dF = −SdT − V MdHa , (6.6.6)

we can define a new free energy by means of a Legendre transformation

F̂ (T,Hi) = F (T,Ha) +
V

2
MαDαβMβ . (6.6.7a)

The differential of this free energy is, using (6.6.4b), given by

dF̂ (T,Hi) = −SdT − V MdHi . (6.6.7b)

Since the entropy S(T,Hi) and the magnetization M(T,Hi) as functions
of the internal field must be independent of the shape of the sample, all
the derivatives of F̂ (T,Hi) are shape independent. Therefore, the free energy
F̂ (T,Hi) is itself shape independent. From(6.6.6) and (6.6.7b), it follows that

S = −
(

∂F

∂T

)

Ha

= −
(

∂F̂

∂T

)

Hi

(6.6.8)

and

M = − 1
V

(
∂F

∂Ha

)

T

= − 1
V

(
∂F̂

∂Hi

)

T

. (6.6.9)

The specific heat can also be defined for a constant internal field

CHi =
T
V

„
∂S
∂T

«

Hi

(6.6.10a)

and for a constant applied (external) field

CHa =
T
V

„
∂S
∂T

«

Ha

. (6.6.10b)

Using the Jacobian as in Sect. 3.2.4, one can readily obtain the following relations

CHa = CHi

1
1 + DχiT

(6.6.11a)

CHi = CHa + T

`
∂M
∂T

´
Ha

D
`

∂M
∂T

´
Ha

1 − DχaT

(6.6.11b)

and

CHa = CHi − T

`
∂M
∂T

´
Hi

D
`

∂M
∂T

´
Hi

1 + DχiT

, (6.6.11c)

where the index T indicates the isothermal susceptibility. The shape independence
of χi(Hi) and F̂ (T, Hi), which is plausible for the physical reasons given above, has
also been derived using perturbation-theoretical methods.31 For a vanishingly small
field, the shape-independence could be proven without resorting to perturbation
theory.32

31 P.M. Levy, Phys. Rev. 170, 595 (1968); H. Horner, Phys. Rev. 172, 535 (1968)
32 R.B. Griffiths, Phys. Rev.176, 655 (1968)
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6.6.2.4 The Local Field

Along with the internal field, one occasionally also requires the local field
Hloc. It is the field present at the position of a magnetic moment. One obtains
it by imagining a sphere to be centered on the lattice site under consideration,
which is large compared to the unit cell but small compared to the overall
ellipsoid (see Fig. 6.13). We obtain for the local field:27

Hloc = Ha + φM (6.6.12a)

with φ = φ0 +
4π

3
− D . (6.6.12b)

Here, φ0 is the sum of the dipole fields of the average moments within the
fictitious sphere. The medium outside the imaginary sphere can be treated as
a continuum, and its contribution is that of a solid polarized ellipsoid (−D),
minus that of a polarized sphere

(
4π
3

)
. For a cubic lattice, φ0 vanishes for

reasons of symmetry.27 One can also introduce a free energy

ˆ̂F (T, Hloc) = F (T, Ha) −
1
2
V MφM (6.6.13a)

with the differential

d ˆ̂F = −SdT − V MdHloc . (6.6.13b)

Since, owing to (6.6.12a,b), (6.6.7a), and (6.6.13a), it follows that

ˆ̂F (T, Hloc) = F̂ (T, Hi) +
1
2
V M

(
φ0 +

4π

3

)
M , (6.6.14)

so that ˆ̂F differs from F̂ only by a term which is independent of the exter-
nal shape and is itself therefore shape-independent. One can naturally also

Fig. 6.13. The definition of the local field. An ellipsoid of
volume V and a fictitious sphere of volume V0 (schematic,
not to scale)
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define susceptibilities at constant Hloc and derive relations corresponding to
equations (6.6.13a-c) and (6.6.11a-c), in which essentially Hi is replaced by
Hloc and D by φ.

6.6.3 Statistical–Mechanical Justification

In this subsection, we will give a microscopic justification of the thermo-
dynamic results obtained in the preceding section and derive Hamiltoni-
ans for the calculation of the shape-independent free energies F̂ (T, Hi) and
ˆ̂F (T, Hloc) of equations (6.6.7a) and (6.6.13a). The magnetic moments will
be represented by the their mean values and fluctuations. The dipole inter-
action will be decomposed into a short-range and a long-range part. For the
interactions of the fluctuations, the long-range part can be neglected. The
starting point will be the Hamiltonian (6.6.1), in which we introduced the
fluctuations around (deviations from) the mean value ⟨µα

l ⟩

δµα
l ≡ µα

l − ⟨µα
l ⟩ : (6.6.15)

H = H0({µl}) +
1
2

∑

l,l′

Aαβ
ll′ δµα

l δµβ
l′ +

1
2

∑

l,l′

Aαβ
ll′

〈
µα

l

〉〈
µβ

l′
〉

+
∑

l,l′

Aαβ
ll′ δµα

l

〈
µβ

l′
〉
−

∑

l

µα
l Hα

a

= H0({µl}) +
1
2

∑

l,l′

Aαβ
ll′ δµα

l δµβ
l′ −

1
2

∑

l,l′

Aαβ
ll′

〈
µα

l

〉〈
µβ

l′
〉

−
∑

l

µα
l (Hα

a + Hα
d,l) (6.6.16)

with the thermal average of the field at the lattice point l due to the remaining
dipoles:

Hα
d,l = −

∑

l′

Aαβ
ll′

〈
µβ

l′
〉

. (6.6.17)

For ellipsoids in an external magnetic field, the magnetization is uniform,(〈
µβ

l′
〉

= V
N Mβ

)
; likewise the dipole field (demagnetizing field):

Hα
d,l = Hα

loc ≡ (φ0 + D0 − D)αβMβ . (6.6.18)

In going from (6.6.17) to (6.6.18), the dipole sum

φαβ = −V

N

∑

l′

Aαβ
ll′ = (φ0 + D0 − D)αβ (6.6.19)
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was decomposed into a discrete sum over the subvolume V0 (the Lorentz
sphere) and the region V − V0, in which a continuum approximation can be
applied:

(D0 − D)αβ = −
∫

V −V0

d3x
∂

∂xα

∂

∂xβ

1
|x|

= δαβ

(∫

S1

dfα
∂

∂xβ

1
|x| −

∫

S2

dfα
∂

∂xβ

1
|x|

)
.

(6.6.20)

The first surface integral extends over the surface of the Lorentz sphere and
the second over the (external) surface of the ellipsoid (sample).

With this, we can write the Hamiltonian in the form

H = H0({µl}) +
1
2

∑

l,l′

Aαβ
ll′ δµα

l δµβ
l′ −

∑

l

µα
l Hα

loc +
1
2
V MαφαβMβ .

(6.6.21)

Since the long-range property of the dipole interaction plays no role in the in-
teraction between the fluctuations δµl, the first two terms in the Hamiltonian
are shape-independent. The sample shape enters only in the local field Hloc

and in the fourth term on the right-hand side. Comparison with (6.6.13a)
shows that the free energy ˆ̂F (T, Hloc), which, apart from its dependence on
Hloc, is shape independent, can be determined by computation of the parti-
tion function with the first three terms of (6.6.21).
If the dipole interactions between the fluctuations is completely neglected,33 one
obtains the approximate effective Hamiltonian

ˆ̂
H = H0({µl}) −

X

l

µlHloc , (6.6.22)

in which the dipole interaction expresses itself only in the demagnetizing field.

The exact treatment of the second term, 1
2

∑
l,l′ Aαβ

ll′ δµα
l δµβ

l′ in (6.6.21)
is carried out as follows: since the expectation value based on approximate
application of the Ornstein–Zernike theory decreases as ⟨δµlδµl′⟩ ≈ e−rll′ /ξ

r ,
and All′ ∼ 1

r3
ll′

, the interaction of the fluctuations is negligible at large dis-
tances. The shape of the sample thus plays no role in this term in the limit
V → ∞ with the shape kept unchanged. One can thus replace Aαβ

ll′ by

σAαβ
ll′ =

∂

∂xα

∂

∂xβ

e−σ|x|

|x| , (6.6.23)

with the cutoff length σ−1, or more precisely
1
2

∑

l,l′

Aαβ
ll′ δµα

l δµβ
l′ = lim

σ→0
lim

V →∞

1
2

∑

l,l′

σAαβ
ll′ δµα

l δµβ
l′ . (6.6.24)

33 J. H. van Vleck, J. Chem. Phys. 5, 320, (1937), Eq. (36).
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Inserting δµl = µl − ⟨µl⟩, we obtain for the right-hand side of (6.6.24)

lim
σ→0

lim
V →∞

1
2

∑

l,l′

σAαβ
ll′

(
µα

l µβ
l′ − 2µα

l

〈
µβ

l′
〉

+
〈
µα

l

〉〈
µβ

l′
〉)

= lim
σ→0

lim
V →∞

1
2

∑

l,l′

σAαβ
ll′ µα

l µβ
l′+

+
∑

l

(φ0 + D0)αβMβµα
l − V

2
(φ0 + D0)M2 .

(6.6.25)

In the order: first the thermodynamic limit V → ∞, then σ → 0, the first
term in (6.6.25) is shape-independent. Since in the second and third terms,
the sum over l′ is cut off by e−|xl−xl′ |σ, the contribution −D due to the
external boundary of the ellipsoid does not appear here. Inserting (6.6.24)
and (6.6.25) into (6.6.21), we find the Hamiltonian in final form34

H = Ĥ − V

2
MDM (6.6.26a)

with

Ĥ = H0({µl}) +
∫

d3q

(2π)3
vaAαβ

q µα
qµβ

−q −
∑

l

µα
l Hα

i . (6.6.26b)

Here, the Fourier transforms

µα
q =

1√
N

∑

l

e−iqxlµα
l , (6.6.27a)

Aαβ
q =

∑

l̸=0

e−iq(xl′−xl)Aαβ
l0 (6.6.27b)

and the internal field Hi = Ha − DM have been introduced. The Fourier
transform (6.6.27b) can be evaluated using the Ewald method 35; for cubic
lattices, it yields36

Aαβ
q =

1
va

(
4π

3

(
δαβ − 3qαqβ

q2

)
+ α1q

αqβ +
(
α2q

2 − α3(qα)2
)

δαβ

+ O
(
q4, (qα)4, (qα)2(qβ)

2
))

, (6.6.27b′)

where va is the volume of the primitive unit cell and the αi are constants
which depend on the lattice structure. The first two terms in Ĥ, Eq. (6.6.26b),
34 See also W. Finger, Physica 90 B, 251 (1977).
35 P.P. Ewald, Ann. Phys. 54, 57 (1917); ibid., 54, 519 (1917); ibid., 64, 253 (1921)
36 M. H. Cohen and F. Keffer, Phys. Rev. 99, 1135 (1955); A. Aharony and

M. E. Fisher, Phys. Rev. B 8, 3323 (1973)
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are shape-independent. The sample shape enters only into the internal field
Hi and in the last term of (6.6.26a). Comparison of Eq. (6.6.26a) with
Eq. (6.6.7a) shows that the shape-independent free energy F̂ (T, Hi) can
be calculated from the partition function derived from the Hamiltonian Ĥ,
Eq. (6.6.26b). We note in particular the nonanalytic behavior of the term
qαqβ/q2 in the limit q → 0; it is caused by the 1/r3-dependence of the dipole
interaction. Due to this term, the longitudinal and transverse wavenumber-
dependent susceptibilities (with respect to the wavevector) are different from
each other.37 We recall that the short-ranged exchange interaction can be
expanded as a Taylor series in q:

H0 = −1
2

∫
d3q J̃(q)µqµ−q

J̃(q) = J̃ − Jq2 + O(q4) .

(6.6.28)

In addition to the effects of the demagnetizing field and the resulting shape
dependence, which we have treated in detail, the dipole interaction, even
though it is in general much weaker than the exchange interaction, has a
number of important consequences owing to its long range and its anisotropic
character:37 (i) It changes the values of the critical exponents in the neighbor-
hood of ferromagnetic phase transitions; (ii) it can stabilize magnetic order
in systems of low dimensionality, which otherwise would not occur due to
the large thermal fluctuations; (iii) the total magnetic moment µ =

∑
l µl

is no longer conserved. This has important consequences for the dynamics;
and (iv) the dipole interaction is important in nuclear magnetism, where it
is larger than or comparable to the indirect exchange interaction.

We can now include the dipole interactions in the results of Sects. 6.1 to
6.5 in the following manner:

(i) If we neglect the dipole interaction between the fluctuations of the mag-
netic moments δµl = µl − ⟨µl⟩ as an approximation, we can take the
spatially uniform part of the dipole fields into account by replacing the
field H by the local field Hloc.

(ii) If, in addition to the exchange interactions possibly present, we also
include the dipole interaction between the fluctuations, then accord-
ing to (6.6.26), the complete Hamiltonian contains the internal field Hi.
The field H must therefore be replaced by Hi; furthermore, the shape-
dependent term −V

2 MDM enters into the Hamiltonian H, Eq. (6.6.26a),
and, via the term Ĥ, also the shape-independent part of the dipole in-
teraction, i.e. Eq. (6.6.27b′).

37 E. Frey and F. Schwabl, Advances in Physics 43, 577 (1994)



316 6. Magnetism

6.6.4 Domains

The spontaneous magnetization per spin, m0(T ), is shown in Fig. 6.5. The to-
tal magnetic moment of a uniformly magnetized sample without an external
field would be Nm0(T ), and its spontaneous magnetization per unit volume
M0(T ) = Nm0(T )/V , where N is the overall number of magnetic moments.
In fact, as a rule the magnetic moment is smaller or even zero. This results
from the fact that a sample in general breaks up into domains with different
directions of magnetization. Within each domain, |M(x, T )| = M0(T ). Only
when an external field is applied do the domains which are oriented parallel
to the field direction grow at the cost of the others, and reorientation oc-
curs until finally Nm0(T ) has been reached. The spontaneous magnetization
is therefore also called the saturation magnetization. We want to illustrate
domain formation, making use of two examples.

(i) One possible domain structure in a ferromagnetic bar below Tc is shown
in Fig. 6.14. One readily sees that for the configuration with 45◦-walls
throughout the sample,

div M = 0 . (6.6.29)

Then it follows from the basic equations of magnetostatics

div Hi = −4π div M (6.6.30a)
curlHi = 0 (6.6.30b)

that, in the interior of the sample,

Hi = 0 , (6.6.31)

and thus also B = 4πM in the interior. From the continuity conditions it
follows that B = H = 0 outside the sample. The domain configuration is
therefore energetically more favorable than a uniformly magnetized sample.
(ii) Domain structures also express themselves in a measurement of the to-
tal magnetic moment M of a sphere. The calculated magnetization M = M

V
as a function of the applied field is indicated by the curves in Fig. 6.15.

045 Fig. 6.14. The domain structure in a prism-shaped sample
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Fig. 6.15. The magnetization within a
sphere as a function of the external field
Ha, T1 < T2 < Tc; D is the demagnetizing
factor.

Let the magnetization within a uniformly magnetized region as a function
of the internal field Hi = Ha − DM be given by the function M = M(Hi).
As long as the overall magnetization of the sphere is less than the satura-
tion magnetization, the domains have a structure such that Hi = 0, and
therefore, M = 1

DHa must hold.38 For Ha = DMspont, the sample is finally
uniformly magnetized, corresponding to the saturation magnetization. For
Ha > DMspont, M can be calculated from M = M(Ha − DM).

6.7 Applications to Related Phenomena

In this section, we discuss consequences of the results of this chapter on
magnetism for other areas of physics: polymer physics, negative temperatures
and the melting curve of 3He.

6.7.1 Polymers and Rubber-like Elasticity

Polymers are long chain molecules which are built up of similar links, the
monomers. The number of monomers is typically N ≈ 100, 000 . Examples
of polymers are polyethylene, (CH2)N , polystyrene, (C8H8)N , and rubber,
(C5H8)N , where the number of monomers is N > 100, 000 (see Fig. 6.16).

Fig. 6.16. The structures of polyethylene and polystyrene

38 S. Arajs and R.V Calvin, J. Appl. Phys. 35, 2424 (1964).
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To find a description of the mechanical and thermal properties we set up the
following simple model (see Fig. 6.17): the starting point in space of monomer
1 is denoted by X1, and that of a general monomer i by Xi. The position
(orientation) of the ith monomer is then given by the vector Si ≡ Xi+1−Xi:

S1 = X2 − X1, . . . ,Si = Xi+1 − Xi, . . . ,SN = XN+1 − XN . (6.7.1)

We now assume that aside from the chain linkage of the monomers there are
no interactions at all between them, and that they can freely assume any
arbitrary orientation, i.e. < Si · Sj >= 0 for i ̸= j. The length of a monomer
is denoted by a, i.e. S2

i = a2 .

Fig. 6.17. A polymer, composed of a chain of monomers

Since the line connecting the two ends of the polymer can be represented in
the form

XN+1 − X1 =
N∑

i=1

Si , (6.7.2)

it follows that

⟨XN+1 − X1⟩ = 0 . (6.7.3)

Here, we average independently over all possible orientations of the Si. The
last equation means that the coiled polymer chain is oriented randomly in
space, but makes no statement about its typical dimensions. A suitable mea-
sure of the mean square length is

〈
(XN+1 − X1)

2
〉

=
〈(∑

Si

)2
〉

= a2N . (6.7.4)

We define the so called radius of gyration

R ≡
√〈

(XN+1 − X1)
2
〉

= aN
1
2 , (6.7.5)

which characterizes the size of the polymer coil that grows as the square root
of the number of monomers.
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In order to study the elastic properties, we allow a force to act on the
ends of the polymer, i.e. the force F acts on XN+1 and the force −F on X1

(see Fig. 6.17). Under the influence of this tensile force, the energy depends
on the positions of the two ends:

H = −(XN+1 − X1) ·F
= − [(XN+1 − XN ) + (XN − XN−1) + . . . + (X2 − X1)] ·F

= −F ·
N∑

i=1

Si . (6.7.6)

Polymers under tension can therefore be mapped onto the problem of a para-
magnet in a magnetic field, Sect. 6.3. The force corresponds to the applied
magnetic field in the paramagnetic case, and the length of the polymer chain
to the magnetization. Thus, the thermal average of the distance vector be-
tween the ends of the chain is

L =
〈 N∑

i=1

Si

〉
= Na

(
coth

aF

kT
− kT

aF

)
F
F

. (6.7.7)

We have used the Langevin function for classical moments in this expression,
Eq. (6.3.12b), and multiplied by the unit vector in the direction of the force,
F/F . If aF is small compared to kT , we find (corresponding to Curie’s law)

L =
Na2

3kT
F . (6.7.8)

For the change in the length, we obtain from the previous equation

∂L

∂F
∼ 1

T
(6.7.9a)

and

∂L

∂T
= − Na2

3kT 2
|F| . (6.7.9b)

The length change per unit force or the elastic constant decreases with in-
creasing temperature according to (6.7.9a). A still more spectacular result is
that for the expansion coefficient ∂L

∂T : rubber contracts when its temperature
is increased! This is in complete contrast to crystals, which as a rule expand
with increasing temperature. The reason for the elastic behavior of rubber is
easy to see: the higher the temperature, the more dominant is the entropy
term in the free energy, F = E − TS, which strives towards a minimum.
The entropy increases, i.e. the polymer becomes increasingly disordered or
coiled and therefore pulls together. The general dependence of the length on
a|F|/kT is shown in Fig. 6.18.
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Fig. 6.18. The length of a poly-
mer under the influence of a tensile
force F.

Remark: In the model considered here, we have not taken into account
that a monomer has a limited freedom of orientation, since each position
can be occupied by at most one monomer. In a theory which takes this
effect into account, the dependence R = aN1/2 in Eq. (6.7.5) is replaced
by R = aNν . The exponent ν has a significance analogous to that of the
exponent of the correlation length in phase transitions, and the degree of
polymerization (chain length) N corresponds to the reciprocal distance from
the critical point, τ−1. The properties of polymers, in which the volume
already occupied is excluded, correspond to a random motion in which the
path cannot lead to a point already passed through (self-avoiding random
walk). The properties of both these phenomena follow from the n-component
φ4 model (see Sect. 7.4.5) in the limit n → 0.39 An approximate formula for
ν is due to Flory: νFlory = 3/(d + 2).

6.7.2 Negative Temperatures

In isolated systems whose energy levels are bounded above and below, ther-
modynamic states with negative absolute temperatures can be established.
Examples of such systems with energy levels that are bounded towards higher
energies are two-level systems or paramagnets in an external magnetic field
h.

We consider a paramagnet consisting of N spins of quantum number
S = 1/2 with an applied field along the z direction. Considering the quan-
tum numbers of the Pauli spin matrices σl = ±1, the Hamiltonian has the
following diagonal structure

H = −h
∑

l

σl . (6.7.10)

The magnetization per lattice site is defined by m = ⟨σ⟩ and is independent
of the lattice position l. The entropy is given by
39 P.-G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University Press,

Ithaca, 1979.



6.7 Applications to Related Phenomena 321

S(m) = −kN

[
1 + m

2
log

1 + m

2
+

1 − m

2
log

1 − m

2

]

= −k

[
N+ log

N+

N
+ N− log

N−

N

]
,

(6.7.11)

and the internal energy E depends on the magnetization via

E = −Nhm = −h(N+ − N−) , (6.7.12)

with N± = N(1 ± m)/2. These expressions follow immediately from the
treatment in the microcanonical ensemble (Sect. 2.5.2.2) and can also be
obtained from Sect. 6.3 by elimination of T and B. For m = 1 (all spins
parallel to the field h), the energy is E = −Nh; for m = −1 (all spins
antiparallel to h), the energy is E = Nh. The entropy is given in Fig. 2.9 as
a function of the energy. It is maximal for E = 0, i.e. in the state of complete
disorder. The temperature is obtained by taking the derivative of the entropy
with respect to the energy:

T =
1(

∂S
∂E

)
h

=
2h

k

[
log

1 + m

1 − m

]−1

. (6.7.13)

It is shown as a function of the energy in Fig. 2.10. In the interval 0 < m ≤ 1,
i.e. −1 ≤ E/Nh < 0, the temperature is positive, as usual. For m < 0,
that is when the magnetization is oriented antiparallel to the magnetic field,
the absolute temperature becomes negative, i.e. T < 0 ! With increasing
energy, the temperature T goes from 0 to ∞, then through −∞, and finally to
−0. Negative temperatures thus belong to higher energies, and are therefore
“hotter” than positive temperatures. In a state with a negative temperature,
more spins are in the excited state than in the ground state. One can also
see that negative temperatures are in fact hotter than positive by bringing
two such systems into thermal contact. Take system 1 to have the positive
temperature T1 > 0 and system 2 the negative temperature T2 < 0. We
assume that the exchange of energy takes place quasistatically; then the total
entropy is S = S1(E1) + S2(E2) and the (constant) total energy is E =
E1 + E2. From the increase of entropy, it follows with dE2

dt = − dE1
dt that

0 <
dS

dt
=

∂S1

∂E1

dE1

dt
+

∂S2

∂E2

dE2

dt
=

(
1
T1

− 1
T2

)
dE1

dt
. (6.7.14)

Since the factor in brackets,
(

1
T1

+ 1
|T2|

)
, is positive, dE1

dt > 0 must also hold;
this means that energy flows from subsystem 2 at a negative temperature
into subsystem 1.

We emphasize that the energy dependence of S(E) represented in Fig. 2.9
and the negative temperatures which result from it are a direct consequence
of the boundedness of the energy levels. If the energy levels were not bounded
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from above, then a finite energy input could not lead to an infinite tempera-
ture or even beyond it. We also note that the specific heat per lattice site of
this spin system is given by

C

Nk
=

(
2h

kT

)2 e2h/kT

(
1 + e2h/kT

)2 (6.7.15)

and vanishes both at T = ±0 as well as at T = ±∞.
We now discuss two examples of negative temperatures:

(i) Nuclear spins in a magnetic field:
The first experiment of this kind was carried out by Purcell and Pound40

in a nuclear magnetic resonance experiment using the nuclear spins of 7 Li
in LiF. The spins were first oriented at the temperature T by the field H.
Then the direction of H was so quickly reversed that the nuclear spins could
not follow it, that is faster than a period of the nuclear spin precession. The
spins are then in a state with the negative temperature −T . The mutual
interaction of the spins is characterized by their spin-spin relaxation time of
10−5−10−6 sec. This interaction is important, since it allows the spin system
to reach internal equilibrium; it is however negligible for the energy levels in
comparison to the Zeeman energy. For nuclear spins, the interaction with the
lattice in this material is so slow (the spin-lattice relaxation time is 1 to 10
min) that the spin system can be regarded as completely isolated for times
in the range of seconds. The state of negative temperature is maintained for
some minutes, until the magnetization reverses through interactions with the
lattice and the temperature returns to its initial value of T . In dilute gases,
a state of spin inversion with a lifetime of days can be established.
(ii) Lasers (pulsed lasers, ruby lasers):
By means of irradiation with light, the atoms of the laser medium are excited
(Fig. 6.19). The excited electron drops into a metastable state. When more

Fig. 6.19. Examples of negative temperatures: (a) nuclear spins in a magnetic field
H, which is rotated by 180◦ (b) a ruby laser. The “pump” raises electrons into an
excited state. The electron can fall into a metastable state by emission of a photon.
When a population inversion is established, the temperature is negative

40 E. M. Purcell and R.V. Pound, Phys. Rev. 81, 279 (1951)
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electrons are in this excited state than in the ground state, i.e. when a pop-
ulation inversion has been established, the state is described by a negative
temperature.

∗6.7.3 The Melting Curve of 3He

The anomalous behavior of the melting curve of 3He (Fig. 6.20) is related to
the magnetic properties of solid 3He.41 As we already discussed in connection

Fig. 6.20. The melting curve
of 3He at low temperatures

with the Clausius–Clapeyron equation,

dP

dT
=

SS − SL

VS − VL
< 0 , (6.7.16)

the solid has a higher entropy than the liquid in the temperature range below
0.32 K. The minimum in the melting curve occurs according to the Clausius–
Clapeyron equation just when the entropies are equal. The magnetic effects
in 3He result from the nuclear spins and are therefore considerably weaker
than in electronic magnetism. The exchange interaction J is so small that
the antiferromagnetic order in solid 3He sets in only at temperatures of
TN ∼ 10−3 K. Hence, the spins are disordered and make a contribution to
the entropy (cf. (6.3.16′)) of:

SS = Nk

[
log 2 −O

(( J

kT

)2 )]
. (6.7.17)

41 J. Wilks, The properties of Liquid and Solid Helium, Clarendon Press, Oxford,
1967; C. M. Varma and N.,R. Werthamer, in K.-H. Bennemann and J.B. Ketter-
son, Eds., The physics of liquid and solid He Part I, p. 549, J. Wiley, New York,
1976; A.C. Anderson, W. Reese, J. C. Wheatley, Phys. Rev. 130, 495 (1963);
O.V. Lounasmaa, Experimental Principles and Methods Below 1K, Academic
Press, London, 1974.
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Since the lattice entropy at 0.3K is negligibly small, this is practically the
entire entropy in the solid. The entropy of the liquid is (from Eq. (4.3.19))

SL ≈ kN
π2

2
T

TF
TF ≈ 1 K . (6.7.18)

According to the Clausius–Clapeyron equation (6.7.16), the melting curve
has a minimum when SL = SS:

Tmin =
2TF

π2
log 2 ∼ 2TF

π2
0.69 ∼ 0.15 K . (6.7.19)

Below Tmin, the slope of the melting curve dP
dT = SL−SS

VL−VS
< 0, since there,

SL < SS and VL > VS. This leads to the Pomeranchuk effect, already men-
tioned in Sect. 3.8.2. The above estimate of Tmin yields a value which is a
factor of 2 smaller than the experimental result, T exp

min = 0.3K. This results
from the value of SL, which is too large. Compared to an ideal gas, there
are correlations in an interacting Fermi liquid which, as can be understood
intuitively, lead to a lowering of its entropy and to a larger value of Tmin.

Before the discovery of the two superfluid phases of 3He, the existence of a
maximum in the melting curve below 10−3K was theoretically discussed.41 It was
expected due to the T 3-dependence of the specific heat in the antiferromagnetically
ordered phase and the linear specific heat of the Fermi liquid. This picture however
changed with the discovery of the superfluid phases of 3He (see Fig. 4.10). The
specific heat of the liquid behaves at low temperatures like e−∆/kT , with a constant
∆ (energy gap), and therefore the melting curve rises for T → 0 and has the slope 0
at T = 0.
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Problems for Chapter 6

6.1 Derive (6.1.24c) for the Hamiltonian of (6.1.25), by taking the second derivative
of

A(T, M) = −kT log Tr e−βH + HM

with respect to T for fixed M .

6.2 The classical paramagnet: Consider a system of N non-interacting, classical
magnetic moments, µi (

p
µ2

i = m) in a magnetic field H, with the Hamiltonian

H = −
PN

i=1 µiH . Calculate the classical partition function, the free energy, the
entropy, the magnetization, and the isothermal susceptibility. Refer to the sugges-
tions following Eq. (6.3.12b).

6.3 The quantum-mechanical paramagnet, in analogy to the main text:
(a) Calculate the entropy and the internal energy of an ideal paramagnet as a
function of T . Show that for T → ∞,

S = Nk ln (2J + 1) ,

and discuss the temperature dependence in the vicinity of T = 0.
(b) Compute the heat capacities CH and CM for a non-interacting spin-1/2 system.

6.4 The susceptibility and mean square deviation of harmonic oscillators:
Consider a quantum-mechanical harmonic oscillator with a charge e in an electric
field E

H =
p2

2m
+

mω2

2
x2 − eEx .

Show that the dielectric susceptibility is given by

χ =
∂⟨ex⟩
∂E

=
e2

mω2

and that the mean square deviation takes the form

˙
x2¸ =

!
2ωm

coth
β!ω
2

,

from which it follows that

χ =
2 tanh β!ω

2

!ω

˙
x2¸ .

Compare these results with the paramagnetism of non-coupled magnetic moments!
Take account of the difference between rigid moments and induced moments, and
the resulting different temperature dependences of the susceptibility. Take the clas-
sical limit β!ω ≪ 1.
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6.5 Consider a solid with N degrees of freedom, which are each characterized by
two energy levels at ∆ and −∆. Show that

E = −N∆ tanh
∆
kT

, C =
dE
dT

= Nk

„
∆
kT

«2
1

cosh2 ∆
kT

holds. How does the specific heat behave for T ≫ ∆/k and for T ≪ ∆/k?

6.6 When the system described in 6.5 is disordered, so that all values of ∆ within
the interval 0 ≤∆ ≤∆0 occur with equal probabilities, show that then the specific
heat for kT ≪ ∆0 is proportional to T .

Hint: The internal energy of this system can be found from problem 6.5 by
averaging over all values of ∆. This serves as a model for the linear specific heat of
glasses at low temperatures.

6.7 Demonstrate the validity of the fluctuation-response theorem, Eq. (6.5.35).

6.8 Two defects are introduced into a ferromagnet at the sites x1 and x2, and
produce there the magnetic fields h1 and h2. Calculate the interaction energy of
these defects for |x1 − x2| > ξ. For which signs of the hi is there an attractive
interaction of the defects?
Suggestions: The energy in the molecular field approximation is

Ē =
P

l,l′ ⟨Sl⟩ ⟨Sl′⟩ J(l − l′).

For each individual defect, ⟨Sl⟩1,2 = G (xl − x1,2) h1,2, where G is the Ornstein-
Zernike correlation function. For two defects which are at a considerable distance
apart, ⟨Sl⟩ can be approximated as a linear superposition of the single-defect av-
erages. The interaction energy can be obtained by calculating Ē for this linear
superposition and subtracting the energies of the single defects.

6.9 The one-dimensional Ising model: Calculate the partition function ZN for a
one-dimensional Ising model with N spins obeying the Hamiltonian

H = −
N−1X

i=1

JiSiSi+1 .

Hint: Prove the recursion relation ZN+1 = 2ZN cosh (JN/kT ).

6.10 (a) Calculate the two-spin correlation function Gi,n := ⟨Si Si+n⟩ for the one-
dimensional Ising model in problem 6.9.
Hint: The correlation function can be found by taking the appropriate derivatives
of the partition function with respect to the interactions. Observe that S2

i = 1.
Result: Gi,n = tanhn (J/kT ) for Ji = J.
(b) Determine the behavior of the correlation length defined by Gi,n = e−n/ξ for
T → 0.
(c) Calculate the susceptibility from the fluctuation-response theorem:

χ =
(gµB)2

kT

NX

i

NX

j

⟨SiSj⟩ .

Hint: Consider how many terms with |i − j| = 0, |i − j| = 1, |i − j| = 2 etc. occur
in the double sum. Compute the geometric series which appear.
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Result:

χ =
(gµB)2

kT

(
N

„
1 + α
1 − α

«
−

2α
`
1 − αN

´

(1 − α)2

)
; α = tanh

J
kT

.

(d) Show that in the thermodynamic limit, (N → ∞) χ ∝ ξ for T → 0, and thus
γ/ν = 1.
(e) Plot χ−1 in the thermodynamic limit as a function of temperature.
(f) How can one obtain from this the susceptibility of an antiferromagnetically-
coupled linear chain? Plot and discuss χ as a function of temperature.

6.11 Show that in the molecular-field approximation for the Ising model, the in-
ternal energy E is given by

E =

„
−1

2
kTc m2 − hm

«
N

and the entropy S by

S = kN

»
−Tc

T
m2 − 1

kT
hm + log

`
2 cosh(kTcm + h)/kT

´–
.

Inserting the equation of state, show also that

S = −kN

„
1 + m

2
log

1 + m
2

+
1 − m

2
log

1 − m
2

«
.

Finally, expand a(T, m) = e − Ts + mh up to the 4th power in m.

6.12 An improvement of the molecular field theory for an Ising spin system can
be obtained as follows (Bethe–Peierls approximation): the interaction of a spin σ0

with its z neighbors is treated exactly. The remaining interactions are taken into
account by means of a molecular field h′, which acts only on the z neighbors. The
Hamiltonian is then given by:

H = −h′
zX

j=1

σj − J
zX

j=1

σ0σj − hσ0 .

The applied field h acts directly on the central spin and is likewise included in h′.
H ′ is determined self-consistently from the condition ⟨σ0⟩ = ⟨σj⟩.
(a) Show that the partition function Z (h′, T ) has the form

Z =

»
2 cosh

„
h′

kT
+

J
kT

«–z

e−h/kT +

»
2 cosh

„
h′

kT
− J

kT

«–z

eh/kT

= Z+ + Z− .

(b) Calculate the average values ⟨σ0⟩ and ⟨σj⟩ for simplicity with h = 0.
Result:

⟨σ0⟩ = (Z+ − Z−) /Z ,

⟨σj⟩ =
1
z

zX

j=1

⟨σj⟩ =
1
z

∂

∂
`

h′
kT

´ log Z =

=
1
z

»
Z+ tanh

„
h′

kT
− J

kT

«
+ Z− tanh

„
h′

kT
− J

kT

«–
.
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(c) The equation ⟨σ0⟩ = ⟨σj⟩ has a nonzero solution below Tc:

h′

kT (z − 1)
=

1
2

log
cosh

“
J

kT + h′

kT

”

cosh
`

J
kT − h′

kT

´ .

Determine Tc and h′ by expanding the equation in terms of h′

kT .
Result:

tanh
J

kTc
= 1/ (z − 1)

„
h′

kT

«2

= 3
cosh3 (J/kT )
sinh (J/kT )

ȷ
tanh

J
kT

− 1
z − 1

+ . . .

ff
.

6.13 In the so called Weiss model, each of the N spins interacts equally strongly
with every other spin:

H = −1
2

X

l,l′

J σlσl′ − h
X

l

σl .

Here, J = Ĵ
N . This model can be solved exactly; show that it yields the result of

molecular field theory.

6.14 Magnons (= spin waves) in ferromagnets. The Heisenberg Hamiltonian, which
gives a satisfactory description of certain ferromagnets, is given by

H = −1
2

X

l,l′

J (|xl − xl′ |)SlSl′ ,

where l and l′ are nearest neighbors on a cubic lattice. By applying the Holstein–
Primakoff transformation,

S+
l =

√
2S ϕ (nl) al, S−

l =
√

2S a+
l ϕ (nl) , Sz

l = S − nl

`
S±

l = Sx
l ± iSy

l

´
with ϕ (nl) =

p
1 − nl/2S, nl = a†

l al and
ˆ
al, a

†
l′
˜

= δll′ , as well
as
ˆ
al, al′

˜
= 0 – the spin operators are transformed into Bose operators.

(a) Show that the commutation relations for the spin operators are fulfilled.
(b) Represent the Heisenberg Hamiltonian up to second order (harmonic approx-
imation) in the Bose operators al by expanding the square roots in the above
transformation in a Taylor series.
(c) Diagonalize H (by means of a Fourier transformation) and determine the
magnon dispersion relations.

6.15 (a) Show that a magnon lowers the z-component of the total spin operator
Sz ≡

P
l

Sz
l by !.

(b) Calculate the temperature dependence of the magnetization.
(c) Show that in a one- and a two-dimensional spin lattice, there can be no ferro-
magnetic order at finite temperatures!
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6.16 Assume a Heisenberg model in an external field H,

H = −1
2

X

l,l′

J
`
l − l′

´
SlSl′ − µ · H ,

µ = −gµB

!
X

l

Sl .

Show that the isothermal susceptibilities χ|| (parallel to H) and χ⊥ (perpendicular
to H) are not negative.
Suggestions: Include an additional field ∆H in the Hamiltonian and take the deriva-
tive with respect to this field. For χ||, i.e. ∆H ||H, the assertion follows as in
Sect. 3.3 for the compressibility. For an arbitrarily oriented ∆H, it is expedient to
use the expansion given in Appendix C.

6.17 Denote the specific heat at constant magnetization by cM , and at constant
field by cH . Show that relation (6.1.22c) holds for the isothermal and the adiabatic
susceptibility. Volume changes of the magnetic material are to be neglected here.

6.18 A paramagnetic material obeys the Curie law

M = c
H
T

,

where c is a constant. Show, keeping in mind T dS = dE − H dM , that

dTad =
H

cHT
c dH

for an adiabatic change (keeping the volume constant). cH is the specific heat at
constant magnetic field.

6.19 A paramagnetic substance obeys the Curie law M = c
T H (c const.) and its

internal energy E is given by E = aT 4 (a > 0, const.).
(a) What quantity of heat δQ is released on isothermal magnetization if the mag-
netic field is increased from 0 to H1?
(b) How does the temperature change if the field is now reduced adiabatically from
H1 to 0?

6.20 Prove the relationships between the shape-dependent and the shape-in-
dependent specific heat (6.6.11a), (6.6.11b) and (6.6.11c).

6.21 Polymers in a restricted geometry: Consider a polymer which is in a cone-
shaped box (as shown). Why does the polymer move towards the larger opening?
(no calculation necessary!)



7. Phase Transitions, Scale Invariance,
Renormalization Group Theory, and
Percolation

This chapter builds upon the results of the two preceding chapters deal-
ing with the ferromagnetic phase transition and the gas-liquid transition. We
start with some general considerations on symmetry breaking and phase tran-
sitions. Then a variety of phase transitions and critical points are discussed,
and analogous behavior is pointed out. Subsequently, we deal in detail with
critical behavior and give its phenomenological description in terms of static
scaling theory. In the section that follows, we discuss the essential ideas of
renormalization group theory on the basis of a simple model, and use it to
derive the scaling laws. Finally, we introduce the Ginzburg–Landau theory;
it provides an important cornerstone for the various approximation methods
in the theory of critical phenomena.

The first, introductory section of this chapter exhibits the richness and
variety of phase-transition phenomena and tries to convey the fascination of
this field to the reader. It represents a departure from the main thrust of this
book, since it offers only phenomenological descriptions without statistical,
theoretical treatment. All of these manifold phenomena connected with phase
transitions can be described by a single unified theory, the renormalization
group theory, whose theoretical efficacy is so great that it is also fundamental
to the quantum field theory of elementary particles.

7.1 Phase Transitions and Critical Phenomena

7.1.1 Symmetry Breaking, the Ehrenfest Classification

The fundamental laws of Nature governing the properties of matter
(Maxwell’s electrodynamics, the Schrödinger equation of a many-body sys-
tem) exhibit a number of distinct symmetry properties. They are invariant
with respect to spatial and temporal translations, with respect to rotations
and inversions. The states which exist in Nature do not, in general, display
the full symmetry of the underlying natural principles. A solid is invariant
only with respect to the discrete translations and rotations of its point group.

Matter can furthermore exist in different states of aggregation or phases,
which differ in their symmetry and as a result in their thermal, mechanical,
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and electromagnetic properties. The external conditions (pressure P , tem-
perature T , magnetic field H, electric field E, . . .) determine in which of the
possible phases a chemical substance with particular internal interactions will
present itself. If the external forces or the temperature are changed, at par-
ticular values of these quantities the system can undergo a transition from
one phase to another: a phase transition takes place.
The Ehrenfest Classification: as is clear from the examples of phase transi-
tions already treated, the free energy (or some other suitable thermodynamic
potential) is a non-analytic function of a control parameter at the phase tran-
sition. The following classification of phase transitions, due to Ehrenfest , is
commonly used: a phase transition of n-th order is defined by the property
that at least one of the n-th derivatives of its thermodynamic potential is
discontinuous, while all the lower derivatives are continuous at the transi-
tion. When one of the first derivatives shows a discontinuity, we speak of a
first-order phase transition; when the first derivatives vary continuously but
the second derivatives exhibit discontinuities or singularities, we speak of a
second-order phase transition (or critical point), or of a continuous phase
transition.

The understanding of the question as to which phases will be adopted
by a particular material under particular conditions certainly belongs among
the most interesting topics of the physics of condensed matter. Due to the
differing properties of different phases, this question is also of importance for
materials applications. Furthermore, the behavior of matter in the vicinity of
phase transitions is also of fundamental interest. Here, we wish to indicate
two aspects in particular: why is it that despite the short range of the interac-
tions, one observes long-range correlations of the fluctuations, in the vicinity
of a critical point Tc and long-range order below Tc? And secondly, what is
the influence of the internal symmetry of the order parameter? Fundamental
questions of this type are of importance far beyond the field of condensed-
matter physics. Renormalization group theory was originally developed in the
framework of quantum field theory. In connection with critical phenomena,
it was formulated by Wilson1 in such a way that the underlying structure
of nonlinear field theories became apparent, and that also allowed system-
atic and detailed calculations. This decisive breakthrough led not only to an
enormous increase in the knowledge and deeper understanding of condensed
matter, but also had important repercussions for the quantum-field theo-
retical applications of renormalization group theory in elementary particle
physics.

∗7.1.2 Examples of Phase Transitions and Analogies

We begin by describing the essential features of phase transitions, referring
to Chaps. 5 and 6, where the analogy and the common features between
1 K.G. Wilson, Phys. Rev. B 4, 3174, 3184 (1971)
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Fig. 7.1a,b. Phase diagrams of (a) a liquid (P -T ) and (b) a ferromagnet (H-T ).
(Triple point = T.P., critical point = C.P.)

the liquid-gas transition and the ferromagnetic phase transition were already
mentioned, and here we take up their analysis. In Fig. 7.1a,b, the phase
diagrams of a liquid and a ferromagnet are shown. The two ferromagnetic
ordering possibilities for an Ising ferromagnet (spin “up” and spin “down”)
correspond to the liquid and the gaseous phases. The critical point corre-
sponds to the Curie temperature. As a result of the symmetry of the Hamil-
tonian for H = 0 with respect to the operation σl → −σl for all l, the phase
boundary is situated symmetrically in the H-T plane.

Ferromagnetic order is characterized by the order parameter m at H = 0.
It is zero above Tc and ± m0 below Tc, as shown in the M -T diagram in
Fig. 7.1d. The corresponding quantity for the liquid can be seen in the V -T
diagram of Fig. 7.1c.

Here, the order parameter is (ρL − ρc) or (ρG − ρc). In everyday life,
we usually observe the liquid-gas transition at constant pressure far below
Pc. On heating, the density changes discontinuously as a function of the
temperature. Therefore, the vaporization transition is usually considered to
be a first-order phase transition and the critical point is the end point of the
vaporization curve, at which the difference between the gas and the liquid
ceases to exist. The analogy between the gas-liquid and the ferromagnetic
transitions becomes clearer if one investigates the liquid in a so called Natterer
tube2. This is a sealed tube in which the substance thus has a fixed, given
density. If one chooses the amount of material so that the density is equal
to the critical density ρc, then above Tc there is a fluid phase, while on
cooling, this phase splits up into a denser liquid phase separated from the
less dense gas phase by a meniscus. This corresponds to cooling a ferromagnet
2 See the reference in Sect. 3.8.
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Fig. 7.1c,d. The order parameter for (c) the gas-liquid transition (below, two
Natterer tubes are illustrated), and for (d) the ferromagnetic transition

at H = 0. Above Tc, the disordered paramagnetic state is present, while below
it, the sample splits up into (at least two) negatively and positively oriented
ferromagnetic phases.3 Fig. 7.1e,f shows the isotherms in the P -V and M -H
diagrams. The similarity of the isotherms becomes clear if the second picture
is rotated by 90◦. In ferromagnets, the particular symmetry again expresses
itself. Since the phase boundary curve in the P -T diagram of the liquid is
slanted, the horizontal sections of the isotherms in the P -V diagram are not
congruent. Finally, Fig. 7.1g,h illustrates the surface of the equation of state.

The behavior in the immediate vicinity of a critical point is characterized
by power laws with critical exponents which are summarized for ferromag-
nets and liquids in Table 7.1. As in Chaps. 5 and 6, τ = T−Tc

Tc
. The critical

exponents β, γ, δ, α for the order parameter, the susceptibility, the critical
isotherm, and the specific heat are the goal of theory and experiment. Addi-
tional analogies will be seen later in connection with the correlation functions
and the scattering phenomena which follow from them.
3 In Ising systems there are two magnetization directions; in Heisenberg systems

without an applied field, the magnetization can be oriented in any arbitrary
direction, since the Hamiltonian (6.5.2) is rotationally invariant.
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Fig. 7.1e,f. The isotherms (e) in the P -V and (f) in the M -H diagram

Fig. 7.1g,h. The surface of the equation of state for a liquid (g) and for a ferro-
magnet (h)

The general definition of the value of a critical exponent of a function f (T − Tc),
which is not a priori a pure power law is given by

exponent = lim
T→Tc

d log f(T − Tc)
d log(T − Tc)

. (7.1.1)

When f has the form f = a + (T − Tc), one finds:

d log(a + T − Tc)
d log(T − Tc)

=
1

a + (T − Tc)
· 1

d log (T−Tc)
d (T−Tc)

=
T − Tc

a + (T − Tc)
−→ 0 .

When f is logarithmically divergent, the following expression holds:

d log log (T − Tc)
d log(T − Tc)

=
1

log(T − Tc)
−→ 0 .
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In these two cases, the value of the critical exponent is zero. The first case occurs
for the specific heat in the molecular field approximation, the second for the specific
heat of the two-dimensional Ising model. The reason for introducing critical expo-
nents even for such cases can be seen from the scaling laws which will be treated
in the next section. To distinguish between the different meanings of the exponent
zero (discontinuity and logarithm), one can write 0d and 0log.

Table 7.1. Ferromagnets and Liquids: Critical Exponents

Ferromagnet Liquid Critical behavior

Order
parameter M

(VG,L − Vc)
or

(ρG,L − ρc)
(−τ )β T < Tc

Isothermal
susceptibil-
ity

Magnetic
susceptibility
χT =

`
∂M
∂H

´
T

Isothermal
compressibility
κT = − 1

V

`
∂V
∂P

´
T

∝ |τ |−γ T ≷ Tc

Critical
isotherm
(T = Tc)

H = H(M) P = P (V − Vc)
∼ Mδ

∼ (V − Vc)
δ T = Tc

Specific
heat

CM=0 = CH=0

= T
`

∂S
∂T

´
H

CV = T
`

∂S
∂T

´
V

∝ |τ |−α T ≷ Tc

We want to list just a few examples from among the multitude of phase
transitions4. In the area of magnetic substances, one finds antiferromagnets
(e.g. with two sublattices having opposite directions of magnetization M1

and M2), ferrimagnets, and helical phases. In an antiferromagnet with two
sublattices, the order parameter is N = M1 − M2, the so called staggered
magnetization. In binary liquid mixtures, there are separation transitions,
where the order parameter characterizes the concentration. In the case of
structural phase transitions, the lattice structure changes at the transition,
and the order parameter is given by the displacement field or the strain ten-
sor. Examples are ferroelectrics5 and distortive transitions, where the order
parameter is given by e.g. the electric polarization P or the rotation angle ϕ
of a molecular group. Finally, there are transitions into macroscopic quantum
states, i.e. superfluidity and superconductivity. Here, the order parameter is
a complex field ψ, the macroscopic wavefunction, and the broken symmetry
is the gauge invariance with respect to the phase of ψ. In the liquid-solid
transition, the translational symmetry is broken and the order parameter is
4 We mention two review articles in which the literature up to 1966 is summa-

rized: M. E. Fisher, The Theory of Equilibrium Critical Phenomena, p. 615; and
P. Heller, Experimental Investigations of Critical Phenomena, p. 731, both in
Reports on Progress in Physics XXX (1967).

5 In a number of structural phase transitions, the order parameter jumps discon-
tinuously to a finite value at the transition temperature. In this case, according
to Ehrenfest’s classification, we are dealing with a first-order phase transition.
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a component of the Fourier-transformed density. This transition line does not
end in a critical point.

Table 7.2 lists the order parameter and an example of a typical substance
for some of these phase transitions.

Table 7.2. Phase transitions (critical points), order parameters, and substances

Phase transition Order parameter Substance

Paramagnet–ferromagnet Magnetization M Fe
(Curie temperature)

Paramagnet–antiferromagnet staggered N = M1 − M2 RbMnF3

(Néel temperature) magnetization

Gas-liquid Density ρ − ρc CO2

(Critical point)

Separation of binary Concentration c − cc Methanol-
liquid mixtures n-Hexane

Order–disorder Sublattice NA − NB Cu-Zn
transitions occupation

Paraelectric–ferroelectric Polarization P BaTiO3

Distortive structural Rotation angle ϕ SrTiO3

transitions

Elastic phase transitions Strain ϵ KCN

He I–He II (Lambda point) Bose condensate Ψ 4He

Normal conductor–superconductor Cooper-pair ∆ Nb3Sn
amplitude

In general, the order parameter is understood to be a quantity which is
zero above the critical point and finite below it, and which characterizes the
structural or other changes which occur in the transition, such as the expec-
tation value of lattice displacements or a component of the total magnetic
moment.

To clarify some concepts, we discuss at this point a generalized anisotropic,
ferromagnetic Heisenberg model :

H = −1
2

∑

l,l′

{
J∥(l − l′)σz

l σz
l′ + J⊥ (l − l′)(σx

l σx
l′ + σy

l σy
l′ )

}
−h

∑

l

σz
l , (7.1.2)

where σl = (σx
l , σy

l , σz
l ) is the three-dimensional Pauli spin operator at lattice

site xl and N is the number of lattice sites. This Hamiltonian contains the uni-
axial ferromagnet for J∥(l− l′) > J⊥ (l− l′) ≥ 0, and for J⊥ (l− l′) = J∥(l− l′),
it describes the isotropic Heisenberg model (6.5.2). In the former case, the
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order parameter referred to the number of lattice sites (h = 0) is the single-
component quantity

〈
1
N

∑
l σz

l

〉
, i.e. the number of components n is n = 1.

In the latter case, the order parameter is
〈

1
N

∑
l σl

〉
, which can point in any

arbitrary direction (h = 0 !); here, the number of components is n = 3. For
J⊥ (l− l′) > J∥(l− l′) ≥ 0, we find the so called planar ferromagnet , in which
the order parameter 1

N

∑
l ⟨(σx

l , σy
l , 0)⟩ has two components, n = 2. A special

case of the uniaxial ferromagnet is the Ising model (6.5.4), with J⊥ (l−l′) = 0.
The uniaxial ferromagnet has the following symmetry elements: all rotations
around the z-axis, the discrete symmetry (σx

l , σy
l , σz

l ) → (σx
l , σy

l ,−σz
l ) and

products thereof. Below Tc, the invariance with respect to this discrete sym-
metry is broken. In the planar ferromagnet, the (continuous) rotational sym-
metry around the z-axis, and in the case of the isotropic Heisenberg model,
the O(3) symmetry – i.e. the rotational invariance around an arbitrary axis
– is broken.

One could ask why e.g. for the the Ising Hamiltonian without an exter-
nal field, 1

N ⟨
∑

σl⟩ can ever be nonzero, since from the invariance operation
{σz

l } → {−σz
l }, it follows that 1

N ⟨
∑

l σ
z
l ⟩ = − 1

N ⟨
∑

l σz
l ⟩. In a finite system,

1
N ⟨

∑
σz

l ⟩h is analytic in h for finite h, and

lim
h→0

1
N

〈∑

l

σz
l

〉

h

= 0 . (7.1.3)

For finite N , configurations with spins oriented opposite to the field also con-
tribute to the partition function, and their weight increases with decreasing
values of h.

The mathematically precise definition of the order parameter is:

⟨σ⟩ = lim
h→0

lim
N→∞

1
N

〈∑

l

σz
l

〉

h

; (7.1.4)

first, the thermodynamic limit N → ∞ is taken, and then h → 0. This
quantity can be nonzero below Tc. For N → ∞, states with the ‘wrong’
orientation have vanishing weights in the partition function for arbitrarily
small but finite fields.

7.1.3 Universality

In the vicinity of critical points, the topology of the phase diagrams of such di-
verse systems as a gas-liquid mixture and a ferromagnetic material are aston-
ishingly similar; see Fig. 7.1. Furthermore, experiments and computer simula-
tions show that the critical exponents for the corresponding phase transitions
for broad classes of physical systems are the same and depend only on the
number of components and the symmetry of the order parameter, the spatial
dimension and the character of the interactions, i.e. whether short-ranged, or
long-ranged (e.g. Coulomb, dipolar forces). This remarkable feature is termed
universality. The microscopic details of these strongly interacting many-body
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systems express themselves only in the prefactors (amplitudes) of the power
laws, and even the ratios of these amplitudes are universal numbers.

The reason for this remarkable result lies in the divergence of the cor-

relation length ξ = ξ0

(
T−Tc

Tc

)−ν
. On approaching Tc, ξ becomes the only

relevant length scale of the system, which at long distances dominates all
of the microscopic scales. Although the phase transition is caused as a rule
by short-range interactions of the microscopic constituents, due to the long-
range fluctuations (see 6.12), the dependence on the microscopic details such
as the lattice structure, the lattice constant, or the range of the interactions
(as long as they are short-ranged) is secondary. In the critical region, the
system behaves collectively, and only global features such as its spatial di-
mension and its symmetry play a role; this makes the universal behavior
understandable.

The universality of critical phenomena is not limited to materials classes,
but instead it extends beyond them. For example, the static critical behavior
of the gas-liquid transition is the same as that of Ising ferromagnets. Planar
ferromagnets behave just like 4He at the lambda point. Even without making
use of renormalization group theory, these relationships can be understood
with the aid of the following transformations6: the grand partition function of
a gas can be approximately mapped onto that of a lattice gas which is equiva-
lent to a magnetic Ising model (occupied/unoccupied cells =̂ spin up/down).
The Hamiltonian of a Bose liquid can be mapped onto that of a planar fer-
romagnet. The gauge invariance of the Bose Hamiltonian corresponds to the
two-dimensional rotational invariance of the planar ferromagnet.

7.2 The Static Scaling Hypothesis7

7.2.1 Thermodynamic Quantities and Critical Exponents

In this section, we discuss the analytic structure of the thermodynamic quan-
tities in the vicinity of the critical point and draw from it typical conclu-
sions about the critical exponents. This generally-applicable procedure will
be demonstrated using the terminology of ferromagnetism. In the neighbor-
hood of Tc, the equation of state according to Eq. (6.5.16) takes on the form
6 See e.g. M.E. Fisher, op. cit., and problem 7.16.
7 Although the so called scaling theory of critical phenomena can be derived micro-

scopically through renormalization group theory (see Sect. 7.3.4), it is expedient
for the following reasons to first introduce it on a phenomenological basis: (i) as
a motivation for the procedures of renormalization group theory; (ii) as an il-
lustration of the structure of scaling considerations for physical situations where
field-theoretical treatments based on renormalization group theory are not yet
available (e.g. for many nonequilibrium phenomena). Scaling treatments, starting
from critical phenomena and high-energy scaling in elementary particle physics,
have acquired a great influence in the most diverse fields.
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h

kTc
= τ m +

1
3
m3 (7.2.1)

which can be rearranged as follows: 1
kTc

h
|τ |3/2 = sgn(τ) m

|τ |1/2 + 1
3

(
m

|τ |1/2

)3
.

Solving for m, we obtain the following dependence of m on τ and h:

m(τ, h) = |τ |1/2m±

(
h

|τ |3/2

)
for T ≷ Tc . (7.2.2)

The functions m± for T ≷ Tc are determined by (7.2.1). In the vicinity of
the critical point, the magnetization depends on τ and h in a very special
way: apart from the factor |τ |1/2, it depends only on the ratio h/|τ |3/2. The
magnetization is a generalized homogeneous function of τ and h. This implies
that (7.2.2) is invariant with respect to the scale transformation

h → hb3, τ → τb2, and m → mb .

This scaling invariance of the physical properties expresses itself for example
in the specific heat of 4He at the lambda point (Fig. 7.2).

We know from Chap. 6 and Table 7.1 that the real critical exponents
differ from their molecular-field values in (7.2.2). It is therefore reasonable to
extend the equation of state (7.2.2) to arbitrary critical exponents8:

m(τ, h) = |τ |βm±

(
h

|τ |δβ

)
; (7.2.3)

in this expression, β and δ are critical exponents and the m± are called scaling
functions.

At the present stage, (7.2.3) remains a hypothesis; it is, however, possi-
ble to prove this hypothesis using renormalization group theory, as we shall
demonstrate later in Sect. 7.3, for example in Eq. (7.3.40′). For the present,
we take (7.2.3) as given and ask what its general consequences are. The two
scaling functions m± (y) must fulfill certain boundary conditions which follow
from the critical properties listed in Eq. (6.5.31) and Table 7.1. The magne-
tization is always oriented parallel to h when the applied field is nonzero and
remains finite in the limit h → 0 below Tc, while above Tc, it goes to zero:
8 In addition to being a natural generalization of molecular field theory, one can

understand the scaling hypothesis (7.2.3) by starting with the fact that singu-
larities are present only for τ = 0 and h = 0. How strong the effects of the
singularities will be depends on the distance from the critical point, τ , and on
h/|τ |βδ, i.e. the ratio between the applied field and the field-equivalent of τ ; that
is hτ = mδ = |τ |βδ. As long as h ≪ hτ , the system is effectively in the low-
field limit and m ≈ |τ |βm± (0). On the other hand, if τ becomes so small that
|τ | ≤h1/βδ, then the influence of the applied field predominates. Any additional
reduction of τ produces no further change: m remains at the value which it had

for |τ | = h1/βδ, i.e. h
1
δ m± (1). In the limit τ → 0, m± (y) −→ yβ must hold, so

that the singular dependence on τ in m(τ, h) cancels out.
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Fig. 7.2. The specific heat at constant pressure, cP , at the lambda transition of
4He. The shape of the specific heat stays the same on changing the temperature
scale (1K to 10−6 K)

lim
y→0

m−(y) = sgn y , m+(0) = 0 . (7.2.4a)

The thermodynamic functions are non-analytic precisely at τ = 0, h = 0. For
nonzero h, the magnetization is finite over the whole range of temperatures
and remains an analytic function of τ even for τ = 0; the |τ |β dependence
of (7.2.3) must be compensated by the function m± (h/|τ |δβ). Therefore, the
two functions m± must behave as

lim
y→∞

m± (y) ∝ y1/δ (7.2.4b)

for large arguments. It follows from this that for τ = 0, i.e. at the critical
point, m ∼ h1/δ. The scaling functions m± (y) are plotted in Fig. 7.3.

Eq. (7.2.3), like the molecular-field version of the scaling law given above,
requires that the magnetization must be a generalized homogeneous function
of τ and h and is therefore invariant with respect to scale transformations:

h → hb
βδ
ν , τ → τb

1
ν , and m → mbβ/ν .

The name scaling law is derived from this scale invariance. Equation (7.2.3)
contains additional information about the thermodynamics; by integration,
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Fig. 7.3. The qualita-
tive behavior of the scal-
ing functions m±

we can determine the free energy and by taking suitable derivatives we can
find the magnetic susceptibility and the specific heat. From these we obtain
relations between the critical exponents. For the susceptibility, we find the
scaling law from Eq. (7.2.3):

χ ≡
(

∂m

∂h

)

T

= |τ |β−δβm′
±

(
h

|τ |δβ

)
, (7.2.5)

and in the limit h → 0, we thus have χ ∝ |τ |β−δβ . It then follows that the
critical exponent of the susceptibility, γ (Eq. (6.5.31c)), is given by

γ = −β(1 − δ) . (7.2.6)

The specific free energy is found through integration of (7.2.3):

f − f0 = −
∫ h

h0

dh m(τ, h) = −|τ |β+δβ
∫ h/|τ |δβ

h0/|τ |δβ
dx m± (x) .

Here, h0 must be sufficiently large so that the starting point for the inte-
gration lies outside the critical region. The free energy then takes on the
following form:

f(τ, h) = |τ |β+δβ f̂±

(
h

|τ |βδ

)
+ freg . (7.2.7)

In this expression, f̂ is defined by the value resulting from the upper limit of
the integral and freg is the non-singular part of the free energy. The specific
heat at constant magnetic field is obtained by taking the second derivative
of (7.2.7),

ch = −∂2f

∂τ2
∼ A± |τ |β(1+δ)−2 + B± . (7.2.8)

The A± in this expression are amplitudes and the B± come from the regular
part. Comparison with the behavior of the specific heat as characterized by
the critical exponent α (Eq. (6.5.31d)) yields
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α = 2 − β(1 + δ) . (7.2.9)

The relations between the critical exponents are termed scaling relations ,
since they follow from the scaling laws for the thermodynamic quantities. If
we add (7.2.6) and (7.2.9), we obtain

γ + 2β = 2 − α . (7.2.10)

From (7.2.6) and (7.2.9), one can see that the remaining thermodynamic
critical exponents are determined by β and δ.

7.2.2 The Scaling Hypothesis for the Correlation Function

In the molecular field approximation, we obtained the Ornstein–Zernike be-
havior in Eqns. (6.5.50) and (6.5.53′) for the wavevector-dependent suscepti-
bility χ(q) and the correlation function G(x):

χ(q) =
1

J̃q2

(qξ)2

1 + (qξ)2
, G(x) =

kTc v e−|x|/ξ

4πJ̃ |x|
with ξ = ξ0τ

− 1
2 . (7.2.11)

The generalization of this law is (q ≪ a−1, |x| ≫ a, ξ ≫ a with the lattice
constant a):

χ(q) =
1

q2−η
χ̂
(
qξ

)
, G(x) =

1
|x|1+η Ĝ

(
|x|/ξ

)
, ξ = ξ0 τ−ν ,

(7.2.12a,b,c)

where the functions χ̂(qξ) and Ĝ(|x|/ξ) are still to be determined. In
(7.2.12c), we assumed that the correlation length ξ diverges at the critical
point. This divergence is characterized by the critical exponent ν. Just at
Tc, ξ = ∞ and therefore there is no longer any finite characteristic length;
the correlation function G(x) can thus only fall off according to a power law
G(x) ∼ 1

|x|1+η Ĝ(0). The possibility of deviations from the 1/|x|-behavior of
the Ornstein–Zernike theory was taken into account by introducing the ad-
ditional critical exponent η. In the immediate vicinity of Tc, ξ is the only
relevant length and therefore the correlation function also contains the factor
Ĝ(|x|/ξ). Fourier transformation of G(x) yields (7.2.12a) for the wavevector-
dependent susceptibility, which for its part represents an evident general-
ization of the Ornstein–Zernike expression. We recall (from Sects. 5.4.4 and
6.5.5.2) that the increase of χ(q) for small q on approaching Tc leads to
critical opalescence.

In (7.2.11) and (7.2.12b), a three-dimensional system was assumed. Phase
transitions are of course highly interesting also in two dimensions, and fur-
thermore it has proved fruitful in the theory of phase transitions to consider
arbitrary dimensions (even non-integral dimensions). We therefore generalize
the relations to arbitrary dimensions d:
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G(x) =
1

|x|d−2+η
Ĝ

(
|x|/ξ

)
. (7.2.12b′)

Equations (7.2.12a) and (7.2.12c) remain valid also in d dimensions, whereby
of course the exponents ν and η and the form of the functions Ĝ and χ̂ depend
on the spatial dimension. From (7.2.12a) and (7.2.12b′) at the critical point
we obtain

G(x) ∝ 1
|x|d−2+η

and χ ∝ 1
q2−η

for T = Tc . (7.2.13)

Here, we have assumed that Ĝ(0) and χ̂(∞) are finite, which follows from
the finite values of G(x) at finite distances and of χ(q) at finite wavenumbers
(and ξ = ∞).

We now consider the limiting case q → 0 for temperatures T ̸= Tc. Then
we find from (7.2.12a)

χ = lim
q→0

χ(q) ∝ (qξ)2−η

q2−η
= ξ2−η . (7.2.14)

This dependence is obtained on the basis of the following arguments: for fi-
nite ξ, the susceptibility remains finite even in the limit q → 0. Therefore,
the factor 1

q2−η in (7.2.12a) must be compensated by a corresponding depen-
dence of χ̂(qξ), from which the relation (7.2.14) follows for the homogeneous
susceptibility. Since its divergence is characterized by the critical exponent
γ according to (6.5.31c), it follows from (7.2.14) together with (7.2.12c) that
there is an additional scaling relation

γ = ν(2 − η) . (7.2.15)

Relations of the type (7.2.3), (7.2.7), and (7.2.12b′) are called scaling laws,
since they are invariant under the following scale transformations:

x → x/b, ξ → ξ/b, τ → τb1/ν , h → hbβδ/ν

m → mbβ/ν, fs → fsb
(2−α)/ν , G → Gb(d−2+η)/ν ,

(7.2.16)

where fs stands for the singular part of the (specific) free energy.
If we in addition assume that these scale transformations are based on

a microscopic elimination procedure by means of which the original system
with lattice constant a and N lattice sites is mapped onto a new system
with the same lattice constant a but a reduced number Nb−d of degrees of
freedom, then we find

Fs (τ, h)
N

= b−d Fs(τb1/ν , hbβδ/ν)
Nb−d

, (7.2.17)

which implies the hyperscaling relation
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2 − α = dν , (7.2.18)

which also contains the spatial dimension d. According to equations (7.2.6),
(7.2.9), (7.2.15), and (7.2.18), all the critical exponents are determined by
two independent ones.

For the two-dimensional Ising model one finds the exponents of the cor-
relation function, ν = 1 and η = 1/4, from the exponents quoted following
Eq. (6.5.31d) and the scaling relations (7.2.15) and (7.2.18).

7.3 The Renormalization Group

7.3.1 Introductory Remarks

The term ‘renormalization’ of a theory refers to a certain reparametriza-
tion with the goal of making the renormalized theory more easily dealt
with than the original version. Historically, renormalization was developed by
Stückelberg and Feynman in order to remove the divergences from quantum-
field theories such as quantum electrodynamics. Instead of the bare para-
meters (masses, coupling constants), the Lagrange function is expressed in
terms of physical masses and coupling coefficients, so that ultraviolet diver-
gences due to virtual transitions occur only within the connection between
the bare and the physical quantities, leaving the renormalized theory finite.
The renormalization procedure is not unique; the renormalized quantities can
for example depend upon a cutoff length scale, up to which certain virtual
processes are taken into account. Renormalization group theory studies the
dependence on this length scale, which is also called the “flow parameter”.
The name “renormalization group” comes from the fact that two consecutive
renormalization group transformations lead to a third such transformation.

In the field of critical phenomena, where one must explain the observed
behavior at large distances (or in Fourier space at small wavenumbers), it is
reasonable to carry out the renormalization procedure by a suitable elimina-
tion of the short-wavelength fluctuations. A partial evaluation of the partition
function in this manner is easier to carry out than the calculation of the com-
plete partition function, and can be done using approximation methods. As
a result of the elimination step, the remaining degrees of freedom are subject
to modified, effective interactions.

Quite generally, one can expect the following advantages from such a
renormalization group transformation:

(i) The new coupling constants could be smaller. By repeated applications of
the renormalization procedure, one could thus finally obtain a practically
free theory, without interactions.

(ii) The successively iterated coupling coefficients, also called “parameter
flow”, could have a fixed point, at which the system no longer changes



346 7. Phase Transitions, Renormalization Group Theory, and Percolation

under additional renormalization group transformations. Since the elimi-
nation of degrees of freedom is accompanied by a change of the underlying
lattice spacing, or length scale, one can anticipate that the fixed points
are under certain circumstances related to critical points. Furthermore, it
can be hoped that the flow in the vicinity of these fixed points can yield
information about the universal physical quantities in the neighborhood
of the critical points.

The scenario described under (i) will in fact be found for the one-dimensional
Ising model, and that described under (ii) for the two-dimensional Ising
model.

The renormalization group method brings to bear the scale invariance in
the neighborhood of a critical point. In the case of so called real-space trans-
formations (in contrast to transformation in Fourier space), one eliminates
certain degrees of freedom which are defined on a lattice, and thus carries out
a partial trace operation on the partition function. The lattice constant of the
resulting system is then readjusted and the internal variables are renormal-
ized in such a manner that the new Hamiltonian corresponds to the original
one in its form. By comparison, one defines effective, scale-independent cou-
pling constants, whose flow behavior is then investigated. We first study the
one-dimensional Ising model and then the two-dimensional. Finally, the gen-
eral structure of such transformations will be discussed with the derivation
of scaling laws. A brief schematic treatment of continuous field-theoretical
formulations will be undertaken following the Ginzburg–Landau theory.

7.3.2 The One-Dimensional Ising Model, Decimation
Transformation

We will first illustrate the renormalization group method using the one-
dimensional Ising model, with the ferromagnetic exchange constant J in zero
applied field, as an example. The Hamiltonian is

H = −J
∑

l

σlσl+1 , (7.3.1)

where l runs over all the sites in the one-dimensional chain; see Fig. 7.4. We
introduce the abbreviation K = J/kT into the partition function for N spins
with periodic boundary conditions σN+1 = σ1,

ZN = Tr e−H/kT =
∑

{σl=± 1}

eK
P

l σlσl+1 . (7.3.2)

The decimation procedure consists in partially evaluating the partition func-
tion, by carrying out the sum over every second spin in the first step. In
Fig. 7.4, the lattice sites for which the trace is taken are marked with a cross.
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Fig. 7.4. An Ising chain; the trace is carried out over all the lattice points which
are marked with a cross. The result is a lattice with its lattice constant doubled

A typical term in the partition function is then
∑

σl=± 1

eKσl(σl−1+σl+1) = 2 coshK(σl−1 + σl+1) = e2g+K′σl−1σl+1 , (7.3.3)

with coefficients g and K ′ which are still to be determined. Here, we have
taken the sum over σl = ±1 after the first equals sign. Since coshK(σl−1 +
σl+1) depends only on whether σl−1 and σl+1 are parallel or antiparallel, the
result can in any case be brought into the form given after the second equals
sign. The coefficients g and K ′ can be determined either by expansion of the
exponential function or, still more simply, by comparing the two expressions
for the possible orientations. If σl−1 = −σl+1, we find

2 = e2g−K′
, (7.3.4a)

and if σl−1 = σl+1, the result is

2 cosh2K = e2g+K′
. (7.3.4b)

From the product of (7.3.4a) and (7.3.4b) we obtain 4 cosh2K = e4g, and
from the quotient, cosh 2K = e2K′

; thus the recursion relations are:

K ′ =
1
2

log cosh 2K (7.3.5a)

g =
1
2
(
log 2 + K ′) . (7.3.5b)

Repeating this decimation procedure a total of k times, we obtain from
(7.3.5a,b) for the kth step the following recursion relation:

K(k) =
1
2

log
(
cosh 2K(k−1)

)
(7.3.6a)

g(K(k)) =
1
2

log 2 +
1
2
K(k) . (7.3.6b)

The decimation produces another Ising model with an interaction between
nearest neighbors having a coupling constant K(k). Furthermore, a spin-
independent contribution g(K(k)) to the energy is generated; in the kth step,
it is given by (7.3.6b).

In a transformation of this type, it is expedient to determine the fixed
points which in the present context will prove to be physically relevant. Fixed
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points are those points K∗ which are invariant with respect to the transfor-
mation, i.e. here K∗ = 1

2 log(cosh 2K∗). This equation has two solutions,

K∗ = 0 (T = ∞) and K∗ = ∞ (T = 0) . (7.3.7)

The recursion relation (7.3.6a) is plotted in Fig. 7.5. Starting with the initial
value K0, one obtains K ′(K0), and by a reflection in the line K ′ = K,
K ′(K ′(K0)), and so forth. One can see that the coupling constant decreases
continually; the system moves towards the fixed point K∗ = 0, i.e. a non-
interacting system. Therefore, for a finite K0, we never arrive at an ordered
state: there is no phase transition. Only for K = ∞, i.e. for a finite exchange
interaction J and T = 0, do the spins order.

Fig. 7.5. The recur-
sion relation for the one-
dimensional Ising model
with interactions between
nearest neighbors (heavy
solid curve), the line K′ =
K (dashed), and the itera-
tion steps (thin lines with
arrows)

Making use of this renormalization group (RG) transformation, we can
calculate the partition function and the free energy. The partition function
for all together N spins with the coupling constant K, using (7.3.3), is

ZN (K) = eNg(K′)ZN
2
(K ′) = eNg(K′)+ N

2 g(K′′)Z N
22

(K ′′) , (7.3.8)

and, after the nth step,

ZN (K) = exp
[
N

n∑

k=1

1
2k−1

g
(
K(k)

)
+ log Z N

2n

(
K(n)

)]
. (7.3.9)

The reduced free energy per lattice site and kT is defined by

f̃ = − 1
N

log ZN (K) . (7.3.10)
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As we have seen, the interactions become weaker as a result of the renor-
malization group transformation, which gives rise to the following possible
application: after several steps the interactions have become so weak that
perturbation-theory methods can be used, or the interaction can be altogether
neglected. Setting K(n) ≈ 0, from (7.3.9) we obtain the approximation:

f̃ (n)(K) = −
n∑

k=1

1
2k−1

g
(
K(k)

)
− 1

2n
log 2 , (7.3.11)

since the free energy per spin of a field-free spin-1/2 system without inter-
actions is − log 2. Fig. 7.6 shows f̃ (n)(K) for n = 1 to 5. We can see how
quickly this approximate solution approaches the exact reduced free energy
f̃(K) = − log(2 coshK). The one-dimensional Ising model can be exactly
solved by elementary methods (see problem 6.9), as well as by using the
transfer matrix method, cf. Appendix F.

Fig. 7.6. The reduced
free energy of the one-
dimensional Ising model.
f̃ is the exact free energy,
f̃ (1), f̃ (2), . . . are the ap-
proximations (7.3.11)

7.3.3 The Two-Dimensional Ising Model

The application of the decimation procedure to the two-dimensional Ising
model is still more interesting, since this model exhibits a phase transition
at a finite temperature Tc > 0. We consider the square lattice rotated by 45◦
which is illustrated in Fig. 7.7, with a lattice constant of one.

The Hamiltonian multiplied by β, H = βH, is

H = −
∑

n.n.

Kσiσj , (7.3.12)
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Fig. 7.7. A square spin
lattice, rotated by 45◦. The
lattice sites are indicated
by points. In the decima-
tion transformation, the spins
at the sites which are also
marked by a cross are elimi-
nated. K is the interaction be-
tween nearest neighbors and
L is the interaction between
next-nearest neighbors

where the sum runs over all pairs of nearest neighbors (n.n.) and K = J/kT .
When in the partial evaluation of the partition function the trace is taken
over the spins marked by crosses, we obtain a new square lattice of lattice
constant

√
2. How do the coupling constants transform? We pick out one

of the spins with a cross, σ, denote its neighbors as σ1, σ2, σ3, and σ4, and
evaluate their contribution to the partition function:

∑

σ=± 1

eK(σ1+σ2+σ3+σ4)σ = elog(2 cosh K(σ1+σ2+σ3+σ4))

= eA′+ 1
2 K′(σ1σ2...+σ3σ4)+L′(σ1σ3+σ2σ4)+M ′σ1σ2σ3σ4 .

(7.3.13)

This transformation (taking a partial trace) yields a modified interaction be-
tween nearest neighbors, K ′ (here, the elimination of two crossed spins con-
tributes); in addition, new interactions between the next-nearest neighbors
(such as σ1 and σ3) and a four-spin interaction are generated:

H ′ =
(
A′ + K ′

∑

n.N.

σiσj + L′
∑

”u.n.N.

σiσj + . . .
)

. (7.3.12′)

The coefficients A′, K ′, L′ and M ′ can readily be found from (7.3.13) as func-
tions of K, by using σi

2 = 1, i = 1, . . . , 4 (see problem 7.2):

A′(K) = log 2 +
1
8
{
log cosh 4K + 4 log cosh 2K

}
, (7.3.14)

K ′(K) =
1
4

log cosh 4K , L′(K) =
1
2
K ′(K) (7.3.13′)

M ′(K) =
1
8
{
log cosh 4K − 4 log cosh 2K

}
.

Putting the critical value Kc = J/kTc = 0.4406 (exact result9 ) into this
relation as an estimate for the initial value K, we find M ′ ≪ L′ ≤ K ′. In
9 The partition function of the Ising model on a square lattice without an external

field was evaluated exactly by L. Onsager, Phys. Rev. 65, 117 (1944), using the
transfer matrix method (see Appendix F.).
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the first elimination step, the original Ising model is transformed into one
with three interactions; in the next step we must take these into account and
obtain still more interactions, and so on. In a quantitatively usable calculation
it will thus be necessary to determine the recursion relations for an extended
number of coupling constants. Here, we wish only to determine the essential
structure of such recursion relations and to simplify them sufficiently so that
an analytic solution can be found. Therefore, we neglect the coupling constant
M ′ and all the others which are generated by the elimination procedure, and
restrict ourselves to K ′ and L′ as well as their initial values K and L. This
is suggested by the smallness of M ′ which we mentioned above.

We now require the recursion relation including the coupling constant L,
which acts between σ1 and σ4, etc. Thus, expanding (7.3.13′) up to second
order in K and taking note of the fact that an interaction L between next-
nearest neighbors in the original Hamiltonian appears as a contribution to
the interactions of the nearest neighbors in the primed Hamiltonian, we find
the following recursion relations on elimination of the crossed spins (Fig. 7.7):

K ′ = 2K2 + L (7.3.15a)

L′ = K2 . (7.3.15b)

These relations can be arrived at intuitively as follows: the spin σ mediates
an interaction of the order of K times K, i.e. K2 between σ1 and σ3, likewise
the crossed spin just to the left of σ. This leads to 2K2 in K ′. The interac-
tion L between next-nearest neighbors in the original model makes a direct
contribution to K ′. Spin σ also mediates a diagonal interaction between σ1

and σ4, leading thus to the relation L′ = K2 in (7.3.15b).
However, it should be clear that in contrast to the one-dimensional case,

new coupling constants are generated in every elimination step. One cannot
expect that these recursion relations, which have been restricted as an ap-
proximation to a reduced parameter space (K, L), will yield quantitatively
accurate results. They do contain all the typical features of this type of re-
cursion relations.

In Fig. 7.8, we have shown the recursion relations (7.3.15a,b)10. Starting
from values (K, 0), the recursion relation is repeatedly applied, likewise for
initial values (0, L). The following picture emerges: for small initial values, the
flux lines converge to K = L = 0, and for large initial values they converge
to K = L = ∞. These two regions are separated by two lines, which meet at
K∗

c = 1
3 and L∗

c = 1
9 . Further on it will become clear that this fixed point is

connected to the critical point.
We now want to investigate analytically the more important properties of

the flow diagram which follows from the recursion relations (7.3.15a,b). As a
10 For clarity we have drawn in only every other iteration step in Fig. 7.8. We will

return to this point at the end of this section, after investigating the analytic
behavior of the recursion relation.
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Fig. 7.8. A flow diagram
of Eq. (7.3.15a,b) (only every
other point is indicated.) Three
fixed points can be recognized:
K∗ = L∗ = 0, K∗ = L∗ = ∞
and K∗

c = 1
3 , L∗

c = 1
9

first step, the fixed points must be determined from (7.3.15a,b), i.e. K∗ and
L∗, which obey K∗ = 2K∗2 + L∗ and L∗ = K∗. These conditions give three
fixed points

(i) K∗ = L∗ = 0, (ii) K∗ = L∗ = ∞, and (iii) K∗
c =

1
3
, L∗

c =
1
9

.

(7.3.16)

The high-temperature fixed point (i) corresponds to a temperature T = ∞
(disordered phase), while the low-temperature fixed point (ii) corresponds to
T = 0 (ordered low-temperature phase). The critical behavior can be related
only to the non-trivial fixed point (iii), (K∗

c , L∗
c) = (1

3 , 1
9 ).

That the initial values of K and L which lead to the fixed point (K∗
c , L∗

c)
represent critical points can be seen in the following manner: the RG trans-
formation leads to a lattice with its lattice constant increased by a factor of√

2. The correlation length of the transformed system ξ′ is thus smaller by a
factor of

√
2:

ξ′ = ξ/
√

2 . (7.3.17)

However, at the fixed point, the coupling constants K∗
c , L∗

c are invariant, so
that for ξ of the fixed point, we have ξ′ = ξ , i.e. at the fixed point, it follows
that ξ = ξ/

√
2, thus

ξ =

{
∞ or
0 .

(7.3.18)

The value 0 corresponds to the high-temperature and to the low-temperature
fixed points. At finite K∗, L∗, ξ cannot be zero, but only ∞. Calculating
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back through the transformation shows that the correlation length at each
point along the critical trajectory which leads to the fixed point is infinite.
Therefore, all the points of the “critical trajectory”, i.e. the trajectory leading
to the fixed point, are critical points of Ising models with nearest-neighbor
and next-nearest-neighbor interactions.

In order to determine the critical behavior, we examine the behavior of
the coupling constants in the vicinity of the “non-trivial” fixed point; to this
end, we linearize the transformation equations (7.3.15a,b) around (K∗

c , L∗
c)

in the lth step:

δKl = Kl − K∗
c , δLl = Ll − L∗

c . (7.3.19)

We thereby obtain the following linear recursion relation:
⎛

⎝
δKl

δLl

⎞

⎠ =

⎛

⎝
4K∗

c 1

2K∗
c 0

⎞

⎠

⎛

⎝
δKl−1

δLl−1

⎞

⎠ =

⎛

⎝
4
3 1

2
3 0

⎞

⎠

⎛

⎝
δKl−1

δLl−1

⎞

⎠ . (7.3.20)

The eigenvalues of the transformation matrix can be determined from
λ2 − 4

3λ − 2
3 = 0 , i.e.

λ1,2 =
1
3
(2 ±

√
10) =

{
1.7208
−0.3874 .

(7.3.21a)

The associated eigenvectors can be obtained from
`
4 − (2 ±

√
10)
´
δK + 3δL = 0 ,

i.e.

δL = ±
√

10 − 2
3

δK and thus

e1 =

„
1,

√
10 − 2

3

«
and e2 =

„
1,−

√
10 + 2

3

« (7.3.21b)

with the scalar product e1 · e2 = 1
3 .

We now start from an Ising model with coupling constants K0 and L0

(including the division by kT ). We first expand the deviations of the ini-
tial coupling constants K0 and L0 from the fixed point in the basis of the
eigenvectors (7.3.21):

(
K0

L0

)
=

(
K∗

c

L∗
c

)
+ c1e1 + c2e2 , (7.3.22)

with expansion coefficients c1 and c2. The decimation procedure is repeated
several times; after l transformation steps, we obtain the coupling constants
Kl and Ll :

(
Kl

Ll

)
=

(
K∗

c

L∗
c

)
+ λl

1c1e1 + λl
2c2e2 . (7.3.23)

If the Hamiltonian H differs from H∗ only by an increment in the direction
e2, the successive application of the renormalization group transformation
leads to the fixed point, since |λ2| < 1 (see Fig. 7.9).
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Fig. 7.9. Flow diagram
based on the recursion re-
lation (7.3.22), which is
linearized around the non-
trivial fixed point (FP)

Let us now consider the original nearest-neighbor Ising model with the
coupling constant K0 ≡ J

kT and with L0 = 0, and first determine the critical
value Kc; this is the value of K0 which leads to the fixed point. The condition
for Kc, from the above considerations, is given by

(
Kc

0

)
=

(1
3
1
9

)
+ 0 · e1 + c2

(
1

−
√

10+2
3

)
. (7.3.24)

These two linear equations have the solution

c2 =
1

3(
√

10 + 2)
, and therefore Kc =

1
3
+

1
3(
√

10 + 2)
= 0.3979 . (7.3.25)

For K0 = Kc, the linearized RG transformation leads to the fixed point,
i.e. this is the critical point of the nearest-neighbor Ising model, Kc = J

kTc
.

From the nonlinear recursion relation (7.3.15a,b), we find for the critical point
the slighty smaller value Kn.l.

c = 0.3921. Both values differ from Onsager’s
exact solution, which gives Kc = 0.4406, but they are much closer than the
value from molecular field theory, Kc = 0.25.

For K0 = Kc, only c2 ̸= 0, and the transformation leads to the fixed
point. For K0 ̸= Kc, we also have c1 ∝ (K0 − Kc) = − J

kT 2
c
(T − Tc) · · · ̸= 0.

This increases with each application of the RG transformation, and thus leads
away from the fixed point (K∗

c , L∗
c) (Fig. 7.9), so that the flow runs either

to the low-temperature fixed point (for T < Tc) or to the high-temperature
fixed point (for T > Tc).

Now we may determine the critical exponent ν for the correlation length,
beginning with the recursion relation

(K − Kc)′ = λ1(K − Kc) (7.3.26)

and writing λ1 as a power of the new length scale

λ1 = (
√

2)
y1

. (7.3.27)

For the exponent y1 defined here, we find the value
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y1 = 2
log λ1

log 2
= 1.566 . (7.3.28)

From ξ′ = ξ/
√

2 (Eq. (7.3.17)), it follows that (K ′−Kc)
−ν = (K−Kc)

−ν/
√

2,
i.e.

(K ′ − Kc) = (
√

2)
1
ν (K − Kc) . (7.3.29)

Comparing this with the first relation (7.3.26), we obtain

ν =
1
y1

= 0.638 . (7.3.30)

This is, to be sure, quite a ways from 1, the known exact value of the two-
dimensional Ising model, but nevertheless it is larger than 0.5, the value
from the molecular-field approximation. A considerable improvement can be
obtained by extending the recursion relation to several coupling coefficients.

Let us now consider the effect of a finite magnetic field h (including the
factor β). The recursion relation can again be established intuitively. The
field h acts directly on the remaining spins, as well as a (somewhat underes-
timated) additional field Kh which is due to the orienting action of the field
on the eliminated neighboring spins, so that all together we have

h′ = h + Kh . (7.3.31)

The fixed point value of this recursion relation is h∗ = 0. Linearization around
the fixed point yields

h′ = (1 + K∗)h =
4
3
h ; (7.3.32)

thus the associated eigenvalue is

λh =
4
3

. (7.3.33)

K0−Kc (or T −Tc ) and h are called the relevant “fields”, since the eigenval-
ues λ1 and λh are larger than 1, and they therefore increase as a result of the
renormalization group transformation and lead away from the fixed point. In
contrast, c2 is an “irrelevant field”, since |λ2| < 1, and therefore c2 becomes
increasingly smaller with repeated RG transformations. Here, “fields” refers
to fields in the usual sense, but also to coupling constants in the Hamilto-
nian. The structure found here is typical of models which describe critical
points, and remains the same even when one takes arbitrarily many coupling
constants into account in the transformation: there are two relevant fields
(T − Tc and h, the conjugate field to the order parameter), and all the other
fields are irrelevant.
We add a remark concerning the flow diagram 7.9. There, owing to the negative sign
of λ2, only every other point is shown. This corresponds to a twofold application of
the transformation and an increase of the lattice constant by a factor of 2, as well as
λ1 → λ2

1, λ2 → λ2
2. Then the second eigenvalue λ2

2 is also positive, since otherwise
the trajectory would move along an oscillatory path towards the fixed point.
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7.3.4 Scaling Laws

Although the decimation procedure described in Sect. 7.3.3 with only a few
parameters does not give quantitatively satisfactory results and is also un-
suitable for the calculation of correlation functions, it does demonstrate the
general structure of RG transformations, which we shall now use as a starting
point for deriving the scaling laws.

A general RG transformation R maps the original Hamiltonian H onto a
new one,

H′ = RH . (7.3.34)

This transformation also implies the rescaling of all the lengths in the prob-
lem, and that N ′ = Nb−d holds for the number of degrees of freedom N in d
dimensions (here, b =

√
2 for the decimation transformation of 7.3.1).

The fixed-point Hamiltonian is determined by

R(H∗) = H∗ . (7.3.35)

For small deviations from the fixed-point Hamiltonian,

R(H∗ + δH) = H∗ + L δH ,

we can expand in terms of the deviation δH. From the expansion, we obtain
the linearized recursion relation

LδH = δH′ . (7.3.36a)

The eigenoperators δH1, δH2, . . . of this linear transformation are determined
by the eigenvalue equation

LδHi = λiδHi . (7.3.36b)

A given Hamiltonian H, which differs only slightly from H∗, can be repre-
sented by H∗ and the deviations from it:

H = H∗ + τδHτ + hδHh +
∑

i≥ 3

ciδHi , (7.3.37)

where δHτ and δHh denote the two relevant perturbations with

|λτ | = byτ > 1 , |λh| = byh > 1 ; (7.3.38)

they are related to the temperature variable τ = T−Tc
Tc

and the external
field h, while |λj | = byj < 1 and thus yj < 0 for j ≥ 3 are connected with
the irrelevant perturbations.11 The coefficients τ, h, and cj are called scaling
11 Compare the discussion following Eq. (7.3.33). The (only) irrelevant field there

is denoted by c2. In the following, we assume that λi ≥0.
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fields. For the Ising model, δHh =
∑

l σl. Denoting the initial values of the
fields by ci, we find that the free energy transforms after l steps to

FN (ci) = FN/bdl(ciλ
l
i) . (7.3.39a)

For the free energy per spin,

f(ci) =
1
N

FN (ci) , (7.3.39b)

we then find in the linear approximation

f(τ, h, c3, . . .) = b−dlf
(
τbyτ l, hbyhl, c3b

y3l, . . .
)

. (7.3.40)

Here, we have left off an additive term which has no influence on the following
derivation of the scaling law; it is, however, important for the calculation of
the free energy. The scaling parameter l can now be chosen in such a way
that |τ |byτ l = 1, which makes the first argument of f equal to ±1. Then we
find

f(τ, h, c3, . . .) = |τ |d/yτ f̂±
(
h|τ |−yh/yτ , c3|τ ||y3|/yτ , . . .

)
, (7.3.40′)

where f̂± (x, y, . . .) = f(±1, x, y, . . .) and yτ , yh > 0, y3, . . . < 0. Close to
Tc, the dependence on the irrelevant fields c3, . . . can be neglected, and
Eq. (7.3.40′) then takes on precisely the scaling form (Eq. 7.2.7), with the
conventional exponents

βδ = yh/yτ (7.3.41a)

and

2 − α =
d

yτ
. (7.3.41b)

Taking the derivative with respect to h yields

β =
d − yh

yτ
and γ =

d − 2yh

yτ
. (7.3.41c,d)

We have thus derived the scaling law, Eq. (7.2.7), within the RG theory for
fixed points with just one relevant field, along with the applied magnetic field
and the irrelevant operators. Furthermore, the dependence on the irrelevant
fields c3, . . . gives rise to corrections to the scaling laws, which must be taken
into account for temperatures outside the asymptotic region.

In order to make the connection between yτ and the exponent ν, we recall
that l iterations reduce the correlation length to ξ′ = b−lξ, which implies that
(τbyτ l)−ν = b−lτ−ν and, as a result,

ν =
1
yτ

(7.3.41e)
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Fig. 7.10. The critical hypersur-
face. A trajectory within the crit-
ical hypersurface is shown as a
dashed curve. The full curve is a
trajectory near the critical hyper-
surface. The coupling coefficients
of a particular physical system as
a function of the temperature are
indicated by the long-dashed curve

(cf. Eq. (7.3.30) for the two-dimensional Ising model). From the existence of
a fixed-point Hamiltonian with two relevant operators, the scaling form of
the free energy can be derived, and it is also possible to calculate the critical
exponents. Even the form of the scaling functions f̂ and m̂ can be computed
with perturbation-theoretical methods, since the arguments are finite. A sim-
ilar procedure can be applied to the correlation function, Eq. (7.2.12b′). At
this point it is important to renormalize the spin variable, σ′ = bζσ, whereby
it is found that setting the value

ζ = (d − 2 + η)/2 (7.3.41f)

guarantees the validity of (7.2.13) at the critical point.
We add a few remarks about the generic structure of the flow diagram in

the vicinity of a critical fixed point (Fig. 7.10). In the multidimensional space
of the coupling coefficients, there is a direction (the relevant direction) which
leads away from the fixed point (we assume that h = 0). The other eigen-
vectors of the linearized RG transformation span the critical hypersurface.
Further away from the fixed point, this hypersurface is no longer a plane,
but instead is curved. The trajectories from each point on the critical hyper-
surface lead to the critical fixed point. When the initial point is close to but
not precisely on the critical hypersurface, the trajectory at first runs parallel
to the hypersurface until the relevant portion has become sufficiently large
so that finally the trajectory leaves the neighborhood of the critical hyper-
surface and heads off to either the high-temperature or the low-temperature
fixed point. For a given physical system (ferromagnet, liquid, . . .), the param-
eters τ, c3, . . . depend on the temperature (the long-dashed curve in Fig. 7.10).
The temperature at which this curve intersects the critical hypersurface is
the transition temperature Tc.

From this discussion, the universality properties should be apparent. All
systems which belong to a particular part of the parameter space, i.e. to the
region of attraction of a given fixed point, are described by the same power
laws in the vicinity of the critical hypersurface of the fixed point.



7.3 The Renormalization Group 359

∗7.3.5 General RG Transformations in Real Space

A general RG transformation in real space maps a particular spin system {σ}
with the Hamiltonian H{σ}, defined on a lattice, onto a new spin system with
fewer degrees of freedom (by N ′/N = b−d) and a new Hamiltonian H′{σ′}.
It can be represented by a transformation T {σ′, σ}, such that

e−G−H′{σ′} =
∑

{σ}

T {σ′, σ}e−H{σ} (7.3.42)

with the conditions
∑

{σ′}

H′{σ′} = 0 (7.3.43a)

and
∑

{σ′}

T {σ′, σ} = 1 , (7.3.43b)

which guarantee that

e−G Tr {σ′}e−H′{σ′} = Tr {σ}e−H{σ} (7.3.44a)

is fulfilled (Tr {σ} ≡
∑

{σ}). This yields a relation between the free energy F
of the original lattice and the free energy F ′ of the primed lattice:

F ′ + G = F . (7.3.44b)

The constant G is independent of the configuration of the {σ′} and is deter-
mined by equation (7.3.43a).

Important examples of such transformations are decimation transforma-
tions, as well as linear and nonlinear block-spin transformations. The simplest
realization consists of

T {σ′, σ} = Πi′∈Ω′
1
2

(1 + σ′
i′ ti′(σ)) , (7.3.45)

where Ω denotes the lattice sites of the initial lattice and Ω′ those of the new
lattice, and the function ti′(σ) determines the nature of the transformation.
α) Decimation Transformation (Fig. 7.11)

ti′{σ} = ζσi′

b =
√

2 , ζ = b(d−2+η)/2 ,
(7.3.46a)

where ζ rescales the amplitude of the remaining spins.
Then,

⟨σxσ0⟩ = ζ2⟨σ′
x′ σ′

0⟩ .
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Fig. 7.11. A decimation transforma-
tion

β) Linear Block-Spin Transformation (on a triangular lattice, Fig.7.12)

ti′{σ} = p(σ1
i′ + σ2

i′ + σ3
i′ )

b =
√

3 , p =
1
3
(
√

3)
η/2

= 3−1+η/4 .
(7.3.46b)

Fig. 7.12. A block-spin transformati-
on

γ) Nonlinear Block-Spin Transformation

ti′{σ} = p(σ1
i′ + σ2

i′ + σ3
i′ ) + qσ1

i′σ
2
i′σ

3
i′ . (7.3.46c)

An important special case

p = −q =
1
2

, σ′
i′ = sgn(σ1

i′ + σ2
i′ + σ3

i′ ) .

These so called real-space renormalization procedures were introduced by
Niemeijer and van Leeuwen12. The simplified variant given in Sect. 7.3.3 is
from13. The block-spin transformation for a square Ising lattice is described
in14. For a detailed discussion with additional references, we refer to the
article by Niemeijer and van Leeuwen15.
12 Th. Niemeijer and J.M. J. van Leeuwen, Phys. Rev. Lett. 31, 1411 (1973).
13 K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975).
14 M. Nauenberg and B. Nienhuis, Phys. Rev. Lett. 33, 344 (1974).
15 Th. Niemeijer and J.M. J. van Leeuwen, in Phase Transitions and Critical Phe-

nomena Vol. 6, Eds. C. Domb and M. S. Green, p. 425, Academic Press, London
1976.
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∗7.4 The Ginzburg–Landau Theory

7.4.1 Ginzburg–Landau Functionals

The Ginzburg–Landau theory is a continuum description of phase transitions.
Experience and the preceding theoretical considerations in this chapter show
that the microscopic details such as the lattice structure, the precise form of
the interactions, etc. are unimportant for the critical behavior, which mani-
fests itself at distances which are much greater than the lattice constant. Since
we are interested only in the behavior at small wavenumbers, we can go to a
macroscopic continuum description, roughly analogous to the transition from
microscopic electrodynamics to continuum electrodynamics. In setting up the
Ginzburg–Landau functional, we will make use of an intuitive justification; a
microscopic derivation is given in Appendix E. (see also problem 7.15).

We start with a ferromagnetic system consisting of Ising spins (n = 1) on
a d-dimensional lattice. The generalization to arbitrary dimensions is interest-
ing for several reasons. First, it contains the physically relevant dimensions,
three and two. Second, it may be seen that certain approximation methods
are exact above four dimensions; this gives us the possibility of carrying out
perturbation expansions around the dimension four (Sect. 7.4.5).

Instead of the spins Sl on the lattice, we introduce a continuum magne-
tization

m(x) =
1

Ñad
0

∑

l

g(x − xl)Sl . (7.4.1)

Here, g(x − xl) is a weighting function, which is equal to one within a cell
with Ñ spins and is zero outside it. The linear dimension of this cell, ac, is
supposed to be much larger than the lattice constant a0 but much smaller
than the length L of the crystal, i.e. a0 ≪ ac ≪ L. The function g(x − xl)
is assumed to vary continuously from the value 1 to 0, so that m(x) is a
continuous function of x; see Fig. 7.13.

Fig. 7.13. The weighting function
g(y) along one of the d cartesian co-
ordinates

Making use of
∫

ddxg(x − xl) = Ñad
0
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and of the definition (7.4.1), we can rewrite the Zeeman term as follows:

∑

l

hSl = h
∑

l

1
Ñad

0

∫
ddxg(x − xl)Sl =

∫
ddxhm(x) . (7.4.2)

From the canonical density matrix for the spins, we obtain the probability
density for the configurations m(x). Generally, we have

P [m(x)] =
〈
δ
(
m(x) − 1

Ñad
0

∑

l

g(x − xl)Sl

)〉
. (7.4.3)

For P [m(x)], we write

P [m(x)] ∝ e−F [m(x)]/kT , (7.4.4)

in which the Ginzburg–Landau functional F [m(x)] enters; it is a kind of
Hamiltonian for the magnetization m(x). The tendency towards ferromag-
netic ordering due to the exchange interaction must express itself in the form
of the functional F [m(x)]

F [m(x)] =
∫

ddx
(
am2(x) +

b

2
m4(x) + c

(
∇m(x)

)2 − hm(x)
)

. (7.4.5)

In the vicinity of Tc, only configurations of m(x) with small absolute values
should be important, and therefore the Taylor expansion (7.4.5) should be
allowed. Before we turn to the coefficients in (7.4.5), we make a few remarks
about the significance of this functional.

Due to the averaging (7.4.1), short-wavelength variations of Sl do not con-
tribute to m(x). The long-wavelength variations, however, with wavelengths
larger than az, are reflected fully in m(x). The partition function of the mag-
netic system therefore has the form

Z = Z0(T )
∫

D[m(x)]e−F [m(x)]/kT . (7.4.6)

Here, the functional integral
∫
D[m(x)] . . . refers to a sum over all the pos-

sible configurations of m(x) with the probability density e−F [m(x)]/kT . One
can represent m(x) by means of a Fourier series, obtaining the sum over
all configurations by integration over all the Fourier components. The fac-
tor Z0(T ) is due to the (short-wavelength) configurations of the spin system,
which do not contribute to m(x). The evaluation of the functional integral
which occurs in the partition function (7.4.6) is of course a highly nontrivial
problem and will be carried out in the following Sections 7.4.2 and 7.4.5 using
approximation methods. The free energy is

F = −kT log Z . (7.4.7)
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We now come to the coefficients in the expansion (7.4.5). First of all, this
expansion took into account the fact that F [m(x)] has the same symmetry as
the microscopic spin Hamiltonian, i.e. aside from the Zeeman term, F [m(x)]
is an even function of m(x). Owing to (7.4.2), the field h expresses itself only
in the Zeeman term, −

∫
ddxh m(x), and the coefficients a, b, c are indepen-

dent of h. For reasons of stability, large values of m(x) must have a small
statistical weight, which requires that b > 0. If for some system b ≤ 0, the
expansion must be extended to higher orders in m(x). These circumstances
occur in first-order phase transitions and at tricritical points. The ferromag-
netic exchange interaction has a tendency to orient the spins uniformly. This
leads to the term c∇m∇m with c > 0, which suppresses inhomogeneities in
the magnetization.

Finally, we come to the values of a. For h = 0 and a uniform m(x) = m,
the probability weight e−βF is shown in Fig. 7.14.

Fig. 7.14. The probability density e−βF as a function of a uniform magnetization.
(a) For a > 0 (T > T 0

c ) and (b) for a < 0 (T < T 0
c )

When a > 0, then the most probable configuration is m = 0; when a < 0,
then the most probable configuration is m ̸= 0. Thus, a must change its sign,

a = a′(T − T 0
c ) , (7.4.8)

in order for the phase transition to occur. Due to the nonlinear terms and to
fluctuations, the real Tc will differ from T 0

c . The coefficients b and c are finite
at T 0

c .
If one starts from a Heisenberg model instead of from an Ising model, the

replacements

Sl → Sl and m(x) → m(x)

m4(x) →
(
m(x)2

)2
, (∇m)2 → ∇αm∇αm .

(7.4.9)

must be made, leading to Eq. (7.4.10). Ginzburg–Landau functionals can
be introduced for every type of phase transition. It is also not necessary to
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attempt a microscopic derivation: the form is determined in most cases from
knowledge of the symmetry of the order parameter. Thus, the Ginzburg–
Landau theory was first applied to the case of superconductivity long before
the advent of the microscopic BCS theory. The Ginzburg–Landau theory was
also particularly successful in treating superconductivity, because here simple
approximations (see Sect. 7.4.2) are valid even close to the transition (see also
Sect. 7.4.4).

7.4.2 The Ginzburg–Landau Approximation

We start with the Ginzburg–Landau functional for an order parameter with
n components, m(x), n = 1, 2, . . . ,:

F [m(x)] =
∫

ddx
[
am2(x)+

1
2
b(m(x)2)2 +c(∇m)2−h(x)m(x)

]
. (7.4.10)

The integration extends over a volume Ld. The most probable configuration
of m(x) is given by the stationary state which is determined by

δF
δm(x)

= 2
(
a + bm(x)2 − c∇2

)
m(x) − h(x) = 0 . (7.4.11)

Let h be independent of position and let us take h to lie in the x1-direction
without loss of generality, h = he1, (h ≷ 0); then the uniform solution is
found from

2
(
a + bm2

)
m − he1 = 0 . (7.4.12)

We discuss special cases:

(i) h → 0 : spontaneous magnetization and specific heat
When there is no applied field, (7.4.12) has the following solutions:

m = 0 for a > 0

(m = 0) and m = ±e1m0, m0 =
√

−a

b
for a < 0 .

(7.4.13)

The (Gibbs) free energy for the configurations (7.4.13) is16

F (T, h = 0) = F [0] = 0 for T > T 0
c (7.4.14a)

F (T, h = 0) = F [m0] = −1
2

a2

b
Ld for T < T 0

c . (7.4.14b)

16 Instead of really computing the functional integral
R
D[m(x)]e−F[m(x)]/kT as is

required by (7.4.6) and (7.4.7) for the determination of the free energy, m(x)
was replaced everywhere by its most probable value.



∗7.4 The Ginzburg–Landau Theory 365

We will always leave off the regular term Freg = −kT log Z0. The state m = 0
would have a higher free energy for T < T 0

c than the state m0; therefore,
m = 0 was already put in parentheses in (7.4.13). For T < T 0

c , we thus
find a finite spontaneous magnetization. The onset of this magnetization is
characterized by the critical exponent β, which here takes on the value β = 1

2
(Fig. 7.15).

Fig. 7.15. The spontaneous magnetization
in the Ginzburg–Landau approximation

Specific Heat
From (7.4.14a,b), we immediately find the specific heat

Ldch=0 = T

(
∂S

∂T

)

h=0

= −T

(
∂2F

∂T 2

)

h=0

=

{
0 T > T 0

c

T a′2

b Ld T < T 0
c

, (7.4.15)

with a′ from (7.4.8). The specific heat exhibits a jump

∆ch=0 = T 0
c

a′2

b
, (7.4.16)

and the critical exponent α is therefore zero (see Eq. (7.1.1)), α = 0.
(ii) The equation of state for h > 0 and the susceptibility
We decompose m into a longitudinal part, e1m1, and a transverse part,
m⊥ = (0, m2, ..., mn). Evidently, Eq. (7.4.12) gives

m⊥ = 0 (7.4.17)

and the magnetic equation of state

h = 2(a + bm2
1)m1 . (7.4.18)

We can simplify this in limiting cases:
α) T = T 0

c

h = 2bm3
1 i.e. δ = 3 . (7.4.19)

β) T > T 0
c

m1 =
h

2a
+ O(h3) . (7.4.20)
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γ) T < T 0
c

m1 = m0 sgn (h) + ∆m yields

m1 = m0 sgn (h) +
h

4bm2
0

+ O
(
h2sgn(h)

)

= m0 sgn(h) +
h

−4a
+ O

(
h2sgn(h)

)
. (7.4.21)

We can now also calculate the magnetic susceptibility for h = 0, either by
differentiating the equation of state (7.4.18)

2
(
a + 3bm2

1

)∂m1

∂h
= 1

or directly, by inspection of (7.4.20) and (7.4.21). It follows that the isother-
mal susceptibility is given by

χT =
(

∂m1

∂h

)

T

=

{
1
2a T > T 0

c
1

4|a| T < T 0
c

. (7.4.22)

The critical exponent γ has, as in molecular field theory, a value of γ = 1.

7.4.3 Fluctuations in the Gaussian Approximation

7.4.3.1 Gaussian Approximation

Next we want to investigate the influence of fluctuations of the magnetization.
To this end, we first expand the Ginzburg–Landau functional in terms of the
deviations from the most probable state up to second order

m(x) = m1e1 + m′(x) , (7.4.23)

where

m′(x) = L−d/2
∑

k∈B

mkeikx (7.4.24)

characterizes the deviation from the most probable value. Because of the
underlying cell structure, the summation over k is restricted to the Brillouin
zone B : − π

ac
< ki < π

ac
. The condition that m(x) be real yields

m∗
k = m−k . (7.4.25)

A) T > T 0
c and h = 0 :

In this region, m1 = 0, and the Fourier series (7.4.24) diagonalizes the har-
monic part Fh of the Ginzburg–Landau functional
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Fh =
∫

ddx
(
am′2 + c(∇m′)2

)
=

∑

k

(a + ck2)mkm−k . (7.4.26)

We can now readily calculate the partition function (7.4.6) in the Gaussian
approximation above T 0

c :

ZG = Z0

∫ ∏

k

dmke−βFh . (7.4.27)

We decompose mk into real and imaginary parts, finding for each k and each
of the n components of mk a Gaussian integral, so that

ZG = Z0

∏

k

(√
π

β(a + ck2)

)n

(7.4.28)

results, and thus the free energy (the stationary solution m1 = 0 makes no
contribution) is

F (T, 0) = F0 − kT
n

2

∑

k

log
π

β(a + ck2)
. (7.4.29)

The specific heat, using
∑

k · · · = V
(2π)d

∫
ddk . . . and Eq. (7.4.8), is then

ch=0 = −T
∂2F/Ld

∂T 2
= k

n

2
(Ta′)2

∫
ddk

(2π)d

1
(a + ck2)2

+ . . . . (7.4.30)

The dots stand for less singular terms. We define the quantity

ξ =
√

c

a
=

( c

a′

)1/2
(T − T 0

c )−1/2
, (7.4.31)

which diverges in the limit T → T 0
c and will be found to represent the cor-

relation length in the calculation of the correlation function (7.4.47). By
introducing q = ξk into (7.4.30) as a new integration variable, we find the
singular part of the specific heat

csing.
h=0 = Ã+ξ4−d (7.4.32)

with the amplitude

Ã+ = k
n

2

(
Ta′

c

)2 ∫

q<Λξ

ddq

(2π)d

1
(1 + q2)2

. (7.4.33)

Here, the radius Λ of the Brillouin sphere enters; it is introduced at the end of
Appendix E. The amplitude Ã+ characterizes the strength of the singularity
above Tc. Here and in the following, d-dimensional integrals of the type
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∫
ddk

(2π)d
f(k2) =

∫
dΩd

(2π)d

∫
dk kd−1 f(k2) (7.4.34a)

occur, where

Kd ≡
∫

dΩd

(2π)d
=

(
2d−1 πd/2 Γ

(d

2

))−1

(7.4.34b)

is the surface of a d-dimensional unit sphere divided by (2π)d. In the further
evaluation of (7.4.32) and (7.4.33), the three cases
d < 4, d = 4, d > 4 must be distinguished:

d < 4

Z Λξ

0

dq
qd−1

(1 + q2)2
=

Z ∞

0

dq
qd−1

(1 + q2)2
−
Z ∞

Λξ

dq qd−5

| {z }
(Λξ)d−4

= finite + O
“
(Λξ)d−4

”

d = 4

Z Λξ

0

dq
q3

(1 + q2)2
∼
Z Λξ dq

q
∼ log Λξ

d > 4

Z Λξ

0

dq

„
qd−1

(1 + q2)2
− qd−5

«
+

Z Λξ

0

dq qd−5

= −
Z Λξ

0

dq
qd−5 + 2qd−3

(1 + q2)2
+

1
d − 4

(Λξ)d−4 .

The overall result is summarized in (7.4.35):

csing
h=0 =

⎧
⎪⎪⎨

⎪⎪⎩

A+(T − T 0
c )−

4−d
2 d < 4

∼ log(T − T 0
c ) d = 4

A − B(T − T 0
c )

d−4
2 d > 4 .

(7.4.35)

For d ≤ 4, the specific heat diverges at Tc; for d > 4, it exhibits a cusp. The
amplitude A+ for d < 4 is given by

A+ =
n

2
T 2

(
a′

c

) d
2

Kd

∫ ∞

0
dq

qd−1

(1 + q2)2
. (7.4.36)

Below d = 4, the critical exponent of the specific heat is (ch=0 ∼ (T − Tc)
−α)

α =
1
2
(4 − d) ; (7.4.37)
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in particular, for d = 3 in the Gaussian approximation, α = 1
2 . Comparison

with exact results and experiments shows that the Gaussian approximation
overestimates the fluctuations.

B) T < T 0
c

Now we turn to the region T < T 0
c and distinguish between the longitudinal

(m1) and the transverse components (mi)

m1(x) = m1 + m′
1(x) , mi(x) = m′

i(x) for i ≥ 2 (7.4.38)

with the Fourier components m′
1k and m′

ik, where the latter are present only
for n ≥ 2. In the present context, including non-integer values of d, vectors
will be denoted by just x, etc. From (7.4.10), we find for the Ginzburg–Landau
functional in second order in the fluctuations:

Fh[m] = F [m1] +
∑

k

[(
−2a +

3h

2m1
+ O(h2) + ck2

)
|m′

1k|
2

+
( h

2m1
+ ck2

) ∑

i≥ 2

|mik|2
]

.

(7.4.39)

To arrive at this expression, the following ancillary calculation was used:

a
“
m2

1 + 2m1m
′
1 + m

′2
1 + m2

⊥

”

+
b
2

“
m4

1 + 4m3
1m

′
1 + 6m2

1m
′2
1 + 2m2

1m
2
⊥

”
− h(m1 + m′

1)

= am2
1 +

b
2
m4

1 − hm1 +
`
a + 3bm2

1

´
m

′2
1 +

`
a + bm2

1

´
| {z }

h
2m1

m2
⊥ .

Analogously to the computation leading from (7.4.26) to (7.4.29), we find for
the free energy of the low-temperature phase at h = 0

F (T, 0) = F0(T, h) + FG.L.(T, 0)−

− 1
2
kT
X

k

ȷ
log

π
β(2|a| + ck2)

+ (n − 1) log
π

βck2

ff
.

(7.4.40)

The first term results from Z0; the second from F [m1], the stationary solution
considered in the Ginzburg–Landau approximation; the third term from the
longitudinal fluctuations; and the fourth from the transverse fluctuations. The
latter do not contribute to the specific heat, since their energy is temperature
independent for h = 0:

ch=0 = T
a

′2

b
+ Ã−ξ4−d = T

a
′2

b
+ A− (Tc − T )−

4−d
2 , (7.4.41)

where the low-temperature correlation length
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ξ =

(√
2|a|
c

)−1

=
( c

2a′

)1/2
(T 0

c − T )−1/2
, T < T 0

c (7.4.42)

is to be inserted. The amplitudes in (7.4.23) and (7.4.41) obey the relations

Ã− =
4
n

Ã+ , A− =
2d/2

n
A+ . (7.4.43)

The ratio of the amplitudes of the singular contribution to the specific heat
depends only on the number of components n and the spatial dimension d,
and is in this sense universal. The transverse fluctuations do not contribute
to the specific heat below Tc ; therefore, the factor 1

n enters the amplitude
ratio.

7.4.3.2 Correlation Functions

We now calculate the correlation functions in the Gaussian approximation.
We start by considering T > T 0

c . In order to calculate this type of quantity,
with which we shall meet up repeatedly later, we introduce the generating
functional

Z[h] =
1

ZG

∫ ∏

k

dmk e−βFh+
P

hkm−k

=
1

ZG

∫ ∏

k

dmk e−β
P

k(a+ck2)|mk|2+hkm−k .
(7.4.44)

To evaluate the Gaussian integrals in (7.4.44), we introduce the substitution

m̃k = mk − 1
2β

(a + ck2)−1
hk , (7.4.45)

obtaining

Z[h] = exp
[

1
4β

∑

k

1
a + ck2

hkh−k

]
. (7.4.46)

Evidently,

⟨mkm−k′⟩ =
∂2

∂h−k∂hk′
Z[h]

∣∣∣∣
h=0

,

from which we find the correlation function by making use of (7.4.46):

⟨mkm−k′⟩ = δkk′
1

2β(a + ck2)
≡ δk,k′G(k) . (7.4.47)
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Here, we have taken into account the fact that in the sum over k in (7.4.46),
each term hkh−k = h−khk occurs twice. From the last equation, the mean-
ing of the correlation length (7.4.31) becomes clear, since in real space,
Eq. (7.4.47) gives

⟨m(x)m(x′)⟩ =
1
Ld

∑

k

eik(x−x′) 1
2β(a + ck2)

=
∫

ddk

(2π)d

eik(x−x′)

2βc(ξ−2 + k2)

=
ξ2−d

2βc

∫

q<Λξ

ddq

(2π)d

eiq(x−x′)/ξ

1 + q2
.

(7.4.48)

The correlation length is characterized by the critical exponent ν = 1
2 . For

T = T 0
c , one can see immediately from the second expression that

⟨m(x)m(x′)⟩ ∼ 1
|x − x′|d−2

, (7.4.49)

i.e. the exponent η introduced in (7.2.13) is zero in this approximation: η = 0.
In three dimensions, we find from (7.4.48) the Ornstein–Zernike correlation
function:

⟨m(x)m(x′)⟩ =
1

8πβc

e−r/ξ

r
, r = |x − x′| . (7.4.50)

Remark: The correlation function (7.4.47) obeys

lim
k→0

G(k) = kTχT , (7.4.51)

where χT is the isothermal susceptibility (7.4.22a).

For T < T 0
c we distinguish for n > 1 between the longitudinal correlation

function and the transverse (i ≥ 2) correlation function:

G∥(k) =
〈
m′

1km′
1−k

〉
and G⊥ (k) = ⟨mikmi−k⟩ . (7.4.52)

For n = 1, only G∥(k) is relevant. From (7.4.39), it follows in analogy to
(7.4.47) that

G∥(k) =
1

2β[−2a + 3h
2m1

+ ck2]
h→0−→ 1

2β[2a′(T 0
c − T ) + ck2]

(7.4.53)

and

G⊥ (k) =
1

2β[ h
2m1

+ ck2]
h→0−→ 1

2βck2
(7.4.54a)

G⊥ (0) =
Tm1

h
. (7.4.54b)
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The divergence of the transverse susceptibility (correlation function)
(7.4.54a) at h = 0 is a result of rotational invariance, owing to which it
costs no energy to rotate the magnetization.

We first want to summarize the results of the Gaussian approximation,
then treat the limits of its validity, and finally, in Sect. 7.4.4.1, to discuss the
form of the correlation functions below T 0

c in a more general way.
In summary for the critical exponents, we have:

αFluct = 2 − d

2
, β =

1
2

, γ = 1 , δ = 3 , ν =
1
2

, η = 0 (7.4.55)

and for the amplitude ratios of the specific heat, the longitudinal correlation
function and the isothermal susceptibility:

Ã+

Ã−
=

n

4
,

C̃+

C̃−
= 1 , and

C+

C−
= 2 . (7.4.56)

The amplitudes are defined in (7.4.32), (7.4.41), (7.4.57), and (7.4.58):

G(k) = C̃±
ξ2

1 + (ξk)2
, C̃± =

1
2βc

, (7.4.57)

χ = C± |T − Tc|−1 , T ≷ Tc . (7.4.58)

7.4.3.3 Range of Validity of the Gaussian Approximation

The range of validity of the Gaussian approximation and of more elabo-
rate perturbation-theoretical calculations can be estimated by comparing the
higher orders with lower orders. For example, the fourth order must be much
smaller than the second, or the Gaussian contribution to the specific heat
must be smaller than the stationary value. The Ginzburg–Landau approxi-
mation is permissible if the fluctuations are small compared to the stationary
value, i.e. from Eqns. (7.4.16) and (7.4.41),

∆c ≫ ξ4−d

(
Ta′

c

)2

N , (7.4.59)

where N is a numerical factor. Then we require that

τ (4−d)/2 ≫ N
ξd
0∆c

(7.4.60)

with τ = T−T 0
c

T 0
c

and ξ0 =
√

c
a′T 0

c
.

For dimensions d < 4, the Ginzburg–Landau approximation fails near
T 0

c . From (7.4.60), we find a characteristic temperature τGL = ( N
ξd
0∆c

)2/(4−d),
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Table 7.3. The correlation length and the critical region

Superconductors17 ξ0 ∼ 103 Å τGL = 10−10 − 10−14

Magnets ξ0 ∼ Å τGL ∼ 10−2

λ−Transition ξ0 ∼ 4 Å τGL ∼ 0.3

the so called Ginzburg–Levanyuk temperature; it depends on the Ginzburg–
Landau parameters (see Table 7.3).

In this connection, dc = 4 appears as a limiting dimension (upper criti-
cal dimension). For d < 4, the Ginzburg–Landau approximation fails when
τ < τGL. It is then no longer sufficient to add the fluctuation contribution;
instead, one has to take interactions between the fluctuations into account.
Above four dimensions, the corrections to the Gaussian approximation on
approaching T 0

c become smaller, so that there, the Gaussian approximation
applies. For d > 4, the exponent of the fluctuation contribution is negative,
from Eq. (7.4.35): αFluct < 0. Then the ratio can be ch=0(T 0

c )
∆c ≷ 1.

7.4.4 Continuous Symmetry and Phase Transitions of First Order

7.4.4.1 Susceptibilities for T < Tc

A) Transverse Susceptibility
We found for the transverse correlation function(7.4.54a) that G⊥ (k) =

1
2β[ h

2m1
+ck2]

and we now want to show that the relation G⊥ (0) = Tm1
h is

a general result of rotational invariance. To this end, we imagine that an
external field h acts on a ferromagnet. Now we investigate the influence of
an additional infinitesimal, transverse field δh which is perpendicular to h

√
(h + δh)2 =

√
h2 + δh2 = h +

δh2

2h
+ . . . .

Thus, the magnitude of the field is changed by only O(δh2); for a small δh,
this is equivalent to a rotation of the field through the angle δh

h (Fig. 7.16).

Fig. 7.16. The field h and the addi-
tional, infinitesimal transverse field δh

17 According to BCS theory, ξ0 ∼ 0.18 !vF
kTc

. In pure metals, m = me, vF = 108 cm
s , Tc

is low, ξ0 = 1000 − 16.000 Å. The A-15 compounds Nb3Sn and V3Ga have flat
bands, so that m is large, vF = 106 cm

s , Tc is higher, and ξ0 = 50 Å. The situation
is different in high-Tc superconductors; there, ξ0 ∼ Å.
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The magnetization rotates through the same angle; this means that δm
m = δh

h ,
and we obtain for the transverse susceptibility,

χ⊥ ≡ δm

δh
=

m

h
. (7.4.61)

The transverse correlation function in the Gaussian approximation (7.4.54a)
is in agreement with this general result.

Remarks concerning the spatial dependence of the transverse correlation func-
tion G⊥ (r):

(i)

G⊥ (r, h = 0) =
1

2βc

∫
ddk

(2π)d

eikx

k2
= Ad

(
ξ⊥
r

)d−2

, ξ⊥ = (2βc)−
1

d−2

(7.4.62)

Employing the volume element dd k = dkkd−1(sin θ)d−2dθdΩd−1, the integral
in (7.4.62) becomes

Ωd−1

(2π)d

∫ ∞

0
dkkd−1 1

2βck2

∫ π

0
eikr cos θ(sin θ)d−2dθ

=
Kd−1

2βc 2π

∫ ∞

0
dk kd−3Γ

(
d

2
− 1

2

)
Γ

(
1
2

)
2

d
2−1

J d
2−1(kr)

(kr)
d
2−1

∼ r−(d−2) . 18

For dimensional reasons, G⊥ (r) must be of the form

G⊥ (r) ∼ M2

(
ξ

r

)d−2

,

i.e. the transverse correlation length from Eq. (7.4.62) is

ξ⊥ = ξM
2

d−2 ∝ τ−ντ
2β

d−2 = την/(d−2) , (7.4.63)

where the exponent was rearranged using the scaling relations.
(ii) We also compute the local transverse fluctuations of the magnetization
from

G⊥ (r = 0) ∼
∫ Λ

0

dk kd−1

h
2m1

+ ck2
∼

[√
2m1

h
c

]−d+2 ∫ q
2m1

h c Λ

0
dq

qd−1

1 + q2

18 I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products (Aca-
demic Press, New York 1980), Eq. 8.411.7
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and consider the limit h → 0: the result is

finite for d > 2

log h for d = 2

(
m1
h

) 2−d
2 h→0−→ ∞ if m1 ̸= 0 for d < 2 .

For d ≤ 2, the transverse fluctuations diverge in the limit h → 0. As a result,
for d ≤ 2, we must have m1 = 0.

B) Longitudinal Correlation Function
In the Gaussian approximation, we found for T < Tc in Eq. (7.4.54a) that

lim
k→0

lim
h→0

G∥(k) =
1

−4βa

as for n = 1 . In fact, one would expect that the strong transverse fluctuations
would modify the behavior of G∥(k). Going beyond the Gaussian approxi-
mation, we now calculate the contribution of orientation fluctuations to the
longitudinal fluctuations. We consider a rotation of the magnetization at the
point x and decompose the change δm into a component δm1 parallel and
a vector δm⊥ perpendicular to m0 (Fig. 7.17). The invariance of the length
yields the condition

m2
0 = m2

0 + 2m0δm1 + δm2
1 + (δm⊥ )2 ;

and it follows from this owing to |δm1| ≪ m0 that

δm1 = − 1
2m0

(δm⊥ )2 . (7.4.64)

Fig. 7.17. The rotation of the spontaneous magnetiza-
tion in isotropic systems

For the correlation of the longitudinal fluctuations, one obtains from this
the following relation to the transverse fluctuations:

⟨δm1(x)δm1(0)⟩ =
1

4m2
0

〈
δm⊥

2(x)δm⊥
2(0)

〉
. (7.4.65)

We now factor this correlation function into the product of two transverse cor-
relation functions, Eq. (7.4.54a), and obtain from it the Fourier-transformed
longitudinal correlation function
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G∥(k = 0) =
∫

ddx
e−2r/

√
m1
h

r(d−2)2
∼

(√
h

m1

)d−4

∼ h
d
2−2 . (7.4.66)

In three dimensions, we find from this for the longitudinal susceptibility

kT
∂m1

∂h
= G∥(k = 0) ∼ h− 1

2 . (7.4.66′)

In the vicinity of the critical point Tc, we found m ∼ h
1
δ (see just after

Eq. (7.2.4b)); in contrast to (7.4.66), this yields

∂m1

∂h
∼ h− δ−1

δ .

In isotropic systems, the longitudinal susceptibility is not just singular only
in the critical region, but instead in the whole coexistence region for h → 0
(cf. Fig. 7.18). This is a result of rotational invariance.

Fig. 7.18. Singularities in
the longitudinal susceptibility
in systems with internal rota-
tional symmetry, n ≥2

C) Coexistence Singularities

The term coexistence region denotes the region of the phase diagram with
a finite magnetization in the limiting case of h → 0. The coexistence sin-
gularities found in (7.4.54a), (7.4.62), and (7.4.66) for isotropic systems are
exactly valid. This can be shown as follows: for T < T 0

c , the Ginzburg–Landau
functional can be written in the form

F [m] =
∫

ddx

(
1
2
b

(
m2 − |a|

b

)2

+ (∇m)2 − hm − |a|2

2b

)

=
∫

ddx

(
1
2
b
(
m2

1 + 2m1m
′
1(x) + m′

1(x)2 + m′
⊥ (x)2 − |a|

b

)2

+ c
(
∇m′

1(x)
)2 + c

(
∇m′

⊥ (x)
)2 − h

(
m1 + m′

1(x)
)
− |a|2

2b

)
.

(7.4.67)

In this expression, we have inserted (7.4.38) and have combined the com-
ponents m′

i(x), i ≥ 2 into a vector of the transverse fluctuations m′
⊥ (x) =

(0, m′
2(x), . . . , m′

n(x)). Using (7.4.18) and m′
1(x) ≪ m1, one obtains
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F [m] =
∫

ddx

(
1
2
b
(
2m1m

′
1 + m′2

⊥ +
h

2bm1

)2

+ c
(
∇m′

1

)2 + c
(
∇m′

⊥
)2 − h

(
m1 + m′

1

)
− |a|2

2b

)
.

(7.4.68)

The terms which are nonlinear in the transverse fluctuations are absorbed
into the longitudinal terms by making the substitution

m′
1 = m′′

1 − m′2
⊥

2m1
: (7.4.69)

F [m] =
∫

ddx
(
2bm2

1m
′′
1
2 + c

(
∇m′′

1

)2

+
h

2m1
m′2

⊥ + c
(
∇m′

⊥
)2 − hm1 +

h2

8bm2
1

− |a|2

2b

)
.

(7.4.70)

The final result for the free energy is harmonic in the variables m′′
1 and

m′
⊥ . As a result, the transverse propagator in the coexistence region is given

exactly by (7.4.54a). The longitudinal correlation function is

⟨m′
1(x)m′

1(0)⟩C = ⟨m′′
1(x)m′′

1 (0)⟩ +
1

4m2
1

〈
m′

⊥ (x)2m′
⊥ (0)2

〉
C

. (7.4.71)

In equation (7.4.70), terms of the form (∇m′2
⊥

m1
)2 and ∇m′′

1∇
m′2

⊥
m1

have been
neglected.

The second term in (7.4.69) leads to a reduction of the order parameter

−⟨m′2
⊥⟩

2m1
. Eq. (7.4.71) gives the cumulant, i.e. the correlation function of the

deviations from the mean value. Since (7.4.70) now contains only harmonic
terms, the factorization of the second term in the sum in (7.4.71) is exact, as
used in Eq. (7.4.65). One could still raise the objection to the derivation of
(7.4.71) that a number of terms were neglected. However, using renormaliza-
tion group theory19 , it can be shown that the anomalies of the coexistence
region are described by a low-temperature fixed point at which m0 = ∞.
This means that the result is asymptotically exact.

7.4.4.2 First-Order Phase Transitions

There are systems in which not only the transition from one orientation of
the order parameter to the opposite direction is of first order, but also the
transition at Tc. This means that the order parameter jumps at Tc from
zero to a finite value (an example is the ferroelectric transition in BaTiO3).
This situation can be described in the Ginzburg–Landau theory, if b < 0,
19 I. D. Lawrie, J. Phys. A14, 2489 (1981); ibid., A18, 1141 (1985); U.C. Täuber

and F. Schwabl, Phys. Rev. B46, 3337 (1992).
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and if a term of the form 1
2vm6 with v > 0 is added for stability. Then the

Ginzburg–Landau functional takes the form

F =
∫

ddx
{

am2 + c
(
∇m

)2 +
1
2
bm4 +

1
2
vm6

}
, (7.4.72)

where a = a′(T − T 0
c ). The free energy density is shown in Fig. 7.19 for a

uniform order parameter.

Fig. 7.19. The free energy density
in the vicinity of a first-order phase
transition at temperatures T < T 0

c ,
T ≈ T 0

c , T = Tc, T < T1, T > T1

For T > T1, there is only the minimum at m = 0, that is the non-ordered
state. At T1, a second relative minimum appears, which for T ≤ Tc finally
becomes deeper than that at m = 0. For T < T 0

c , the m = 0 state is unstable.
The stationarity condition is

(
a + bm2 + 3

v

2
m4

)
m = 0 , (7.4.73)

and the condition that a minimum is present is

1
2

∂2f

∂m2
= a + 3bm2 + 15

v

2
m4 > 0 . (7.4.74)

The solutions of the stationarity condition are

m0 = 0 (7.4.75a)

and

m2
0 = − b

3v

+
(−)

(
b2

9v2
− 2a

3v

)1/2

. (7.4.75b)

We recall that b < 0. The nonzero solution with the minus sign corresponds
to a maximum in the free energy and will be left out of further consideration.
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The minimum (7.4.75b) exists for all temperatures for which the discriminant
is positive, i.e. below the temperature T1

T1 = T 0
c +

b2

6va′ . (7.4.76)

T1 is the superheating temperature (see Fig. 7.19 and below). The transition
temperature Tc is found from the condition that the free energy for (7.4.75b)
is zero. At this temperature (see Fig. 7.19), the free energy has a double zero
at m2 = m2

0 and thus has the form

v

2
(
m2 − m2

0

)2
m2 =

(
a +

b

2
m2 +

v

2
m4

)
m2

=
(

v

2

(
m2 +

b

2v

)2

− b2

8v
+ a

)
m2 = 0 .

It follows from this that a = b2

8v and m2 = − b
2v , which both lead to

Tc = T 0
c +

b2

8va′ . (7.4.77)

For T < T 0
c , there is a local maximum at m = 0. T 0

c plays the role of a
supercooling temperature. In the range T 0

c ≤ T ≤ T1, both phases can thus
coexist, i.e. the supercooling or superheating of a phase is possible. Since for
T 0

c ≤ T < Tc, the non-ordered phase (m0 = 0) is metastable; for T1 ≥ T > Tc,
in contrast, the ordered phase (m0 ̸= 0) is metastable. On slow cooling, so
that the system attains the state of lowest free energy, m0 jumps at Tc from
0 to

m2
0(Tc) = − b

3v
+

(
b2

9v2
− b2

12v2

)1/2

= − b

2v
, (7.4.78)

and, below Tc, it has the temperature dependence (Fig. 7.20)

m2
0(T ) =

2
3
m2

0(Tc)

[
1 +

√

1 − 3
4

(T − T 0
c )

(Tc − T 0
c )

]
.

Fig. 7.20. The temperature depen-
dence of the magnetization in a first-
order phase transition
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∗7.4.5 The Momentum-Shell Renormalization Group

The RG theory can also be carried out in the framework of the G–L func-
tional, with the following advantages compared to discrete spin models: the
method is also practicable in higher dimensions, and various interactions and
symmetries can be treated. One employs an expansion of the critical expo-
nents in ϵ = 4 − d. Here, we cannot go into the details of the necessary
perturbation-theoretical techniques, but rather just show the essential struc-
ture of the renormalization group recursion relations and their consequences.
For the detailed calculation, the reader is referred to more extensive descrip-
tions20,21 and to the literature at the end of this chapter.

7.4.5.1 Wilson’s RG Scheme

We now turn to the renormalization group transformation for the Ginzburg–
Landau functional (7.4.10). In order to introduce the notation which is usual
in this context, we carry out the substitutions

m =
1√
2c

φ , a = rc , b = uc2 and h →
√

2ch , (7.4.79)

and obtain the so called Landau–Ginzburg–Wilson functional:

F [φ] =
∫

ddx
[r

2
φ2 +

u

4
(φ2)2 +

1
2
(∇φ)2 − hφ

]
. (7.4.80)

An intuitively appealing method of proceeding was proposed by K. G. Wil-
son20,21. Essentially, the trace over the degrees of freedom with large k in
momentum space is evaluated, and one thereby obtains recursion relations
for the Ginzburg–Landau coefficients. Since it is to be expected that the
detailed form of the short-wavelength fluctuations is not of great importance,
the Brillouin zone can be approximated as simply a d-dimensional sphere of
radius (cutoff) Λ, Fig. 7.21.

Fig. 7.21. The momentum-space RG: the par-
tial trace is performed over the Fourier com-
ponents φk with momenta within the shell
Λ/b < |k| < Λ

20 Wilson, K.G. and Kogut, J., Phys. Rep. 12 C, 76 (1974).
21 S. Ma, Modern Theory of Critical Phenomena, Benjamin, Reading, 1976.
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The momentum-shell RG transformation then consists of the following
steps:

(i) Evaluating the trace over all the Fourier components φk with
Λ/b < |k| < Λ (Fig. 7.21) eliminates these short-wavelength modes.

(ii) By means of a scale transformation22

k′ = bk , (7.4.81)

φ′ = bζφ , (7.4.82)

and therefore

φ′
k′ = bζ−dφk , (7.4.83)

the resulting effective Hamiltonian functional can be brought into a form re-
sembling the original model, whereby effective scale-dependent coupling pa-
rameters are defined. Repeated application of this RG transformation (which
represents a semigroup, since it has no inverse element) discloses the pre-
sumably universal properties of the long-wavelength regime. As in the real-
space renormalization group transformation of Sect. 7.3.3, the fixed points
of the transformation correspond to the various thermodynamic phases and
the phase transitions between them. The eigenvalues of the linearized flow
equations in the vicinity of the critical fixed point finally yield the critical
exponents (see (7.3.41a,b,c)). Although a perturbational expansion (in terms
of u) is in no way justifiable in the critical region, it is completely legitimate
at some distance from the critical point, where the fluctuations are negli-
gible. The important observation is now that the RG flow connects these
quite different regions, so that the results of the perturbation expansion in
the non-critical region can be transported to the vicinity of Tc, whereby the
non-analytic singularities are consistently, controllably, and reliably taken
into account by this mapping. Perturbation-theoretical methods can likewise
be applied in the elimination of the short-wavelength degrees of freedom
(step (i)).

7.4.5.2 Gaussian Model

We will now apply the concept described in the preceding section first to the
Gaussian model, where u = 0 (see Sect. 7.4.3),

22 If one considers (7.4.83) together with the field term in the Ginzburg–Landau
functional (7.4.10), then it can be seen that the exponent ζ determines the
transformation of the external field and is related to yh from Sect. (7.3.4) via
ζ = d − yh.
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F0[φk] =
∫

|k|<Λ

r + k2

2
|φk|2 , (7.4.84)

with
∫

k ≡
∫

ddk/(2π)d. Since (7.4.84) is diagonal in the Fourier modes, the
elimination of the components with large k merely produces a constant con-
tribution (independent of φ); the form of the effective Hamiltonian functional
remains unchanged, provided that

ζ =
d − 2

2
, i.e. η = 0 , (7.4.85)

and r transforms as

r′ = b2r . (7.4.86)

The fixed points of Eq. (7.4.86) are r∗ = ±∞, corresponding to the high- and
low-temperature phases, and the critical fixed point r∗ = 0. The eigenvalue
for the relevant temperature-direction at this critical fixed point is clearly
yτ = 2, and therefore one obtains the same exponent ν = 1/2 from (7.3.41c,d)
as in the molecular field theory or the Gaussian approximation (Sect. 7.4.3).

7.4.5.3 Perturbation Theory and the ϵ-Expansion

The nonlinear interaction term in Eq. (7.4.80)

Fint[φk] =
u

4

∫

|ki|<Λ
φk1

φk2
φk3

φ−k1−k2−k3
(7.4.87)

can now be treated using perturbation theory, by expanding the exponential
function in Eq. (7.4.6) in terms of u. If one separates the field variables into
their parts in the inner and the outer momentum shell,

φk = φk<
+ φk>

,

with |k<| < Λ/b and Λ/b < |k>| < Λ, the result to first order in u includes
terms of the following (symbolically written) form (from now on, we set kT
equal to 1):

(i) u
∫

φ4
<e−F0 must merely be re-exponentiated, since these degrees of free-

dom are not eliminated;
(ii) all terms with an uneven number of φ< or φ>, such as for example

u
∫

φ3
<φ>e−F0, vanish;

(iii) u
∫

φ4
>e−F0 makes a constant contribution to the free energy and finally

to u
∫

φ2
<φ2

>e−F0 , for which the Gaussian integral over the φ> can be
carried out with the aid of Eq. (7.4.47) for the propagator
⟨φα

k>
φβ
−k′

>
⟩0 = δkk′

2(r+k2) , an average value which is calculated with the
statistical weight e−F0 .



∗7.4 The Ginzburg–Landau Theory 383

Quite generally, Wick’s theorem20,21 states that expressions of the form

〈 m∏

i

φki>

〉

0

≡
〈
φk1>φk2> . . .φkm>

〉
0

factorize into a sum of products of all possible pairs ⟨φk>φ−k>⟩0 if m is even,
and otherwise they yield zero. Especially in the treatment of higher orders of
perturbation theory, the Feynman diagrams offer a very helpful representa-
tion of the large number of contributions which have to be summed in the per-
turbation expansion. In these diagrams, lines symbolize the propagators and
interaction vertices stand for the nonlinear coupling u. With these means at
our disposal, we can compute the two-point function ⟨φk<

φ−k<
⟩ and the sim-

ilarly defined four-point function.Using Eq. (7.4.47), one then obtains in the
first non-trivial order (“1-loop”, a notation which derives from the graphical
representation) the following recursion relation between the initial coefficients
r, u and the transformed coefficients r′, u′ of the Ginzburg–Landau–Wilson
functional20,21:

r′ = b2
(
r + (n + 2)A(r)u

)
, (7.4.88)

u′ = b4−du
(
1 − (n + 8)C(r)u

)
, (7.4.89)

where A(r) and C(r) refer to the integrals

A(r) = Kd

∫ Λ

Λ/b
(kd−1/r + k2)dk

=Kd

[
Λd−2(1 − b2−d)/(d − 2) − rΛd−4(1 − b4−d)/(d − 4)

]
+ O(r2)

C(r) = Kd

∫ Λ

Λ/b

[
kd−1/(r + k2)2

]
dk

= KdΛ
d−4(1 − b4−d)/(d − 4) + O(r) ,

with Kd = 1/2d−1πd/2Γ (d/2), and the factors depending on the number n
of components of the order parameter field result from the combinatorial
analysis in counting the equivalent possibilities for “contracting” the fields
φk> , i.e. for evaluating the integrals over the large momenta. We note that
here again, Eq. (7.4.85) applies.

Linearizing equations (7.4.88) and (7.4.89) at the Gaussian fixed point
r∗ = 0, u∗ = 0, one immediately finds the eigenvalues yτ = 2 and yu = 4− d.
Then for d > dc = 4, the nonlinearity ∝ u is seen to be irrelevant, and the
mean field exponents are valid, as already surmised in Sect. 7.4.4. For d < 4
(dc = 4 is the upper critical dimension), the fluctuations however become
relevant and each initial value u ̸= 0 increases under the renormalization
group transformation. In order to obtain the scaling behavior in this case,
we must therefore search for a finite, non-trivial fixed point. This can be
most easily done by introducing a differential flow, with bℓ = eδℓ and δ → 0,
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making the number of RG steps effectively into a continuous variable, and
studying the resulting differential recursion relations:

dr(ℓ)
dℓ

= 2r(ℓ) + (n + 2)u(ℓ)KdΛ
d−2 − (n + 2)r(ℓ)u(ℓ)KdΛ

d−4 , (7.4.90)

du(ℓ)
dℓ

= (4 − d)u(ℓ) − (n + 8)u(ℓ)2KdΛ
d−4 . (7.4.91)

Now, a fixed point is defined by the condition dr/dℓ = 0 = du/dℓ.

Fig. 7.22. Flow of the effective coupling
u(ℓ), determined by the right-hand side of
Eq. (7.4.91), which is plotted here as the
ordinate. Both for initial values u0 > u∗

c

and 0 < u0 < u∗
c , one finds u(ℓ) → u∗

c for
ℓ → ∞

Figure 7.22 shows the flow of u(ℓ) corresponding to Eq. (7.4.91); for any
initial value u0 ̸= 0, one finds that asymptotically, i.e. for ℓ → ∞, the non-
trivial fixed point

u∗
cKd =

ϵ

n + 8
Λϵ , ϵ = 4 − d (7.4.92)

is approached; this should determine the universal critical properties of the
model. As in the real-space renormalization in Sect. 7.3, the RG transforma-
tion via momentum-shell elimination generates new interactions; for example,
terms ∝ φ6 and ∇2φ4, etc., which again influence the recursion relations for
r and u in the succeeding steps. It turns out, however, that up to order ϵ3,
these terms do not have to be taken into account.20,21

The original assumption that u should be small, which justified the per-
turbation expansion, now means in light of Eq. (7.4.92) that the effective
expansion parameter here is the deviation from the upper critical dimension,
ϵ. If one inserts (7.4.92) into Eq. (7.4.90) and includes terms up to O(ϵ), the
result is

r∗c = −n + 2
2

u∗
c Kd Λd−2 = − (n + 2)ϵ

2(n + 8)
Λ2 . (7.4.93)

The physical interpretation of this result is that fluctuations lead to a lowering
of the transition temperature. With τ = r − r∗c , the differential form of the
flow equation

dτ(ℓ)
dℓ

= τ(ℓ)
(
2 − (n + 2)u Kd Λd−4

)
(7.4.94)
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finally yields the eigenvalue yτ = 2 − (n + 2)ϵ/(n + 8) in the vicinity of the
critical point (7.4.92). In the one-loop order which we have described here,
O(ϵ), one therefore finds for the critical exponent ν from Eq. (7.3.41e)

ν =
1
2

+
n + 2

4(n + 8)
ϵ + O(ϵ2) . (7.4.95)

Using the result η = O(ϵ2) and the scaling relations (7.3.41a–d), one ob-
tains the following expressions (the difference from the result (7.4.35) of the
Gaussian approximation is remarkable)

α =
4 − n

2(n + 8)
ϵ + O(ϵ2) , (7.4.96)

β =
1
2
− 3

2(n + 8)
ϵ + O(ϵ2) , (7.4.97)

γ = 1 +
n + 2

2(n + 8)
ϵ + O(ϵ2) , (7.4.98)

δ = 3 + ϵ + O(ϵ2) (7.4.99)

to first order in the expansion parameter ϵ = 4 − d. The first non-trivial
contribution to the exponent η appears in the two-loop order,

η =
n + 2

2(n + 8)2
ϵ2 + O(ϵ3) . (7.4.100)

The universality of these results manifests itself in the fact that they depend
only on the spatial dimension d and the number of components n of the
order parameter, and not on the original “microscopic” Ginzburg–Landau
parameters.

Remarks:

(i) At the upper critical dimension, dc = 4, an inverse power law is obtained
as the solution of Eq. (7.4.91) instead of an exponential behavior, leading
to logarithmic corrections to the mean-field exponents.

(ii) We also mention that for long-range interactions which exhibit power-
law behavior ∝ |x|−(d+σ), the critical exponents contain an additional
dependence on the parameter σ.

(iii) In addition to the ϵ-expansion, an expansion in terms of powers of 1/n is
also possible. Here, the limit n → ∞ corresponds to the exactly solvable
spherical model.23 This 1/n-expansion indeed helps to clarify some gen-
eral aspects but its numerical accuracy is not very great, since precisely
the small values of n are of practical interest.

23 Shang-Keng Ma, Modern Theory of Critical Phenomena, Benjamin, Reading,
1976.
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The differential recursion relations of the form (7.4.90) and (7.4.91) also serve
as a basis for the treatment of more subtle issues such as the calculation of
the scaling functions or the treatment of crossover phenomena within the
framework of the RG theory. Thus, for example, an anisotropic perturbation
in the n-component Heisenberg model favoring m directions leads to a cross-
over from the O(n)-Heisenberg fixed point24 to the O(m) fixed point.25 The
instability of the former is described by the crossover exponent. For small
anisotropic disturbances, to be sure, the flow of the RG trajectory passes very
close to the unstable fixed point. This means that one finds the behavior of
an n-component system far from the transition temperature Tc, before the
system is finally dominated by the anisotropic critical behavior.

The crossover from one RG fixed point to another can be represented
(and measured) by the introduction of effective exponents. These are defined
as logarithmic derivatives of suitable physical quantities. Other important
perturbations which were treated within the RG theory are, on the one hand,
cubic terms. They reflect the underlying crystal structure and contribute
terms of fourth order in the cartesian components of φ to the Ginzburg–
Landau–Wilson functional. On the other hand, dipolar interactions lead to a
perturbation which alters the harmonic part of the theory.

7.4.5.4 More Advanced Field-Theoretical Methods

If one wishes to discuss perturbation theory in orders higher than the first
or second, Wilson’s momentum-shell renormalization scheme is not the best
choice for practical calculations, in spite of its intuitively appealing properties.
The technical reason for this is that the integrals in Fourier space involve
nested momenta, which owing to the finite cutoff wavelength Λ are difficult
to evaluate. It is then preferable to use a field-theoretical renormalization
scheme with Λ → ∞. However, this leads to additional ultraviolet (UV)
divergences of the integrals for d ≥ dc. At the critical dimension dc, both
ultraviolet and infrared (IR) singularities occur in combination in logarithmic
form, [∝ log(Λ2/r)]. The idea is now to treat the UV divergences with the
methods originally developed in quantum field theory and thus to arrive at the
correct scaling behavior for the IR limit. In the formal implementation, one
takes advantage of the fact that the original unrenormalized theory does not
depend on the arbitrarily chosen renormalization point; as a consequence, one
obtains the Callan–Symanzik- or RG equations. These are partial differential
equations which correspond to the differential flow equations in the Wilson
scheme.

24 O(n) indicates invariance with respect to rotations in n-dimensional space,
i.e. with respect to the group O(n).

25 See D. J. Amit, Field Theory, the Renormalization Group and Critical Phenom-
ena, 2nd ed., World Scientific, Singapore, 1984, Chap. 5–3.
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ϵ-expansions have been carried out up to the seventh order;26 the series
obtained is however only asymptotically convergent (the convergence radius
of the perturbation expansion in u clearly must be zero, since u < 0 cor-
responds to an unstable theory). The combination of the results from ex-
pansions to such a high order with the divergent asymptotic behavior and
Borel resummation techniques yields critical exponents with an impressive
precision; cf. Table 7.4.

Table 7.4. The best estimates for the static critical exponents ν, β, and δ, for the
O(n)-symmetric φ4 model in d = 2 and d = 3 dimensions, from ϵ-expansions up
to high order in connection with Borel summation techniques.26 For comparison,
the exact Onsager results for the 2d-Ising model are also shown. The limiting case
n = 0 describes the statistical mechanics of polymers.

γ ν β η

d = 2 n = 0 1.39 ± 0.04 0.76 ± 0.03 0.065 ± 0.015 0.21 ± 0.05
n = 1 1.73 ± 0.06 0.99 ± 0.04 0.120 ± 0.015 0.26 ± 0.05

2d Ising (exact) 1.75 1 0.125 0.25

d = 3 n = 0 1.160 ± 0.004 0.5885 ± 0.0025 0.3025 ± 0.0025 0.031 ± 0.003
n = 1 1.239 ± 0.004 0.6305 ± 0.0025 0.3265 ± 0.0025 0.037 ± 0.003
n = 2 1.315 ± 0.007 0.671 ± 0.005 0.3485 ± 0.0035 0.040 ± 0.003
n = 3 1.390 ± 0.010 0.710 ± 0.007 0.368 ± 0.004 0.040 ± 0.003

∗7.5 Percolation

Scaling theories and renormalization group theories also play an important
role in other branches of physics, whenever the characteristic length tends to
infinity and structures occur on every length scale. Examples are percolation
in the vicinity of the percolation threshold, polymers in the limit of a large
number of monomers, the self-avoiding random walk, growth processes, and
driven dissipative systems in the limit of slow growth rates (self-organized
criticality). As an example of such a system which can be described in the
language of critical phenomena, we will consider percolation.

7.5.1 The Phenomenon of Percolation

The phenomenon of percolation refers to problems of the following type:

(i) Consider a landscape with hills and valleys, which gradually fills up with
water. When the water level is low, lakes are formed; as the level rises, some of
26 J. C. Le Guillou and J.C. Zinn-Justin, J. Phys. Lett. 46 L, 137 (1985)
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the lakes join together until finally at a certain critical level (or critical area)
of the water, a sea is formed which stretches from one end of the landscape
to the other, with islands.
(ii) Consider a surface made of an electrical conductor in which circular holes
are punched in a completely random arrangement (Fig. 7.23a). Denoting the
fraction of remaining conductor area by p, we find for p > pc that there
is still an electrical connection from one end of the surface to the other,
while for p < pc, the pieces of conducting area are reduced to islands and no
longer form continuous bridges, so that the conductivity of this disordered
medium is zero. One refers to pc as the percolation threshold. Above pc, there
is an infinite “cluster”; below this limit, there are only finite clusters, whose
average radius however diverges on approaching pc. Examples (i) and (ii)
represent continuum percolation. Theoretically, one can model such systems
on a discrete d-dimensional lattice. In fact, such discrete models also occur
in Nature, e.g. in alloys.

Fig. 7.23. Examples of percolation (a) A perforated conductor (Swiss cheese
model): continuum percolation; (b) site percolation; (c) bond percolation

(iii) Let us imagine a square lattice in which each site is occupied with a
probability p and is unoccupied with the probability (1 − p). ‘Occupied’ can
mean in this case that an electrical conductor is placed there and ‘unoccu-
pied’ implies an insulator, or that a magnetic ion or a nonmagnetic ion is
present, cf. Fig. 7.23b. Staying with the first interpretation, we find the fol-
lowing situation: for small p, the conductors form only small islands (electric
current can flow only between neighboring sites) and the overall system is an
insulator. As p increases, the islands (clusters) of conducting sites get larger.
Two lattice sites belong to the same cluster when there is a connection be-
tween them via occupied nearest neighbors. For large p (p % 1) there are
many conducting paths between the opposite edges and the system is a good
conductor. At an intermediate concentration pc, the percolation threshold or
critical concentration, a connection is just formed, i.e. current can percolate
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from one edge of the lattice to the other. The critical concentration separates
the insulating phase below pc from the conducting phase above pc.

In the case of the magnetic example, at pc a ferromagnet is formed from
a paramagnet, presuming that the temperature is sufficiently low. A further
example is the occupation of the lattice sites by superconductors or normal
conductors, in which case a transition from the normal conducting to the
superconducting state takes place.

We have considered here some examples of site percolation, in which the
lattice sites are stochastically occupied, Fig. 7.23b. Another possibility is that
bonds between the lattice sites are stochastically present or are broken. One
then refers to bond percolation (cf. Fig. 7.23c). Here, clusters made up of
existing bonds occur; two bonds belong to the same cluster if there is a con-
nection between them via existing bonds. Two examples of bond percolation
are: (i) a macroscopic system with percolation properties can be produced
from a stochastic network of resistors and connecting wires; (ii) a lattice of
branched monomers can form bonds between individual monomers with a
probability p. For p < pc, finite macromolecules are formed, and for p > pc,
a network of chemical bonds extends over the entire lattice. This gelation
process from a solution to a gel state is called the sol-gel transition (example:
cooking or “denaturing” of an egg or a pudding); see Fig. 7.23.

Remarks:

(i) Questions related to percolation are also of importance outside physics, e.g. in
biology. An example is the spread of an epidemic or a forest fire. An affected
individual can infect a still-healthy neighbor within a given time step, with a
probability p. The individual dies after one time step, but the infected neigh-
bors could transmit the disease to other still living, healthy neighbors. Below
the critical probability pc, the epidemic dies out after a certain number of time
steps; above this probability, it spreads further and further. In the case of a
forest fire, one can think of a lattice which is occupied by trees with a prob-
ability p. When a tree burns, it ignites the neighboring trees within one time
step and is itself reduced to ashes. For small values of p, the fire dies out after
several time steps. For p > pc, the fire spreads over the entire forest region, as-
suming that all the trees along one boundary were ignited. The remains consist
of burned-out trees, empty lattice sites, and trees which were separated from
their surroundings by a ring of empty sites so that they were never ignited. For
p > pc, the burned-out trees form an infinite cluster.

(ii) In Nature, disordered systems often occur. Percolation is a simple example
of this, in which the occupation of the individual lattice sites is uncorrelated
among the sites.

As emphasized above, these models for percolation can also be introduced
on a d-dimensional lattice. The higher the spatial dimension, the more possi-
ble connected paths there are between sites; therefore, the percolation thresh-
old pc decreases with increasing spatial dimension. The percolation threshold
is also smaller for bond percolation than for site percolation, since a bond
has more neighboring bonds than a lattice site has neighboring lattice sites
(in a square lattice, 6 instead of 4). See Table 7.5.
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Table 7.5. Percolation thresholds and critical exponents for some lattices

Lattice pc β ν γ
site bond

one-dimensional 1 1 – 1 1

square 0.592 1/2 5
36

4
3

43
18

simple cubic 0.311 0.248 0.417 0.875 1.795

Bethe lattice 1
z−1

1
z−1 1 1 1

d = 6 hypercubic 0.107 0.0942 1 1
2 1

d = 7 hypercubic 0.089 0.0787 1 1
2 1

The percolation transition, in contrast to thermal phase transitions, has
a geometric nature. When p increases towards pc, the clusters become larger
and larger; at pc, an infinite cluster is formed. Although this cluster already
extends over the entire area, the fraction of sites which it contains is still
zero at pc. For p > pc, more and more sites join the infinite cluster at the
expense of the finite clusters, whose average radii decrease. For p = 1, all
sites naturally belong to the infinite cluster. The behavior in the vicinity
of pc exhibits many similarities to critical behavior in second-order phase
transitions in the neighborhood of the critical temperature Tc. As discussed
in Sect. 7.1, the magnetization increases below Tc as M ∼ (Tc − T )β . In the
case of percolation, the quantity corresponding to the order parameter is the
probability P∞ that an occupied site (or an existing bond) belongs to the
infinite cluster, Fig. (7.24). Accordingly,

P∞ ∝
{

0 for p < pc

(p − pc)
β for p > pc .

(7.5.1)

Fig. 7.24. P∞: order parameter (the
strength of the infinite clusters); S: aver-
age number of sites in a finite cluster

The correlation length ξ characterizes the linear dimension of the finite clus-
ters (above and below pc). More precisely, it is defined as the average distance
between two occupied lattice sites in the same finite cluster. In the vicinity
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of pc, ξ behaves as

ξ ∼ |p − pc|−ν . (7.5.2)

A further variable is the average number of sites (bonds) in a finite cluster.
It diverges as

S ∼ |p − pc|−γ (7.5.3)

and corresponds to the magnetic susceptibility χ; cf. Fig. (7.24).
Just as in a thermal phase transition, one expects that the critical prop-

erties (e.g. the values of β, ν, γ) are universal, i.e. that they do not depend on
the lattice structure or the kind of percolation (site, bond, continuum percola-
tion). These critical properties do, however, depend on the spatial dimension
of the system. The values of the exponents are collected in Table 7.5 for several
different lattices. One can map the percolation problem onto an s-state-Potts
model, whereby the limit s → 1 is to be taken.27 ,28 From this relation, it is
understandable that the upper critical dimension for percolation is dc = 6.
The Potts model in its field-theoretical Ginzburg–Landau formulation con-
tains a term of the form φ3; from it, following considerations analogous to the
φ4 theory, the characteristic dimension dc = 6 is derived. The critical expo-
nents β, ν, γ describe the geometric properties of the percolation transition.
Furthermore, there are also dynamic exponents, which describe the transport
properties such as the electrical conductivity of the perforated circuit board
or of the disordered resistance network. Also the magnetic thermodynamic
transitions in the vicinity of the percolation threshold can be investigated.

7.5.2 Theoretical Description of Percolation

We consider clusters of size s, i.e. clusters containing s sites. We denote the
number of such s-clusters divided by the number of all lattice sites by ns,
and call this the (normalized) cluster number. Then s ns is the probability
that an arbitrarily chosen site will belong to a cluster of size s. Below the
percolation threshold (p < pc), we have

∞∑

s=1

s ns =
number of all the occupied sites

total number of lattice sites
= p . (7.5.4)

The number of clusters per lattice site, irrespective of their size, is

Nc =
∑

s

ns . (7.5.5)

27 C. M. Fortuin and P.W. Kasteleyn, Physica 57, 536 (1972).
28 The s-state-Potts model is defined as a generalization of the Ising model, which

corresponds to the 2-state-Potts model: at each lattice site there are s states Z.
The energy contribution of a pair is −JδZ,Z′ , i.e. −J if both lattice sites are in
the same state, and otherwise zero.
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The average size (and also the average mass) of all finite clusters is

S =
∞∑

s=1

s
s ns∑∞

s=1 s ns
=

1
p

∞∑

s=1

s2 ns . (7.5.6)

The following relation holds between the quantity P∞ defined before (7.5.1)
and ns: we consider an arbitrary lattice site. It is either empty or occupied
and belongs to a cluster of finite size, or it is occupied and belongs to the
infinite cluster, that is 1 = 1 − p +

∑∞
s=1 s ns + p P∞, and therefore

P∞ = 1 − 1
p

∑

s

s ns . (7.5.7)

7.5.3 Percolation in One Dimension

We consider a one-dimensional chain in which every lattice site is occupied
with the probability p. Since a single unoccupied site will interrupt the con-
nection to the other end, i.e. an infinite cluster can be present only when all
sites are occupied, we have pc = 1. In this model we can thus study only the
phase p < pc.

We can immediately compute the normalized number of clusters ns for
this model. The probability that an arbitrarily chosen site belongs to a clus-
ter of size s has the value s p s (1 − p)2, since a series of s sites must be
occupied (factor ps) and the sites at the left and right boundaries must be
unoccupied (factor (1 − p)2). Since the chosen site could be at any of the
s locations within the clusters, the factor s occurs. From this and from the
general considerations at the beginning of Sect. 7.5.2, it follows that:

ns = ps (1 − p)2 . (7.5.8)

With this expression and starting from (7.5.6), we can calculate the average
cluster size:

S =
1
p

∑
s2 ns =

1
p

∞∑

s=1

s2ps(1 − p)2 =
(1 − p)2

p

(
p

d

dp

)2 ∞∑

s=1

ps

=
(1 − p)2

p

(
p

d

dp

)2 p

1 − p
=

1 + p

1 − p
for p < pc .

(7.5.9)

The average cluster size diverges on approaching the percolation threshold
pc = 1 as 1/(1− p), i.e. in one dimension, the exponent introduced in (7.5.3)
is γ = 1.

We now define the radial correlation function g(r). Let the zero point be
an occupied site; then g(r) gives the average number of occupied sites at a
distance r which belong to the same cluster as the zero point. This is also
equal to the probability that a particular site at the distance r is occupied and
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belongs to the same cluster, multiplied by the number of sites at a distance
r. Clearly, g(0) = 1. For a point to belong to the cluster requires that this
point itself and all points lying between 0 and r be occupied, that is, the
probability that the point r is occupied and belongs to the same cluster as 0
is pr, and therefore we find

g(r) = 2 pr for r ≥ 1 . (7.5.10)

The factor of 2 is required because in a one-dimensional lattice there are two
points at a distance r.
The correlation length is defined by

ξ2 =
∑∞

r=1 r2 g(r)∑∞
r=1 g(r)

=
∑∞

r=1 r2 pr

∑∞
r=1 pr

. (7.5.11)

Analogously to the calculation in Eq. (7.5.9), one obtains

ξ2 =
1 + p

(1 − p)2
=

1 + p

(p − pc)
2 , (7.5.11′)

i.e. here, the critical exponent of the correlation length is ν = 1. We can also
write g(r) in the form

g(r) = 2 er log p = 2 e−
√

2r
ξ , (7.5.10′)

where after the last equals sign, we have taken p ≈ pc, so that log p =
log(1 − (1 − p)) ≈ −(1 − p). The correlation length characterizes the (expo-
nential) decay of the correlation function.

The average cluster size previously introduced can also be represented in
terms of the radial correlation function

S = 1 +
∞∑

r=1

g(r) . (7.5.12)

We recall the analogous relation between the static susceptibility and the
correlation function, which was derived in the chapter on ferromagnetism,
Eq. (6.5.42). One can readily convince oneself that (7.5.12) together with
(7.5.10) again leads to (7.5.9).

7.5.4 The Bethe Lattice (Cayley Tree)

A further exactly solvable model, which has the advantage over the one-
dimensional model that it is defined also in the phase region p > pc, is
percolation on a Bethe lattice. The Bethe lattice is constructed as follows:
from the lattice site at the origin, z (coordination number) branches spread
out, at whose ends again lattice sites are located, from each of which again
z − 1 new branches emerge, etc. (see Fig. 7.25 for z = 3).
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Fig. 7.25. A Bethe lattice with the coordination
number z = 3

The first shell of lattice sites contains z sites, the second shell contains
z(z − 1) sites, and the lth shell contains z(z − 1)l−1 sites. The number of
lattice sites increases exponentially with the distance from the center point
∼ el log(z−1), while in a d-dimensional Euclidean lattice, this number increases
as ld−1. This suggests that the critical exponents of the Bethe lattice would be
the same as those of a usual Euclidean lattice for d → ∞. Another particular
difference between the Bethe lattice and Euclidean lattices is the property
that it contains only branches but no closed loops. This is the reason for its
exact solvability.

To start with, we calculate the radial correlation function g(l), which
as before is defined as the average number of occupied lattice sites within
the same cluster at a distance l from an arbitrary occupied lattice site. The
probability that a particular lattice site at the distance l is occupied as well
as all those between it and the origin has the value pl. The number of all the
sites in the shell l is z(z − 1)l−1; from this it follows that:

g(l) = z(z − 1)l−1 pl =
z

z − 1
(p(z − 1))l =

z

z − 1
el log(p(z−1)) . (7.5.13)

From the behavior of the correlation function for large l, one can read off
the percolation threshold for the Bethe lattice. For p(z − 1) < 1, there is
an exponential decrease, and for p(z − 1) > 1, g(l) diverges for l → ∞ and
there is an infinite cluster, which must not be included in calculating the
correlation function of the finite clusters. It follows from (7.5.13) for pc that

pc =
1

z − 1
. (7.5.14)

For z = 2, the Bethe lattice becomes a one-dimensional chain, and thus
pc = 1. From (7.5.13) it is evident that the correlation length is

ξ ∝ −1
log [p(z − 1)]

=
−1

log p
pc

∼ 1
pc − p

(7.5.15)
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for p in the vicinity of pc, i.e. ν = 1, as in one dimension29 . The same result
is found if one defines ξ by means of (7.5.11). For the average cluster size one
finds for p < pc

S = 1 +
∞∑

l=1

g(l) =
pc(1 + p)
pc − p

for p < pc ; (7.5.16)

i.e. γ = 1.
The strength of the infinite cluster P∞, i.e. the probability that an arbi-

trary occupied lattice site belongs to the infinite cluster, can be calculated in
the following manner: the product pP∞ is the probability that the origin or
some other point is occupied and that a connection between occupied sites
up to infinity exists. We first compute the probability Q that an arbitrary
site is not connected to infinity via a particular branch originating from it.
This is equal to the probability that the site at the end of the branch is not
occupied, that is (1 − p) plus the probability that this site is occupied but
that none of the z − 1 branches which lead out from it connects to ∞, i.e.

Q = 1 − p + p Qz−1 .

This is a determining equation for Q, which we shall solve for simplicity for
a coordination number z = 3. The two solutions of the quadratic equation
are Q = 1 and Q = 1−p

p .
The probability that the origin is occupied, that however no path leads

to infinity, is on the one hand p(1−P∞) and on the other p Qz, i.e. for z = 3:

P∞ = 1 − Q3 .

For the first solution, Q = 1, we obtain P∞ = 0, obviously relevant for p < pc;
and for the second solution

P∞ = 1 −
(

1 − p

p

)3

, (7.5.17)

for p > pc. In the vicinity of pc = 1
2 , the strength of the infinite clusters varies

as

P∞ ∝ (p − pc) , (7.5.18)

that is β = 1. We will also obtain this result with Eq. (7.5.30) in a different
manner.
29 Earlier, it was speculated that hypercubic lattices of high spatial dimension have

the same critical exponents as the Bethe lattice. The visible difference in ν seen
in Table 7.5 is due to the fact that in the Bethe lattice, the topological (chemical)
and in the hypercubic lattice the Euclidean distance was used. If one uses the
chemical distance for the hypercubic lattice also, above d = 6, ν = 1 is likewise
obtained. See Literature: A. Bunde and S. Havlin, p. 71.
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Now we will investigate the normalized cluster number ns, which is also
equal to the probability that a particular site belongs to a cluster of size s,
divided by s. In one dimension, ns could readily be determined. In general,
the probability for a cluster with s sites and t (empty) boundary points is
ps(1 − p)t. The perimeter t includes external and internal boundary points
of the cluster. For general lattices, such as e.g. the square lattice, there are
various values of t belonging to one and the same value of s, depending on
the shape of the cluster; the more stretched out the cluster, the larger is t,
and the more nearly spherical the cluster, the smaller is t. In a square lattice,
there are two clusters having the size 3, a linear and a bent cluster. The
associated values of t are 8 and 7, and the number of orientations on the
lattice are 2 and 4. For general lattices, the quantity gst must therefore be
introduced; it gives the number of clusters of size s and boundary t. Then
the general expression for ns is

ns =
∑

t

gst ps(1 − p)t . (7.5.19)

For arbitrary lattices, a determination of gst is in general not possible. For
the Bethe lattice, there is however a unique connection between the size s of
the cluster and the number of its boundary points t. A cluster of size 1 has
t = z, and a cluster of s = 2 has t = 2z − 2. In general, a cluster of size s has
z − 2 more boundary points than a cluster of size s − 1, i.e.

t(s) = z + (s − 1)(z − 2) = 2 + s(z − 2) .

Thus, for the Bethe lattice,

ns = gs ps
(
1 − p

)2+(z−2)s
, (7.5.20)

where gs is the number of configurations of clusters of the size s. In order to
avoid the calculation of gs, we will refer ns(p) to the distribution ns(pc) at
pc.

We now wish to investigate the behavior of ns in the vicinity of pc =
(z − 1)−1 as a function of the cluster size, and separate off the distribution
at pc,

ns(p) = ns(pc)
[

1 − p

1 − pc

]2 [
p

pc

(
(1 − p)
(1 − pc)

)z−2]s

; (7.5.21)

we then expand around p = pc

ns(p) = ns(pc)
[

1 − p

1 − pc

]2[
1 − (p − pc)2

2 p 2
c (1 − pc)

+ O
(
(p − pc)3

)]s

= ns(pc) e−c s ,

(7.5.22)

with c = − log
(
1 − (p−pc)

2

2pc(1−pc)

)
∝ (p − pc)

2 .

This means that the number of clusters of size s decreases exponentially.
The second factor in (7.5.22) depends only on the combination (p − pc)

1
σ s,
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with σ = 1/2. The exponent σ determines how rapidly the number of clusters
decreases with increasing size s. At pc, the s-dependence of ns arises only from
the prefactor ns(pc). In analogy to critical points, we assume that ns(pc) is
a pure power law; in the case that ξ gives the only length scale, which is
infinite at pc; then at pc there can be no characteristic lengths, cluster sizes,
etc. That is, ns(pc) can have only the form

ns(pc) ∼ s−τ . (7.5.23)

The complete function (7.5.22) is then of the form

ns(p) = s−τf
(
(p − pc)

1
σ s

)
, (7.5.24)

and it is a homogeneous function of s and (p−pc). We can relate the exponent
τ to already known exponents: the average cluster size is, from Eq. (7.5.6),

S =
1
p

∑

s

s2ns(p) ∝
∑

s2−τe−cs

∝
∫ ∞

1
ds s2−τe−cs = cτ−3

∫ ∞

c
z2−τe−zdz .

(7.5.25)

For τ < 3, the integral exists, even when its lower limit goes to zero: it is
then

S ∼ cτ−3 = (p − pc)
τ−3

σ , (7.5.26)

from which, according to (7.5.3), it follows that

γ =
3 − τ

σ
. (7.5.27)

Since for the Bethe lattice, γ = 1 and σ = 1
2 , we find τ = 5

2 .
From (7.5.24) using the general relation (7.5.7) one can also determine

P∞. While the factor s2 in (7.5.25) was sufficient to make the integral con-
verge at its lower limit, this is not the case in (7.5.7). Therefore, we first write
(7.5.7) in the form

P∞ = 1 − 1
p

∑

s

s
(
ns(p) − ns(pc)

)
− 1

p

∑

s

s ns(pc)

=
1
p

∑

s

s
(
ns(pc) − ns(p)

)
+ 1 − pc

p
,

(7.5.28)

where

P∞(pc) = 0 = 1 − 1
pc

∑

s

s ns(pc)
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has been used. Now the first term in (7.5.28) can be replaced by an integral

P∞ = const. cτ−2

∫ ∞

c
z1−τ

[
1 − e−z

]
dz +

p − pc

p

= . . . cτ−2 +
p − pc

p
.

(7.5.29)

From this, we find for the exponent defined in Eq. (7.5.1)

β =
τ − 2

σ
. (7.5.30)

For the Bethe lattice, one finds once again β = 1, in agreement with (7.5.18).
In the Bethe lattice, the first term in (7.5.29)) also has the form p−pc, while
in other lattices, the first term, (p − pc)β , predominates relative to the second
due to β < 1.

In (7.5.5), we also introduced the average number of clusters per lattice
site, whose critical percolation behavior is characterized by an exponent α
via

Nc ≡
∑

s

ns ∼ |p − pc|2−α . (7.5.31)

That is, this quantity plays an analogous role to that of the free energy in
thermal phase transitions. We note that in the case of percolation there are
no interactions, and the free energy is determined merely by the entropy.
Again inserting (7.5.24) for the cluster number into (7.5.31), we find

2 − α =
τ − 1

σ
, (7.5.32)

which leads to α = −1 for the Bethe lattice. In summary, the critical expo-
nents for the Bethe lattice are

β = 1 , γ = 1 , α = −1 , ν = 1 , τ = 5/2 , σ = 1/2 . (7.5.33)

7.5.5 General Scaling Theory

In the preceding section, the exponents for the Bethe lattice (Cayley tree)
were calculated. In the process, we made some use of a scaling assumption
(7.5.24). We will now generalize that assumption and derive the consequences
which follow from it.

We start with the general scaling hypothesis

ns(p) = s−τf±
(
|p − pc|

1
σ s

)
, (7.5.34)
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where ± refers to p ≷ pc.30 The relations (7.5.27), (7.5.30), and (7.5.32),
which contain only the exponents α, β, γ, σ, τ , also hold for the general scaling
hypothesis. The scaling relation for the correlation length and other charac-
teristics of the extension of the finite clusters must be derived once more. The
correlation length is the root mean square distance between all the occupied
sites within the same finite cluster. For a cluster with s occupied sites, the
root mean square distance between all pairs is

R2
s =

1
s2

s∑

i=1

i∑

j=1

(xi − xj)2 .

The correlation length ξ is obtained by averaging over all clusters

ξ2 =
∑∞

s=1 R 2
s s2 ns∑∞

s=1 s2 ns
. (7.5.35)

The quantity 1
2 s2 ns is equal to the number of pairs in clusters ns of size s,

i.e. proportional to the probability that a pair (in the same cluster) belongs
to a cluster of the size s.

The mean square cluster radius is given by

R2 =
∑∞

s=1 R 2
s s ns∑∞

s=1 s ns
, (7.5.36)

since s ns = the probability that an occupied site belongs to an s-cluster.
The mean square distance increases with cluster size according to

Rs ∼ s1/df , (7.5.37)

where df is the fractal dimension. Then it follows from (7.5.35) that

ξ2 ∼
∞∑

s=1

s
2

df
+2−τ

f±
(
|p − pc|

1
σ s

)/ ∞∑

s=1

s2−τf±
(
|p − pc|

1
σ s

)

∼ |p − pc|
− 2

df σ , 2 < τ < 2.5

ν =
1

df σ
=

τ − 1
dσ

,

and from (7.5.36),

R2 ∼
∞∑

s=1

s
2

df
+1−τ

f± (|p − pc|
1
σ s) ∼ |p − pc|−2ν+β .

30 At the percolation threshold p = pc, the distribution of clusters is a power law
ns(pc) = s−τf± (0). The cutoff function f± (x) goes to zero for x ! 1, for example
as in (7.5.22) exponentially. The quantity smax = |p−pc|−1/σ refers to the largest
cluster. Clusters of size s ≪ smax are also distributed according to s−τ for p ̸= pc,
and for s ! smax, ns(p) vanishes.
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7.5.5.1 The Duality Transformation and the Percolation
Threshold

The computation of pc for bond percolation on a square lattice can be carried
out by making use of a duality transformation. The definition of the dual
lattice is illustrated in Fig. 7.26. The lattice points of the dual lattice are
defined by the centers of the unit cells of the lattice. A bond in the dual
lattice is placed wherever it does not cross a bond of the lattice; i.e. the
probability for a bond in the dual lattice is

q = 1 − p .

In the dual lattice, there is likewise a bond percolation problem. For p < pc,
there is no infinite cluster on the lattice, however there is an infinite cluster
on the dual lattice. There is a path from one end of the dual lattice to the
other which cuts no bonds on the lattice; thus q > pc. For p → p−c from
below, q → p+

c arrives at the percolation threshold from above, i.e.

pc = 1 − pc .

Thus, pc = 1
2 . This result is exact for bond percolation.

Fig. 7.26. A lattice and its dual lat-
tice. Left side: A lattice with bonds and
the dual lattice. Right side: Showing
also the bonds in the dual lattice

Remarks:

(i) By means of similar considerations, one finds also that the percolation threshold
for site percolation on a triangular lattice is given by pc = 1

2 .
(ii) For the two-dimensional Ising model, also, the transition temperatures for a

series of lattice structures were already known from duality transformations
before its exact solution had been achieved.

7.5.6 Real-Space Renormalization Group Theory

We now discuss a real-space renormalization-group transformation, which
allows the approximate determination of pc and the critical exponents.

In the decimation transformation shown in Fig. 7.27 for a square lattice,
every other lattice site is eliminated; this leads again to a square lattice. In
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Fig. 7.27. A lattice and a dec-
imated lattice

Fig. 7.28. Bond configurations which lead to a bond (dashed) on the decimated
lattice

the new lattice, a bond is placed between two remaining sites if at least one
connection via two bonds existed on the original lattice (see Fig. 7.27). The
bond configurations which lead to formation of a bond (shown as dashed lines)
in the decimated lattice are indicated in Fig. 7.28. Below, the probability for
these configurations is given. From the rules shown in Fig. 7.28, we find for
the probability for the existence of a bond on the decimated lattice

p′ = p4 + 4p3(1 − p) + 2p2(1 − p)2 = 2p2 − p4 . (7.5.38)

From this transformation law31, one obtains the fixed-point equation p∗ =
2p∗2−p∗4. It has the solutions p∗ = 0 , p∗ = 1, which correspond to the high-
and low-temperature fixed points for phase transitions; and in addition, the

two fixed points p∗ =
−1 +

(−)

√
5

2 , of which only p∗ =
√

5−1
2 = 0.618 . . . is

acceptable. This value of the percolation threshold differs from the exact
value found in the preceding section, 1

2 . The reasons for this are: (i) sites
which were connected on the original lattice may not be connected on the
decimated lattice; (ii) different bonds on the decimated lattice are no longer
uncorrelated, since the existence of a bond on the original lattice can be
responsible for the occurrence of several bonds on the decimated lattice.

The linearization of the recursion relation around the fixed point yields
ν = 0.817 for the exponent of the correlation length.
The treatment of site percolation on a triangular lattice in two dimensions is most
simple. The lattice points of a triangle are combined into a cell. This cell is counted
as occupied if all three sites are occupied, or if two sites are occupied and one is
empty, since in both cases there is a path through the cell. For all other configu-
rations (only one site occupied or none occupied), the cell is unoccupied. For the

31 A.P. Young and R.B. Stinchcombe, J. Phys. C: Solid State Phys. 8, L 535 (1975).
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triangular lattice32, one thus obtains as the recursion relation

p′ = p3 + 3p2(1 − p) , (7.5.39)

with the fixed points p∗ = 0, 1, 1
2 . This RG transformation thus yields pc = 1

2 for
the percolation threshold, which is identical with the exact value (see remark (i)
above). The linearization of the RG transformation around the fixed point yields
the following result for the exponent ν of the correlation length:

ν =
log

√
3

log 3
2

= 1.3547 .

This is nearer to the result obtained by series expansion, ν = 1.34, as well as to

the exact result, 4/3, than the result for the square lattice (see the remark on
universality following Eq. (7.5.3)).

7.5.6.1 Definition of the Fractal Dimension

In a fractal object, the mass behaves as a function of the length L of a d-dimensional
Euclidean section as

M(L) ∼ Ldf ,

and thus the density is

ρ(L) =
M(L)

Ld
∼ Ldf−d .

An alternative definition of df is obtained from the number of hypercubes N(Lm, δ)
which one requires to cover the fractal structure. We take the side length of the
hypercubes to be δ, and the hypercube which contains the whole cluster to have
the side length Lm:

N(Lm, δ) =

„
Lm

δ

«df

,

i.e.

df = − lim
δ→0

log N(Lm, δ)
log δ

.
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Problems for Chapter 7

7.1 A generalized homogeneous function fulfills the relation

f(λa1x1, λ
a2x2) = λaf f(x1, x2) .

Show that (a) the partial derivatives ∂j

∂xj
1

∂k

∂xk
2
f(x1, x2) and (b) the Fourier trans-

form g(k1, x2) =
R

ddx1e
ik1x1f(x1, x2) of a generalized homogeneous function are

likewise homogeneous functions.

7.2 Derive the relations (7.3.13′) for A′, K′, L′, and M ′. Include in the starting
model in addition an interaction between the second-nearest neighbors L. Compute
the recursion relation to leading order in K and L, i.e. up to K2 and L. Show that
(7.3.15a,b) results.

7.3 What is the value of δ for the two-dimensional decimation transformation from
Sect. 7.3.3?

7.4 Show, by Fourier transformation of the susceptibility χ(q) = 1
q2−η χ̂(qξ), that

the correlation function assumes the form

G(x) =
1

|x|d−2+η
Ĝ(|x|/ξ) .

7.5 Confirm Eq.(7.4.35).

7.6 Show that

m(x) = m0tanh
x − x0

2ξ−

is a solution of the Ginzburg–Landau equation (7.4.11). Calculate the free energy
of the domain walls which it describes.

7.7 Tricritical phase transition point.
A tricritical phase transition point is described by the following Ginzburg–Landau
functional:

F [φ] =

Z
ddx
˘
c(∇φ)2 + aφ2 + vφ6 − hφ

¯

with a = a′τ , τ =
T − Tc

Tc
, v ≥0 .

Determine the uniform stationary solution φst with the aid of the variational deriva-
tive ( δF

δφ = 0) for h = 0 and the associated tricritical exponents αt, βt, γt and δt.



Problems for Chapter 7 405

7.8 Consider the extended Ginzburg–Landau functional

F [φ] =

Z
ddx
˘
c(∇φ)2 + aφ2 + uφ4 + vφ6 − hφ

¯
.

(a) Determine the critical exponents α, β, γ and δ for u > 0 in analogy to problem
7.7. They take on the same values as in the φ4 model (see Sect. 4.6); the term ∼ φ6

is irrelevant, i.e. it yields only corrections to the scaling behavior of the φ4 model.
Investigate the “crossover” of the tricritical behavior for h = 0 at small u. Consider
the crossover function m̃(x), which is defined as follows:

φeq(u, τ ) = φt(τ ) · m̃(x) with φt(τ ) = φeq(u = 0, τ ) ∼ τβt , x =
up
3|a|v

.

(b) Now investigate the case u < 0, h = 0. Here, a first-order phase transition
occurs; at Tc, the absolute minimum of F changes from φ = 0 to φ = φ0. Calculate
the shift of the transition temperature Tc − T0 and the height of the jump in the
order parameter φ0. Critical exponents can also be defined for the approach to the
tricritical point by variation of u

φ0 ∼ |u|βu , Tc − T0 ∼ |u|
1
ψ .

Give expressions for βu and the “shift exponent” ψ.
(c) Calculate the second-order phase transition lines for u < 0 and h ̸= 0 by
deriving a parameter representation from the conditions

∂2F
∂φ2

= 0 =
∂3F
∂φ3

.

(d) Show that the free energy in the vicinity of the tricritical point obeys a gener-
alized scaling law

F [φeq ] = |τ |2−αt f̂
“ u
|τ |φt

,
h

|τ |δt

”

by inserting the crossover function found in (a) into F (φt is called the “crossover
exponent”). Show that the scaling relations

δ = 1 +
γ
β

, α + 2β + γ = 2

are obeyed in (a) and at the tricritical point (problem 7.7).
(e) Discuss the hysteresis behavior for a first-order phase transition (u < 0).

7.9 In the Ginzburg–Landau approximation, the spin-spin correlation function is
given by

˙
m(x)m(x′)

¸
=

1
Ld

X

|k| ≤ Λ

eik(x−x′) 1
2βc(ξ−2 + k2)

; ξ ∝ (T − Tc)
− 1

2 .

(a) Replace the sum by an integral.
(b) show that in the limit ξ → ∞, the following relation holds:

˙
m(x)m(x′)

¸
∝ 1

|x − x′|d−2
.

(c) Show that for d = 3 and large ξ,

˙
m(x)m(x′)

¸
=

1
8πcβ

e−|x−x′|/ξ

|x − x′|
holds.
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7.10 Investigate the behavior of the following integral in the limit ξ → ∞:

I =

Z Λξ

0

ddq
(2π)d

ξ4−d

(1 + q2)2
,

by demonstrating that:
(a) I ∝ ξ4−d , d < 4 ;
(b) I ∝ ln ξ , d = 4 ;
(c) I ∝ A − Bξ4−d , d > 4 .

7.11 The phase transition of a molecular zipper from C. Kittel, American Journal
of Physics 37, 917, (1969).
A greatly simplified model of the helix-coil transition in polypeptides or DNA, which
describes the transition between hydrogen-bond stabilized helices and a molecular
coil, is the “molecular zipper”.

A molecular zipper consists of N bonds which can be broken from only one
direction. It requires an energy ϵ to break bond p + 1 if all the bonds 1, . . . , p are
broken, but an infinite energy if the preceding bonds are not all broken. A broken
bond is taken to have G orientations, i.e. its state is G−fold degenerate. The zipper
is open when all N − 1 bonds are broken.

(a) Determine the partition function

Z =
1 − xN

1 − x
; x ≡ G exp(−ϵβ) .

(b) Determine the average number ⟨s⟩ of broken bonds. Investigate ⟨s⟩ in the
vicinity of xc = 1. Which value does ⟨s⟩ assume at xc, and what is the slope there?
How does ⟨s⟩ behave at x ≫ 1 and x ≪ 1?
(c) What would be the partition function if the zipper could be opened from both
ends?

7.12 Fluctuations in the Gaussian approximation below Tc.
Expand the Ginzburg–Landau functional

F [m] =

Z
ddx
h
am(x)2 +

b
2
m(x)4 + c(∇m(x))2 − hm(x)

i
,

which is O(n)-symmetrical for h = 0, up to second order in terms of the fluctuations
of the order parameter m′(x). Below Tc,

m(x) = m1e1 + m′(x) , h = 2
`
a + bm2

1

´
m1

holds.
(a) Show that for h → 0, the long-wavelength (k → 0) transverse fluctuations
m′

i (i = 2, . . . , n) require no “excitation energy” (Goldstone modes), and determine
the Gibbs free energy. In which cases do singularities occur?
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(b) What is the expression for the specific heat ch=0 below Tc in the harmonic
approximation? Compare it with the result for the disordered phase.
(c) Calculate the longitudinal and transverse correlation functions relative to the
spontaneous magnetization m1

G∥(x − x′) =
˙
m′

1(x)m′
1(x

′)
¸

and

G⊥ ij(x − x′) =
˙
m′

i(x)m′
j(x

′)
¸

, i, j = 2. . . . , n

for d = 3 from its Fourier transform in the harmonic approximation. Discuss in
particular the limiting case h → 0.

7.13 The longitudinal correlation function below Tc.
The results from problem 7.12 lead us to expect that taking into account the trans-
verse fluctuations just in a harmonic approximation will in general be insufficient.
Anharmonic contributions can be incorporated if we fix the length of the vector
m(x) (h = 0), as in the underlying Heisenberg model:

m1(x)2 +
nX

i=2

mi(x)2 = m2
0 = const.

Compute the Fourier transform G∥(k), by factorizing the four-spin correlation func-
tion in a suitable manner into two-spin correlation functions

G∥(x − x′) =
1

4m2
0

nX

i,j=2

⟨mi(x)2mj(x
′)2⟩

and inserting

G⊥ (x − x′) =

Z
ddk

(2π)d

eik(x−x′)

2βck2
.

Remark: for n ≥2 and 2 < d ≤4, the relations G⊥ (k) ∝ 1
k2 and G∥ ∝ 1

k4−d are
fulfilled exactly in the limit k → 0.

7.14 Verify the second line in Eq. (7.5.22) .

7.15 The Hubbard–Stratonovich transformation: using the identity

exp

ȷ
−
X

i,j

JijSiSj

ff
= const.

Z ∞

−∞

“Y

i

dmi

”
exp

ȷ
−1

4

X

i,j

miJ
−1
ij mj

ff
,

show that the partition function of the Ising Hamiltonian H =
P

i,j JijSiSj can be
written in the form

Z = const.

Z ∞

−∞

“Y

i

dmi

”
exp
˘
H′`{mi}

´¯
.

Give the expansion of H′ in terms of mi up to the order O(m4). Caveat: the Ising
Hamiltonian must be extended by terms with Jii so that the matrix Jij is positive
definite.
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7.16 Lattice-gas model. The partition function of a classical gas is to be mapped
onto that of an Ising magnet.
Method: the d-dimensional configuration space is divided up into N cells. In each
cell, there is at most one atom (hard core volume). One can imagine a lattice in
which a cell is represented by a lattice site which is either empty or occupied (ni = 0
or 1). The attractive interaction U(xi − xj) between two atoms is to be taken into
account in the energy by the term 1

2U2(i, j)ninj .
(a) The grand partition function for this problem, after integrating out the kinetic
energy, is given by

ZG =

„ NY

i=1

X

ni=0,1

«
exp
h
−β
`
−µ̄
X

i

ni +
1
2

X

ij

U2(i, j)ninj

´i
.

µ̄ = kT log zv0 = µ − kT log
“λd

v0

”
, z =

eβµ

λd
, λ =

2π!√
2πmkT

,

where v0 is the volume of a cell.
(b) By introducing spin variables Si (ni = 1

2 (1 + Si), Si = ±1), bring the grand
partition function into the form

ZG =

„ NY

i=1

X

Si=−1,1

«
exp
h
−β
`
E0 −

X

i

hSi −
X

ij

JijSiSj

´i
.

Calculate the relations between E0, h, J and µ, U2, v0.
(c) Determine the vapor-pressure curve of the gas from the phase-boundary curve
h = 0 of the ferromagnet.
(d) Compute the particle-density correlation function for a lattice gas.

7.17 Demonstrate Eq. (7.4.63) using scaling relations.

7.18 Show that from (7.4.68) in the limit of small k and for h = 0, the longitudinal
correlation function

G∥(k) ∝ 1
kd−2

follows.

7.19 Shift of Tc in the Ginzburg–Landau Theory. Start from Eq. (7.4.1) and use
the so called quasi harmonic approximation in the paramagnetic phase. There the
third (nonlinear) term in (7.4.1) is replaced by 6b < m(x)2 > m(x).
(a) Justify this approximation.
(b) Compute the transition temperature Tc and show that Tc < T 0

c .

7.20 Determine the fixed points of the transformation equation (7.5.38).



8. Brownian Motion, Equations of Motion, and
the Fokker–Planck Equations

The chapters which follow deal with nonequilibrium processes. First, in chap-
ter 8, we treat the topic of the Langevin equations and the related Fokker–
Planck equations. In the next chapter, the Boltzmann equation is discussed;
it is fundamental for dealing with the dynamics of dilute gases and also for
transport phenemona in condensed matter. In the final chapter, we take up
general problems of irreversibility and the transition to equilibrium.

8.1 Langevin Equations

8.1.1 The Free Langevin Equation

8.1.1.1 Brownian Motion

A variety of situations occur in Nature in which one is not interested in the
complete dynamics of a many-body system, but instead only in a subset of
particular variables. The remaining variables lead through their equations of
motion to relatively rapidly varying stochastic forces and to damping effects.
Examples are the Brownian motion of a massive particle in a liquid, the
equations of motion of conserved densities, and the dynamics of the order
parameter in the vicinity of a critical point.

We begin by discussing the Brownian motion as a basic example of a
stochastisic process. A heavy particle of mass m and velocity v is supposed
to be moving in a liquid consisting of light particles. This “Brownian particle”
is subject to random collisions with the molecules of the liquid (Fig. 8.1). The
collisions with the molecules of the liquid give rise to an average frictional
force on the massive particle, a stochastic force f(t), which fluctuates around
its average value as shown in Fig. 8.2. The first contribution −mζv to this
force will be characterized by a coefficient of friction ζ. Under these physical
conditions, the Newtonian equation of motion thus becomes the so called
Langevin equation:

mv̇ = −mζv + f(t). (8.1.1)
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Fig. 8.1. The Brownian motion Fig. 8.2. Stochastic forces in Brown-
ian motion

Such equations are referred to as stochastic equations of motion and the
processes they describe as stochastic processes.1

The correlation time τc denotes the time during which the fluctuations
of the stochastic force remain correlated2. From this, we assume that the
average force and its autocorrelation function have the following form at
differing times3

⟨f(t)⟩ = 0
⟨f(t)f(t′)⟩ = φ(t − t′) .

(8.1.2)

Here, φ(τ) differs noticeably from zero only for τ < τc (Fig. 8.3). Since we
are interested in the motion of our Brownian particle over times of order t
which are considerably longer than τc, we can approximate φ(τ) by a delta
function

φ(τ) = λδ(τ) . (8.1.3)

The coefficient λ is a measure of the strength of the mean square deviation
of the stochastic force. Since friction also increases proportionally to the
strength of the collisions, there must be a connection between λ and the
coefficient of friction ζ. In order to find this connection, we first solve the
Langevin equation (8.1.1).

1 Due to the stochastic force in Eq. (8.1.1), the velocity is also a stochastic quantity,
i.e. a random variable.

2 Under the precondition that the collisions of the liquid molecules with the Brow-
nian particle are completely uncorrelated, the correlation time is roughly equal

to the duration of a collision. For this time, we obtain τc ≈ a
v̄ = 10−6 cm

105 cm/sec =

10−11 sec, where a is the radius of the massive particle and v̄ the average velocity
of the molecules of the medium.

3 The mean value ⟨ ⟩ can be understood either as an average over independent
Brownian particles or as an average over time for a single Brownian particle. In
order to fix the higher moments of f(t), we will later assume that f(t) follows a
Gaussian distribution, Eq. (8.1.26).



8.1 Langevin Equations 411

Fig. 8.3. The correlation of
the stochastic forces

8.1.1.2 The Einstein Relation

The equation of motion (8.1.1) can be solved with the help of the retarded
Green’s function G(t), which is defined by

Ġ + ζG = δ(t) , G(t) = Θ(t)e−ζt . (8.1.4)

Letting v0 be the initial value of the velocity, one obtains for v(t)

v(t) = v0e−ζt +
∫ ∞

0
dτ G(t − τ)f(τ)/m

= v0e−ζt + e−ζt

∫ t

0
dτ eζτf(τ)/m . (8.1.5)

Since the dependence of f(τ) is known only statistically, we do not consider
the average value of v(t), but instead that of its square,

〈
v(t)2

〉

〈
v(t)2

〉
= e−2ζt

∫ t

0
dτ

∫ t

0
dτ ′ eζ(τ+τ ′)φ(τ − τ ′)

1
m2

+ v2
0e

−2ζt ;

here, the cross term vanishes. With Eq. (8.1.3), we obtain

〈
v(t)2

〉
=

λ

2ζm2
(1 − e−2ζt) + v2

0e−2ζt t≫ ζ−1

−→ λ

2ζm2
. (8.1.6)

For t ≫ ζ−1, the contribution of v0 becomes negligible and the memory of
the initial value is lost. Hence ζ−1 plays the role of a relaxation time.

We require that our particle attain thermal equilibrium after long times,
t ≫ ζ−1, i.e. that the average value of the kinetic energy obey the equiparti-
tion theorem

1
2
m

〈
v(t)2

〉
=

1
2
kT . (8.1.7)
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From this, we find the so called Einstein relation

λ = 2ζmkT . (8.1.8)

The coefficient of friction ζ is proportional to the mean square deviation λ
of the stochastic force.

8.1.1.3 The Velocity Correlation Function

Next, we compute the velocity correlation function:

⟨v(t)v(t′)⟩ = e−ζ(t+t′)

∫ t

0
dτ

∫ t′

0
dτ ′ eζ(τ+τ ′) λ

m2
δ(τ−τ ′)+v2

0e−ζ(t+t′) . (8.1.9)

Since the roles of t and t′ are arbitrarily interchangeable, we can assume with-
out loss of generality that t < t′ and immediately evaluate the two integrals
in the order given in this equation, with the result

(
e2ζ min(t,t′)−1

)
λ

2ζm2 , thus
obtaining finally

⟨v(t)v(t′)⟩ =
λ

2ζm2
e−ζ|t−t′| +

(
v2
0 − λ

2ζm2

)
e−ζ(t+t′) . (8.1.10)

For t, t′ ≫ ζ−1, the second term in (8.1.10) can be neglected.

8.1.1.4 The Mean Square Deviation

In order to obtain the mean square displacement for t ≫ ζ−1, we need only
integrate (8.1.10) twice,

〈
x(t)2

〉
=

∫ t

0
dτ

∫ t

0
dτ ′ λ

2ζm2
e−ζ|τ−τ ′| . (8.1.11)

Intermediate calculation for integrals of the type

I =

Z t

0

dτ

Z t

0

dτ ′ f(τ − τ ′) .

We denote the parent function of f(τ ) by F (τ ) and evaluate the integral over τ ,
I =

R t

0
dτ ′ (F (t − τ ′) − F (−τ ′)). Now we substitute u = t − τ ′ into the first term

and obtain after integrating by parts

I =

Z t

0

du (F (u) − F (−u)) = t(F (t) − F (−t)) −
Z t

0

du u(f(u) + f(−u))

and from this the final result
Z t

0

dτ

Z t

0

dτ ′ f(τ − τ ′) =

Z t

0

du (t − u)(f(u) + f(−u)) . (8.1.12)
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With Eq. (8.1.12), it follows for (8.1.11) that

〈
x2(t)

〉
=

λ

2ζm2
2

∫ t

0
du (t − u)e−ζu ≈ λ

ζ2m2
t

or
〈
x2(t)

〉
= 2Dt (8.1.13)

with the diffusion constant

D =
λ

2ζ2m2
=

kT

ζm
. (8.1.14)

It can be seen that D plays the role of a diffusion constant by starting from
the equation of continuity for the particle density

ṅ(x) + ∇j(x) = 0 (8.1.15a)

and the current density

j(x) = −D∇n(x) . (8.1.15b)

The resulting diffusion equation

ṅ(x) = D∇2 n(x) (8.1.16)

has the one-dimensional solution

n(x, t) =
N√
4πDt

e−
x2
4Dt . (8.1.17)

The particle number density n(x, t) from Eq. (8.1.17) describes the spreading
out of N particles which were concentrated at x = 0 at the time t = 0
(n(x, 0) = Nδ(x)). That is, the mean square displacement increases with
time as 2Dt. (More general solutions of (8.1.16) can be found from (8.1.17)
by superposition.)

We can cast the Einstein relation in a more familiar form by introducing
the mobility µ into (8.1.1) in place of the coefficient of friction. The Langevin
equation then reads

mẍ = −µ−1ẋ + f with µ =
1

ζm
, (8.1.18)

and the Einstein relation takes on the form

D = µkT . (8.1.19)

The diffusion constant is thus proportional to the mobility of the particle and
to the temperature.
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Remarks:

(i) In a simplified version of Einstein’s4 historical derivation of (8.1.19),
we treat (instead of the osmotic pressure in a force field) the dynamic origin
of the barometric pressure formula. The essential consideration is that in a
gravitational field there are two currents which must compensate each other
in equilibrium. They are the diffusion current −D ∂

∂z n(z) and the current of
particles falling in the gravitational field, v̄n(z). Here, n(z) is the particle
number density and v̄ is the mean velocity of falling, which, due to friction,
is found from µ−1v̄ = −mg. Since the sum of these two currents must vanish,
we find the condition

−D
∂

∂z
n(z) − mgµn(z) = 0 . (8.1.20)

From this, the barometric pressure formula n(z) ∝ e−
mgz
kT is obtained if the

Einstein relation (8.1.19) is fulfilled.
(ii) In the Brownian motion of a sphere in a liquid with the viscosity

constant η, the frictional force is given by Stokes’ law, Ffr = 6πaηẋ, where a
is the radius and ẋ the velocity of the sphere. Then the diffusion constant is
D = kT/6πaη and the mean square displacement of the sphere is given by

〈
x2(t)

〉
=

kT t

3πaη
. (8.1.21)

Using this relation, an observation of
〈
x2(t)

〉
allows the experimental deter-

mination of the Boltzmann constant k.

8.1.2 The Langevin Equation in a Force Field

As a generalization of the preceding treatment, we now consider the Brownian
motion in an external force field

F (x) = −∂V

∂x
. (8.1.22a)

Then the Langevin equation is given by

mẍ = −mζẋ + F (x) + f(t) , (8.1.22b)

where we assume that the collisions and frictional effects of the molecules
are not modified by the external force and therefore the stochastic force f(t)
again obeys (8.1.2), (8.1.3), and (8.1.8).5

An important special case of (8.1.22b) is the limiting case of strong damp-
ing ζ. When the inequality mζẋ ≫ mẍ is fulfilled (as is the case e.g for
periodic motion at low frequencies), it follows from (8.1.22b) that
4 See the reference at the end of this chapter.
5 We will later see that the Einstein relation (8.1.8) ensures that the function

exp(−( p2

2m +V (x))/kT ) be an equilibrium distribution for this stochastic process.
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ẋ = −Γ
∂V

∂x
+ r(t) , (8.1.23)

where the damping constant Γ and the fluctuating force r(t) are given by

Γ ≡ 1
mζ

and r(t) ≡ 1
mζ

f(t) . (8.1.24)

The stochastic force r(t), according to Eqns. (8.1.2) and (8.1.3), obeys the
relation

⟨r(t)⟩ = 0
⟨r(t)r(t′)⟩ = 2ΓkT δ(t− t′) .

(8.1.25)

For the characterization of the higher moments (correlation functions) of
r(t), we will further assume in the following that r(t) follows a Gaussian
distribution

P [r(t)] = e−
R tf

t0
dt r2(t)

4Γ kT . (8.1.26)

P [r(t)] gives the probability density for the values of r(t) in the interval
[t0, tf ], where t0 and tf are the initial and final times. To define the functional
integration, we subdivide the interval into

N =
tf − t0

∆

small subintervals of width ∆ and introduce the discrete times

ti = t0 + i∆ , i = 0, . . . , N − 1 .

The element of the functional integration D[r] is defined by

D[r] ≡ lim
∆→0

N−1∏

i=0

(
dr(ti)

√
∆

4ΓkTπ

)
. (8.1.27)

The normalization of the probability density is

∫
D[r]P [r(t)] ≡ lim

∆→0

N−1∏

i=0

∫ (
dr(ti)

√
∆

4ΓkTπ

)
e−

P
i ∆

r2(ti)
4Γ kT = 1 . (8.1.28)

As a check, we calculate

⟨r(ti)r(tj)⟩ =
4ΓkT

2∆
δij = 2ΓkT

δij

∆
→ 2ΓkT δ(ti − tj) ,

which is in agreement with Eqns. (8.1.2), (8.1.3) and (8.1.8).
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Since Langevin equations of the type (8.1.23) occur in a variety of different
physical situations, we want to add some elementary explanations. We first
consider (8.1.23) without the stochastic force, i.e. ẋ = −Γ ∂V

∂x . In regions of
positive (negative) slope of V (x), x will be shifted in the negative (positive)
x direction. The coordinate x moves in the direction of one of the minima
of V (x) (see Fig. 8.4). At the extrema of V (x), ẋ vanishes. The effect of
the stochastic force r(t) is that the motion towards the minima becomes
fluctuating, and even at its extreme positions the particle is not at rest,
but instead is continually pushed away, so that the possibility exists of a
transition from one minimum into another. The calculation of such transition
rates is of interest for, among other applications, thermally activated hopping
of impurities in solids and for chemical reactions (see Sect. 8.3.2).

Fig. 8.4. The mo-
tion resulting from
the equation of mo-
tion ẋ = −Γ∂V/∂x.

8.2 The Derivation of the Fokker–Planck Equation from
the Langevin Equation

Next, we wish to derive equations of motion for the probability densities in
the Langevin equations (8.1.1), (8.1.22b), and (8.1.23).

8.2.1 The Fokker–Planck Equation for the Langevin Equation
(8.1.1)

We define

P (ξ, t) =
〈
δ
(
ξ − v(t)

)〉
, (8.2.1)

the probability density for the event that the Brownian particle has the ve-
locity ξ at the time t. This means that P (ξ, t)dξ is the probability that the
velocity lies within the interval [ξ, ξ + dξ].
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We now derive an equation of motion for P (ξ, t):

∂

∂t
P (ξ, t) = − ∂

∂ξ

〈
δ
(
ξ − v(t)

)
v̇(t)

〉

= − ∂

∂ξ

〈
δ
(
ξ − v(t)

)(
−ζv(t) +

1
m

f(t)
)〉

= − ∂

∂ξ

〈
δ
(
ξ − v(t)

)(
−ζξ +

1
m

f(t)
)〉

=
∂

∂ξ

(
ζP (ξ, t)ξ

)
− 1

m

∂

∂ξ

〈
δ
(
ξ − v(t)

)
f(t)

〉
, (8.2.2)

where the Langevin equation (8.1.1) has been inserted in the second line. To
compute the last term, we require the probability density for the stochastic
force, assumed to follow a Gaussian distribution:

P [f(t)] = e−
R tf

t0
dt f2(t)

4ζmkT . (8.2.3)

The averages ⟨. . . ⟩ are given by the functional integral with the weight (8.2.3)
(see Eq. (8.1.26)). In particular, for the last term in (8.2.2), we obtain

〈
δ
(
ξ − v(t)

)
f(t)

〉
=

∫
D[f(t′)] δ

(
ξ − v(t)

)
f(t)e−

R f(t′)2dt′
4ζmkT

= −2ζmkT

∫
D[f(t′)] δ

(
ξ − v(t)

) δ

δf(t)
e−

R f(t′)2dt′
4ζmkT

= 2ζmkT

∫
D[f(t′)] e−

R f(t′)2dt′
4ζmkT

δ

δf(t)
δ
(
ξ − v(t)

)

= 2ζmkT
〈 δ

δf(t)
δ
(
ξ − v(t)

)〉
= −2ζmkT

∂

∂ξ

〈
δ
(
ξ − v(t)

) δv(t)
δf(t)

〉
.

(8.2.4)

Here, we have to use the solution (8.1.5)

v(t) = v0e−ζt +
∫ ∞

0
dτ G(t − τ)

f(τ)
m

(8.1.5)

and take the derivative with respect to f(t). With δf(τ)
δf(t) = δ(τ−t) and (8.1.4),

we obtain
δv(t)
δf(t)

=
∫ t

0
dτ e−ζ(t−τ) 1

m
δ(t − τ) =

1
2m

. (8.2.5)

The factor 1
2 results from the fact that the integration interval includes only

half of the δ-function. Inserting (8.2.5) into (8.2.4) and (8.2.4) into (8.2.2), we
obtain the equation of motion for the probability density, the Fokker–Planck
equation:

∂

∂t
P (v, t) = ζ

∂

∂v
vP (v, t) + ζ

kT

m

∂2

∂v2
P (v, t) . (8.2.6)



418 8. Brownian Motion, Equations of Motion, the Fokker–Planck Equations

Here, we have replaced the velocity ξ by v; it is not to be confused with the
stochastic variable v(t). This relation can also be written in the form of an
equation of continuity

∂

∂t
P (v, t) = −ζ

∂

∂v

(
−vP (v, t) − kT

m

∂

∂v
P (v, t)

)
. (8.2.7)

Remarks:

(i) The current density, the expression in large parentheses, is composed of
a drift term and a diffusion current.

(ii) The current density vanishes if the probability density has the form
P (v, t) ∝ e−mv2

2kT . The Maxwell distribution is thus (at least one) equi-
librium distribution. Here, the Einstein relation (8.1.8) plays a decisive
role. Conversely, we could have obtained the Einstein relation by requir-
ing that the Maxwell distribution be a solution of the Fokker–Planck
equation.

(iii) We shall see in Sect. 8.3.1 that P (v, t) becomes the Maxwell distribution
in the course of time, and that the latter is therefore the only equilibrium
distribution of the Fokker–Planck equation (8.2.6).

8.2.2 Derivation of the Smoluchowski Equation for the
Overdamped Langevin Equation, (8.1.23)

For the stochastic equation of motion (8.1.23),

ẋ = −Γ
∂V

∂x
+ r(t), (8.1.23)

we can also define a probability density

P (ξ, t) =
〈
δ
(
ξ − x(t)

)〉
, (8.2.8)

where P (ξ, t)dξ is the probability of finding the particle at time t at the
position ξ in the interval dξ. We now derive an equation of motion for P (ξ, t),
performing the operation (F (x) ≡ −∂V

∂x )

∂

∂t
P (ξ, t) = − ∂

∂ξ

〈
δ
(
ξ − x(t)

)
ẋ(t)

〉

= − ∂

∂ξ

〈
δ
(
ξ − x(t)

)(
ΓK(x) + r(t)

)〉

= − ∂

∂ξ

(
ΓP (ξ, t)K(ξ)

)
− ∂

∂ξ

〈
δ
(
ξ − x(t)

)
r(t)

〉
. (8.2.9)

The overdamped Langevin equation was inserted in the second line. For the
last term, we find in analogy to Eq. (8.2.4)
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〈
δ
(
ξ − x(t)

)
r(t)

〉
= 2ΓkT

〈
δ

δr(t)
δ
(
ξ − x(t)

)〉

= −2ΓkT
∂

∂ξ

〈
δ
(
ξ − x(t)

)δx(t)
δr(t)

〉
= −ΓkT

∂

∂ξ
P (ξ, t) . (8.2.10)

Here, we have integrated (8.1.23) between 0 and t,

x(t) = x(0) +
∫ t

0
dτ

(
ΓK

(
x(τ)

)
+ r(τ)

)
, (8.2.11)

from which it follows that
δx(t)
δr(t′)

=
∫ t

0

(
∂ΓF (x(τ))

∂x(τ)
δx(τ)
δr(t′)

+ δ(t′ − τ)
)

dτ . (8.2.12)

The derivative is δx(τ)
δr(t′) = 0 for τ < t′ due to causality and is nonzero only for

τ ≥ t′, with a finite value at τ = t′. We thus obtain

δx(t)
δr(t′)

=
∫ t

0

∂ΓF (x(τ))
∂x(τ)

δx(τ)
δr(t′)

dτ + 1 for t′ < t (8.2.13a)

and
δx(t)
δr(t′)

=
∫ t

0

∂ΓF (x(τ))
∂x(τ)

δx(τ)
δr(t′)︸ ︷︷ ︸

0 for t′=t

+
1
2

=
1
2

for t′ = t . (8.2.13b)

This demonstrates the last step in (8.2.10). From (8.2.10) and (8.2.9), we
obtain the equation of motion for P (ξ, t), the so called Smoluchowski equation

∂

∂t
P (ξ, t) = − ∂

∂ξ

(
ΓP (ξ, t)F (ξ)

)
+ ΓkT

∂2

∂ξ2
P (ξ, t) . (8.2.14)

Remarks:

(i) One can cast the Smoluchowski equation (8.2.14) in the form of an equa-
tion of continuity

∂

∂t
P (x, t) = − ∂

∂x
j(x, t) , (8.2.15a)

with the current density

j(x, t) = −Γ

(
kT

∂

∂x
− K(x)

)
P (x, t) . (8.2.15b)

The current density j(x, t) is composed of a diffusion term and a drift
term, in that order.

(ii) Clearly,

P (x, t) ∝ e−V (x)/kT (8.2.16)

is a stationary solution of the Smoluchowski equation. For this solution,
j(x, t) is zero.
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8.2.3 The Fokker–Planck Equation for the Langevin Equation
(8.1.22b)

For the general Langevin equation, (8.1.22b), we define the probability den-
sity

P (x, v, t) = ⟨δ(x − x(t))δ(v − v(t))⟩ . (8.2.17)

Here, we must distinguish carefully between the quantities x and v and the
stochastic variables x(t) and v(t). The meaning of the probability density
P (x, v, t) can be characterized as follows: P (x, v, t)dxdv is the probability of
finding the particle in the interval [x, x + dx] with a velocity in [v, v + dv].
The equation of motion of P (x, v, t), the generalized Fokker–Planck equation

∂

∂t
P + v

∂P

∂x
+

F (x)
m

∂P

∂v
= ζ

[
∂

∂v
vP +

kT

m

∂2P

∂v2

]
(8.2.18)

follows from a series of steps similar to those in Sect. 8.2.2; see problem 8.1.

8.3 Examples and Applications

In this section, the Fokker–Planck equation for free Brownian motion will
be solved exactly. In addition, we will show in general for the Smoluchowski
equation that the distribution function relaxes towards the equilibrium situa-
tion. In this connection, a relation to supersymmetric quantum mechanics will
also be pointed out. Furthermore, two important applications of the Langevin
equations or the Fokker–Planck equations will be given: the transition rates
in chemical reactions and the dynamics of critical phenomena.

8.3.1 Integration of the Fokker–Planck Equation (8.2.6)

We now want to solve the Fokker–Planck equation for the free Brownian
motion, (8.2.6):

Ṗ (v) = ζ
∂

∂v

{
Pv +

kT

m

∂P

∂v

}
. (8.3.1)

We expect that P (v) will relax towards the Maxwell distribution, e−mv2
2kT ,

following the relaxation law e−ζt. This makes it reasonable to introduce the
variable ρ = veζt in place of v. Then we have

P (v, t) = P (ρe−ζt, t) ≡ Y (ρ, t) , (8.3.2a)

∂P

∂v
=

∂Y

∂ρ
eζt,

∂2P

∂v2
=

∂2Y

∂ρ2
e2ζt, (8.3.2b)

∂P

∂t
=

∂Y

∂ρ

∂ρ

∂t
+

∂Y

∂t
=

∂Y

∂ρ
ζρ +

∂Y

∂t
. (8.3.2c)
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Inserting (8.3.2a–c) into (8.2.6) or (8.3.1), we obtain

∂Y

∂t
= ζY + ζ

kT

m

∂2Y

∂ρ2
e2ζt . (8.3.3)

This suggests the substitution Y = χeζt. Due to ∂Y
∂t = ∂χ

∂t eζt + ζY , it follows
that

∂χ

∂t
= ζ

kT

m

∂2χ

∂ρ2
e2ζt . (8.3.4)

Now we introduce a new time variable by means of dϑ = e2ζtdt

ϑ =
1
2ζ

(
e2ζt − 1

)
, (8.3.5)

where ϑ(t = 0) = 0. We then find from (8.3.4) the diffusion equation

∂χ

∂ϑ
= ζ

kT

m

∂2χ

∂ρ2
(8.3.6)

with its solution known from (8.1.17),

χ(ρ, ϑ) =
1√

4πqϑ
e−

(ρ−ρ0)2

4qϑ ; q = ζ
kT

m
. (8.3.7)

By returning to the original variables v and t, we find the following solu-
tion

P (v, t) = χeζt =
{

m

2πkT (1 − e−2ζt)

} 1
2

e−
m(v−v0e−ζt)2

2kT (1−e−2ζt) (8.3.8)

of the Fokker–Planck equation (8.2.6), which describes Brownian motion in
the absence of external forces. The solution of the Smoluchowski equation
(8.2.14) for a harmonic potential is also contained in (8.3.8).

We now discuss the most important properties and consequences of the
solution (8.3.8):

In the limiting case t → 0, we have

lim
t→0

P (v, t) = δ(v − v0) . (8.3.9a)

In the limit of long times, t → ∞, the result is

lim
t→∞

P (v, t) = e−mv2/2kT
( m

2πkT

) 1
2

. (8.3.9b)

Remark: Since P (v, t) has the property (8.3.9a), we also have found the conditional
probability density in (8.3.8)6

6 The conditional probability P (v, t|v0, t0) gives the probability that at time t the
value v occurs, under the condition that it was v0 at the time t0.
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P (v, t|v0, t0) = P (v, t − t0) . (8.3.10)

This is not surprising. Since, as a result of (8.1.1), (8.1.2) and (8.1.3), a Markov pro-
cess7 is specified, P (v, t|v0, t0) likewise obeys the Fokker–Planck equation (8.2.6).

For an arbitrary integrable and normalized initial probability density
ρ(v0) at time t0

∫
dv0ρ(v0) = 1 (8.3.11)

we find with (8.3.8) the time dependence

ρ(v, t) =
∫

dv0P (v, t − t0)ρ(v0) . (8.3.12)

Clearly, ρ(v, t) fulfills the initial condition

lim
t→t0

ρ(v, t) = ρ(v0) , (8.3.13a)

while for long times

lim
t→∞

ρ(v, t) = e−
mv2
2kT

( m

2πkT

) 1
2

∫
dv0ρ(v0) = e−

mv2
2kT

( m

2πkT

) 1
2

(8.3.13b)

the Maxwell distribution is obtained. Therefore, for the Fokker–Planck equa-
tion (8.2.6), and for the Smoluchowski equation with an harmonic potential,
(8.2.14), we have proved that an arbitrary initial distribution relaxes towards
the Maxwell distribution, (8.3.13b).

The function (8.3.8) is also used, by the way, in Wilson’s exact renor-
malization group transformation for the continuous partial elimination of
short-wavelength critical fluctuations.8

8.3.2 Chemical Reactions

We now wish to calculate the thermally activated transition over a barrier
(Fig. 8.5). An obvious physical application is the motion of an impurity atom
in a solid from one local minimum of the lattice potential into another. Cer-
tain chemical reactions can also be described on this basis. Here, x refers to
the reaction coordinate, which characterizes the state of the molecule. The
vicinity of the point A can, for example, refer to an excited state of a molecule,
while B signifies the dissociated molecule. The transition from A to B takes
place via configurations which have higher energies and is made possible by
the thermal energy supplied by the surrounding medium. We formulate the
following calculation in the language of chemical reactions.
7 A Markov process denotes a stochastic process in which all the conditional prob-

abilities depend only on the last time which occurs in the conditions; e.g.

P (t3, v3|t2, v2; t1, v1) = P (t3, v3|t2, v2) ,

where t1 ≤t2 ≤t3.
8 K.G. Wilson and J. Kogut, Phys. Rep. 12C, 75 (1974).
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Fig. 8.5. A thermally activated tran-
sition over a barrier from the mini-
mum A into the minimum B

We require the reaction rate (also called the transition rate), i.e. the tran-
sition probability per unit time for the conversion of type A into type B.
We assume that friction is so strong that we can employ the Smoluchowski
equation (8.2.15a,b),

Ṗ = − ∂

∂x
j(x) . (8.2.15a)

Integration of this equation between the points α and β yields

d

dt

∫ xβ

xα

dxP = −j(xβ) + j(xα) , (8.3.14)

where xβ lies between the points A and B. It then follows that j(xβ) is the
transition rate between the states (the chemical species) A and B.

To calculate j(xβ), we assume that the barrier is sufficiently high so that
the transition rate is small. Then in fact all the molecules will be in the region
of the minimum A and will occupy states there according to the thermal
distribution. The few molecules which have reached state B can be imagined
to be filtered out. The strategy of our calculation is to find a stationary
solution P (x) which has the properties

P (x) =
1
Z

e−V (x)/kT in the vicinity of A (8.3.15a)

P (x) = 0 in the vicinity of B . (8.3.15b)

From the requirement of stationarity, it follows that

0 = Γ
∂

∂x

(
kT

∂

∂x
+

∂V

∂x

)
P , (8.3.16)

from which we find by integrating once

Γ

(
kT

∂

∂x
+

∂V

∂x

)
P = −j0 . (8.3.17)

The integration constant j0 plays the role of the current density which, owing
to the fact that (8.2.14) is source-free between A and B, is independent of x.
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This integration constant can be determined from the boundary conditions
given above. We make use of the following Ansatz for P (x):

P (x) = e−V/kT P̂ (8.3.18)

in equation (8.3.17)

∂

∂x
P̂ = − j0

kTΓ
eV (x)/kT . (8.3.17′a)

Integrating this equation from A to x, we obtain

P̂ (x) = const. − j0
kTΓ

∫ x

A
dx eV (x)/kT . (8.3.17′b)

The boundary condition at A, that there P follows the thermal equilibrium
distribution, requires that

const. =
1∫

Adx e−V/kT
. (8.3.19a)

Here,
∫

A means that the integral is evaluated in the vicinity of A. If the
barrier is sufficiently high, contributions from regions more distant from the
minimum are negligible9 . The boundary condition at B requires

0 = e−VB/kT

(
const. − j0

kTΓ

∫ B

A
dx eV/kT

)
, (8.3.19b)

so that

j0 =
kT Γ

(∫
Adx e−V (x)/kT

)−1

∫ B
A dx eV (x)/kT

. (8.3.20)

For V (x) in the vicinity of A, we set VA(x) ≈ 1
2 (2πν)2x2, and, without loss

of generality, take the zero point of the energy scale at the point A. We then
find

∫

A
dx e−VA/kT =

∫ ∞

−∞
dx e−

1
2 (2πν)2x2/kT =

√
kT√
2πν

.

Here, the integration was extended beyond the neighborhood of A out to
[−∞,∞], which is permissible owing to the rapid decrease of the integrand.
The main contribution to the integral in the denominator of (8.3.20) comes
9 Inserting (8.3.17′b) with (8.3.20) into (8.3.18), one obtains from the first term in

the vicinity of point A just the equilibrium distribution, while the second term
is negligible due to

R x

A
dx eV/kT /

R B

A
dx eV/kT ≪ 1.
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from the vicinity of the barrier, where we set V (x) ≈ ∆− (2πν′)2x2/2. Here,
∆ is the height of the barrier and ν′2 characterizes the barrier’s curvature

∫ B

A
dx eV/kT ≈ e∆/kT

∫ ∞

−∞
dx e−

(2πν′)2x2
2kT = e

∆
kT

√
kT√

2πν′
.

This yields all together for the current density or the transition rate10

j0 = 2πνν′Γ e−∆/kT . (8.3.21)

We point out some important aspects of the thermally activated transition
rate: the decisive factor in this result is the Arrhenius dependence e−∆/kT ,
where ∆ denotes the barrier height, i.e. the activation energy. We can rewrite
the prefactor by making the replacements (2πν)2 = mω2, (2πν′)2 = mω′2 and
Γ = 1

mζ (Eq. (8.1.24)):

j0 =
ωω′

2πζ
e−∆/kT . (8.3.21′)

If we assume that ω′ ≈ ω, then the prefactor is proportional to the square of
the vibration frequency characterized by the potential well.11

8.3.3 Critical Dynamics

We have already pointed out in the introduction to Brownian motion that
the theory developed to describe it has a considerably wider significance.
Instead of the motion of a massive particle in a fluid of stochastically colliding
molecules, one can consider quite different situations in which a small number
of relatively slowly varying collective variables are interacting with many
strongly varying, rapid degrees of freedom. The latter lead to a damping of
the collective degrees of freedom.

This situation occurs in the hydrodynamic region. Here, the collective
degrees of freedom represent the densities of the conserved quantities. The
typical time scales for these hydrodynamic degrees of freedom increase with
decreasing q proportionally to 1/q or 1/q2, where q is the wavenumber. In
comparison, in the range of small wavenumbers all the remaining degrees of
freedom are very rapid and can be regarded as stochastic noise in the equa-
tions of motion of the conserved densities. This then leads to the typical form
of the hydrodynamic equations with damping terms proportional to q2 or,
in real space, ∼ ∇2. We emphasize that “hydrodynamics” is by no means
limited to the domain of liquids or gases, but instead, in an extension of its
10 H.A. Kramers, Physica 7, 284 (1940)
11 ω is the frequency (attempt frequency) with which the particle arrives at the

right side of the potential well, from where it has the possibility (with however
a small probability ∼ e−∆/kT ) of overcoming the barrier.
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original meaning, it includes the general dynamics of conserved quantities de-
pending on the particular physical situation (dielectrics, ferromagnets, liquid
crystals, etc.).

A further important field in which this type of separation of time scales
occurs is the dynamics in the neighborhood of critical points. As we know
from the sections on static critical phenomena, the correlations of the local
order parameter become long-ranged. There is thus a fluctuating order within
regions whose size is of the order of the correlation length. As these correlated
regions grow, the characteristic time scale also increases. Therefore, the re-
maining degrees of freedom of the system can be regarded as rapidly varying.
In ferromagnets, the order parameter is the magnetization. In its motions, the
other degrees of freedom such as those of the electrons and lattice vibrations
act as rapidly varying stochastic forces.

In ferromagnets, the magnetic susceptibility behaves in the vicinity of the
Curie point as

χ ∼ 1
T − Tc

(8.3.22a)

and the correlation function of the magnetization as

GMM (x) ∼ e−|x|/ξ

|x| . (8.3.22b)

In the neighborhood of the critical point of the liquid-gas transition, the
isothermal compressibility diverges as

κT ∼ 1
T − Tc

(8.3.22c)

and the density-density correlation function has the dependence

gρρ(x) ∼ e−|x|/ξ

|x| . (8.3.22d)

In Eqns. (8.3.22 b,d), ξ denotes the correlation length, which behaves as
ξ ∼ (T − Tc)

− 1
2 in the molecular field approximation, cf. Sects. 5.4 and 6.5.

A general model-independent approach to the theory of critical phenom-
ena begins with a continuum description of the free energy, the Ginzburg–
Landau expansion (see Sect. 7.4.1):

F [M ] =
∫

ddx

{
a′

2
(T − Tc)M2 +

b

4
M4 +

c

2
(∇M)2 − Mh

}
, (8.3.23)

where e−F/kT denotes the statistical weight of a configuration M(x). The
most probable configuration is given by

δF
δM

= 0 = a′(T − Tc)M − c∇2M + bM3 − h . (8.3.24)
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It follows from this that the magnetization and the susceptibility in the limit
h → 0 are

M ∼ (Tc − T )1/2Θ(Tc − T ) and χ ∼ 1
T − Tc

.

Since the correlation length diverges on approaching the critical point, ξ →
∞, the fluctuations also become slow. This suggests the following stochastic
equation of motion for the magnetization12

Ṁ(x, t) = −λ
δF

δM(x, t)
+ r(x, t) . (8.3.25)

The first term in the equation of motion causes relaxation towards the
minimum of the free-energy functional. This thermodynamic force becomes
stronger as the gradient δF/δM(x) increases. The coefficient λ character-
izes the relaxation rate analogously to Γ in the Smoluchowski equation. Fi-
nally, r(x, t) is a stochastic force which is caused by the remaining degrees
of freedom. Instead of a finite number of stochastic variables, we have here
stochastic variables M(x, t) and r(x, t) which depend on a continuous index,
the position x.

Instead of M(x), we can also introduce its Fourier transform

Mk =
∫

ddx e−ikxM(x) (8.3.26)

and likewise for r(x, t). Then the equation of motion (8.3.25) becomes

Ṁk = −λ
∂F

∂M−k
+ rk(t) . (8.3.25′)

Finally, we still have to specify the properties of the stochastic forces. Their
average value is zero

⟨r(x, t)⟩ = ⟨rk(t)⟩ = 0

and furthermore they are correlated spatially and temporally only over short
distances, which we can represent in idealized form by

⟨rk(t)rk′ (t′)⟩ = 2λkT δk,−k′δ(t − t′) (8.3.27)

or

⟨r(x, t)r(x′, t′)⟩ = 2λkT δ(x− x′)δ(t − t′) . (8.3.27′)

For the mean square deviations of the force, we have postulated the Ein-
stein relation, which guarantees that an equilibrium distribution is given by
12 Also called the TDGL = time-dependent Ginzburg–Landau model.
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e−βF [M ]. We also assume that the probability density for the stochastic forces
r(x, t) is a Gaussian distribution (cf. (8.1.26)). This has the result that the
odd correlation functions for r(x, t) vanish and the even ones factor into
products of (8.3.27′) (sum over all the pairwise contractions). We will now
investigate the equation of motion (8.3.25′) for T > Tc. In what follows, we
use the Gaussian approximation, i.e. we neglect the anharmonic terms; then
the equation of motion simplifies to

Ṁk = −λ
(
a′(T − Tc) + ck2

)
Mk + rk . (8.3.28)

Its solution is already familiar from the elementary theory of Brownian mo-
tion:

Mk(t) = e−γktMk(0) + e−γkt

∫ t

0
dt′ rk(t′)eγkt′ , (8.3.29)

as is the resulting correlation function

⟨Mk(t)Mk′(t′)⟩ = e−γk|t−t′| λkT

γk
δk,−k′ + O(e−γk(t+t′)) (8.3.30)

or, for times t, t′ > γ−1
k ,

⟨Mk(t)Mk′(t′)⟩ = δk,−k′
kT

a′(T − Tc) + ck2
e−γk|t−t′| . (8.3.31)

Here, we have introduced the relaxation rate

γk = λ
(
a′(T − Tc) + ck2

)
. (8.3.32a)

In particular, for k = 0 we find

γ0 ∼ (T − Tc) ∼ ξ−2 . (8.3.32b)

As we suspected at the beginning, the relaxation rate decreases drastically on
approaching the critical point. One denotes this situation as “critical slowing
down”.

As we already know from Chap. 7, the interaction bM4 between the crit-
ical fluctuations leads to a modification of the critical exponents, e.g. ξ →
(T − Tc)−ν . Likewise, in the framework of dynamic renormalization group
theory it is seen that these interactions lead in the dynamics to

γ0 → ξ−z (8.3.33)

with a dynamic critical exponent z 13 which differs from 2.
13 See e.g. F. Schwabl and U.C. Täuber, Encyclopedia of Applied Physics, Vol. 13,

343 (1995), VCH.
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Remark:

According to Eq. (8.3.25′), the dynamics of the order parameter are relax-
ational. For isotropic ferromagnets , the magnetization is conserved and the
coupled precessional motion of the magnetic moments leads to spin waves.
In this case, the equations of motion are given by14

Ṁ(x, t) = −λM(x, t) × δF
δM

(x, t) + Γ∇2 δF
δM

(x, t) + r(x, t) , (8.3.34)

with

⟨r(x, t)⟩ = 0 , (8.3.35)

⟨ri(x, t)rj(x, t)⟩ = −2ΓkT∇2δ(3)(x − x′)δ(t − t′)δij , (8.3.36)

which leads to spin diffusion above the Curie temperature and to spin waves
below it (cf. problem 8.9). The first term on the right-hand side of the equa-
tion of motion produces the precessional motion of the local magnetization
M(x, t) around the local field δF/δM(x, t) at the point x. The second term
gives rise to the damping. Since the magnetization is conserved, it is taken
to be proportional to ∇2, i.e. in Fourier space it is proportional to k2. These
equations of motion are known as the Bloch equations or Landau–Lifshitz
equations and, without the stochastic term, have been applied in solid-state
physics since long before the advent of interest in critical dynamic phenom-
ena. The stochastic force r(x, t) is due to the remaining, rapidly fluctuating
degrees of freedom. The functional of the free energy is

F [M(x, t)] =
1
2

∫
d3x

[
a′(T − Tc)M2(x, t) +

b

2
M4(x, t)

+ c(∇M(x, t))2 − hM(x, t)
]

. (8.3.37)

∗8.3.4 The Smoluchowski Equation and Supersymmetric Quantum
Mechanics

8.3.4.1 The Eigenvalue Equation

In order to bring the Smoluchowski equation (8.2.14) (V ′ ≡ ∂V/∂x) ≡ −F

∂P

∂t
= Γ

∂

∂x

(
kT

∂

∂x
+ V ′

)
P (8.3.38)

into a form which contains only the second derivative with respect to x, we
apply the Ansatz
14 S. Ma and G. F. Mazenko, Phys. Rev. B11, 4077 (1975).
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P (x, t) = e−V (x)/2kT ρ(x, t) , (8.3.39)

obtaining

∂ρ

∂t
= kTΓ

(
∂2

∂x2
+

V ′′

2kT
− V ′2

4(kT )2

)
ρ . (8.3.40)

This is a Schrödinger equation with an imaginary time

i! ∂ρ

∂(−i!2kTΓ t)
=

(
−1

2
∂2

∂x2
+ V 0(x)

)
ρ . (8.3.41)

with the potential

V 0(x) =
1
2

{
V ′2

4(kT )2
− V ′′

2kT

}
. (8.3.42)

Following the separation of the variables

ρ(x, t) = e−2kTΓEntϕn(x) , (8.3.43)

we obtain from Eq. (8.3.40) the eigenvalue equation

1
2
ϕ′′

n =
(
−En + V 0(x)

)
ϕn(x) . (8.3.44)

Formally, equation (8.3.44) is identical with a time-independent Schrödinger
equation.15 In (8.3.43) and (8.3.44), we have numbered the eigenfunctions
and eigenvalues which follow from (8.3.44) with the index n.

The ground state of (8.3.44) is given by

ϕ0 = N e−
V

2kT , E0 = 0 , (8.3.45)

where N is a normalization factor. Inserting in (8.3.39), we find for P (x, t)
the equilibrium distribution

P (x, t) = N e−V (x)/kT . (8.3.45′)

From (8.3.42), we can immediately see the connection with supersymmetric
quantum mechanics . The supersymmetric partner16 to V 0 has the potential

V 1 =
1
2

[
V ′2

4(kT )2
+

V ′′

2kT

]
. (8.3.46)

15 N.G. van Kampen, J. Stat. Phys. 17, 71 (1977).
16 M. Bernstein and L. S. Brown, Phys. Rev. Lett. 52, 1933 (1984); F. Schwabl,

QM I, Chap. 19, Springer 2005. The quantity Φ introduced there is connected to
the ground state wavefunctions ϕ0 and the potential V as follows: Φ = −ϕ′

0/ϕ0 =
V ′/2kT .
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Fig. 8.6. The excitation spec-
tra of the two Hamiltonians H0

and H1, from QM I, pp. 353
and 361

The excitation spectra of the two Hamiltonians

H0,1 = −1
2

d2

dx2
+ V 0,1(x) (8.3.47)

are related in the manner shown in Fig. 8.6. One can advantageously make
use of this connection if the problem with H1 is simpler to solve than that
with H0.

8.3.4.2 Relaxation towards Equilibrium

We can now solve the initial value problem for the Smoluchowski equation in
general. Starting with an arbitrarily normalized initial distribution P (x), we
can calculate ρ(x) and expand in the eigenfunctions of (8.3.44)

ρ(x) = eV (x)/2kT P (x) =
∑

n

cnϕn(x) , (8.3.48)

with the expansion coefficients

cn =
∫

dxϕ∗
n(x)eV (x)/2kT P (x) . (8.3.49)

From (8.3.43), we find the time dependence

ρ(x, t) =
∑

n

e−2kTΓEntcnϕn(x) , (8.3.50)

from which, with (8.3.39),

P (x, t) = e−V (x)/2kT
∞∑

n=0

cne−2kTΓEntϕn(x) (8.3.51)



432 8. Brownian Motion, Equations of Motion, the Fokker–Planck Equations

follows. The normalized ground state has the form

ϕ0 =
e−V (x)/2kT

(∫
dx e−V (x)/kT

)1/2
. (8.3.52)

Therefore, the expansion coefficient c0 is given by

c0 =
∫

dxϕ∗
0e

V (x)/2kT P (x) =
∫

dxP (x)
(∫

dx e−V (x)/kT
)1/2

=
1

(∫
dx e−V (x)/kT

)1/2
.

(8.3.53)

This allows us to cast (8.3.51) in the form

P (x, t) =
e−V (x)/kT

∫
dx e−V (x)/kT

+ e−V (x)/2kT
∞∑

n=1

cne−2kTΓEntϕn(x) . (8.3.54)

With this, the initial-value problem for the Smoluchowski equation is solved
in general. Since En > 0 for n ≥ 1, it follows from this expansion that

lim
t→∞

P (x, t) =
e−V (x)/kT

∫
dx e−V (x)/kT

, (8.3.55)

which means that, starting from an arbitrary initial distribution, P (x, t) de-
velops at long times towards the equilibrium distribution (8.3.45′) or (8.3.55).
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Problems for Chapter 8

8.1 Derive the generalized Fokker–Planck equation, (8.2.18).

8.2 A particle is moving with the step length l along the x-axis. Within each time
step it hops to the right with the probability p+ and to the left with the probability
p− (p+ + p− = 1). How far is it from the starting point on the average after t time
steps if p+ = p− = 1/2, or if p+ = 3/4 and p− = 1/4?
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8.3 Diffusion and Heat Conductivity
(a) Solve the diffusion equation

ṅ = D∆n

for d = 1, 2 and 3 dimensions with the initial condition

n(x, t = 0) = Nδd(x) .

Here, n is the particle density, N the particle number, and D is the diffusion
constant.
(b) Another form of the diffusion equation is the heat conduction equation

∆T =
cρ
κ

∂T
∂t

where T is the temperature, κ the coefficient of thermal conductivity, c the specific
heat, and ρ the density.

Solve the following problem as an application: potatoes are stored at +5◦C in
a broad trench which is covered with a loose layer of earth of thickness d. Right
after they are covered, a cold period suddenly begins, with a steady temperature
of −10◦C, and it lasts for two months. How thick does the earth layer have to be
so that the potatoes will have cooled just to 0◦C at the end of the two months?
Assume as an approximation that the same values hold for the earth and for the
potatoes: κ = 0.4 W

m·K , c = 2000 J
kg·K , ρ = 1000 kg

m3 .

8.4 Consider the Langevin equation of an overdamped harmonic oscillator

ẋ(t) = −Γx(t) + h(t) + r(t),

where h(t) is an external force and r(t) a stochastic force with the properties
(8.1.25). Compute the correlation function

C(t, t′) =
˙
x(t)x(t′)

¸
h=0

,

the response function

χ(t, t′) =
δ⟨x(t)⟩
δh(t′)

,

and the Fourier transform of the response function.

8.5 Damped Oscillator
(a) Consider the damped harmonic oscillator

mẍ + mζẋ + mω2
0x = f(t)

with the stochastic force f(t) from Eq. (8.1.25). Calculate the correlation function
and the dynamic susceptibility. Discuss in particular the position of the poles and
the line shape. What changes relative to the limiting cases of the non-damped
oscillator or the overdamped oscillator?
(b) Express the stationary solution ⟨x(t)⟩ under the action of a periodic external
force fe(t) = f0 cos 2π

T t in terms of the dynamic susceptibility. Use it to compute

the power dissipated, 1
T

R T
0

dt fe(t)⟨ẋ(t)⟩.
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8.6 Diverse physical systems can be described as a subsystem capable of oscilla-
tions that is coupled to a relaxing degree of freedom, whereby both systems are in
contact with a heat bath (e.g. the propagation of sound waves in a medium in which
chemical reactions are taking place, or the dynamics of phonons taking energy/heat
diffusion into account). As a simple model, consider the following system of coupled
equations:

ẋ =
1
m

p

ṗ = −mω2
0x − Γp + by + R(t)

ẏ = −γy − b
m

p + r(t) .

Here, x and p describe the vibrational degrees of freedom (with the eigenfrequency
ω0), and y is the relaxational degree of freedom. The subsystems are mutually
linearly coupled with their coupling strength determined by the parameter b. The
coupling to the heat bath is accomplished by the stochastic forces R and r for
each subsystem, with the usual properties (vanishing of the average values and the
Einstein relations), and the associated damping coefficients Γ and γ.
(a) Calculate the dynamic susceptibility χx(ω) for the vibrational degree of free-
dom.
(b) Discuss the expression obtained in the limiting case of γ → 0, i.e. when the
relaxation time of the relaxing system is very long.

8.7 An example of an application of the overdamped Langevin equation is an
electrical circuit consisting of a capacitor of capacity C and a resistor of resistance
R which is at the temperature T . The voltage drop UR over the resistor depends
on the current I via UR = RI , and the voltage UC over the capacitor is related to
the capacitor charge Q via UC = Q

C . On the average, the sum of the two voltages is
zero, UR + UC = 0. In fact, the current results from the motion of many electrons,
and collisions with the lattice ions and with phonons cause fluctuations which are
modeled by a noise term Vth in the voltage balance (J = Q̇)

RQ̇ +
1
C

Q = Vth

or

U̇c +
1

RC
Uc =

1
RC

Vth .

(a) Assume the Einstein relation for the stochastic force and calculate the spectral
distribution of the voltage fluctuations

φ(ω) =

Z ∞

−∞
dt eiωt⟨Uc(t)Uc(0)⟩ .

(b) Compute

˙
U2

c

¸
≡ ⟨Uc(t)Uc(t)⟩ ≡

Z ∞

−∞
dω φ(ω)

and interpret the result, 1
2C
˙
U2

c

¸
= 1

2kT .
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8.8 In a generalization of problem 8.7, let the circuit now contain also a coil or
inductor of self-inductance L with a voltage drop UL = Lİ. The equation of motion
for the charge on the capacitor is

Q̈ + RQ̇ +
1
C

Q = Vth .

By again assuming the Einstein relation for the noise voltage Vth, calculate the
spectral distribution for the current

R∞
−∞dt eiωt⟨I(t)I(0)⟩.

8.9 Starting from the equations of motion for an isotropic ferromagnet (Eq. 8.3.34),
investigate the ferromagnetic phase, in which

M(x, t) = êzM0 + δM(x, t)

holds.
(a) Linearize the equations of motion in δM(x, t), and determine the transverse
and longitudinal excitations relative to the z-direction.
(b) Calculate the dynamic susceptibility

χij(k, ω) =

Z
d3x dt e−i(kx−ωt) ∂Mi(x, t)

∂hj(0, 0)

and the correlation function

Gij(k,ω) =

Z
d3x dt e−i(kx−ωt)⟨δMi(x, t)δMj(0, 0)⟩ .

8.10 Solve the Smoluchowski equation

∂P (x, t)
∂t

= Γ
∂
∂x

„
kT

∂
∂x

+
∂V (x)

∂x

«
P (x, t)

for an harmonic potential and an inverted harmonic potential V (x) = ±mω2

2 x2, by
solving the corresponding eigenvalue problem.

8.11 Justify the Ansatz of Eq. (8.3.39) and carry out the rearrangement to give
Eq. (8.3.40).

8.12 Solve the Smoluchowski equation for the model potential

V (x) = 2kT log(cosh x)

using supersymmetric quantum mechanics, by transforming as in Chapter 8.3.4
to a Schrödinger equation. (Literature: F. Schwabl, Quantum Mechanics, 3rd ed.,
Chap. 19 (Springer Verlag, Heidelberg, New York, corrected printing 2005.)

8.13 Stock-market prices as a stochastic process.
Assume that the logarithm l(t) = log S(t) of the price S(t) of a stock obeys the

Langevin equation (on a sufficiently rough time scale)

d
dt

l(t) = r + Γ (t)

where r is a constant and Γ is a Gaussian “random force” with ⟨Γ (t)Γ (t′)⟩ =
σ2δ(t − t′).



436 8. Brownian Motion, Equations of Motion, the Fokker–Planck Equations

(a) Explain this approach. Hints: What does the assumption that prices in the
future cannot be predicted from the price trends in the past imply? Think first of
a process which is discrete in time (e.g. the time dependence of the daily closing
rates). Should the transition probability more correctly be a function of the price
difference or of the price ratio?
(b) Write the Fokker–Planck equation for l, and based on it, the equation for S.
(c) What is the expectation value for the market price at the time t, when the
stock is being traded at the price S0 at time t0 = 0? Hint: Solve the Fokker–Planck
equation for l = log S.



9. The Boltzmann Equation

9.1 Introduction

In the Langevin equation (Chap. 8), irreversibility was introduced phe-
nomenologically through a damping term. Kinetic theories have the goal of
explaining and quantitatively calculating transport processes and dissipative
effects due to scattering of the atoms (or in a solid, of the quasiparticles).
The object of these theories is the single-particle distribution function, whose
time development is determined by the kinetic equation.

In this chapter, we will deal with a monatomic classical gas consisting
of particles of mass m; we thus presume that the thermal wavelength λT =
2π!/

√
2πmkT and the volume per particle v = n−1 obey the inequality

λT ≪ n−1/3 ,

i.e. the wavepackets are so strongly localized that the atoms can be treated
classically.

Further characteristic quantities which enter include the duration of a
collision τc and the collision time τ (this is the mean time between two
collisions of an atom; see (9.2.12)). We have τc ≈ rc/v̄ and τ ≈ 1/nr2

c v̄,
where rc is the range of the potentials and v̄ is the average velocity of the
particles. In order to be able to consider independent two-particle collisions,
we need the additional condition

τc ≪ τ ,

i.e. the duration of a collision is short in comparison to the collision time.
This condition is fulfilled in the low-density limit, rc ≪ n−1/3. Then collisions
of more than two particles can be neglected.

The kinetic equation which describes the case of a dilute gas considered
here is the Boltzmann equation1. The Boltzmann equation is one of the most
fundamental equations of non-equilibrium statistical mechanics and is applied
in areas far beyond the case of the dilute gas2.
1 Ludwig Boltzmann, Wien. Ber. 66, 275 (1872); Vorlesungen über Gastheorie,

Leipzig, 1896; Lectures on Gas Theory, translated by S. Brush, University of
California Press, Berkeley, 1964

2 See e.g. J. M. Ziman, Principles of the Theory of solids, 2nd ed, Cambridge
Univ. Press, Cambridge, 1972.
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In this chapter we will introduce the Boltzmann equation using the clas-
sical derivation of Boltzmann1. Next, we discuss some fundamental questions
relating to irreversibility based on the H theorem. As an application of the
Boltzmann equation we then determine the hydrodynamic equations and
their eigenmodes (sound, heat diffusion). The transport coefficients are de-
rived systematically from the linearized Boltzmann equation using its eigen-
modes and eigenfrequencies.

9.2 Derivation of the Boltzmann Equation

We presume that only one species of atoms is present. For these atoms, we
seek the equation of motion of the single-particle distribution function.

Definition: The single-particle distribution function f(x,v, t) is defined by
f(x,v, t) d3xd3v = the number of particles which are found at time t in
the volume element d3x around the point x and d3v around the velocity
v.

∫
d3xd3v f(x,v, t) = N . (9.2.1)

The single-particle distribution function f(x,v, t) is related to the N -particle
distribution function ρ(x1,v1, . . . ,xN ,vN , t) (Eq. (2.3.1)) through
f(x1,v1, t) = N

∫
d3x2 d3v2 . . .

∫
d3xN d3vN ρ(x1,v1, . . . ,xN ,vN , t).

Remarks:

1. In the kinetic theory, one usually takes the velocity as variable instead
of the momentum, v = p/m.

2. The 6-dimensional space generated by x and v is called µ space.
3. The volume elements d3x and d3v are supposed to to be of small linear

dimensions compared to the macroscopic scale or to the mean velocity
v̄ =

√
kT/m , but large compared to the microscopic scale, so that many

particles are to be found within each element. In a gas under standard
conditions (T = 1◦C, P = 1 atm), the number of molecules per cm3 is
n = 3 × 1019 . In a cube of edge length 10−3 cm, i.e. a volume element
of the size d3x = 10−9 cm3, which for all experimental purposes can be
considered to be pointlike, there are still 3× 1010 molecules. If we choose
d3v ≈ 10−6 × v̄3, then from the Maxwell distribution

f0(v) = n
( m

2πkT

)3/2
e−

mv2
2kT ,

in this element of µ space, there are f0 d3xd3v ≈ 104 molecules.

To derive the Boltzmann equation, we follow the motion of a volume
element in µ space during the time interval [t, t+ dt]; cf. Fig. 9.1. Since those
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Fig. 9.1. Deformation of a vol-
ume element in µ space during the
time interval dt.

particles with a higher velocity move more rapidly, the volume element is
deformed in the course of time. However, the consideration of the sizes of the
two parallelepipeds3 yields

d3x′ d3v′ = d3xd3v . (9.2.2)

The number of particles at the time t in d3xd3v is f(x,v, t) d3xd3v, and
the number of particles in the volume element which develops after the time
interval dt is f(x + vdt,v + 1

mFdt, t + dt) d3x′ d3v′. If the gas atoms were
collision-free, these two numbers would be the same. A change in these par-
ticle numbers can only occur through collisions. We thus obtain

[
f(x + v dt,v +

1
m

F dt, t + dt) − f(x,v, t)
]

d3xd3v =

=
∂f

∂t

)

coll

dt d3xd3v , (9.2.3)

i.e. the change in the particle number is equal to its change due to collisions.
The expansion of this balance equation yields

[
∂

∂t
+ v∇x +

1
m

F(x)∇v

]
f(x,v, t) =

∂f

∂t

)

coll

. (9.2.4)

The left side of this equation is termed the flow term4. The collision term
∂f
∂t

)

coll
can be represented as the difference of gain and loss processes:

∂f

∂t

)

coll

= g − l . (9.2.5)

Here, g d3xd3v dt is the number of particles which are scattered during the
time interval dt into the volume d3xd3v by collisions, and ld3xd3v dt is the
3 The result obtained here from geometric considerations can also be derived by

using Liouville’s theorem (L.D. Landau and E.M. Lifshitz, Course of Theoretical
Physics, Vol. I: Mechanics, Pergamon Press, Oxford 1960, Eq. (4.6.5)).

4 In Remark (i), p. 441, the flow term is derived in a different way.
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number which are scattered out, i.e. the number of collisions in the volume
element d3x in which one of the two collision partners had the velocity v
before the collision. We assume here that the volume element d3v is so small
in velocity space that every collision leads out of this volume element.

The following expression for the collision term is Boltzmann’s celebrated
Stosszahlansatz (assumption regarding the number of collisions):

∂f

∂t

)

coll

=
∫

d3v2 d3v3 d3v4 W (v,v2;v3,v4)[f(x,v3, t)f(x,v4, t)

− f(x,v, t)f(x,v2, t)] . (9.2.6)

Here, W (v,v2;v3,v4) refers to the transition probability v,v2 → v3,v4,

Fig. 9.2. Gain and loss processes,
g and l

i.e. the probability that in a collision two particles with the velocities v and v2

will have the velocities v3 and v4 afterwards. The number of collisions which
lead out of the volume element considered is proportional to the number of
particles with the velocity v and the number of particles with velocity v2,
and proportional to W (v,v2;v3,v4); a sum is carried out over all values of
v2 and of the final velocities v3 and v4. The number of collisions in which an
additional particle is in the volume element d3v after the collision is given by
the number of particles with the velocities v3 and v4 whose collision yields a
particle with the velocity v. Here, the transition probability W (v3,v4;v,v2)
has been expressed with the help of (9.2.8e).

The Stosszahlansatz (9.2.6), together with the balance equation (9.2.4),
yields the Boltzmann equation

[
∂

∂t
+ v∇x +

1
m

F(x)∇v

]
f(x,v, t) =

∫
d3v2

∫
d3v3

∫
d3v4 W (v,v2;v3,v4)

(
f(x,v3, t)f(x,v4, t)

− f(x,v, t)f(x,v2, t)
)

. (9.2.7)

It is a nonlinear integro-differential equation.
The transition probability W has the following symmetry properties:

• Invariance under particle exchange:

W (v,v2;v3,v4) = W (v2,v;v4,v3) . (9.2.8a)



9.2 Derivation of the Boltzmann Equation 441

• Rotational and reflection invariance: with an orthogonal matrix D we have

W (Dv, Dv2; Dv3, Dv4) = W (v,v2;v3,v4) . (9.2.8b)

This relation contains also inversion symmetry:

W (−v,−v2;−v3,−v4) = W (v,v2;v3,v4) . (9.2.8c)

• Time-reversal invariance:

W (v,v2;v3,v4) = W (−v3,−v4;−v,−v2) . (9.2.8d)

The combination of inversion and time reversal yields the relation which
we have already used in (9.2.6) for ∂f

∂t

)

coll
:

W (v3,v4;v,v2) = W (v,v2;v3,v4) . (9.2.8e)

From the conservation of momentum and energy, it follows that

W (v1,v2;v3,v4) = σ(v1,v2;v3,v4)δ(3)(p1 + p2 − p3 − p4)

× δ

(
p2

1

2m
+

p2
2

2m
− p2

3

2m
− p2

3

2m

)
, (9.2.8f)

as one can see explicitly from the microscopic calculation of the two-particle
collision in Eq. (9.5.21). The form of the scattering cross-section σ depends
on the interaction potential between the particles. For all the general, fun-
damental results of the Boltzmann equation, the exact form of σ is not im-
portant. As an explicit example, we calculate σ for the interaction potential
of hard spheres (Eq. (9.5.15)) and for a potential which falls off algebraically
(problem 9.15, Eq. (9.5.29)).

To simplify the notation, in the following we shall frequently use the
abbreviations

f1 ≡ f(x,v1, t) with v1 = v,

f2 ≡ f(x,v2, t), f3 ≡ f(x,v3, t), and f4 ≡ f(x,v4, t) .
(9.2.9)

Remarks:

(i) The flow term in the Boltzmann equation can also be derived by setting up
an equation of continuity for the fictitious case of collision-free, non-interacting gas
atoms. To do this, we introduce the six-dimensional velocity vector

w =

„
v = ẋ, v̇ =

F
m

«
(9.2.10)

and the current density wf(x,v, t). For a collision-free gas, f fulfills the equation
of continuity

∂f
∂t

+ divwf = 0 . (9.2.11)
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Using Hamilton’s equations of motion, Eq. (9.2.11) takes on the form
„

∂
∂t

+ v∇x +
1
m

F(x)∇v

«
f(x,v, t) = 0 (9.2.11′)

of the flow term in Eqns. (9.2.4) and (9.2.7).
(ii) With a collision term of the form (9.2.6), the presence of correlations be-

tween two particles has been neglected. It is assumed that at each instant the
number of particles with velocities v3 and v4, or v and v2, is uncorrelated, an
assumption which is also referred to as molecular chaos. A statistical element is
introduced here. As a justification, one can say that in a gas of low density, a bi-
nary collision between two molecules which had already interacted either directly
or indirectly through a common set of molecules is extremely improbable. In fact,
molecules which collide come from quite different places within the gas and previ-
ously underwent collisions with completely different molecules, and are thus quite
uncorrelated. The assumption of molecular chaos is required only for the particles
before a collision. After a collision, the two particles are correlated (they move
apart in such a manner that if all motions were reversed, they would again col-
lide); however, this does not enter into the equation. It is possible to derive the
Boltzmann equation approximately from the Liouville equation. To this end, one
derives from the latter the equations of motion for the single-, two-, etc. -particle
distribution functions. The structure of these equations, which is also called the
BBGKY (Bogoliubov, Born, Green, Kirkwood, Yvon) hierarchy, is such that the
equation of motion for the r-particle distribution function (r = 1, 2, . . .) contains in
addition also the (r + 1)-particle distribution function5. In particular, the equation
of motion for the single-particle distribution function f(x, v, t) has the form of the
left side of the Boltzmann equation. The right side however contains f2, the two-
particle distribution function, and thus includes correlations between the particles.
Only by an approximate treatment, i.e. by truncating the equation of motion for
f2 itself, does one obtain an expression which is identical with the collision term of
the Boltzmann equation6.

It should be mentioned that terms beyond those in the Boltzmann equation
lead to phenomena which do not exhibit the usual exponential decay in their re-
laxation behavior, but instead show a much slower, algebraic behavior; these time
dependences are called “long time tails”. Considered microscopically, they result
from so called ring collisions; see the reference by J. A. McLennan at the end of this
chapter. Quantitatively, these effects are in reality immeasurably small; up to now,
they have been observed only in computer experiments. In this sense, they have
a similar fate to the deviations from exponential decay of excited quantum levels
which occur in quantum mechanics.

(iii) To calculate the collision time τ , we imagine a cylinder whose length is
equal to the distance which a particle with thermal velocity travels in unit time,
and whose basal area is equal to the total scattering cross-section. An atom with
a thermal velocity passes through this cylinder in a unit time and collides with all
the other atoms within the cylinder. The number of atoms within the cylinder and
thus the number of collisions of an atom per second is σtotv̄n, and it follows that
the mean collision time is

τ =
1

σtotv̄n
. (9.2.12)

5 The r-particle distribution function is obtained from the N-particle distribution
function by means of fr(x1,v1, . . .xr,vr, t) ≡ N!

(N−r)!

R
d3xr+1d

3vr+1d
3xNd3vN

ρ(x1,v1, . . .xN ,vN , t). The combinatorial factor results from the fact that it is
not important which of the particles is at the µ-space positions x1,v1, . . ..

6 See references at the end of this chapter, e.g. K. Huang, S. Harris.
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The mean free path l is defined as the distance which an atom typically travels
between two successive collisions; it is given by

l ≡ v̄τ =
1

σtotn
. (9.2.13)

(iv) Estimates of the lengths and times which play a role in setting up the
Boltzmann equation: the range rc of the potential must be so short that collisions
occur between only those molecules which are within the same volume element
d3x: rc ≪ dx. This inequality is obeyed for the numerical example rc ≈ 10−8 cm,
dx = 10−3cm. With v̄ ≈ 105 cm

sec , we obtain for the time during which the particle

is within d3x the value τd3x ≈ 10−3 cm
105 cm

sec
≈ 10−8sec. The duration of a collision is

τc ≈ 10−8cm
105 cm

sec
≈ 10−13sec, the collision time τ ≈ (r2

cnv̄)−1 ≈ (10−16cm2 ×3 ×
1019cm−3 ×105cm sec−1)−1 ≈ 3 ×10−9sec.

9.3 Consequences of the Boltzmann Equation

9.3.1 The H-Theorem7 and Irreversibility

The goal of this section is to show that the Boltzmann equation shows irre-
versible behavior, and the distribution function tends towards the Maxwell
distribution. To do this, Boltzmann introduced the quantity H , which is re-
lated to the negative of the entropy: 7

H(x, t) =
∫

d3v f(x,v, t) log f(x,v, t) . (9.3.1)

For its time derivative, one obtains from the Boltzmann equation (9.2.7)

Ḣ(x, t) =
∫

d3v (1 + log f)ḟ

= −
∫

d3v (1 + log f)
(
v∇x +

1
m

F∇v

)
f − I

= −∇x

∫
d3v (f log f) v − I .

(9.3.2)

The second term in the large brackets in the second line is proportional
to

∫
d3v ∇v(f log f) and vanishes, since there are no particles with infinite

velocities, i.e. f → 0 for v → ∞.

7 Occasionally, the rumor makes the rounds that according to Boltzmann, this
should actually be called the Eta-Theorem. In fact, Boltzmann himself (1872)
used E (for entropy), and only later (S.H. Burbury, 1890) was the Roman letter
H adopted (D. Flamm, private communication, and S.G. Brush, Kinetic Theory,
Vol. 2, p. 6, Pergamon Press, Oxford, 1966).
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The contribution of the collision term

I =
∫

d3v1 d3v2 d3v3 d3v4 W (v1,v2;v3,v4)(f1f2−f3f4)(1+log f1) (9.3.3)

is found by making use of the invariance of W with respect to the exchanges
1, 3 ↔ 2, 4 and 1, 2 ↔ 3, 4 to be

I =
1
4

∫
d3v1 d3v2 d3v3 d3v4 W (v1,v2;v3,v4)(f1f2−f3f4) log

f1f2

f3f4
. (9.3.4)

The rearrangement which leads from (9.3.3) to (9.3.4) is a special case of the
general identity

∫
d3v1 d3v2 d3v3 d3v4 W (v1,v2;v3,v4)(f1f2 − f3f4)ϕ1

=
1
4

∫
d3v1 d3v2 d3v3 d3v4 W (v1,v2;v3,v4)×

× (f1f2 − f3f4)(ϕ1 + ϕ2 − ϕ3 − ϕ4) , (9.3.5)

which follows from the symmetry relations (9.2.8), and where ϕi = ϕ(x,vi, t)
(problem 9.1).

From the inequality (x − y) log x
y ≥ 0, it follows that

I ≥ 0 . (9.3.6)

The time derivative of H , Eq. (9.3.2), can be written in the form

Ḣ(x, t) = −∇x jH(x, t) − I , (9.3.7)

where

jH =
∫

d3v f log f v (9.3.8)

is the associated current density. The first term on the right-hand side of
(9.3.7) gives the change in H due to the entropy flow and the second gives
its change due to entropy production.

Discussion:

a) If no external forces are present, F(x) = 0, then the simplified situation
may occur that f(x,v, t) = f(v, t) is independent of x. Since the Boltzmann
equation then contains no x-dependence, f remains independent of position
for all times and it follows from (9.3.7), since ∇xjH(x, t) = 0, that

Ḣ = −I ≤ 0 . (9.3.9)
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The quantity H decreases and tends towards a minimum, which is finite,
since the function f log f has a lower bound, and the integral over v exists.8
At the minimum, the equals sign holds in (9.3.9). In Sect. 9.3.3, we show that
at the minimum, f becomes the Maxwell distribution

f0(v) = n
( m

2πkT

)3/2
e−

mv2
2kT . (9.3.10)

b) When F(x) ̸= 0, and we are dealing with a closed system of volume
V , then

∫

V
d3x∇xjH(x, t) =

∫

O(V )
dOjH(x, t) = 0

holds. The flux of H through the surface of this volume vanishes if the surface
is an ideal reflector; then for each contribution v dO there is a corresponding
contribution −v dO, and it follows that

d

dt
Htot ≡

d

dt

∫

V
d3xH(x, t) = −

∫

V
d3xI ≤ 0 . (9.3.11)

Htot decreases, we have irreversibility. The fact that irreversibility fol-
lows from an equation derived from Newtonian mechanics, which itself
is time-reversal invariant, was met at first with skepticism. However, the
Stosszahlansatz contains a probabilistic element, as we will demonstrate in
detail following Eq. (9.3.14).

As already mentioned, H is closely connected with the entropy. The cal-
culation of H for the equilibrium distribution f0(v) for an ideal gas yields
(see problem 9.3) H = n

[
log

(
n

(
m

2πkT

)3/2
)
− 3

2

]
. The total entropy S of the

ideal gas (Eq. (2.7.27)) is thus

S = −V kH − kN

(
3 log

2π!
m

− 1
)

. (9.3.12a)

Here, ! is Planck’s quantum of action. Expressed locally, the relation between
the entropy per unit volume, H , and the particle number density n is

S(x, t) = −kH(x, t) − k

(
3 log

2π!
m

− 1
)

n(x, t) . (9.3.12b)

8 One can readily convince oneself that H(t) cannot decrease without limit. Due
to
R

d3v f(x,v, t) < ∞, f(x,v, t) is bounded everywhere and a divergence of
H(t) could come only from the range of integration v → ∞. For v → ∞, f → 0
must hold and as a result, log f → −∞. Comparison of H(t) =

R
d3v f log f

with
R

d3v v2f(x,v, t) < ∞ shows that a divergence requires |log f | > v2. Then,

however, f < e−v2
, and H remains finite.
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The associated current densities are

jS(x, t) = −kjH(x, t) − k

(
3 log

2π!
m

− 1
)

j(x, t) (9.3.12c)

and fulfill

Ṡ(x, t) = −∇jS(x, t) + kI . (9.3.12d)

Therefore, kI has the meaning of the local entropy production.

∗9.3.2 Behavior of the Boltzmann Equation under Time Reversal

In a classical time-reversal transformation T (also motion reversal), the mo-
menta (velocities) of the particles are reversed (v → −v)9 . Consider a
system which, beginning with an initial state at the positions xn(0) and
the velocities vn(0), evolves for a time t, to the state {xn(t),vn(t)}, then
at time t1 experiences a motion-reversal transformation {xn(t1),vn(t1)} →
{xn(t1),−vn(t1)}; then if the system is invariant with respect to time re-
versal, the further motion for time t1 will lead back to the motion-reversed
initial state {xn(0),−vn(0)}. The solution of the equations of motion in the
second time period (t > t1) is

x′
n(t) = x(2t1 − t) (9.3.13)

v′
n(t) = −v(2t1 − t) .

Here, we have assumed that no external magnetic field is present. Apart from
a translation by 2t1, the replacement t → −t,v → −v is thus made. Under
this transformation, the Boltzmann equation (9.2.7) becomes

(
∂

∂t
+ v∇x+

1
m

F(x)∇v

)
f(x,−v,−t) = −I [f(x,−v,−t)] . (9.3.14)

The notation of the collision term should indicate that all distribution func-
tions have the time-reversed arguments. The Boltzmann equation is therefore
not time-reversal invariant ; f(x,−v,−t) is not a solution of the Boltzmann
equation, but instead of an equation which has a negative sign on its right-
hand side (−I [f(x,−v,−t)])).

The fact that an equation which was derived from Newtonian mechan-
ics, which is time-reversal invariant, is itself not time-reversal invariant and
exhibits irreversible behavior (Eq. (9.3.11)) may initially appear surprising.
Historically, it was a source of controversy. In fact, the Stosszahlansatz con-
tains a probabilistic element which goes beyond Newtonian mechanics. Even
if one assumes uncorrelated particle numbers, the numbers of particles with
9 See e.g. QM II, Sect. 11.4.1
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the velocities v and v2 will fluctuate: they will sometimes be larger and some-
times smaller than would be expected from the single-particle distribution
functions f1 and f2. The most probable value of the collisions is f1 · f2, and
the time-averaged value of this number will in fact be f1 ·f2. The Boltzmann
equation thus yields the typical evolution of typical configurations of the
particle distribution. Configurations with small statistical weights, in which
particles go from a (superficially) probable configuration to a less probable
one (with lower entropy) – which is possible in Newtonian mechanics – are
not described by the Boltzmann equation. We will consider these questions in
more detail in the next chapter (Sect. 10.7), independently of the Boltzmann
equation.

9.3.3 Collision Invariants and the Local Maxwell Distribution

9.3.3.1 Conserved Quantities

The following conserved densities can be calculated from the single-particle
distribution function: the particle-number density is given by

n(x, t) ≡
∫

d3v f . (9.3.15a)

The momentum density, which is also equal to the product of the mass and
the current density, is given by

m j(x, t) ≡ m n(x, t)u(x, t) ≡ m

∫
d3v vf . (9.3.15b)

Equation (9.3.15b) also defines the average local velocity u(x, t). Finally, we
define the energy density, which is composed of the kinetic energy of the local
convective flow at the velocity u(x, t), i.e. n(x, t)mu(x, t)2/2, together with
the average kinetic energy in the local rest system10, n(x, t)e(x, t):

n(x, t)
[
mu(x, t)2

2
+ e(x, t)

]
≡

∫
d3v

mv2

2
f =

∫
d3v

m

2
(
u2 + φ2) f .

(9.3.15c)

Here, the relative velocity φ = v−u has been introduced, and
∫

d3v φf = 0,
which follows from Eq. (9.3.15b), has been used. For e(x, t), the internal
energy per particle in the local rest system (which is moving at the velocity
u(x, t)), it follows from (9.3.15c) that

n(x, t) e(x, t) =
m

2

∫
d3v(v − u(x, t))2f . (9.3.15c′)

10 We note that for a dilute gas, the potential energy is negligible relative to the
kinetic energy, so that the internal energy per particle e(x, t) = ϵ̄(x, t) is equal
to the average kinetic energy.
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9.3.3.2 Collisional Invariants

The collision integral I of Eq. (9.3.3) and the collision term in the Boltzmann
equation vanish if the distribution function f fulfills the relation

f1f2 − f3f4 = 0 (9.3.16)

for all possible collisions (restricted by the conservation laws contained in
(9.2.8f), i.e. if

log f1 + log f2 = log f3 + log f4 (9.3.17)

holds. Note that all the distribution functions fi have the same x-argument.
Due to conservation of momentum, energy, and particle number, each of the
five so called collisional invariants

χi = mvi , i = 1, 2, 3 (9.3.18a)

χ4 = ϵv≡ mv2

2
(9.3.18b)

χ5 = 1 (9.3.18c)

obeys the relation (9.3.17). There are no other collisional invariants apart
from these five11. Thus the logarithm of the most general distribution function
for which the collision term vanishes is a linear combination of the collisional
invariants with position-dependent prefactors:

log f ℓ(x,v, t) = α(x, t) + β(x, t)
(
u(x, t) · mv − m

2
v2

)
, (9.3.19)

or

f ℓ(x,v, t) = n(x, t)
(

m

2πkT (x, t)

) 3
2

exp
[
− m

2kT (x, t)
(v − u(x, t))2

]
.

(9.3.19′)

Here, the quantities T (x, t) = (kβ(x, t))−1, n(x, t) =
(

2π
mβ(x,t)

) 3
2

exp
[
α(x, t)

+β(x, t)mu2(x, t)/2
]

and u(x, t) represent the local temperature, the local
particle-number density, and the local velocity. One refers to f ℓ(x,v, t) as the
local Maxwell distribution or the local equilibrium distribution function, since
it is identical locally to the Maxwell distribution, (9.3.10) or (2.6.13). If we
insert (9.3.19′) into the expressions (9.3.15a–c) for the conserved quantities,
we can see that the quantities n(x, t), u(x, t), and T (x, t) which occur on the
right-hand side of (9.3.19′) refer to the local density, velocity, and tempera-
ture, respectively, with the last quantity related to the mean kinetic energy
via
11 H. Grad, Comm. Pure Appl. Math. 2, 331 (1949).
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e(x, t) =
3
2
kT (x, t) ,

i.e. by the caloric equation of state of an ideal gas.
The local equilibrium distribution function f ℓ(x,v, t) is in general not a

solution of the Boltzmann equation, since for it, only the collision term but
not the flow term vanishes12. The local Maxwell distribution is in general a
solution of the Boltzmann equation only when the coefficients are constant,
i.e. in global equilibrium. Together with the results from Sect. 9.3.1, it follows
that a gas with an arbitrary inhomogeneous initial distribution f(x,v, 0) will
finally relax into a Maxwell distribution (9.3.10) with a constant temperature
and density. Their values are determined by the initial conditions.

9.3.4 Conservation Laws

With the aid of the collisional invariants, we can derive equations of continuity
for the conserved quantities from the Boltzmann equation. We first relate the
conserved densities (9.3.15a–c) to the collisional invariants (9.3.18a–c). The
particle-number density, the momentum density, and the energy density can
be represented in the following form:

n(x, t) ≡
∫

d3v χ5f , (9.3.20)

m ji(x, t) ≡ m n(x, t)ui(x, t) =
∫

d3v χi f , (9.3.21)

and

n(x, t)
[
mu(x, t)2

2
+ e(x, t)

]
=

∫
d3v χ4f . (9.3.22)

Next, we want to derive the equations of motion for these quantities from the
Boltzmann equation (9.2.7) by multiplying the latter by χα(v) and integrat-
ing over v. Using the general identity (9.3.7), we find

∫
d3v χα(v)

[
∂

∂t
+ v∇x +

1
m

F(x)∇v

]
f(x,v, t) = 0 . (9.3.23)

By inserting χ5, χ1,2,3, and χ4 in that order, we obtain from (9.3.23) the
following three conservation laws:
12 There are special local Maxwell distributions for which the flow term likewise van-

ishes, but they have no physical relevance. See G.E. Uhlenbeck and G.W. Ford,
Lectures in Statistical Mechanics, American Mathematical Society, Providence,
1963, p. 86; S. Harris, An Introduction to the Theory of the Boltzmann Equation,
Holt Rinehart and Winston, New York, 1971, p. 73; and problem 9.16.
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Conservation of Particle Number:

∂

∂t
n + ∇j = 0 . (9.3.24)

Conservation of Momentum:

m
∂

∂t
ji + ∇xj

∫
d3v m vjvif − Fi(x)n(x) = 0 . (9.3.25)

For the third term, an integration by parts was used. If we again employ the
substitution v = u− φ in (9.3.25), we obtain

m
∂

∂t
ji +

∂

∂xj
(m n uiuj + Pji) = nFi , (9.3.25′)

where we have introduced the pressure tensor

Pji = Pij = m

∫
d3v φiφjf . (9.3.26)

Conservation of Energy:

Finally, setting χ4 = mv2

2 in (9.3.23), we obtain

∂

∂t

∫
d3v

m

2
v2f+∇xi

∫
d3v (ui+φi)

m

2
(u2+2ujφj+φ2)f−j·F = 0 , (9.3.27)

where an integration by parts was used for the last term. Applying (9.3.22)
and (9.3.26), we obtain the equation of continuity for the energy density

∂

∂t

[
n

(m

2
u2 + e

)]
+ ∇i

[
nui

(m

2
u2 + e

)
+ ujPji + qi

]
= j ·F . (9.3.28)

Here, along with the internal energy density e defined in (9.3.15c′), we have
also introduced the heat current density

q =
∫

d3v φ
(m

2
φ2

)
f . (9.3.29)

Remarks:

(i) (9.3.25′) and (9.3.28) in the absence of external forces (F = 0) take on
the usual form of equations of continuity, like (9.3.24).

(ii) In the momentum density, according to Eq. (9.3.25′), the tensorial cur-
rent density is composed of a convective part and the pressure tensor
Pij , which gives the microscopic momentum current in relation to the
coordinate system moving at the average velocity u.
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(iii) The energy current density in Eq. (9.3.28) contains a macroscopic con-
vection current, the work which is performed by the pressure, and the
heat current q (= mean energy flux in the system which is moving with
the liquid).

(iv) The conservation laws do not form a complete system of equations as
long as the current densities are unknown. In the hydrodynamic limit,
it is possible to express the current densities in terms of the conserved
quantities.

The conservation laws for momentum and energy can also be written as
equations for u and e. To this end, we employ the rearrangement

∂

∂t
ji + ∇j(nujui) = n

∂

∂t
ui + ui

∂

∂t
n + ui∇jnuj + nuj∇jui

= n

(
∂

∂t
+ uj∇j

)
ui (9.3.30)

using (9.3.21) and the conservation law for the particle-number density
(9.3.21), which yields for (9.3.25′)

m n

(
∂

∂t
+ uj∇j

)
ui = −∇jPji + nFi . (9.3.31)

From this, taking the hydrodynamic limit, we obtain the Navier–Stokes equa-
tions. Likewise, starting from Eq. (9.3.28), we can show that

n

(
∂

∂t
+ uj∇j

)
e + ∇q = −Pij∇iuj . (9.3.32)

9.3.5 Conservation Laws and Hydrodynamic Equations for the
Local Maxwell Distribution

9.3.5.1 Local Equilibrium and Hydrodynamics

In this section, we want to collect and explain some concepts which play a
role in nonequilibrium theory.

The term local equilibrium describes the situation in which the thermody-
namic quantities of the system such as density, temperature, pressure, etc. can
vary spatially and with time, but in each volume element the thermodynamic
relations between the values which apply locally there are obeyed. The result-
ing dynamics are quite generally termed hydrodynamics in condensed-matter
physics, in analogy to the dynamic equations which are valid in this limit for
the flow of gases and liquids. The conditions for local equilibrium are

ωτ ≪ 1 and kl ≪ 1 , (9.3.33)



452 9. The Boltzmann Equation

where ω is the frequency of the time-dependent variations and k their
wavenumber, τ is the collision time and l the mean free path. The first con-
dition guarantees that the variations with time are sufficiently slow that the
system has time to reach equilibrium locally through collisions of its atoms.
The second condition presumes that the particles move along a distance l
without changing their momenta and energies. The local values of momen-
tum and energy must therefore in fact be constant over a distance l.

Beginning with an arbitrary initial distribution function f(x,v, 0), ac-
cording to the Boltzmann equation, the following relaxation processes oc-
cur: the collision term causes the distribution function to approach a local
Maxwell distribution within the characteristic time τ . The flow term causes
an equalization in space, which requires a longer time. These two approaches
towards equilibrium – in velocity space and in configuration space – come
to an end only when global equilibrium has been reached. If the system is
subject only to perturbations which vary slowly in space and time, it will be
in local equilibrium after the time τ . This temporally and spatially slowly
varying distribution function will differ from the local Maxwellian function
(9.3.19′), which does not obey the Boltzmann equation.

9.3.5.2 Hydrodynamic Equations without Dissipation

In order to obtain explicit expressions for the current densities q and Pij ,
these quantities must be calculated for a distribution function f(x,v, t) which
at least approximately obeys the Boltzmann equation. In this section, we will
employ the local Maxwell distribution as an approximation. In Sect. 9.4, the
Boltzmann equation will be solved systematically in a linear approximation.

Following the preceding considerations concerning the different relaxation
behavior in configuration space and in velocity space, we can expect that in
local equilibrium, the actual distribution function will not be very different
from the local Maxwellian distribution. If we use the latter as an approxima-
tion, we will be neglecting dissipation.

Using the local Maxwell distribution, Eq. (9.3.19′),

f ℓ = n(x, t)
(

m

2πkT (x, t)

) 3
2

exp

[
−m (v − u(x, t))2

2kT (x, t)

]
, (9.3.34)

with position- and time-dependent density n, temperature T , and flow veloc-
ity u, we find from (9.3.15a), (9.3.15b), and (9.3.15c′)

j = nu (9.3.35)

ne =
3
2
nkT (9.3.36)

Pij ≡
∫

d3v mφiφjf
ℓ = δijnkT ≡ δijP , (9.3.37)
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where the local pressure P was introduced; from (9.3.37), it is given by

P = nkT . (9.3.38)

The equations (9.3.38) and (9.3.36) express the local thermal and caloric
equations of state of the ideal gas. The pressure tensor Pij contains no dissi-
pative contribution which would correspond to the viscosity of the fluid, as
seen from Eq. (9.3.37). The heat current density (9.3.29) vanishes (q = 0)
for the local Maxwell distribution.

With these results, we obtain for the equations of continuity
(9.3.24), (9.3.25′), and (9.3.32)

∂

∂t
n = −∇nu (9.3.39)

m n

(
∂

∂t
+ u∇

)
u = −∇P + nF (9.3.40)

n

(
∂

∂t
+ u∇

)
e = −P∇u . (9.3.41)

Here, (9.3.40) is Euler’s equation, well-known in hydrodynamics13. The equa-
tions of motion (9.3.39)–(9.3.41) together with the local thermodynamic re-
lations (9.3.36) and (9.3.38) represent a complete system of equations for n,
u, and e.

9.3.5.3 Propagation of Sound in Gases

As an application, we consider the propagation of sound. In this process, the
gas undergoes small oscillations of its density n, its pressure P , its internal
energy e, and its temperature T around their equilibrium values and around
u = 0. In the following, we shall follow the convention that thermodynamic
quantities for which no position or time dependence is given are taken to
have their equilibrium values, that is we insert into Eqns. (9.3.39)–(9.3.41)

n(x, t) = n + δn(x, t), P (x, t) = P + δP (x, t),
e(x, t) = e + δe(x, t), T (x, t) = T + δT (x, t)

(9.3.42)

and expand with respect to the small deviations indicated by δ:

∂

∂t
δn = −n∇u (9.3.43a)

m n
∂

∂t
u = −∇δP (9.3.43b)

n
∂

∂t
δe = −P∇u . (9.3.43c)

13 Euler’s equation describes nondissipative fluid flow; see L.D. Landau and
E. M. Lifshitz, Course of Theoretical Physics, Vol. IV: Hydrodynamics, Perg-
amon Press, Oxford 1960, p. 4.
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The flow velocity u(x, t) ≡ δu(x, t) is small. Insertion of Eq. (9.3.36) and
(9.3.38) into (9.3.43c) leads us to

3
2

∂

∂t
δT = −T∇u ,

which, together with (9.3.43a), yields

∂

∂t

[
δn

n
− 3

2
δT

T

]
= 0 . (9.3.44)

Comparison with the entropy of an ideal gas,

S = kN

(
5
2

+ log
(2πmkT )3/2

nh3

)
, (9.3.45)

shows that the time independence of S/N (i.e. of the entropy per particle or
per unit mass) follows from (9.3.44). By applying ∂/∂t to (9.3.43a) and ∇
to (9.3.43b) and eliminating the term containing u, we obtain

∂2δn

∂t2
= m−1∇2δP . (9.3.46)

It follows from Eq. (9.3.38) that

δP = nkδT + δnkT ,

and, together with (9.3.44), we obtain ∂
∂tδP = 5

3kT ∂
∂tδn. With this, the

equation of motion (9.3.46) can be brought into the form

∂2δP

∂t2
=

5kT

3m
∇2δP . (9.3.47)

The sound waves (pressure waves) which are described by the wave equa-
tion (9.3.47) have the form

δP ∝ ei(kx± cs|k|t) (9.3.48)

with the adiabatic sound velocity

cs =
√

1
mnκS

=
√

5kT

3m
. (9.3.49)

Here, κS is the adiabatic compressibility (Eq. (3.2.3b)), which according to
Eq. (3.2.28) is given by

κS =
3

5P
=

3V

5NkT
(9.3.50)

for an ideal gas.



∗9.4 The Linearized Boltzmann Equation 455

Notes:

The result that the entropy per particle S/N or the entropy per unit mass s
for a sound wave is time-independent remains valid not only for an ideal gas
but in general. If one takes the second derivative with respect to time of the
following thermodynamic relation which is valid for local equilibrium14

δn =
(

∂n

∂P

)

S/N

δP +
(

∂n

∂S/N

)

P

δ

(
S

N

)
, (9.3.51)

obtaining ∂2δn
∂t2 =

(
∂n
∂P

)
S/N

∂2P
∂t2 +

(
∂n

∂S/N

)

P

∂2S/N

∂t2︸ ︷︷ ︸
=0

, then one obtains togther

with (9.3.43a) and (9.3.43b) the result

∂2P (x, t)
∂t2

= m−1

(
∂P

∂n

)

S/N

∇2P (x, t) , (9.3.52)

which again contains the adiabatic sound velocity

c2
s = m−1

(
∂P

∂n

)

S/N

= m−1

(
∂P

∂N/V

)

S

= m−1N−1(−V 2)
(

∂P

∂V

)

S

=
1

m nκs
.

(9.3.53)

Following the third equals sign, the particle number N was taken to be fixed.
For local Maxwell distributions, the collision term vanishes; there is no

damping. Between the regions of different local equilibria, reversible oscilla-
tion processes take place. Deviations of the actual local equilibrium distribu-
tion functions f(x,v, t) from the local Maxwell distribution f l(x,v, t) lead
as a result of the collision term to local, irreversible relaxation effects and,
together with the flow term, to diffusion-like equalization processes which
finally result in global equilibrium.

∗9.4 The Linearized Boltzmann Equation

9.4.1 Linearization

In this section, we want to investigate systematically the solutions of the
Boltzmann equation in the limit of small deviations from equilibrium. The
Boltzmann equation can be linearized and from its linearized form, the hy-
drodynamic equations can be derived. These are equations of motion for
the conserved quantities, whose region of validity is at long wavelengths and
14 Within time and space derivatives, δn(x, t), etc. can be replaced by n(x, t) etc.
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low frequencies. It will occasionally be expedient to use the variables (k, ω)
(wavenumber and frequency) instead of (x, t). We will also take an external
potential, which vanishes for early times, into account:

lim
t→−∞

V (x, t) = 0 . (9.4.1)

Then the distribution function is presumed to have the property

lim
t→−∞

f(x,v, t) = f0(v) ≡ n
( m

2πkT

) 3
2

e−
mv2
2kT , (9.4.2)

where f0 is the global spatially uniform Maxwellian equilibrium distribu-
tion15.

For small deviations from global equilibrium, we can write f(x,v, t) in
the form

f(x,v, t) = f0(v)
(

1 +
1

kT
ν(x,v, t)

)
≡ f0 + δf (9.4.3)

and linearize the Boltzmann equation in δf or ν. The linearization of the
collision term (9.2.6) yields

∂f

∂t

)

coll

= −
∫

d3v2 d3v3 d3v4 W (f0
1 f0

2−f0
3f0

4 +f0
1 δf2+f0

2 δf1−f0
3 δf4−f0

4 δf3)

= − 1
kT

∫
d3v2 d3v3 d3v4 W (v v1;v3v4)f0(v1)f0(v2)(ν1+ν2−ν3−ν4) ,

(9.4.4)

since f0
3 f0

4 = f0
1f0

2 owing to energy conservation, which is contained in
W (v v1;v3v4). We also use the notation v1 ≡ v, f0

1 = f0(v) etc. The flow
term has the form

[
∂

∂t
+ v∇x +

1
m

F(x, t)∇v

] (
f0 +

f0

kT
ν

)

=
f0(v)
kT

[
∂

∂t
+ v∇x

]
ν(x,v, t) + v ·

(
∇V (x, t)

)
f0(v)/kT . (9.4.5)

All together, the linearized Boltzmann equation is given by:
[

∂

∂t
+ v∇x

]
ν(x,v, t) + v(∇V (x, t)) = −Lν (9.4.6)

15 We write here the index which denotes an equilibrium distribution as an upper
index, since later the notation f0

i ≡ f0(vi) will also be employed.
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with the linear collision operator L:

Lν =
kT

f0(v)

∫
d3v2 d3v3 d3v4 W ′(v,v2;v3,v4)(ν + ν2 − ν3 − ν4) (9.4.7)

and

W ′(v v2;v3 v4) =
1

kT

(
f0(v)f0(v2)f0(v3)f0(v4))

1
2 W (vv2;v3 v4

)
, (9.4.8)

where conservation of energy, contained in W , has been utilized.

9.4.2 The Scalar Product

For our subsequent investigations, we introduce the scalar product of two
functions ψ(v) and χ(v),

⟨ψ|χ⟩ =
∫

d3v ψ(v)
f0(v)
kT

χ(v) ; (9.4.9)

it possesses the usual properties. The collisional invariants are special cases:

〈
χ5|χ5

〉
≡ ⟨1|1⟩ =

∫
d3v

f0(v)
kT

=
n

kT
, (9.4.10a)

〈
χ4|χ5

〉
≡ ⟨ϵ|1⟩ =

∫
d3v

mv2

2
f0(v)
kT

=
ne

kT
=

3
2
n (9.4.10b)

with ϵ ≡ mv2

2 and

〈
χ4|χ4

〉
≡ ⟨ϵ|ϵ⟩ =

∫
d3v

(
mv2

2

)2
f0(v)
kT

=
15
4

nkT . (9.4.10c)

The collision operator L introduced in (9.4.7) is a linear operator, and obeys
the relation

⟨χ|Lν⟩ =
1
4

∫
d3v1 d3v2 d3v3 d3v4 W ′(v1 v2;v3 v4)

× (ν1 + ν2 − ν3 − ν4)(χ1 + χ2 − χ3 − χ4) . (9.4.11)

It follows from this that L is self-adjoint and positive semidefinite,

⟨χ|Lν⟩ = ⟨Lχ|ν⟩ , (9.4.12)
⟨ν|Lν⟩ ≥ 0 . (9.4.13)
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9.4.3 Eigenfunctions of L and the Expansion of the Solutions of
the Boltzmann Equation

The eigenfunctions of L are denoted as χλ

Lχλ = ωλχλ , ωλ ≥ 0 . (9.4.14)

The collisional invariants χ1, χ2, χ3, χ4, χ5 are eigenfunctions belonging to
the eigenvalue 0.

It will prove expedient to use orthonormalized eigenfunctions:
〈
χ̂λ|χ̂λ′

〉
= δλλ′

. (9.4.15)

For the collisional invariants, this means the introduction of

χ̂i ≡ χ̂ui =
vi√
⟨vi|vi⟩

=
vi√
n/m

, i = 1, 2, 3 ; (9.4.16a)

⟨vi|vi⟩ =
1
3

∫
d3v v2 f0(v)/kT (here not summed over i) ;

χ̂5 ≡ χ̂n =
1√
⟨1|1⟩

=
1√

n/kT
; and (9.4.16b)

χ̂4 ≡ χ̂T =
ϵ ⟨1|1⟩ − 1 ⟨1|ϵ⟩√

⟨1|1⟩ (⟨1|1⟩ ⟨ϵ|ϵ⟩ − ⟨1|ϵ⟩2)
=

ϵ − 3
2kT

√
3
2nkT

. (9.4.16c)

The eigenfunctions χλ with ωλ > 0 are orthogonal to the functions (9.4.16a–
c) and in the case of degeneracy are orthonormalized among themselves. An
arbitrary solution of the linearized Boltzmann equation can be represented as
a superposition of the eigenfunctions of L with position- and time-dependent
prefactors16

ν(x,v, t) = a5(x, t)χ̂n +a4(x, t)χ̂T +ai(x, t)χ̂ui +
∞∑

λ=6

aλ(x, t)χ̂λ . (9.4.17)

Here, the notation indicates the particle-number density n(x, t), the temper-
ature T (x, t), and the flow velocity ui(x, t):

T̂ (x, t) ≡ a4(x, t) =
〈
χ̂T |ν

〉
=

∫
d3v

(
f0

kT
ν

)
χ̂T ≡

∫
d3v δf(x,v, t)χ̂T

=
δe − 3

2kT δn
√

3
2nkT

=
√

3n

2kT
δT (x, t) . (9.4.18a)

16 Here we assume that the eigenfunctions χλ form a complete basis. For the explic-
itly known eigenfunctions of the Maxwell potential (repulsive r−4 potential), this
can be shown directly. For repulsive r−n potentials, completeness was proved by
Y. Pao, Comm. Pure Appl. Math. 27, 407 (1974).
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The identification of δT (x, t) with local fluctuations of the temperature, apart
from the normalization factor, can be justified by considering the local inter-
nal energy

e + δe =
3
2
(n + δn)k(T + δT ) ,

from which, neglecting second-order quantities, it follows that

δe =
3
2
nkδT +

3
2
kT δn ⇒ δT =

δe − 3
2δnkT

3
2nk

. (9.4.19)

Similarly, we obtain for

n̂(x, t) ≡ a5(x, t) = ⟨χ̂n|ν⟩ =
∫

d3v δf(x,v, t)
1√

n/kT
=

δn√
n/kT

,

(9.4.18b)

and

ûi(x, t) ≡ ai(x, t) = ⟨χ̂ui |ν⟩ =
∫

d3v
vi√
n/m

δf(x,v, t)

=
∫

d3v
vi√
n/m

(f0 + δf) =
nui(x, t)√

n/m
, i = 1, 2, 3 . (9.4.18c)

These expressions show the relations to the density and momentum fluctu-
ations. We now insert the expansion (9.4.17) into the linearized Boltzmann
equation (9.4.6)

(
∂

∂t
+ v∇

)
ν(x,v, t) = −

∞∑

λ′=6

aλ′
(x, t)ωλ′ χ̂λ′

(v) − v∇V (x, t) . (9.4.20)

Only terms with λ′ ≥ 6 contribute to the sum, since the collisional invariants
have the eigenvalue 0. Multiplying this equation by χ̂λf0(v)/kT and integrat-
ing over v, we obtain, using the orthonormalization of χ̂λ from Eq. (9.4.15),

∂

∂t
aλ(x, t) + ∇

∞∑

λ′=1

〈
χ̂λ|vχ̂λ′

〉
aλ′

(x, t)

= −ωλaλ(x, t) −
〈
χ̂λ|v

〉
∇V (x, t) . (9.4.21)

Fourier transformation

aλ(x, t) =
∫

d3k

(2π)3
dω

2π
ei(k·x−ωt)aλ(k, ω) (9.4.22)

yields
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(ω + iωλ)aλ(k, ω) − k
∞∑

λ′=1

〈
χ̂λ|vχ̂λ′

〉
aλ′

(k, ω) − k
〈
χ̂λ|v

〉
V (k, ω) = 0 .

(9.4.23)

Which quantities couple to each other depends on the scalar products〈
χ̂λ|vχ̂λ′

〉
, whereby the symmetry of the χ̂λ clearly plays a role.

Since ωλ = 0 for the modes λ = 1 to 5, i.e. momentum, energy, and
particle-number density, the structure of the conservation laws for these quan-
tities in (9.4.23) can already be recognized at this stage. The term containing
the external force obviously couples only to χ̂i ≡ χ̂ui for reasons of symmetry

〈
χ̂i|vj

〉
=

〈
vi|vj

〉
√

n/m
=

√
n/m δij . (9.4.24)

For the modes with λ ≤ 5,

ωaλ(k, ω) − k
∞∑

λ′=1

〈
χ̂λ|vχ̂λ′

〉
aλ′

(k, ω) − k
〈
χ̂λ|v

〉
V (k, ω) = 0 (9.4.25)

holds, and for the non-conserved degrees of freedom17 λ ≥ 6, we have

aλ(k, ω) =
ki

ω + iωλ

( 5∑

λ′=1

〈
χ̂λ|viχ̂

λ′
〉

aλ′
(k, ω)

+
∞∑

λ′=6

〈
χ̂λ|viχ̂

λ′
〉

aλ′
(k, ω) +

〈
χ̂λ|vi

〉
V (k, ω)

)
. (9.4.26)

This difference, which results from the different time scales, forms the
basis for the elimination of the non-conserved degrees of freedom.

9.4.4 The Hydrodynamic Limit

For low frequencies (ω ≪ ωλ) and (vk ≪ ωλ), aλ(k, ω) with λ ≥ 6 is of
higher order in these quantities than are the conserved quantities λ = 1, . . . , 5.
Therefore, in leading order we can write for (9.4.26)

aλ(k, ω) = − iki

ωλ

(
5∑

λ′=1

〈
χ̂λ|viχ̂

λ′
〉

aλ′
(k, ω) +

〈
χ̂λ|vi

〉
V (k, ω)

)
. (9.4.27)

Inserting this into (9.4.25) for the conserved (also called the hydrodynamic)
variables, we find
17 Here, the Einstein summation convention is employed: repeated indices i, j, l, r

are to be summed over from 1 to 3.
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ωaλ(k, ω) − ki

5∑

λ′=1

〈
χ̂λ|viχ̂

λ′
〉

aλ′
(k, ω)

+ ikikj

5∑

λ′=1

∞∑

µ=6

〈
χ̂λ|viχ̂

µ
〉 1

ωµ

〈
χ̂µ|vjχ̂

λ′
〉

aλ′
(k, ω) − ki

〈
χ̂λ|vi

〉
V (k, ω)

− ki

∞∑

λ′=6

〈
χ̂λ|viχ̂

λ′
〉(

−ikj

ωλ′

) 〈
χ̂λ′

|vj

〉
V (k, ω) = 0 ; (9.4.28)

this is a closed system of hydrodynamic equations of motion. The second
term in these equations leads to motions which propagate like sound waves,
the third term to damping of these oscillations. The latter results formally
from the elimination of the infinite number of non-conserved variables which
was possible due to the separation of the time scales of the hydrodynamic
variables (typical frequency ck, Dk2) from the that of the non-conserved
variables (typical frequency ωµ ∝ τ−1).

The structure which is visible in Eq. (9.4.28) is of a very general nature
and can be derived from the Boltzmann equations for other physical systems,
such as phonons and electrons or magnons in solids.

Now we want to further evaluate Eq. (9.4.28) for a dilute gas without the
effect of an external potential. We first compute the scalar products in the
second term (see Eqns. (9.4.16a–c))

〈
χ̂n|viχ̂

j
〉

=
∫

d3v
f0(v)
kT

vivj√
n2/kTm

= δij

√
kT

m
(9.4.29a)

〈
χ̂T |viχ̂

j
〉

=
∫

d3v
f0(v)
kT

vivj

(
mv2

2 − 3
2kT

)

√
n
m

3
2nkT

= δij

√
2kT

3m
. (9.4.29b)

These scalar products and
〈
χ̂j |viχ̂n,T

〉
=

〈
χ̂n,T |viχ̂j

〉
are the only finite

scalar products which result from the flow term in the equation of motion.
We now proceed to analyze the equations of motion for the particle-

number density, the energy density, and the velocity. In the equation of
motion for the particle-number density, λ ≡ 5 (9.4.28), there is a coupling to
ai(k, ω) due to the second term. As noted above, all the other scalar products
vanish. The third term vanishes completely, since ⟨χ̂n|viχ̂µ⟩ ∝ ⟨vi|χ̂µ⟩ = 0
for µ ≥ 6 owing to the orthonormalization. We thus find

ωn̂(k, ω) − ki

√
kT

m
ûi(k, ω) = 0 , (9.4.30)

or, due to (9.4.18),

ωδn(k, ω) − kinui(k, ω) = 0 , (9.4.30′)

or in real space
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∂

∂t
n(x, t) + ∇nu(x, t) = 0 . (9.4.30′′)

This equation of motion is identical with the equation of continuity for the
density, (9.3.24), except that here, n(x, t) in the gradient term is replaced by
n because of the linearization.

The equation of motion for the local temperature, making use of (9.4.28),
(9.4.18a), and (9.4.29b), can be cast in the form

ω

√
3n

2kT
kδT (k, ω) − ki

√
2kT

3m

nui(k, ω)√
n/m

+ ikikj

5∑

λ′=1

∞∑

µ=6

〈
χ̂4|viχ̂

µ
〉 1

ωµ

〈
χ̂µ|vjχ̂

λ′
〉

aλ′
(k, ω) = 0 . (9.4.31)

In the sum over λ′, the term λ′ = 5 makes no contribution, since
〈
χ̂µ|vjχ̂5

〉
∝

⟨χ̂µ|vj⟩ = 0. Due to the fact that χ̂4 transforms as a scalar, χ̂µ must transform
like vi, so that due to the second factor, χ̂λ′

= χ̂i also makes no contribution,
leaving only χ̂λ′

= χ̂4. Finally, only the following expression remains from
the third term of Eq. (9.4.31):

ikikj

∞∑

µ=6

〈
χ̂4|viχ̂

µ
〉 1

ωµ

〈
χ̂µ|vjχ̂

4
〉
a4(k, ω)

≈ ikikjτ
∞∑

µ=6

〈
χ̂4|viχ̂

µ
〉 〈

χ̂µ|vjχ̂
4
〉
a4(k, ω)

= ikikjτ
(〈

χ̂4|vivj χ̂
4
〉
−

5∑

λ=1

〈
χ̂4|viχ̂

λ
〉 〈

χ̂λ|vj χ̂
4
〉)

a4(k, ω)

= ikikjτ
(〈

χ̂4|vivjχ̂
4
〉
−

〈
χ̂4|viχ̂

i
〉 〈

χ̂i|vjχ̂
4
〉)

a4(k, ω) . (9.4.32)

In this expression, all the ω−1
µ were replaced by the collision time, ω−1

µ = τ ,
and we have employed the completeness relation for the eigenfunctions of L
as well as the symmetry properties. We now have

〈
χ̂4|viχ̂

i
〉

=
√

2kT

3m
, (9.4.33a)

where here, we do not sum over i, and

〈
χ̂4|vivjχ̂

4
〉

= δij
1
3

∫
d3v f0(v)v2

(
mv2

2

)2
− mv2

2 3kT +
(

3
2kT

)2

3
2n(kT )2

= δij
7kT

3m
. (9.4.33b)
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Thus the third term in Eq. (9.4.31) becomes ik2D
√

3n/2kTkδT , with the
coefficient

D ≡ 5
3

kT τ

m
=

κ

mcv
, (9.4.34)

where

cv =
3
2
nk (9.4.35)

is the specific heat at constant volume, and

κ =
5
2
nk2T τ (9.4.36)

refers to the heat conductivity. All together, using (9.4.32)–(9.4.34), we obtain
for the equation of motion (9.4.31) of the local temperature

ωa4(k, ω) − ki

√
2kT

3m
ai(k, ω) + ik2Da4(k, ω) = 0 , (9.4.37)

or

ωδT − 2
3

T

n
k · nu + ik2DδT = 0 , (9.4.37′)

or in real space,

∂

∂t
T (x, t) +

2T

3n
∇nu(x, t) − D∇2T (x, t) = 0 . (9.4.37′′)

Connection with phenomenological considerations:
The time variation of the quantity of heat δQ is

δQ̇ = −∇jQ (9.4.38a)

with the heat current density jQ. In local equilibrium, the thermodynamic relation

δQ = cP δT (9.4.38b)

holds. Here, the specific heat at constant pressure appears, because heat diffusion is
isobaric owing to csk ≫ Dsk2 in the limit of small wavenumbers with the velocity
of sound cs and the thermal diffusion constant Ds. The heat current flows in the
direction of decreasing temperature, which implies

jQ = − κ
m

∇T (9.4.38c)

with the thermal conductivity κ. Overall, we thus obtain

d
dt

T =
κ

mcP
∇2T , (9.4.38d)

a diffusion equation for the temperature.
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Finally, we determine the equation of motion of the momentum density,
i.e. for aj, j = 1, 2, 3. For the reversible terms (the first and second terms
in Eq. (9.4.28)), we find by employing (9.4.18b–c) and

〈
χ̂j|viχ̂j′

〉
= 0 the

result

ωaj(k, ω) − ki

(〈
χ̂j |viχ̂

5
〉
a5(k, ω) +

〈
χ̂j |viχ̂

4
〉
a4(k, ω)

)

=
√

m

n

(
ωnuj(k, ω) − kj

kT

m
δn(k, ω) − kj

n

m
kδT (k, ω)

)

=
√

m

n

(
ωnuj(k, ω) − 1

m
kjδP (k, ω)

)
,

(9.4.39)

where, from P (x, t) = n(x, t)kT (x, t) =
(
n + δn(x, t)

)
k
(
T + δT (x, t)

)
, it

follows that

δP = nkδT + kT δn ,

which was used above. For the damping term in the equation of motion of
the momentum density, we obtain from (9.4.28) using the approximation
ωµ = 1/τ the result:

ikikl

5∑

λ′=1

∞∑

µ=6

〈
χ̂j|viχ̂

µ
〉 1

ωµ

〈
χ̂µ|vlχ̂

λ′
〉

aλ′
(k, ω)

= ikikl

∞∑

µ=6

〈
vj√
n/m

∣∣viχ̂
µ

〉
1
ωµ

〈
χ̂µ

∣∣vl
vr√
n/m

〉
ar(k, ω)

≈ ikiklτ

(〈
vj√
n/m

∣∣vivl
vr√
n/m

〉
−

5∑

λ=1

〈
vj√
n/m

∣∣viχ̂
λ

〉〈
χ̂λ

∣∣vl
vr√
n/m

〉)
ar(k, ω) .

(9.4.40)

In the second line, we have used the fact that the sum over λ′ reduces to
r = 1, 2, 3. For the first term in the curved brackets we obtain:

〈
vj√
n/m

vi

∣∣vl
vr√
n/m

〉
=

m

nkT

∫
d3v f0(v)vjvivlvr

=
kT

m
(δjiδlr + δjlδir + δjrδil) .

For the second term in the curved brackets in (9.4.40), we need the results
of problem 9.12, leading to δijδlr

5kT
3m . As a result, the overall damping term

(9.4.40) is given by
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ikikl

5∑

λ′=1

∞∑

µ=6

〈
χ̂j |viχ̂

µ
〉 1

ωµ

〈
χ̂µ|vlχ̂

λ′
〉

aλ′
(k, ω)

= ikiklτ
kT

m

(
δjiδlr + δjlδir + δjrδil −

5
3
δijδlr

)
ar(k, ω)

= i
(

kjklul(k, ω)
(
−2

3

)
+ kikjui(k, ω) + kikiuj(k, ω)

)
τkT

√
n

m

= i
(

1
3
kj

(
k · u(k, ω)

)
+ k2uj(k, ω)

)
τkT

√
n

m
.

(9.4.40′)

Defining the shear viscosity as

η ≡ nτkT , (9.4.41)

we find with (9.4.39) and (9.4.40′) the following equivalent forms of the equa-
tion of motion for the momentum density:

ωnuj(k, ω) − 1
m

kjδP (k, ω) + i
η

m

(
1
3
kj

(
ku(k, ω)

)
+ k2uj(k, ω)

)
= 0 ,

(9.4.42)

or, in terms of space and time,

∂

∂t
mnuj(x, t)+∇jP (x, t)−η

(
1
3
∇j

(
∇ · u(x, t)

)
+ ∇2uj(x, t)

)
= 0 (9.4.42′)

or

∂

∂t
mnuj(x, t) + Pjk,k(x, t) = 0 (9.4.42′′)

with the pressure tensor (Pjk,k ≡ ∇kPjk, etc.)

Pjk(x, t) = δjkP (x, t)−η

(
uj,k(x, t) + uk,j(x, t) − 2

3
δjkul,l(x, t)

)
. (9.4.43)

We can compare this result with the general pressure tensor of hydrody-
namics:

Pjk(x, t) = δjkP (x, t) − η

(
uj,k(x, t) + uk,j(x, t) − 2

3
δjkul,l(x, t)

)
−

− ζδjkul,l(x, t) . (9.4.44)

Here, ζ is the bulk viscosity, also called the compressional viscosity. As a
result of Eq. (9.4.44), the bulk viscosity vanishes according to the Boltzmann
equation for simple monatomic gases. The expression (9.4.41) for the viscosity
can also be written in the following form (see Eqns. (9.2.12) and (9.2.13)):
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η = τnkT = τn
mv2

th

3
=

1
3
nmvthl =

mvth

3σtot
, (9.4.45)

where vth =
√

3kT/m is the thermal velocity from the Maxwell distribution;
i.e. the viscosity is independent of the density.

It is instructive to write the hydrodynamic equations in terms of the nor-
malized functions n̂ = n√

⟨n2⟩/kT
, etc. instead of the usual quantities n(x, t),

T (x, t), ui(x, t). From Eqns. (9.4.30), (9.4.37), and (9.4.42′) it follows that

˙̂n(x, t) = −cn∇iû
i(x, t) (9.4.46a)

˙̂T (x, t) = −cT∇iû
i(x, t) + D∇2T̂ (x, t) (9.4.46b)

˙̂ui(x, t) = −cn∇in̂ − cT∇iT̂ +
η

mn
∇2ûi +

η

3mn
∇i(∇ · û) (9.4.46c)

with the coefficients cn =
√

kT/m, cT =
√

2kT/3m, D and η from
Eqns. (9.4.34) and (9.4.41). Note that with the orthonormalized quantities,
the coupling of the degrees of freedom in the equations of motion is symmet-
ric.

9.4.5 Solutions of the Hydrodynamic Equations

The periodic solutions of (9.4.46a–c), which can be found using the ansatz
n̂(x, t) ∝ ûi(x, t) ∝ T̂ (x, t) ∝ ei(kx−ωt), are particularly interesting. The
acoustic resonances which follow from the resulting secular determinant and
the thermal diffusion modes have the frequencies

ω = ±csk − i
2
Dsk

2 (9.4.47a)

ω = −iDT k2 (9.4.47b)

with the sound velocity cs, the acoustic attenuation constant Ds, and the
heat diffusion constant (thermal diffusivity) DT

cs =
√

c2
n + c2

T =
√

5
3

kT

m
≡ 1

√
mnκs

(9.4.48a)

Ds =
4η

3mn
+

κ

mn

(
1
cv

− 1
cP

)
(9.4.48b)

DT = D
cv

cP
=

κ

mcP
. (9.4.48c)

In this case, the specific heat at constant pressure enters; for an ideal gas, it
is given by

cP =
5
2
nk . (9.4.49)
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The two transverse components of the momentum density undergo a purely
diffusive shearing motion:

Dη =
ηk2

mn
. (9.4.50)

The resonances (9.4.47a,b) express themselves for example in the density-
density correlation function, Snn(k, ω). The calculation of dynamic suscep-
tibilities and correlation functions (problem 9.11) starting from equations of
motion with damping terms is described in QM II, Sect. 4.7. The coupled sys-
tem of hydrodynamic equations of motion for the density, the temperature,
and the longitudinal momentum density yields the density-density correlation
function:

Snn(k, ω) = 2kTn

(
∂n

∂P

)

T

×

⎧
⎨

⎩

cv
cP

(csk)2Dsk2 +
(
1 − cv

cP

)
(ω2 − c2

sk
2)DT k2

(ω2 − c2
sk

2)2 + (ωDsk2)2
+

(
1 − cv

cP

)
DT k2

ω2 + (DT k2)2

⎫
⎬

⎭ .

(9.4.51)

The density-density correlation function for fixed k is shown schematically
as a function of ω in Fig. 9.3.

Fig. 9.3. The density-
density correlation func-
tion for fixed k as a func-
tion of ω

The positions of the resonances are determined by the real parts and their
widths by the imaginary parts of the frequencies (9.4.47a, b). In addition to
the two resonances representing longitudinal acoustic phonons at ±csk, one
finds a resonance at ω = 0 related to heat diffusion. The area below the curve
shown in Fig. 9.3, which determines the overall intensity in inelastic scattering
experiments, is proportional to the isothermal compressibility

(
∂n
∂P

)
T
. The

relative strength of the diffusion compared to the two acoustic resonances
is given by the ratio of the specific heats, cP−cV

cV
. This ratio is also called

the Landau–Placzek ratio, and the diffusive resonance in Snn(k, ω) is the
Landau–Placzek peak.
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Since the specific heat at constant pressure diverges as (T − Tc)−γ , while
that at constant volume diverges only as (T − Tc)−α (p. 256, p. 255), this
ratio becomes increasingly large on approaching Tc. The expression (9.4.51),
valid in the limit of small k (scattering in the forward direction), exhibits the
phenomenon of critical opalescence, as a result of (∂n/∂P )T ∝ (T − Tc)−γ .

∗9.5 Supplementary Remarks

9.5.1 Relaxation-Time Approximation

The general evaluation of the eigenvalues and eigenfunctions of the linear
collision operator is complicated. On the other hand, since not all the eigen-
functions contribute to a particular diffusion process and certainly the ones
with the largest weight are those whose eigenvalues ωλ are especially small, we
can as an approximation attempt to characterize the collision term through
only one characteristic frequency,

(
∂

∂t
+ v∇

)
f(x,v, t) = −1

τ
(f(x,v, t) − f ℓ(x,v, t)) . (9.5.1)

This approximation is called the conserved relaxation time approximation,
since the right-hand side represents the difference between the distribu-
tion function and a local Maxwell distribution. This takes into account
the fact that the collision term vanishes when the distribution function is
equal to the local Maxwell distribution. The local quantities n(x, t), ui(x, t)
and e(x, t) which occur in f ℓ(x,v, t) can be calculated from f(x,v, t) using
Eqns. (9.3.15a), (9.3.15b), and (9.3.15c′).

Our goal is now to calculate f or f − f ℓ. We write
(

∂

∂t
+ v∇

)
(f − f ℓ) +

(
∂

∂t
+ v∇

)
f ℓ = −1

τ
(f − f ℓ) . (9.5.2)

In the hydrodynamic region, ωτ ≪ 1, vkτ ≪ 1, we can neglect the first
term on the left-hand side of (9.5.2) compared to the term on the right side,
obtaining f − f ℓ = τ

(
∂
∂t + v∇

)
f ℓ. Therefore, the distribution function has

the form

f = f ℓ + τ

(
∂

∂t
+ v∇

)
f ℓ , (9.5.3)

and, using this result, one can again calculate the current densities, in an
extension of Sect. 9.3.5.2. In zeroth order, we obtain the expressions found
in (9.3.35) and (9.3.36) for the reversible parts of the pressure tensor and the
remaining current densities. The second term gives additional contributions
to the pressure tensor, and also yields a finite heat current. Since f ℓ depends
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on x and t only through the three functions n(x, t), T (x, t), and u(x, t), the
second term depends on these and their derivatives. The time derivatives of
f ℓ or n, T , and u can be replaced by the zero-oder equations of motion.
The corrections therefore are of the form ∇n(x, t), ∇T (x, t), and ∇ui(x, t).
Along with the derivatives of Pij and q which already occur in the equations
of motion, the additional terms in the equations are of the type τ∇2T (x, t)
etc. (See problem 9.13).

9.5.2 Calculation of W (v1, v2; v′
1, v′

2)

The general results of the Boltzmann equation did not depend on the pre-
cise form of the collision probability, but instead only the general relations
(9.2.8a–f) were required. For completeness, we give the relation between
W (v1,v2;v′

1,v′
2) and the scattering cross-section for two particles18. It is

assumed that the two colliding particles interact via a central potential
w(x1 − x2). We treat the scattering process

v1,v2 ⇒ v′
1,v

′
2 ,

in which particles 1 and 2, with velocities v1 and v2 before the collision, are
left with the velocities v′

1 and v′
2 following the collision (see Fig. 9.4). The

conservation laws for momentum and energy apply; owing to the equality of
the two masses, they are given by

v1 + v2 = v′
1 + v′

2 (9.5.4a)

v2
1 + v2

2 = v′
1
2 + v′

2
2

. (9.5.4b)

Fig. 9.4. The collision of two par-
ticles

18 The theory of scattering in classical mechanics is given for example in L.D. Lan-
dau and E. M. Lifshitz, Course of Theoretical Physics, Vol. I: Mechanics, 3rd Ed.
(Butterworth–Heinemann, London 1976), or H. Goldstein, Classical Mechanics,
2nd Ed. (Addison–Wesley, New York 1980).
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It is expedient to introduce the center-of-mass and relative velocities; before
the collision, they are

V =
1
2
(v1 + v2) , u = v1 − v2 , (9.5.5a)

and after the collision,

V′ =
1
2
(v′

1 + v′
2) , u′ = v′

1 − v′
2 . (9.5.5b)

Expressed in terms of these velocities, the two conservation laws have the
form

V = V′ (9.5.6a)

and

|u| = |u′| . (9.5.6b)

In order to recognize the validity of (9.5.6b), one need only subtract the
square of (9.5.4a) from two times Eq. (9.5.4b). The center-of-mass velocity
does not change as a result of the collision, and the (asymptotic) relative
velocity does not change its magnitude, but it is rotated in space. For the
velocity transformations to the center-of-mass frame before and after the
collision given in (9.5.5a) and (9.5.5b), the volume elements in velocity space
obey the relations

d3v1d
3v2 = d3V d3u = d3V ′d3u′ = d3v′1d

3v′2 (9.5.7)

due to the fact that the Jacobians have unit value.
The scattering cross-section can be most simply computed in the center-

of-mass frame. As is known from classical mechanics,18 the relative coordinate
x obeys an equation of motion in which the mass takes the form of a reduced
mass µ (here µ = 1

2m) and the potential enters as a central potential w(x).
Hence, one obtains the scattering cross-section in the center-of-mass frame
from the scattering of a fictitious particle of mass µ by the potential w(x).
We first write down the velocities of the two particles in the center-of-mass
frame before and after the collision

v1s = v1 −V =
1
2
u , v2s = −1

2
u , v′

1s =
1
2
u′ , v′

2s = −1
2
u′ . (9.5.8)

We now recall some concepts from scattering theory. The equivalent po-
tential scattering problem is represented in Fig. 9.5, and we can use it to
define the scattering cross-section. The orbital plane of the particle is deter-
mined by the asymptotic incoming velocity u and position of the scattering
center O. This follows from the conservation of angular momentum in the
central potential. The z-axis of the coordinate system drawn in Fig. 9.5 passes
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Fig. 9.5. Scattering by a
fixed potential, with col-
lision parameter s and
scattering center O. The
particles which impinge
on the surface element
s ds dϕ are deflected into
the solid angle element dΩ

through the scattering center O and is taken to be parallel to u. The orbit
of the incoming particle is determined by the collision parameter s and the
angle ϕ. In Fig. 9.5, the orbital plane which is defined by the angle ϕ lies
in the plane of the page. We consider a uniform beam of particles arriving
at various distances s from the axis with the asymptotic incoming velocity
u. The intensity I of this beam is defined as the number of particles which
impinge per second on one cm2 of the perpendicular surface shown. Letting
n be the number of particles per cm3, then I = n|u|. The particles which
impinge upon the surface element defined by the collision parameters s and
s + ds and the differential element of angle dϕ are deflected into the solid-
angle element dΩ. The number of particles arriving in dΩ per unit time is
denoted by dN(Ω). The differential scattering cross-section σ(Ω, u), which
of course also depends upon u, is defined by dN(Ω) = Iσ(Ω, u)dΩ, or

σ(Ω, u) = I−1 dN(Ω)
dΩ

. (9.5.9)

Owing to the cylinder symmetry of the beam around the z-axis, σ(Ω, u) =
σ(ϑ, u) is independent of ϕ. The scattering cross-section in the center-of-mass
system is obtained by making the replacement u = |v1 − v2|.

The collision parameter s uniquely determines the orbital curve, and
therefore the scattering angle:

dN(Ω) = Isdϕ(−ds) . (9.5.10)

From this it follows using dΩ = sin ϑdϑdϕ that

σ(Ω, u) = − 1
sinϑ

s
ds

dϑ
= − 1

sin ϑ

1
2

ds2

dϑ
. (9.5.11)

From ϑ(s) or s(ϑ), we obtain the scattering cross-section. The scattering
angle ϑ and the asymptotic angle ϕa are related by

ϑ = π − 2ϕa or ϕa =
1
2
(π − ϑ) (9.5.12)

(cf. Fig. 9.6).



472 9. The Boltzmann Equation

Fig. 9.6. The scattering angle (deflection
angle) ϑ and the asymptotic angle ϕa

In classical mechanics, the conservation laws for energy and angular mo-
mentum give

ϕa =
∫ ∞

rmin

dr
l

r2
√

2µ
(
E − w(r)

)
− l2

r2

=
∫ ∞

rmin

dr
s

r2
√

1 − s2

r2 − 2w(r)
µu2

;

(9.5.13)

here, we use

l = µsu (9.5.14a)

to denote the angular momentum and

E =
µ

2
u2 (9.5.14b)

for the energy, expressed in terms of the asymptotic velocity. The distance
rmin of closest approach to the scattering center is determined from the con-
dition (ṙ = 0):

w(rmin) +
l2

2µr2
min

= E . (9.5.14c)

As an example, we consider the scattering of two hard spheres of radius
R. In this case, we have

s = 2R sinϕa = 2R sin
(

π

2
− ϑ

2

)
= 2R cos

ϑ

2
,

from which, using (9.5.11), we find

σ(ϑ, u) = R2 . (9.5.15)

In this case, the scattering cross-section is independent of the deflection angle
and of u, which is otherwise not the case, as is known for example from
Rutherford scattering18.

After this excursion into classical mechanics, we are in a position to calcu-
late the transition probability W (v,v2;v3,v4) for the loss and gain processes
in Eqns. (9.2.5) and (9.2.6). To calculate the loss rate, we recall the following
assumptions:

(i) The forces are assumed to be short-ranged, so that only particles within
the same volume element d3x1 will scatter each other.
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(ii) When particle 1 is scattered, it leaves the velocity element d3v1.

To calculate the loss rate l, we pick out a molecule in d3x which has the
velocity v1 and take it to be the scattering center on which molecule 2 with
velocity v2 in the velocity element d3v2 impinges. The flux of such particles is
f(x,v2, t)|v2−v1|d3v2. The number of particles which impinge on the surface
element (−s ds)dϕ per unit time is

f(x,v2, t)|v2 − v1|d3v2(−s ds)dϕ =

= f(x,v2, t)|v2 − v1|d3v2σ(Ω, |v1 − v2|)dΩ .

In order to obtain the number of collisions which the particles within
d3xd3v1 experience in the time interval dt, we have to multiply this result by
f(x,v1, t)d3xd3v1dt and then integrate over v2 and all deflection angles dΩ:

ld3xd3v1dt =
∫

d3v2

∫
dΩf(x,v1, t)f(x,v2, t)|v2 − v1|×

× σ
(
Ω, |v1 − v2|

)
d3xd3v1dt . (9.5.16)

To calculate the gain rate g, we consider scattering processes in which a
molecule of given velocity v′

1 is scattered into a state with velocity v1 by a
collision with some other molecule:

gd3xd3v1dt =
∫

dΩ

∫
d3v′1d

3v′2|v′
1 − v′

2|σ
(
Ω, |v′

1 − v′
2|

)
×

× f(x,v′
1, t)f(x,v′

2, t)d
3xdt . (9.5.17)

The limits of the velocity integrals are chosen so that the velocity v1 lies
within the element d3v1. Using (9.5.7), we obtain for the right side of (9.5.17)

d3v1

∫
d3v2

∫
dΩ|v1 − v2|σ

(
Ω, |v1 − v2|

)
f(x,v′

1, t)f(x,v′
2, t)d

3xdt ,

i.e.

g =
∫

d3v2

∫
dΩ|v1 − v2|σ

(
Ω, |v1 − v2|

)
f(x,v′

1, t)f(x,v′
2, t) . (9.5.18)

Here, we have also taken account of the fact that the scattering cross-section
for the scattering of v′

1,v′
2 → v1,v2 is equal to that for v1,v2 → v′

1,v′
2, since

the two events can be transformed into one another by a reflection in space
and time.

As a result, we find for the total collision term:

∂f

∂t

)

coll

= g−l =
∫

d3v2 dΩ |v2 − v1|σ
(
Ω, |v2 − v1|

)(
f ′
1f

′
2−f1f2

)
. (9.5.19)
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The deflection angle ϑ can be expressed as follows in terms of the asymptotic
relative velocities18:

ϑ = arccos
(v1 − v2)(v′

1 − v′
2)

|v1 − v2||v′
1 − v′

2|
.

The integral
∫

dΩ refers to an integration over the direction of u′. With the
rearrangements

u′2 − u2 = v′
1
2 − 2v′

1v
′
2 + v′

2
2 − v2

1 + 2v1v2 − v2
2

= −4V′2 + 2v′
1
2 + 2v′

2
2 + 4V2 − 2v2

1 − 2v2
2 = 2(v′

1
2 + v′

2
2 − v2

1 − v2
2)

and
∫

dΩ |v2 − v1| =
∫

dΩ u =
∫

du′ dΩ δ(u′ − u)u′

=
∫

du′ u′2 dΩ δ

(
u′2

2
− u2

2

)

=
∫

d3u′ δ

(
u′2

2
− u2

2

) ∫
d3V ′ δ(3) (V′ − V)

= 4
∫

d3v′1 d3v′2 δ

(
v′

1
2 + v′

2
2

2
− v1

2 + v2
2

2

)
δ(3) (v′

1 + v′
2 − v1 − v2) ,

which also imply the conservation laws, we obtain

g − l =
∫

d3v2d
3v′1d

3v′2W (v1,v2;v′
1,v

′
2)(f

′
1f

′
2 − f1f2) . (9.5.20)

In this expression, we use

W (v1,v2;v′
1,v

′
2) = 4σ(Ω, |v2 − v1|)δ

(
v′

1
2 + v′

2
2

2
− v1

2 + v2
2

2

)
×

× δ(3) (v′
1 + v′

2 − v1 − v2) . (9.5.21)

Comparison with Eq. (9.2.8f) yields

σ(v1,v2;v′
1,v

′
2) = 4m4σ(Ω, |v2 − v1|) . (9.5.22)

From the loss term in (9.5.19), we can read off the total scattering rate
for particles of velocity v1:

1
τ(x,v, t)

=
∫

d3v2

∫
dΩ |v2 − v1|σ

(
Ω, |v2 − v1|

)
f(x,v2, t) . (9.5.23)
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The expression for τ−1 corresponds to the estimate in Eq. (9.2.12), which
was derived by elementary considerations: τ−1 = nvthσtot, with

σtot =
∫

dΩσ
(
Ω, |v2 − v1|

)
= 2π

∫ rmax

0
ds s . (9.5.24)

rmax is the distance from the scattering center for which the scattering angle
goes to zero, i.e. for which no more scattering occurs. In the case of hard
spheres, from Eq. (9.5.15) we have

σtot = 4πR2 . (9.5.25)

For potentials with infinite range, rmax diverges. In this case, the collision
term has the form

∂f

∂t

)

coll

=
∫

d3v2

∫ ∞

0
ds s

∫ 2π

0
dϕ(f ′

1f
′
2 − f1f2)|v1 − v2| . (9.5.26)

Although the individual contributions to the collision term diverge, the over-
all term remains finite:

lim
rmax→∞

∫ rmax

0
ds s (f ′

1f
′
2 − f1f2) = finite ,

since for s → ∞, the deflection angle tends to 0, and v′
1 − v1 → 0 and

v′
2 − v2 → 0, so that

(f ′
1f

′
2 − f1f2) → 0 .
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gen Molekülen, deren Dimensionen gegen die mittlere Weglänge verschwinden

(Barth, Leipzig, 1896); or Lectures on Gas Theory, transl. by S. Brush, Univer-

sity of California Press, Berkeley 1964.
R. L. Liboff, Introduction to the Theory of Kinetic Equations, Robert E. Krieger

publishing Co., Huntington, New York 1975.

S. Harris, An Introduction to the Theory of the Boltzmann Equation, Holt, Rinehart
and Winston, New York 1971.

J. A. McLennan, Introduction to Non-Equilibrium Statistical Mechanics, Prentice-
Hall, Inc., London 1988.

K.H. Michel and F. Schwabl, Hydrodynamic Modes in a Gas of Magnons, Phys. Kon-

dens. Materie 11, 144 (1970).



476 9. The Boltzmann Equation

Problems for Chapter 9

9.1 Symmetry Relations. Demonstrate the validity of the identity (9.3.5) used to
prove the H theorem:

Z
d3v1

Z
d3v2

Z
d3v3

Z
d3v4 W (v1,v2;v3, v4)(f1f2 − f3f4)ϕ1

=
1
4

Z
d3v1

Z
d3v2

Z
d3v3

Z
d3v4 W (v1,v2;v3,v4)

×(f1f2 − f3f4)(ϕ1 + ϕ2 − ϕ3 − ϕ4) . (9.5.27)

9.2 The Flow Term in the Boltzmann Equation. Carry out the intermediate steps
which lead from the equation of continuity (9.2.11) for the single-particle distribu-
tion function in µ−space to Eq. (9.2.11′).

9.3 The Relation between H and S. Calculate the quantity

H(x, t) =

Z
d3v f(x,v, t) log f(x,v, t)

for the case that f(x,v, t) is the Maxwell distribution.

9.4 Show that in the absence of an external force, the equation of continuity
(9.3.28) can be brought into the form (9.3.32)

n(∂t + uj∂j)e + ∂jqj = −Pij∂iuj .

9.5 The Local Maxwell Distribution. Confirm the statements made following
Eq. (9.3.19′) by inserting the local Maxwell distribution (9.3.19′) into (9.3.15a)–
(9.3.15c).

9.6 The Distribution of Collision Times. Consider a spherical particle of radius
r, which is passing with velocity v through a cloud of similar particles with a
particle density n. The particles deflect each other only when they come into direct
contact. Determine the probability distribution for the event in which the particle
experiences its first collision after a time t. How long is the mean time between two
collisions?

9.7 Equilibrium Expectation Values. Confirm the results (G.1c) and (G.1g) for
Z

d3v

„
mv2

2

«s

f0(v) and

Z
d3v vkvivjvl f0(v) .

9.8 Calculate the scalar products used in Sect. 9.4.2: ⟨1|1⟩, ⟨ϵ|1⟩, ⟨ϵ|ϵ⟩, ⟨vi|vj⟩,
⟨χ̂5|χ̂4⟩, ⟨χ̂4|viχ̂

j⟩, ⟨χ̂5|viχ̂
j⟩, ⟨χ̂4|v2

i χ̂4⟩, and ⟨vj |viχ̂
4⟩.

9.9 Sound Damping. In (9.4.30′′), (9.4.37′′) and (9.4.42′′), the linearized hydro-
dynamic equations for an ideal gas were derived. For real gases and liquids with
general equations of state P = P (n, T ), analogous equations hold:

∂
∂t

n(x, t) + n∇ · u(x, t) = 0

mn
∂
∂t

uj(x, t) + ∂iPji(x, t) = 0

∂
∂t

T (x, t) + n

„
∂T
∂n

«

S

∇ · u(x, t) − D∇2T (x, t) = 0 .
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The pressure tensor Pij , with components

Pij = δijP − η (∇jui + ∇iuj) +

„
2
3
η − ζ

«
δij∇ · u

now however contains an additional term on the diagonal, −ζ∇·u. This term results
from the fact that real gases have a nonvanishing bulk viscosity (or compressional
viscosity) ζ in addition to their shear viscosity η. Determine and discuss the modes.

Hint: Keep in mind that the equations partially decouple if one separates the
velocity field into transverse and longitudinal components: u = ut+ul with ∇·ut =
0 and ∇×ul = 0. (This can be carried out simply in Fourier space without loss of
generality by taking the wavevector to lie along the z-direction.)

In order to evaluate the dispersion equations (eigenfrequencies ω(k)) for the
Fourier transforms of n, ul, and T , one can consider approximate solutions for ω(k)
of successively increasing order in the magnitude of the wavevector k. A useful
abbreviation is

mc2
s =

„
∂P
∂n

«

S

=

„
∂P
∂n

«

T

»
1 −

„
∂T
∂n

«

S

.„∂T
∂n

«

P

–
=

„
∂P
∂n

«

T

cP

cV
.

Here, cs is the adiabatic velocity of sound.

9.10 Show that
D vjp

n/m

˛̨
vi

1p
n/kT

E
= δji

p
kT/m ,

D 1p
n/kT

˛̨
vl

vrp
n/m

E
= δlr

p
kT/m ,

D vjp
n/m

˛̨
viχ̂

4
E

= δij

D
vi|χ̂iχ̂4

E
= δij

r
2kT
3m

,
D
χ̂4
˛̨
vl

vrp
n/m

E
= δlr

r
2kT
3m

and verify (9.4.40′).

9.11 Calculate the density-density correlation function Snn(k,ω) =
R

d3x
R

dt

e−i(kx−ωt)⟨n(x, t)n(0, 0)⟩ and confirm the result in (9.4.51) by transforming to
Fourier space and expressing the fluctuations at a given time in terms of ther-
modynamic derivatives (see also QM II, Sect. 4.7).

9.12 The Viscosity of a Dilute Gas. In Sect. 9.4, the solution of the linearized
Boltzmann equation was treated by using an expansion in terms of the eigenfunc-
tions of the collision operator. Complete the calculation of the dissipative part of
the momentum current, Eq. (9.4.40). Show that

5X

λ=1

⟨ vjp
n/m

|viχ̂
λ⟩⟨χ̂λ|vl

vrp
n/m

⟩ = δijδlr
5kT
3m

.

9.13 Heat Conductivity Using the Relaxation-Time Approach. A further pos-
sibility for the approximate determination of the dissipative contributions to the
equations of motion for the conserved quantities particle number, momentum and
energy is found in the relaxation-time approach introduced in Sect. 9.5.1:

∂f
∂t

«

collision

= −f − fℓ

τ
.

For g = f − fℓ, one obtains in lowest order from the Boltzmann equation (9.5.1)
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g(x,v, t) = −τ

„
∂t + v ·∇ +

1
m

F ·∇v

«
fℓ(x,v, t) .

Eliminate the time derivative of fℓ by employing the non-dissipative equations of
motion obtained from fℓ and determine the heat conductivity by inserting f = fℓ+g
into the expression for the heat current q derived in (9.3.29).

9.14 The Relaxation-Time Approach for the Electrical Conductivity. Consider an
infinite system of charged particles immersed in a positive background. The col-
lision term describes collisions of the particles among themselves as well as with
the (fixed) ions of the background. Therefore, the collision term no longer van-
ishes for general local Maxwellian distributions fℓ(x,v, t). Before the application
of a weak homogeneous electric field E, take f = f0, where f0 is the position-
and time-independent Maxwell distribution. Apply the relaxation-time approach
∂f/∂t|coll = −(f − f0)/τ and determine the new equilibrium distribution f to first
order in E after application of the field. What do you find for ⟨v⟩? Generalize to a
time-dependent field E(t) = E0 cos(ωt). Discuss the effects of the relaxation-time
approximation on the conservation laws (see e.g. John M. Ziman, Principles of the
Theory of Solids, 2nd Ed. (Cambridge University Press, Cambridge 1972)).

9.15 An example which is theoretically easy to treat but is unrealistic for atoms
is the purely repulsive potential19

w(r) =
κ

ν − 1
1

rν−1
, ν ≥2, κ > 0 . (9.5.28)

Show that the corresponding scattering cross-section has the form

σ(ϑ, |v1 − v2|) =

„
2κ
m

« 2
ν−1

|v1 − v2|−
4

ν−1 Fν(ϑ) , (9.5.29)

with functions Fν(ϑ) which depend on ϑ and the power ν. For the special case of
the so called Maxwell potential (ν = 5), |v1 − v2|σ(ϑ, |v1 − v2|) is independent of
|v1 − v2|.

9.16 Find the special local Maxwell distributions

f0(v,x, t) = exp

„
A + B · v + C

v2

2m

«

which are solutions of the Boltzmann equation, by comparing the coefficients of the
powers of v. The result is A = A1 +A2 ·x+C3x

2, B = B1 −A2t− (2C3t+C2)x+
Ω ×x, C = C1 + C2t + C3t

2.

9.17 Let an external force F(x) = −∇V (x) act in the Boltzmann equation. Show
that the collision term and the flow term vanish for the case of the Maxwell distri-
bution function

f(v,x) ∝ n
“ m

2πkT

”3/2
exp

»
− 1

kT

„
m(v − u)2

2
+ V (x)

«–
.

9.18 Verify Eq. (9.4.33b).

19 Landau/Lifshitz, Mechanics, p. 51, op. cit. in footnote 18.



10. Irreversibility and the Approach to
Equilibrium

10.1 Preliminary Remarks

In this chapter, we will consider some basic aspects related to irreversible
processes and their mathematical description, and to the derivation of macro-
scopic equations of motion from microscopic dynamics: classically from the
Newtonian equations, and quantum-mechanically from the Schrödinger equa-
tion. These microscopic equations of motion are time-reversal invariant, and
the question arises as to how it is possible that such equations can lead to
expressions which do not exhibit time-reversal symmetry, such as the Boltz-
mann equation or the heat diffusion equation. This apparent incompatibility,
which historically was raised in particular by Loschmidt as an objection to
the Boltzmann equation, is called the Loschmidt paradox. Since during his
lifetime the reality of atoms was not experimentally verifiable, the apparent
contradiction between the time-reversal invariant (time-reversal symmetric)
mechanics of atoms and the irreversibility of non-equilibrium thermodynam-
ics was used by the opponents of Boltzmann’s ideas as an argument against
the very existence of atoms1. A second objection to the Boltzmann equation
and to a purely mechanical foundation for thermodynamics came from the
fact – which was proved with mathematical stringence by Poincaré – that
every finite system, no matter how large, must regain its initial state periodi-
cally after a so called recurrence time. This objection was named the Zermelo
paradox, after its most vehement protagonist. Boltzmann was able to refute
both of these objections. In his considerations, which were carried further by
his student P. Ehrenfest2, probability arguments play an important role, as
they do in all areas of statistical mechanics – a way of thinking that was how-
ever foreign to the mechanistic worldview of physics at that time. We mention
at this point that the entropy which is defined in Eq. (2.3.1) in terms of the
density matrix does not change within a closed system. In this chapter, we
will denote the entropy defined in this way as the Gibbs’ entropy. Boltzmann’s
1 See also the preface by H. Thirring in E. Broda, Ludwig Boltzmann, Deuticke,

Wien, 1986.
2 See P. Ehrenfest and T. Ehrenfest, Begriffliche Grundlagen der statistischen Auf-

fassung in der Mechanik, Encykl. Math. Wiss. 4 (32) (1911); English translation
by M. J. Moravcsik: The Conceptual Foundations of the Statistical Approach in
Mechanics, Cornell University Press, Ithaca, NY 1959.
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concept of entropy, which dates from an earlier time, associates a particular
value of the entropy not only to an ensemble but also to each microstate, as
we shall show in more detail in Sect. 10.6.2. In equilibrium, Gibbs’ entropy
is equal to Boltzmann’s entropy. To eliminate the recurrence-time objection,
we will estimate the recurrence time on the basis of a simple model. Using
a second simple model of the Brownian motion, we will investigate how its
time behavior depends on the particle number and the different time scales
of the constituents. This will lead us to a general derivation of macroscopic
hydrodynamic equations with dissipation from time-reversal invariant micro-
scopic equations of motion. Finally, we will consider the tendency of a dilute
gas to approach equilibrium, and its behavior under time reversal. In this
connection, the influence of external perturbations will also be taken into ac-
count. In addition, this chapter contains an estimate of the size of statistical
fluctuations and a derivation of Pauli’s master equations.

In this chapter, we treat a few significant aspects of this extensive area
of study. On the one hand, we will examine some simple models, and on the
other, we will present qualitative considerations which will shed light on the
subject from various sides.

In order to illuminate the problem arising from the Loschmidt paradox,
we show the time development of a gas in Fig. 10.1. The reader may con-
jecture that the time sequence is a,b,c, in which the gas expands to fill the
total available volume. If on the other hand a motion reversal is carried out
at configuration c, then the atoms will move back via stage b into configu-
ration a, which has a lower entropy. Two questions arise from this situation:
(i) Why is the latter sequence (c,b,a) in fact never observed? (ii) How are
we to understand the derivation of the H theorem, according to which the
entropy always increases?

(a) (b) (c)

Fig. 10.1. Expansion or contraction of a gas: total volume V , subvolume V1 (cube
in lower-left corner)
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10.2 Recurrence Time

Zermelo (1896)3 based his criticism of the Boltzmann equation on Poincaré’s
recurrence-time theorem4. It states that a closed, finite, conservative system
will return arbitrarily closely to its initial configuration within a finite time,
the Poincaré recurrence time τP . According to Zermelo’s paradox, H(t) could
not decrease monotonically, but instead must finally again increase and regain
the value H(0).

To adjudge this objection, we will estimate the recurrence time with the
aid of a model5. We consider a system of classical harmonic oscillators (linear
chain) with displacements qn, momenta pn and the Hamiltonian (see QM II,
Sect. 12.1):

H =
N∑

n=1

{
1

2m
p2

n +
mΩ2

2
(qn − qn−1)2

}
. (10.2.1)

From this, the equations of motion are obtained:

ṗn = mq̈n = mΩ2 (qn+1 + qn−1 − 2qn) . (10.2.2)

Assuming periodic boundary conditions, q0 = qN , we are dealing with a
translationally invariant problem, which is diagonalized by the Fourier trans-
formation

qn =
1

(mN)1/2

∑

s

eisnQs , pn =
(m

N

)1/2 ∑

s

e−isnPs . (10.2.3)

Qs and (Ps) are called the normal coordinates (and momenta). The periodic
boundary conditions require that 1 = eisN , i.e. s = 2πl

N with integral l. The
values of s for which l differs by N are equivalent. A possible choice of values
of l, e.g. for odd N , would be: l = 0,±1, . . . ,±(N − 1)/2. Since qn and pn

are real, it follows that

Q∗
s = Q−s and P ∗

s = P−s .

The Fourier coefficients obey the orthogonality relations

1
N

N∑

n=1

eisne−is′n = ∆(s − s′) =

{
1 for s − s′ = 2πh with h integral
0 otherwise

(10.2.4)

3 E. Zermelo, Wied. Ann. 57, 485 (1896); ibid. 59, 793 (1896).
4 H. Poincaré, Acta Math. 13, 1 (1890)
5 P. C. Hemmer, L.C. Maximon, and H. Wergeland, Phys. Rev. 111, 689 (1958).
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and the completeness relation

1
N

∑

s

e−isneisn′
= δnn′ . (10.2.5)

Insertion of the transformation to normal coordinates yields

H =
1
2

∑

s

(
PsP

∗
s + ω2

sQsQ
∗
s

)
(10.2.6)

with the dispersion relation

ωs = 2Ω | sin s

2
| . (10.2.7)

We thus find N non-coupled oscillators with eigenfrequencies6 ωs. The motion
of the normal coordinates can be represented most intuitively by introducing
complex vectors

Zs = Ps + iωsQs , (10.2.8)

which move on a unit circle according to

Zs = aseiωst (10.2.9)

with a complex amplitude as (Fig. 10.2).

Fig. 10.2. The motion of
the normal coordinates

We assume that the frequencies ωs of N − 1 such normal coordinates are
incommensurate, i.e. their ratios are not rational numbers. Then the phase
vectors Zs rotate independently of one another, without coincidences. We
now wish to calculate how much time passes until all N vectors again come
into their initial positions, or more precisely, until all the vectors lie within
an interval ∆ϕ around their initial positions. The probability that the vector
Zs lies within ∆ϕ during one rotation is given by ∆ϕ/2π, and the proba-
bility that all the vectors lie within their respective prescribed intervals is
(∆ϕ/2π)N−1. The number of rotations required for this recurrence is there-
fore (2π/∆ϕ)N−1. The recurrence time is found by multiplying by the typical
6 The normal coordinate with s = 0, ωs = 0 corresponds to a translation and need

not be considered in the following.
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rotational period7 1
ω :

τP ≈
(

2π

∆ϕ

)N−1

· 1
ω

. (10.2.10)

Taking ∆ϕ = 2π
100 , N = 10 and ω = 10 Hz, we obtain τP ≈ 1012 years,

i.e. more than the age of the Universe. These times of course become much
longer if we consider a macroscopic system with N ≈ 1020. The recurrence
thus exists theoretically, but in practice it plays no role. We have thereby
eliminated Zermelo’s paradox.
Remark: We consider further the time dependence of the solution for the coupled
oscillators. From (10.2.3) and (10.2.9) we obtain

qn(t) =
X

s

eisn

√
Nm

“
Qs(0) cosωst +

Q̇s(0)
ωs

sin ωst
”

, (10.2.11)

from which the following solution of the general initial-value problem is found:

qn(t) =
1
N

X

s,n′

“
qn′(0) cos

`
s(n−n′)−ωst

´
+

q̇n′ (0)
ωs

sin
`
s(n−n′)−ωst

´”
. (10.2.12)

As an example, we consider the particular initial condition qn′ = δn′,0, q̇n′(0) = 0,
for which only the oscillator at the site 0 is displaced initially, leading to

qn(t) =
1
N

X

s

cos
`
sn − 2Ω t | sin s

2
|
´

. (10.2.13)

As long as N is finite, the solution is quasiperiodic. On the other hand, in the limit
N → ∞

qn(t) =
1
2π

Z π

−π

ds cos
`
sn − 2Ω t | sin s

2
|
´

=
1
π

Z π

0

ds cos
`
s2n − 2Ω t sin s

´

= J2n(2Ω t) ∼
r

1
πΩ t

cos
`
2Ω t − πn − π

4

´
for long t . (10.2.14)

Jn are Bessel functions8. The excitation does not decay exponentially, but instead
algebraically as t−1/2.

We add a few more remarks concerning the properties of the solution
(10.2.13) for finite N . If the zeroth atom in the chain is released at the time t = 0,
it swings back and its neighbors begin to move upwards. The excitation propagates
along the chain at the velocity of sound, aΩ; the n-th atom, at a distance d = na
from the origin, reacts after a time of about t ∼ n

Ω . Here, a is the lattice constant.

7 A more precise formula by P.C. Hemmer, L.C. Maximon, and H. Wergeland,

op. cit. 5, yields τP =

QN−1
s=1

2π

∆ϕs

PN−1
s=1

ωs

∆ϕs

∝
1

N
∆ϕ2−N .

8 I. S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products, Aca-
demic Press, New York, 1980, 8.4.11 and 8.4.51
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The displacement amplitude remains largest for the zeroth atom. In a finite chain,
there would be echo effects. For periodic boundary conditions, the radiated oscil-
lations come back again to the zeroth atom. The limit N → ∞ prevents Poincaré
recurrence. The displacement energy of the zeroth atom initially present is divided
up among the infinitely many degrees of freedom. The decrease of the oscillation
amplitude of the initially excited atom is due to energy transfer to its neighbors.

10.3 The Origin of Irreversible Macroscopic Equations
of Motion

In this section, we investigate a microscopic model of Brownian motion. We
will find the appearance of irreversibility in the limit of infinitely many de-
grees of freedom. The derivation of hydrodynamic equations of motion in
analogy to the Brownian motion will be sketched at the end of this section
and is given in more detail in Appendix H..

10.3.1 A Microscopic Model for Brownian Motion

As a microscopic model for Brownian motion, we consider a harmonic os-
cillator which is coupled to a harmonic lattice9 . Since the overall system is
harmonic, the Hamiltonian function or the Hamiltonian operator as well as
the equations of motion and their solutions have the same form classically and
quantum mechanically. We start with the quantum-mechanical formulation.
In contrast to the Langevin equation of Sect. 8.1, where a stochastic force
was assumed to act on the Brownian particle, we now take explicit account
of the many colliding particles of the lattice in the Hamiltonian operator and
in the equations of motion. The Hamiltonian of this system is given by

H = HO + HF + HI ,

HO =
1

2M
P 2 +

MΩ2

2
Q2 , HF =

1
2m

∑

n

p2
n +

1
2

∑

nn′

Φnn′qnqn′ ,

HI =
∑

n

cnqnQ ,

(10.3.1)

where HO is the Hamiltonian of the oscillator of mass M and frequency Ω.
Furthermore, HF is the Hamiltonian of the lattice10 with masses m, mo-
menta pn, and displacements qn from the equilibrium positions, where we
take m ≪ M . The harmonic interaction coefficients of the lattice atoms are
Φnn′ . The interaction of the oscillator with the lattice atoms is given by HI ;
9 The coupling to a bath of oscillators as a mechanism for damping has been in-

vestigated frequently, e.g. by F. Schwabl and W. Thirring, Ergeb. exakt. Natur-
wiss. 36, 219 (1964); A. Lopez, Z. Phys. 192, 63 (1965); P. Ullersma, Physica
32, 27 (1966).

10 We use the index F , since in the limit N → ∞ the lattice becomes a field.
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the coefficients cn characterize the strength and the range of the interactions
of the oscillator which is located at the origin of the coordinate system. The
vector n enumerates the atoms of the lattice. The equations of motion which
follow from (10.3.1) are given by

MQ̈ = −MΩ2Q −
∑

n

cnqn

and

mq̈n = −
∑

n′

Φnn′qn′ − cnQ . (10.3.2)

We take periodic boundary conditions, qn = qn+Ni , with N1 = (N1, 0, 0),
N2 = (0, N2, 0), and N3 = (0, 0, N3), where Ni is the number of atoms in
the direction êi. Due to the translational invariance of HF , we introduce the
following transformations to normal coordinates and momenta:

qn =
1√
mN

∑

k

eikanQk , pn =
√

m

N

∑

k

e−ikanPk . (10.3.3)

The inverse transformation is given by

Qk =
√

m

N

∑

n

e−ikanqn , Pk =
1√
mN

∑

n

eikanpn . (10.3.4)

The Fourier coefficients obey orthogonality and completeness relations

1
N

∑

n

ei(k−k′)·an = ∆(k − k′) ,
1
N

∑

k

eik·(an−an′) = δn,n′ (10.3.5a,b)

with the generalized Kronecker delta ∆(k) =

{
1 for k = g
0 otherwise

.

From the periodic boundary conditions we find the following values for the
wavevector:

k = g1
r1

N1
+ g2

r2

N2
+ g3

r3

N3
with ri = 0,±1,±2, ... .

Here, we have introduced the reciprocal lattice vectors which are familiar
from solid-state physics:

g1 =
(2π

a
, 0, 0

)
, g2 =

(
0,

2π

a
, 0

)
, g3 =

(
0, 0,

2π

a

)
.

The transformation to normal coordinates (10.3.3) converts the Hamiltonian
for the lattice into the Hamiltonian for N decoupled oscillators, viz.

HF =
1
2

∑

k

(
P †

kPk + ω2
kQ†

kQk

)
, (10.3.6)
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with the frequencies11 (see Fig. 10.3)

ω2
k =

1
m

∑

n

Φ(n) e−ikan . (10.3.7)

Fig. 10.3. The frequencies ωk

along one of the coordinate axes,
ωmax = ωπ/a

From the invariance of the lattice with respect to infinitesimal trans-
lations, we obtain the condition

∑
n′ Φ(n,n′) = 0, and from translational

invariance with respect to lattice vectors t, it follows that Φ(n + t,n′ + t) =
Φ(n,n′) = Φ(n − n′). The latter relation was already used in (10.3.7). From
the first of the two relations, we find limk→0 ω2

k = 0, i.e. the oscillations of the
lattice are acoustic phonons. Expressed in terms of the normal coordinates,
the equations of motion are (10.3.2)

MQ̈ = −MΩ2Q − 1√
mN

∑

k

c(k)∗ Qk (10.3.8a)

mQ̈k = −mω2
kQk −

√
m

N
c(k)Q (10.3.8b)

with

c(k) =
∑

n

cne−ikan . (10.3.9)

For the further treatment of the equations of motion (10.3.8a,b) and the
solution of the initial-value problem, we introduce the half-range Fourier
transform (Laplace transform) of Q(t):

Q̃(ω) ≡
∫ ∞

0
dt eiωtQ(t) =

∫ ∞

−∞
dt eiωtΘ(t)Q(t) . (10.3.10a)

11 We assume that the harmonic potential for the heavy oscillator is based on the
same microscopic interaction as that for the lattice atoms, Φ(n,n′). If we denote
its strength by g, then we find Ω =

p
g
M and ωmax =

p
g
m , and therefore

Ω ≪ ωmax. The order of magnitude of the velocity of sound is c = aωmax.
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The inverse of this equation is given by

Θ(t)Q(t) =
∫ ∞

−∞
dω e−iωtQ̃(ω) . (10.3.10b)

For free oscillatory motions, (10.3.10a) contains δ+ distributions. For their
convenient treatment, it is expedient to consider

Q̃(ω + iη) =
∫ ∞

0
dt ei(ω+iη)t Q(t) , (10.3.11a)

with η > 0. If (10.3.10a) exists, then with certainty so does (10.3.11a) owing
to the factor e−ηt. The inverse of (10.3.11a) is given by

e−ηt Q(t) =
∫ ∞

−∞
dω e−iωt Q̃(ω + iη) , i.e.

Q(t)Θ(t) =
∫ ∞

−∞
dω e−i(ω+iη)t Q̃(ω + iη) . (10.3.11b)

For the complex frequency appearing in (10.3.11a,b) we introduce z ≡ ω+iη.
The integral (10.3.11b) implies an integration path in the complex z-plane
which lies iη above the real axis

Q(t)Θ(t) =
∫ ∞+iη

−∞+iη
dz e−izt Q̃(z) . (10.3.11b′)

The half-range Fourier transformation of the equation of motion (10.3.8a)
yields for the first term

∫ ∞

0
dt eizt d2

dt2
Q(t) = eiztQ̇(t)|∞0 − iz

∫ ∞

0
dt eiztQ̇(t)

= −Q̇(0) + izQ(0)− z2Q̃(z) .

All together, for the half-range Fourier transform of the equations of mo-
tion (10.3.8a,b) we obtain

M
(
−z2 + Ω2

)
Q̃(z) = − 1√

mN

∑

k

c(k)∗ Q̃k(z) + M
(
Q̇(0) − iz Q(0)

)

(10.3.12)

m
(
−z2 + ω2

k

)
Q̃k(z) = −

√
m

N
c(k) Q̃(z) + m

(
Q̇k(0) − izQk(0)

)
.

(10.3.13)

The elimination of Q̃k(z) and replacement of the initial values Qk(0), Q̇k(0)
by qn(0), q̇n(0) yields
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D(z) Q̃(z) = M
(
Q̇(0) − iz Q(0)

)

− m

N

∑

n

∑

k

c(k)∗
e−ikan

m(−z2 + ω2
k)

(
q̇n(0) − iz qn(0)

)
(10.3.14)

with

D(z) ≡
(

M
(
−z2 + Ω2

)
+

1
N

∑

k

|c(k)|2

m(z2 − ω2
k)

)
. (10.3.15)

Now we restrict ourselves to the classical case, and insert the particular initial
values for the lattice atoms qn(0) = 0, q̇n(0) = 0 for all the n12, then we find

Q̃(z) =
M (Q̇(0) − izQ(0))

−Mz2 + MΩ2 −
∑

k
|c(k)|2
m N /(−z2 + ω2

k)
. (10.3.16)

From this, in the time representation, we obtain

Θ(t)Q(t) =
∫

dω

2π
e−iztQ̃(z) = −i

∑

ν

g(ων) e−iωνt , (10.3.17)

where ων are the poles of Q̃(z) and g(ων) are the residues13. The solution
is thus quasiperiodic. One could use this to estimate the Poincaré time in
analogy to the previous section.

In the limit of a large particle number N , the sums over k can be replaced
by integrals and a different analytic behavior may result:14

D(z) = −Mz2 + MΩ2 +
a3

m

∫
d3k

(2π)3
|c(k)|2

z2 − ω2
k

. (10.3.18)

The integral over k spans the first Brillouin zone: −π
a ≤ ki ≤ π

a . For a simple
evaluation of the integral over k, we replace the region of integration by a
sphere of the same volume having a radius Λ =

(
3
4π

)1/3 2π
a and substitute

12 In the quantum-mechanical treatment, we would have to use the expectation
value of (10.3.14) instead and insert ⟨qn(0)⟩ = ⟨q̇n(0)⟩ = 0. In problem 10.6, the
force on the oscillator due to the lattice particles is investigated when the latter
are in thermal equilibrium.

13 The poles of Q̃(z), z ≡ ω + iη are real, i.e. they lie in the complex ω-plane
below the real axis. (10.3.17) follows with the residue theorem by closure of the
integration in the lower half-plane.

14 In order to determine what the ratio of t and N must be to permit the use of
the limit N → ∞ even for finite N , the N−dependence of the poles ων must be
found from D(z) = 0. The distance between the poles ων is ∆ων ∼ 1

N , and the
values of the residues are of O

`
1
N

´
. The frequencies ων obey ων+1 −ων ∼ ωmax

N .
For t ≪ N

ωmax
, the phase factors eiωνt vary only weakly as a function of ν, and

the sum over ν in (10.3.17) can be replaced by an integral.
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the dispersion relation by ωk = c|k| where c is the velocity of sound. It then
follows that

a3

m

1
2π2c3

∫ Λc

0

dν ν2

z2 − ν2
|c(ν)|2 =

a3

m

1
2π2c3

[
−

∫ Λc

0
dν|c(ν)|2+

+ z2

∫ ∞

0

dν |c(ν)|2

z2 − ν2
− z2

∫ ∞

Λc

dν |c(ν)|2

z2 − ν2

]
(10.3.19)

with ν = c|k|. We now discuss the last equation term by term making use of
the simplification |c(ν)|2 = g2 corresponding to cn = gδn,0.
1st term of (10.3.19):

− a3

m

1
2π2c3

∫ Λc

0
dν|c(ν)|2 = −g2Λc . (10.3.20)

This yields a renormalization of the oscillator frequency

ω̄ =

√
Ω2 − g2Λc

a3

m2π2c3

1
M

. (10.3.21)

2nd term of (10.3.19) and evaluation using the theorem of residues:

a3

m

1
2π2c3

g2z2

∫ ∞

0

dν

z2 − ν2
= −M Γ i z (10.3.22)

Γ =
g2a3

4πmc3

1
M

= cΛ
m

M
. (10.3.23)

The third term of (10.3.19) is due to the high frequencies and affects the
behavior at very short times. This effect is treated in problem 10.5, where
a continuous cutoff function is employed. If we neglect it, we obtain from
(10.3.16)

(
−z2 + ω̄2 − iΓ z

)
Q̃(z) = M

(
Q̇(0) − izQ(0)

)
, (10.3.24)

and, after transformation into the time domain for t > 0, we have the follow-
ing equation of motion for Q(t):

(
d2

dt2
+ ω̄2 + Γ

d

dt

)
Q(t) = 0 . (10.3.25)

The coupling to the bath of oscillators leads to a frictional term and to
irreversible damped motion. For example, let the initial values be Q(0) = 0,
Q̇(t = 0) = Q̇(0) (for the lattice oscillators, we have already set qn(0) =
q̇n(0) = 0); then from Eq. (10.3.24) it follows that

Θ(t)Q(t) =
∫ ∞

−∞

dω

2π

e−iztQ̇(0)
−z2 + ω̄2 − iΓ z

(10.3.26)
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and, using the theorem of residues,

Q(t) = e−Γ t/2 sin ω0t

ω0
Q̇(0) , (10.3.27)

with ω0 =
√

ω̄2 − Γ 2

4 .
The conditions for the derivation of the irreversible equation of motion

(10.3.25) were:

a) A limitation to times t ≪ N
ωmax

15. This implies practically no limitation
for large N , since the exponential decay is much more rapid.

b) The separation into macroscopic variables ≡ massive oscillator (of mass
M) and microscopic variables ≡ lattice oscillators (of mass m) leads,
owing to m

M ≪ 1, to a separation of time scales

Ω ≪ ωmax , Γ ≪ ωmax .

The time scales of the macroscopic variables are 1/Ω, 1/Γ .
The irreversibility (exponential damping) arises in going to the limit N →

∞. In order to obtain irreversibility even at arbitrarily long times, the limit
N → ∞ must first be taken.

10.3.2 Microscopic Time-Reversible and Macroscopic Irreversible
Equations of Motion, Hydrodynamics

The derivation of hydrodynamic equations of motion (Appendix H.) directly
from the microscopic equations is based on the following elements:

(i) The point of departure is represented by the equations of motion for
the conserved quantities and the equations of motion for the infinitely many
nonconserved quantities.
(ii) An important precondition is the separation of time scales ck ≪ ωn.c.,
i.e. the characteristic frequencies of the conserved quantities ck are much
slower than the typical frequencies of the nonconserved quantities ωn.c., anal-
ogous to the ωλ (λ > 5) in the Boltzmann equation, Sect. 9.4.4. This permits
the elimination of the rapid variables.

In the analytic treatment in Appendix H., one starts from the equations of
motion for the so called Kubo relaxation function φ and obtains equations of
motion for the relaxation functions of the conserved quantities. From the one-
to-one correspondence of equations of motion for φ and the time-dependent
expectation values of operators under the influence of a perturbation, the
hydrodynamic equations for the conserved quantities are obtained. The re-
maining variables express themselves in the form of damping terms, which
can be expressed by Kubo formulas.
15 These times, albeit long, are much shorter than the Poincaré recurrence time.
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∗10.4 The Master Equation and Irreversibility
in Quantum Mechanics16

We consider an isolated system and its density matrix at the time t, with
probabilities wi(t)

ϱ(t) =
∑

i

wi(t) |i⟩ ⟨i| . (10.4.1)

The states |i⟩ are eigenstates of the Hamiltonian H0. We let the quantum
numbers i represent the energy Ei and a series of additional quantum num-
bers νi. A perturbation V also acts on the system or within it and causes
transitions between the states; thus the overall Hamiltonian is

H = H0 + V . (10.4.2)

For example, in a nearly ideal gas, H0 could be the kinetic energy and V
the interaction which results from collisions of the atoms. We next consider
the time development of ϱ on the basis of (10.4.1) and denote the time-
development operator by U(τ). After the time τ the density matrix has the
form

ϱ(t + τ) =
∑

i

wi(t)U(τ) |i⟩ ⟨i|U †(τ)

=
∑

i

∑

j,k

wi(t) |j⟩ ⟨j|U(τ) |i⟩ ⟨i|U †(τ) |k⟩ ⟨k|

=
∑

i

∑

j,k

wi(t) |j⟩ ⟨k|Uji(τ)U∗
ki(τ) ,

(10.4.3)

where the matrix elements

Uji(τ) ≡ ⟨j|U(τ) |i⟩ (10.4.4)

have been introduced. We assume that the system, even though it is prac-
tically isolated, is in fact subject to a phase averaging at each instant as a
result of weak contacts to other macroscopic systems. This corresponds to
taking the trace over other, unobserved degrees of freedom which are coupled
to the system17 . Then the density matrix (10.4.3) is transformed to
16 W. Pauli, Sommerfeld Festschrift, S. Hirzel, Leipzig, 1928, p. 30.
17 If for example every state |j⟩ of the system is connected with a state |2, j⟩ of

these other macroscopic degrees of freedom, so that the contributions to the total
density matrix are of the form |2, j⟩ |j⟩ ⟨k| ⟨2, k| , then taking the trace over 2
leads to the diagonal form |j⟩ ⟨j|. This stochastic nature, which is introduced
through contact to the system’s surroundings, is the decisive and subtle step in
the derivation of the master equation. Cf. N.G. van Kampen, Physica 20, 603
(1954), and Fortschritte der Physik 4, 405 (1956).
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∑

i

∑

j

wi(t) |j⟩ ⟨j|Uji(τ)U∗
ji(τ) . (10.4.5)

Comparison with (10.4.1) shows that the probability for the state |j⟩ at the
time t + τ is thus

wj(t + τ) =
∑

i

wi(t)|Uji(τ)|2 ,

and the change in the probability is

wj(t + τ) − wj(t) =
∑

i

(
wi(t) − wj(t)

)
|Uji(τ)|2 , (10.4.6)

where we have used
∑

i |Uji(τ)|2 = 1. On the right-hand side, the term i = j
vanishes. We thus require only the nondiagonal elements of Uij(τ), for which
we can use the Golden Rule18:

|Uji(τ)|2 =
1
!2

(
sin ωij τ/2

ωij/2

)2

| ⟨j|V |i⟩ |2 = τ
2π

! δ(Ei − Ej)| ⟨j|V |i⟩ |2

(10.4.7)

with ωij = (Ei − Ej)/!. The limit of validity of the Golden Rule is ∆E ≫
2π!
τ ≫ δε, where ∆E is the width of the energy distribution of the states and

δε is the spacing of the energy levels. From (10.4.6) and (10.4.7), it follows
that

dwj(t)
dt

=
∑

i

(
wi(t) − wj(t)

)2π

! δ(Ei − Ej)| ⟨j|V |i⟩ |2 .

As already mentioned at the beginning of this section, the index i ≡ (Ei, νi)
includes the quantum numbers of the energy and the νi, the large number of
all remaining quantum numbers. The sum over the energy eigenvalues on the
right-hand side can be replaced by an integral with the density of states ϱ(Ei)
according to

∑

Ei

· · · =
∫

dEi ϱ(Ei) · · ·

so that, making use of the δ-function, we obtain:

dwEjνj (t)
dt

=
∑

νi

(wEj ,νi − wEj ,νj )
2π

! ϱ(Ej)| ⟨Ej , νj |V |Ej , νi⟩ |2 . (10.4.8)

18 QM I, Eq. (16.36)
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With the coefficients

λEj ,νj ;νi =
2π

! ϱ(Ej)| ⟨Ej , νj |V |Ej , νi⟩ |2 , (10.4.9)

Pauli’s master equation follows:

dwEjνj (t)
dt

=
∑

νi

λEj ,νj ;νi

(
wEj ,νi(t) − wEj ,νj (t)

)
. (10.4.10)

This equation has the general structure

ṗn =
∑

n′

(Wn′ n pn′ − Wn′ n pn) , (10.4.11)

where the transition rates Wn′ n = Wn n′ obey the so called detailed balance
condition19

Wn′ n peq
n′ = Wn n′ peq

n (10.4.12)

for the microcanonical ensemble, peq
n′ = peq

n for all n and n′. One can show in
general that Eq. (10.4.11) is irreversible and that the entropy

S = −
∑

n

pn log pn (10.4.13)

increases. With (10.4.11), we have

Ṡ = −
∑

n, n′

(pn log pn)′ Wn′ n(pn′ − pn)

=
∑

n,n′

Wn′ n pn′
(
(pn log pn)′ − (pn′ log pn′)′

)
.

By permutation of the summation indices n and n′ and using the symmetry
relation Wn n′ = Wn′ n, we obtain

Ṡ =
1
2

∑

n,n′

Wn n′(pn′ − pn)
(
(pn′ log pn′)′ − (pn log pn)′

)
> 0 , (10.4.14)

where the inequality follows from the convexity of x log x (Fig. 10.4). The
entropy continues to increase until pn = pn′ for all n and n′. Here we assume
that all the n and n′ are connected via a chain of matrix elements. The
isolated system described by the master equation (10.4.10) approaches the
microcanonical equilibrium.

19 See QM II, following Eq. (4.2.17).
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Fig. 10.4. The function
f(x) = x log x is convex,
(x′−x)(f ′(x′)−f ′(x)) > 0

10.5 Probability and Phase-Space Volume

∗10.5.1 Probabilities and the Time Interval of Large Fluctuations

In the framework of equilibrium statistical mechanics one can calculate the
probability that the system spontaneously takes on a constraint. In the con-
text of the Gay-Lussac experiment, we found the probability that a system
with a fixed particle number N with a total volume V would be found only
within the subvolume V1 (Eq. (3.5.5)):

W (E, V1) = e−(S(E,V )−S(E,V1))/k . (10.5.1)

For an ideal gas20, the entropy is S(E, V ) = kN(log V
Nλ3

T
+ 5

2 ). Since
E = 3

2NkT , λT remains unchanged on expansion and it follows that
W (E, V1) = e−N log V

V1 . This gives log V
V1

= log V
V −(V −V1)

≈ V −V1
V for low

compressions. At higher compressions, V1 << V , the factor log V
V1

becomes
larger. The dependence on N ≈ 1020 is dominant in Eq. (10.5.1) for macro-
scopic systems. For general constraints, from Eq. (3.5.5) we obtain

W (E, Z) = e−(S(E)−S(E,Z))/k . (10.5.2)

As an example, we consider in more detail the density fluctuations in an
ideal gas. The N gas atoms are distributed between the subvolume V1 and
the subvolume V −V1 with the probabilities p = V1

V and 1− p corresponding
to a binomial distribution21. The mean square deviation of the particle num-
ber (∆n)2 within the subvolume V1 is related to the average of the particle
number in this volume, n̄ = pN :
20 Chapter 2
21 Sect. 1.5.1
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(∆n)2

n̄2
=

1
n̄

, i.e.
(∆n)

n̄
=

1√
n̄

. (10.5.3)

For n̄ = 1020, this ratio is (∆n)
n̄ = 10−10. For large N , n and N − n, from

the binomial distribution we obtain the probability density for the particle
number n by expansion and using the Stirling approximation; it is a Gaussian
distribution

w(n) =
1√
2πn̄

e−
(n−n̄)2

2n̄ . (10.5.4)

This last formula is also a result of the central limit theorem22. The proba-
bility density is normalized to 1:

∫
dn w(n) = 1.

We are now interested in the case that n is greater than the value n̄+ δn,
i.e. in the occurrence of fluctuations which are greater than a given δn. Its
probability is obtained by integrating (10.5.4) over the interval [n̄ + δn,∞]

wδ(δn) =
1√
2πn̄

∫ ∞

δn
dν e−

ν2
2n̄ =

1√
π

∫ ∞

δn/
√

2n̄
dx e−x2

=
1
2

(
1 − Φ

( δn√
2n̄

))
, (10.5.5)

with the error integral

Φ(x) =
2√
π

∫ x

0
dy e−y2

, (10.5.6)

where already for values x ! 1 the approximation formula 1
2 (1 − Φ(x)) ≈

e−x2

2
√

πx
may be employed.

In Fig. 10.5, we show a possible time dependence of the particle number
n(t). Knowing the probability for the occurrence of a fluctuation, we can also
make predictions about the typical time interval between fluctuations. First
of all, the probability wδ(δn) has the following meaning in terms of the time:
denoting by tδn the overall time during which n(t) remains above n̄ + δn
during the time period t0 of observation, then we find

wδ(δn) =
tδn

t0
. (10.5.7)

We are interested in the average time required until a density increase which
is greater than δn occurs, and term it the waiting time ϑδn. Here, we must
also introduce the time τ0 which is required for a fluctuation, once it occurs,
to again degrade. Typically, τ0 = L/c, where L is the linear dimension of the
system and c is the velocity of sound, e.g. L = 1 cm, c = 105 cm/s, τ0 = 10−5 s.
The time introduced above, tδn, within which the deviation exceeds δn, is
22 Sect. 1.2.2
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Fig. 10.5. A possible
time dependence of the
particle number within
the subvolume V1

tδn = τ0 × (the number of fluctuations above δn). For relatively large δn,
t0 − tδn ≈ t0 and thus the waiting time ϑδn is equal to the ratio of t0 to the
number of fluctuations larger than δn

ϑδn =
t0
tδn

τ0 =
τ0

wδ(δn)
= τ0

/1
2

(
1 − Φ

(δn

n̄

√
n̄

2

))
, (10.5.8)

where (10.5.5) was used.
As an illustration, the waiting times until a density fluctuation upwards

of more than δn occurs are collected in Table 10.1 for several values of the
relative deviation δn

n̄
√

2
and x ≡ δn

n̄

√
n̄
2 for n̄ = 1020. Deviations smaller than

3×10−10 regularly occur; those larger than 7×10−10 never occur! And even
these in fact small deviations (7 × 10−10) are macroscopically unobservable.
This small interval encompasses the whole range from frequent to never.

Now we return to the fluctuation curve (Fig. 10.5). We consider a rela-
tively large δn. To the right of the maximum, there is a monotonic decrease.
There are just as many intersection points to the left of the maximum as to
its right. For large δn, the intersection point must in fact lie on the maximum.
But to the left of the maximum, n(t) must have increased; this is so improb-
able that it practically never occurs. In practice, such an improbable state is
never generated by a spontaneous fluctuation, but instead is determined as
the initial state in an experiment by the lifting of constraints. Starting from

Table 10.1. Waiting Times

x 1
2 (1 − Φ(x)) Relative deviation δn

n̄
√

2
Waiting time ϑδn = 10−5

1
2 (1−Φ(x))

3 1 ×10−5 3 ×10−10 1 s
5 8 ×10−13 5 ×10−10 1.3 ×107 s = 5 months
7 2 ×10−23 7 ×10−10 5 ×1017 s = 2 ×1010 years
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such an improbable configuration, the system always relaxes towards n̄ and
never assumes an even more improbable state, e.g. an even greater density
on expansion of a gas. Small fluctuations are superposed onto this relaxation.

10.5.2 The Ergodic Theorem

The ergodic theorem played an important role in classical physics, providing
the justification for the statistical description of matter. It was proposed
by Boltzmann, and states that an arbitrary trajectory passes through every
point in phase space and that therefore an average over time is identical with
an average over phase space. In this form, the theorem is not tenable; rather,
its must be modified as follows (it is then referred to as the quasi-ergodic
theorem): every trajectory, apart from a set of null measure, approaches each
point in phase space arbitrarily closely. This also yields the result that a
time average is equal to an ensemble average. If a system is ergodic23, i.e. the
quasi-ergodic theorem applies to it, then the following expression holds for
functions in phase space:

lim
T→∞

1
T

∫ T

0
dt f(q(t), p(t)) =

1
Ω(E)

∫
dΓ f(q, p) ; (10.5.9)

“time average is equal to ensemble average”.
Choosing f(q, p) = Θ(q, p ∈ G), where G is a region of the energy shell,

we obtain from (10.5.9) in the limit of long T

τG

T
=

|ΓG|
Ω(E)

, (10.5.10)

where τG is the time during which the trajectory remains within G and |ΓG| is
the phase-space volume of the region G. It is thus the fraction of time which
the system spends in G, equal to the ratio of the volumes in phase space.
The time spent by a system within an improbable region (in an atypical
configuration) is short.

23 L. Boltzmann, as well as P. and T. Ehrenfest, associated something more like
the idea of what we would now call “mixing” with the concept “ergodic”, which
they also circumscribed as “stirred apart” (Ger. ‘zerrühren’).
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10.6 The Gibbs and the Boltzmann Entropies and their
Time Dependences

10.6.1 The Time Derivative of Gibbs’ Entropy

The microscopic entropy of an isolated system with the Hamilton H, intro-
duced in Sect. 2.3, which in the present connection we call Gibbs’ entropy SG,

SG = −k Tr (ϱ log ϱ) (10.6.1)

does not change in the course of time. The von Neumann equation for this
system is given by

ϱ̇ =
i
! [ϱ,H] , (10.6.2)

so that

−ṠG/k = Tr (ϱ log ϱ). = Tr (ϱ̇ log ϱ) + Tr ϱ̇

=
i
!Tr

(
[ϱ,H] log ϱ

)
=

i
!Tr

(
[log ϱ, ϱ]H

)
= 0 .

We have used Tr ϱ̇ = 0, which follows from Tr ϱ = 1. In this derivation,
H may be time dependent, e.g. H could contain a time-dependent external
parameter such as the available volume, fixed by the wall potentials. The
density matrix varies with time, but

ṠG = 0 (10.6.3)

still holds. The Gibbs entropy remains constant and yields no information
about the irreversible motion; it has significance only for the equilibrium
state of the system.

The derivation of ṠG = 0 from classical statistics with

SG = −k

∫
dΓ ϱ log ϱ ,

making use of the Liouville equation, is the topic of problem 10.7. This result
is based on the fact that a particular region in phase space does indeed change,
but its volume remains the same according to Liouville’s theorem.

10.6.2 Boltzmann’s Entropy

To each macrostate24 M and thus to each microstate X or each point in
Γ -space which represents the macrostate, M = M(X), a Boltzmann entropy
SB can be associated:
24 See Chaps. 1 and 2.
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SB(M) = k log |ΓM | , (10.6.4)

where ΓM is the phase-space region of M and |ΓM | is its volume.
The Gibbs entropy SG is defined for an ensemble with the distribution

function ϱ(X) by

SG[ϱ] = −k

∫
dΓ ϱ(X) log ϱ(X) . (10.6.5)

For a microcanonical ensemble (Sect. 2.2), we have

ϱMC =

{
|ΓM |−1 X ∈ ΓM

0 otherwise .

In this case,

SG[ϱMC] = k log |ΓM | = SB(M) . (10.6.6)

holds. In equilibrium, the Boltzmann and the Gibbs entropies are thus equal.
More generally, the two entropies are equal when the particle density, the
energy density, and the momentum density vary only slowly on a microscopic
scale, and the system is in equilibrium in every small macroscopic region,
i.e. it is in a state of local equilibrium. When however the system is not in
complete equilibrium, in which case M and ϱ would no longer change, then
the time developments of SB and SG, even starting from local equilibrium,
are quite different. As we have shown, SG remains constant, while SB(M)
changes. Let us consider e.g. the expansion of a gas. Initially, SB = SG.
Then, typically, SB increases while SG remains constant, and from SG alone
the tendency towards equilibrium is not at all apparent. This is due to the
fact that the size of the volume of phase space remains the same as in the
initial state throughout the entire time development.

∗10.6.2.1 Boltzmann’s Calculation of SB and its Connection with
the µ-Space of the Boltzmann Equation25

We consider a dilute gas with N particles and introduce a division of µ-space into
cells ω1, ω2, . . . of size |ω|, which we enumerate by the index i. Let the cell i be
occupied by ni particles. The volume in phase space is

|Γ | =
N !

n1! n2! . . .
|ω|N , (10.6.7)

see below. From this, using Stirling’s approximation, we obtain

log |Γ | ≈ N log N −
X

i

ni log ni + N log |ω| , (10.6.8)

25 P. and T. Ehrenfest, op. cit. 2;
M. Kac, Probability and Related Topics in Science, Interscience Publishers, Lon-
don, 1953
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and for Boltzmann’s entropy,

SB = k log |Γ | .

The relation to the distribution function f and Boltzmann’s H-function: ni =R
ωi

d3xd3v f is the number of particles in cell i. In the case that f(x, v) varies slowly

(it is a smooth function), then ni = |ω|×f(in cell i) ⇒ f(in cell i) = ni
|ω|

26. The ωi

are taken to be small; on the other hand, the ni have to be so large that Stirling’s
approximation may be used. For the H-function which we introduced in connection
with the Boltzmann equation, we then obtain

Htot =

Z
d3x d3v f log f ≈

X

i

ni log
ni

|ω| =
X

i

ni log ni − N log |ω| . (10.6.9)

Comparison with Eq. (10.6.8) for a dilute gas (with negligible interactions) then
yields

SB = −k Htot , (10.6.10)

apart from the term N log N , which is independent of the configuration.
Demonstration of the formula (10.6.7) for |Γ |: For each point in Γ -space, there

are associated image points of the N molecules in µ-space. For example: the kth
molecule has the image point m(k). To each point in Γ -space, there corresponds a
distribution n1, n2, . . . . On the other hand, to each distribution of states n1, n2, . . .
there corresponds a continuum of Γ -points. (i) Each of the image points can be
arbitrarily shifted within the cell ωi in which it is located. This gives the volume
|ω|N in Γ . (ii) Let a point in Γ -space be given. Every permutation of the image
points leads to a Γ -point with the same distribution n1, n2, . . . All together, there
are N ! permutations. (iii) Permutations which only exchange the image points
within a cell have already been taken into account in the shift permutations (i). For
every Γ -point, there are n1! n2! . . . such permutations. The number of permutations
which lead to new image points (“combinations”) is therefore N!

n1!n2!... . As we know

from the discussion of Gibbs’ paradox, the term N log N in (10.6.8) is no longer
present after division by N !, the “correct Boltzmann counting”, as follows from
quantum statistics (Bose and Fermi statistics).

10.7 Irreversibility and Time Reversal

10.7.1 The Expansion of a Gas

We now have acquired the necessary fundamentals to be able to discuss the
expansion of a gas and “Loschmidt’s paradox”, which results from time re-
versal27 . We assume that initially, at time t = 0, the gas occupies only a sub-
volume V1 of the total volume V , and the velocities correspond to a Maxwell
26 This is certainly fulfilled in local equilibrium.
27 As an illustration, we refer to a computer experiment with N = 864 atoms,

which interact via a Lennard–Jones potential (Eq. (5.3.16)); see Fig. 10.1. The
time development is determined by methods of molecular dynamics, i.e. by nu-
merical solution of the discretized Newtonian equations (B. Kaufmann, Master’s
Thesis, TU München, 1995). The times are given in units of a characteristic timep

mσ2/ϵ = 2.15 ×10−12 sec for the potential and the mass (argon) considered.
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distribution. One can imagine that this initial state is produced by removal of
previously present separating partitions28. The time which the particles typ-
ically require in order to pass through the volume ballistically is τ0 = L

v . For
L = 1 cm and v = 105 cm sec−1, we find τ0 = 10−5 sec. In comparison, the
collision time is very short, τ ≈ 10−9 sec. It thus typically requires several τ0

for the gas to spread out ballistically (with reflections by the walls) within
the total volume. After about 10 τ0, the gas is uniformly distributed over
the whole volume and can be considered to be in equilibrium in macroscopic
terms.

In Fig. 10.1, the configurations in the computer simulation27 are shown
for the times t = 4.72, 14.16, and 236. This expansion is accompanied by
a monotonic increase of the “coarse-grained” Boltzmann entropy, which is
based only on the spatial distribution of the particle-number density, n(x):

S = −
∫

d3x n(x, t) log n(x, t) , (10.7.1)

which attains its equilibrium value after t = 50. This observed behavior is
exactly as predicted by the Boltzmann equation. The entropy increases mono-
tonically, cf. Fig. 10.6(1)29 . However, if one reverses all the particle velocities
in this gas at a particular time t, whatever time has elapsed, then all the
particles will return along their original paths and after a further time in-
terval t will again arrive at their initial configuration, and the entropy will
decrease to its initial value; cf. Fig. 10.6(2). Although the gas represented in
Fig. 10.1 c) appears completely disordered with respect to its spatial distri-
bution, and no special features can be seen in its motion along the positive
direction of time, nevertheless due to the special initial state from which it
came, which occupies only a fraction of the phase space and is subject to
a high degree of spatial constraints, it is in a state which contains subtle
correlations of the particle velocities. Following a time reversal v → −v, the
particles move in a “conspiratorial” fashion, so that they finally all come back
28 In the following discussion, we shall denote the initial state in the subvolume V1

by X, the microstate after the time t by Tt X, and the time-reversed state by
T Tt X. We have Tt T Tt X = T X. Here, Tt denotes the time development oper-
ator for the time interval t, and T is the time reversal-operator, which reverses
all velocities.

29 As already emphasized at the end of Sect. 10.6, the Gibbs entropy SG remains
constant and gives no indication of the irreversible expansion. This is due to the
fact that the size of the phase-space volume of the initial states remains constant
with time. These microstates are however no longer typical of the macrostate
M(t) (or of the local equilibrium state) which is present for t > 0. The phase
space of these states is the same size as the phase space at the time t = 0;
it is thus considerably smaller than that of all the states which represent the
macrostate at times t > 0. The state Tt X contains complex correlations. The
typical microstates of M(t) lack these correlations. They become apparent upon
time reversal. In the forward direction of time, in contrast, the future of such
atypical microstates is just the same as that of the typical states.
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Fig. 10.6. The entropy as a function of time in the expansion of a computer
gas consisting of 864 atoms. In the initial stages, all the curves lie on top of one
another. (1) The unperturbed expansion of V1 to V (solid curve). (2) Time reversal
at t = 94.4 (dashed curve), the system returns to its initial state and the entropy
to its initial value. (3) A perturbation ⋆ at t = 18.88 and time reversal at t = 30.68.
The system approaches its initial state closely (dotted curve). (4) A perturbation ⋆
at t = 59 and time reversal at t = 70.8 (chain curve). Only for a short time after the
time reversal does the entropy decrease; it then increases towards its equilibrium
value.32

together within the original subvolume30. It is apparent that the initial state
which we defined at the beginning leads in the course of time to a state which
is not typical of a gas with the density shown in Fig. 10.1 c) and a Maxwell
distribution. A typical microstate for such a gas would never compress itself
into a subvolume after a time reversal. States which develop in such a cor-
related manner and which are not typical will be termed quasi-equilibrium
states31, also called local quasi-equilibrium states during the intermediate
stages of the time development. Quasi-equilibrium states have the property
that their macroscopic appearance is not invariant under time reversal. Al-
though these quasi-equilibrium states of isolated systems doubtless exist and
their time-reversed counterparts can be visualized in the computer experi-
ment, the latter would seem to have no significance in reality. Thus, why was
Boltzmann nevertheless correct in his statement that the entropy SB always
increases monotonically apart from small fluctuations?
30 The associated “coarse-grained” Boltzmann entropy (10.7.1) decreases following

the time reversal, curve (2) in Fig. 10.6. A time dependence of this type is not
described by the Boltzmann equation and is also never observed in Nature.

31 J. M. Blatt, An Alternative Approach to the Ergodic Problem, Prog. Theor.
Phys. 22, 745 (1959)

32 We must point out an unrealistic feature of the computer experiments here. The
sample is so small that within an equilibration time 10 τ0 only a few collisions
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One must first realize that the number of quasi-equilibrium states X which
belong to a particular macrostate is much smaller than the number of typical
microstates which represent this macrostate. The phase-space volume of the
macrostate M with volume V is |ΓM(V )|. In contrast, the phase-space volume
of the quasi-equilibrium states is equal to the phase-space volume |ΓM(V1)|
from which they derived by expansion and to which they return after a time
reversal, and |ΓM(V1)| ≪ |ΓM(V )|. This means that if one prepares a system
in a particular macrostate, the microstate which thereby appears will never
of its own coincidentally or intentionally be one of the time-reversed quasi-
equilibrium states such as T Tt X . The only possibility of generating such an
atypical state is in fact to allow a gas to expand and then to reverse all the
particle velocities, i.e. to prepare T Tt X . Thus one could refute Loschmidt’s
paradox by making the laconic remark that in practice (in a real experiment)
it is not possible to reverse the velocities of 1020 particles. There is however an
additional impossibility which prevents states with decreasing entropy from
occurring. We have so far not taken into account the fact that in reality, it
is impossible to produce a totally isolated system. There are always external
perturbations present, such as radiation, sunspots or the variable gravita-
tional influence of the surrounding matter. The latter effect is estimated in
Sect. 10.7.3. If it were in fact possible to reverse all the velocities, the entropy
would indeed decrease for a short time, but then owing to the external per-
turbations the system would within a very short time (ca. 10 τ) be affected
in such a way that its entropy would again increase. External perturbations
transform quasi-equilibrium states into more typical representatives of the
macrostate. Even though external perturbations may be so weak that they
play no role in the energy balance, still quantum mechanically they lead to a
randomization of the phases and classically to small deviations of the trajecto-
ries, so that the system loses its memory of the initial state after only a small
number of collisions. This drastic effect of external perturbations is closely
connected with the sensitive dependence on the initial conditions which is
well known in classical mechanics and is responsible for the phenomenon of
deterministic chaos.

In curves 3 and 4 of Fig. 10.6, the system was perturbed at the times t = 23.6
and t = 59 and thereafter the time-reversal transformation was carried out. The
perturbation consisted of a small change in the directions of the particle veloci-
ties, such as could be produced by energetically negligible gravitational influences
(Sect. 10.7.3). For the shorter time, the system still closely approaches its original
initial state and the entropy decreases, but then it again increases. In the case of
the longer time, a decrease of the entropy occurs for only a brief period.

It is intuitively clear that every perturbation leads away from the atypical
region, since the phase space of the typical states is so much larger. This
also implies that the perturbations are all the more efficient, the closer to
quasi-equilibrium the state is. For, considered statistically, the imbalance of

occur. The decrease of the entropy following a perturbation and time reversal
is due primarily to atoms which have undergone no collisions at all. This is the
reason for the great difference between curves (3) and (4).
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the number of typical and of atypical states is then all the greater and the
probability of a perturbation leading to a much more typical state is higher.
More significant, however, is the fact that the number of collisions undergone
by the particles of the system increases enormously with time. Per τ0, the
number of collisions is τ0/τ ≈ 105. And all of these collisions would have
to be run through in precisely the reverse direction after a time-reversal
transformation in order for the initial state to again be reached.

Remarks:

(i) Stability of the irreversible macroscopic relaxation: the weak perturbations
investigated have no effect on the macroscopic time development in the future
direction. The state TtX is converted by the perturbation to a more typical state,
which relaxes further towards equilibrium (quasi-equilibrium) just like TtX. The
time reversal of such a more typical state leads however to a state exhibiting an
entropy decrease for at most a short time; thereafter, the entropy again increases.
(If one conversely first performs the time reversal and then applies the perturbation,
the effects are still similar.) In the time development Tt′(TtX), the particles spread
apart spatially; in Γ -space, X moves into regions with all together a larger phase-
space volume. This is not changed by external disturbances. For Tt′(T TtX), the
particles move together into a more confined region. All velocities and positions
must be correlated with one another in order for the improbable initial state to be
produced once again. In the forward direction, the macroscopic time development
is stable with respect to perturbations but in the time-reversed direction, it is very
unstable.

(ii) Following Boltzmann’s arguments, the explanation of irreversiblilty is prob-
abilistic. The basic laws of physics are not irreversible, but the initial state of the
system in an expansion experiment as described above is very peculiar. This ini-
tial state is quite improbable; this means that it corresponds to only a very small
volume in phase space and to a correspondingly small entropy. Its time develop-
ment then leads into regions with a large total volume (and also greater entropy),
corresponding to a more probable macrostate of the system with a longer dwell
time. In principle, the system would return to its improbable initial state after an
unrealistically long time; however, we will never observe this. As soon as the limit
of infinite particle number is introduced into the theory, this recurrence time in fact
tends towards infinity. In this limit, there is no eternal return and one has complete
irreversibility.

(iii) The significance of the external perturbations for the relaxation towards
equilibrium instead of only towards quasi-equilibrium goes hand in hand with the
justification in Chap. 2 of the necessity of describing real systems in terms of sta-
tistical ensembles. One could also ask what would happen in an idealized strictly
isolated system. Its microstate would develop in the course of time into a quasi-
equilibrium state which in terms of its macroscopic behavior would be indistin-
guishable from the typical microstates of the macrostate formed. In this situation,
one could for convenience of computation still employ a density matrix instead of
the single state.

We have completed the most important considerations of the irreversible
transition towards equilibrium and the accompanying increase in the Boltz-
mann entropy. The next sections contain some additional observations and
numerical estimates.
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10.7.2 Description of the Expansion Experiment in µ-Space

It is instructive to describe the expansion experiment with an isolated gas
also in Boltzmann’s µ-space, and to compare the Gibbs and the Boltzmann
entropies in detail; cf. Fig. 10.7. In the initial state, all the gas atoms are in
the small subvolume V1. The single-particle distribution function is uniform
within this volume and vanishes outside it. The particles are to a large extent
uncorrelated, i.e. the two-particle distribution function obeys
f2(x1,v1,x2,v2) − f(x1,v1)f(x2,v2) = 0, and higher correlation functions
vanish as well. During the expansion, f spreads throughout the entire vol-
ume. As we have already mentioned in connection with the Stosszahlansatz
for deriving the Boltzmann equation, two colliding particles are correlated af-
ter their collision (their velocities are such that they would once again collide
if the gas were subjected to a time reversal = motion reversal). The informa-
tion contained in the initial state: “all particles in one corner”, i.e. the dis-
tribution which is concentrated within V1 (and thus is spatially constrained)
shifts to produce subtle correlations of the particles among themselves. The
longer the time that passes, the more collisions will have occurred, and the
higher the order of the correlation functions which take on nonzero values. All
this information is contained in the time-dependent N -particle distribution
function ϱ(x1,v1, . . .xN ,vN , t) on which the Gibbs entropy is based. On the
other hand, in the Boltzmann entropy only the macroscopic manifestation,
in the simplest case the single-particle distribution function, is considered.
The Boltzmann entropy increases.

The time which is typically required by the particles in order to pass
through the volume ballistically is τ0 = L

v . For L = 1 cm and v = 105

cm sec−1, τ0 = 10−5 sec. In comparison, the collision time τ = 10−9 sec is
much shorter. It thus typically requires several τ0 for the gas to spread out
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Fig. 10.7. Expansion experiment: N-particle and single-particle distribution func-
tions ρ and f , the Boltzmann and Gibbs entropies of the initial state i and the final
state f
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throughout the whole volume ballistically (with reflections from the walls).
After around 10 τ0, about 10×10−5

10−9 = 105 collisions have also taken place. Even
after this short time, i.e. 10−4 sec, the initial configuration (all the particles
uncorrelated within a corner of the total volume) has been transferred to
correlation functions of the order of 10000 particles.

10.7.3 The Influence of External Perturbations on the
Trajectories of the Particles

In the following section, the influence of an external perturbation on the
relative motion of two particles is estimated, along with the change in the
collisions which follow such a perturbation. We consider two particles which
collide with each other and investigate the effect of an additional external
force on their relative distance and its influence on their trajectories. The
two atoms are presumed to be initially at a distance l (mean free path).
Owing to the spatial variation of the force F, it acts differently on the two
atoms, ∆F = F1 − F2. The Newtonian equation of motion for the relative
coordinate ∆ẍ = ∆F

m leads to ∆ẋ ≈ ∆Ft
m and finally to

∆x ≈ ∆Ft2

m
≈ ∆F

m

(
l

v

)2

. (10.7.2)

This yields an angular change in the trajectory after a path of length l of

∆ϑ ≈ |∆x|
l

≈ |∆F|
m

l

v2
. (10.7.3)

Even if this angular change is very small, it will be amplified by the collisions
which follow. In the first collision, there is a change in the deflection angle of
∆ϑ1 = l

rc
∆ϑ (Fig. 10.8), where it must be kept in mind that l ≫ rc. Here, rc

is the range of the potentials or the radius of a hard sphere. After k collisions,
the angular change is

∆ϑk =
(

l

rc

)k

∆ϑ . (10.7.4)

The condition that the perturbed trajectory have no connection to the un-

perturbed one is given by ∆ϑk = 2π =
(

l
rc

)k
∆ϑ. It follows from this that

k =
log

2π

∆ϑ

log
l

rc

. (10.7.5)

We consider for example the influence of an experimenter of mass M =
80 kg at a distance of d = 1 m on a sample of helium gas (1 mole) due
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Fig. 10.8. ∆ϑ1 = l
rc

∆ϑ

to the gravitational force, W = −GMNm
d ; G = 6.67 × 10−11m3kg−1s−2,

N = 6×1023, m = 6.7×10−23 g. The additional energy W ≈ −2×10−10 J is
negligible compared to the total energy of the gas, E ≈ 3 kJ. The difference in
the force on the two particles spaced a distance l apart owing to the additional
mass M is

|∆F| =
GMm

d2
− GMm

(d + l)2
≈ GMm l

d3
,

and the resulting angular change is

∆ϑ ≈ GMm l

d3

l

mv2
=

GM

d3

(
l

v

)2

.

For the numerical values given, one finds ∆ϑ ≈ 4 × 10−28. To determine
the number of collisions which lead to completely different trajectories, this
value is inserted into equation (10.7.5) along with l ≈ 1400 Å and rc ≈ 1.5 Å
resulting in k ≈ 10. In spite of the smallness of ∆ϑ, due to the logarithmic
dependence a relatively small number of collisions is sufficient. Even much
smaller masses at much greater distances lead to a similarly drastic effect.
Energetically completely negligible perturbations lead to a randomization of
the trajectory.

∗10.8 Entropy Death or Ordered Structures?

We close with some qualitative remarks on the consequences of the global
increase of the entropy. Boltzmann himself considered the evolution of the
cosmos and feared that it would end in a state of thermal equilibrium (heat
death). Our Earth and the surrounding cosmos show no signs of this: (i) How
does the extreme thermal non-equilibrium within the galaxies come about?
(ii) What allows the existence of ordered and highly organized structures on
our planet? (iii) Where will further evolution lead?

In its early period at temperatures above 3 000 K, the Universe did not
consist of galaxies and stars but rather of an ionized and undifferentiated
soup of matter and radiation. By the time the temperature of the Universe
had decreased to 3 000 K (around 300 000 years after the Big Bang), nucleons
and electrons began to bind together to form atoms. Matter then became
transparent to electromagnetic radiation. The radiation, which at that time
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obeyed a Planck distribution with the temperature 3 000 K, can still be ob-
served today as cosmic background radiation at a temperature of 2.7 K (due
to the red shift), and it indicates that the Universe was once in equilibrium.
The decisive effect of the decoupling of radiation and matter was that radi-
ation pressure was no longer important, so that the gravitational force had
only to overcome the pressure of matter to form stars. Thus, the stars, stone
and life forms of today’s Universe could come into being.

Gas clouds contract as a result of gravitational attraction. In this process,
their potential energy decreases and due to energy conservation, their kinetic
energy increases. It follows from the equipartition theorem that they become
hotter. The hot clouds emit radiation, thus lowering their energy, and con-
tract more and more, becoming hotter and hotter. This heating up follows
from the negativity of the specific heat in systems with gravitational interac-
tions below the gravitational instability33. This means that with decreasing
energy their temperature increases. This feature is fundamental for stellar
evolution. The instability mentioned can also be observed in computer ex-
periments34. The thermal instability due to gravitation destroys the thermal
equilibrium and leads to hot clusters, the stars. The temperature differences
which result permit the formation of ordered structures including life. As
was already suspected by Boltzmann, on the Earth this is a result of the fact
that solar radiation is rich in energy and poor in entropy. As was shown in
Sect. 4.5.4, the entropy of a photon gas is roughly equal to the product of
the Boltzmann constant and the photon number, and the energy per photon
is kT . Photons with the thermal energy of the solar surface of ≈ 6 000 K
can be split up into 20 photons through processes on the Earth’s surface,
each with an energy corresponding to 300 K (≈ temperature of the Earth’s
surface). One need only recall that the energy of the Earth does not change;
just as much energy reaches the Earth from solar radiation in the visible re-
gion as is again reradiated in the form of long-wavelength infrared photons.
In this process, the entropy of the photons increases by a factor of 20. Even
if as a result of these processes structures are formed which are ordered and
have entropies lower than the equilibrium value, the entropy balance still re-
mains positive, i.e. the total entropy continues to increase. It is in the end the
thermodynamic instability of gravitational systems which makes life possible.

In the further long-term evolution (1010 years), stars will collapse after
they have used up their nuclear fuel, forming neutron stars or, if their masses
are sufficient, black holes. The phase space of black holes and thus their
entropies are so large that the ratio of phase space volumes in the final state
|Γf | and in the initial state |Γi| will attain a value (according to an estimate
33 J. Messer, Lecture Notes in Physics 147 (1981); P. Hertel and W. Thirring,

Ann. Phys. (N.Y.) 63, 520 (1971)
34 H. Posch, H. Narnhofer, and W. Thirring, J. Stat. Phys. 65, 555 (1991);

Phys. Rev. A 42, 1880 (1990)
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by Penrose35) of

|Γf |
|Γi|

= 1010123
.

The enormous increase in entropy associated with the gravitational insta-
bility can be accompanied by local entropy decreases, leaving room for a
multiplicity of highly organized structures such as gorgons, mermaids, and
Black Clouds36. . .
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Problems for Chapter 10

10.1 Verify the equations (10.2.11) and (10.2.12).

10.2 Solve the equation of motion for a chain of atoms (10.2.2) by introducing
the coordinates x2n =

√
m dqn

dt and x2n+1 =
√

mΩ(qn − qn+1). This leads to the
equations of motion

dxn

dt
= −Ω(xn+1 − xn−1) ,

whose solution can be found by comparing with the recursion relations for the Bessel
functions (see e.g. Abramowitz/Stegun, Handbook of Mathematical Functions). Ref-
erence: E. Schrödinger, Ann. der Physik 44, 916 (1914).

35 R. Penrose, The Emperor’s New Mind, Oxford Univ. Press, Oxford, 1990, chapter
7; based on the Bekenstein–Hawking formula under the assumption that the final
state consists of a single black hole.

36 F. Hoyle, The Black Cloud, Harper, New York, 1957.
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10.3 Recurrence time.

Complete the intermediate steps of the calculation given in 10.3.1 for the recurrence
time in a chain of N harmonic oscillators. Use the following representation of the
Bessel function for integral n:

Jn(x) =
(−i)n

π

Z π

0

dφ eix cos φ cos nφ

x→∞∼
r

2
πx

[cos(x − nπ/2 − π/4) + O(1/x)] .

10.4 Calculate the integral which occurs in Eq. (10.3.19), g2z2
R∞
0

dν
z2−ν2 , with

z = ω + iη, η > 0, by applying the theorem of residues.

10.5 A microscopic model of Brownian motion.

(a) Calculate the inverse Green’s function for the model treated in Sect. 10.3 using
a continuous cutoff function c(k):

D(z) = −M(z2 + Ω2) +
a3

m(2π)3

Z
d3k

|c(k)|2

z2 − |ck|2

with

|c(k)|2 = g2 Λ2

k2 + Λ2
.

(b) Determine the poles of D(z)−1 for large values of Λ.
(c) Carry out the integration in the solution of the equation of motion

Θ(t)Q(t) =

∞Z

−∞

dω
2π

e−iztD(z)−1M(Q̇(0) − izQ(0)) ,

by expanding the residues for large Λ up to the order O(Λ−2). Cf. also P. C. Aichel-
burg and R. Beig, Ann. Phys. 98, 264 (1976).

10.6 Stochastic forces in a microscopic model of Brownian motion.

(a) Show that for the model discussed in Sect. 10.3 of a heavy particle coupled
to a bath of light particles, the heavy particle is subjected to a force F (t) which
depends on the initial conditions of the light particles and whose half-range Fourier
transform

F̃ (z) =

Z ∞

0

dt eiztF (t)

(with z = ω + iη, η > 0) has the form

F̃ (z) =
1√
mN

X

k

c(k)
Q̇k(0) − izQk(0)

ω2
k − z2

.
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(b) Compute the correlation function ⟨F (t)F (t′)⟩ under the assumption that the
light particles are in thermal equilibrium at the time t = 0:

⟨Q̇k(0)Q̇k′(0)⟩ = δk,−k′kT , ⟨Qk(0)Qk′(0)⟩ = δk,−k′
kT
ω2

k

.

Express the sum over k which occurs in terms of an integral with a cutoff Λ, as in
(10.3.18), and assume that the heavy particle couples only to the light particle at
the origin: c(k) = g. Discuss the correlation function obtained and find a relation
between its prefactor and the damping constant Γ .

10.7 The time-independence of the Gibbs entropy.

Let ρ(p, q) with (p, q) = (p1, . . . , p3N , q1, . . . q3N ) be an arbitrary distribution func-
tion in phase space. Show using the microscopic equation of motion (Liouville equa-
tion):

ρ̇ = −{H, ρ} = −∂H
∂pi

∂ρ
∂qi

+
∂ρ
∂pi

∂H
∂qi

,

that the Gibbs entropy SG = −k
R

dΓρ log ρ is stationary: ṠG = 0.

10.8 The urn model37 .

Consider the following stochastic process: N numbered balls 1, 2, . . . N are divided
between two urns. In each step, a number between 1 and N is drawn and the
corresponding ball is taken out of the urn where it is found and put into the other
urn. We consider the number n of balls in the first urn as a statistical variable.

Calculate the conditional probability (transition probability) Tn,n′ of finding n′

balls in the first urn if it contained n balls in the preceding step.

10.9 For Ehrenfest’s urn model defined in problem 10.8, consider the probability
P (n, t) of finding n balls in the first urn after t steps.
(a) Can you find an equilibrium distribution Peq(n, t)? Does detailed balance apply?
(b) How does the conditional probability P (0, n0|t, n) behave for t → ∞? Discuss
this result. Hint: the matrix Tn,n′ of transition probabilities per time step has the
eigenvalues λk = 1− 2k/N , k = 0, 1, . . . , N . Furthermore, Tn,n′ anticommutes with
a suitably chosen diagonal matrix. (Definition: P (t0, n0|t, n) = the probability that
at the time t the first urn contains n balls, under the condition that at time t0 there
were n0 balls in it.)

10.10 The urn model and the paramagnet.

The urn model with N balls (problem 10.8 and problem 10.9) can be considered
as a model for the dynamics of the total magnetization N of non-interacting Ising
spins. Explain this.

37 A model for the Boltzmann equation and for irreversibility in which the typical
behavior can be calculated in a simple manner is the urn model. Although in
principle one of the urns could fill up at the expense of the other, this path is so
improbable that the system tends with an overwhelming probability towards the
state with equipartition of the balls and then exhibits small fluctuations around
that state. The urn model is analyzed here in a series of problems.
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10.11 The urn model and the H theorem.
Let Xt be the number of balls in urn 1 after t time steps, and

Ht =
Xt

N
log

Xt

N
+

N − Xt

N
log

N − Xt

N
.

Study the time dependence of Ht for a system with X0 = N by carrying out a
computer simulation. Plot the time development of ∆t ≡ Xt/N − 1/2 for several
runs of this stochastic process. What do you observe? Discuss the relation between
your observation and the Second Law.

10.12 The urn model for large N .

(a) Calculate the average time dependence of ∆t from the preceding problem for
very large values of N . It is expedient to introduce a quasi-continuous time τ =
t/N and to consider the quantity f(τ ) = ∆Nτ . Write a difference equation for
⟨f(τ + 1/N)⟩f(τ)=f based on the equation of motion of the probability Pn(t) of
finding n of the N balls in the first urn after the time step t. Taking the limit
N → ∞ and averaging over f , you will obtain a differential equation for ⟨f(τ )⟩.
(b) Calculate also the mean square deviation v(τ ) ≡ ⟨f(τ )2⟩ − ⟨f(τ )⟩2. What do
you conclude for the time dependence of the non-averaged quantity f(τ )?
(c) Compare the result obtained with the result of the simulation from the preced-
ing problem. Explain the connection.

Reference: A. Martin-Löf, Statistical Mechanics and the Foundation of Ther-
modynamics, Springer Lecture Notes in Physics 101 (1979).

10.13 The Fokker–Planck equation and the Langevin equation for the urn model.

In Ehrenfest’s urn model with N balls, let Xt be the number of balls which are in
the left-hand urn after t steps. Consider the time development of x(τ ) :=

√
Nf(τ ),

where f(τ ) = XNτ /N − 1
2 (see problem 10.12).

(a) Set up the Fokker–Planck equation for P (x, τ ) by calculating the average and
mean square jump length ⟨x(τ + 1

N )− x(τ )⟩x(τ)=x and ⟨[x(τ + 1
N )− x(τ )]2⟩x(τ)=x.

For this, you can use the intermediate results obtained in problem 10.12.
(b) Do you recognize the equation obtained? Give its solution for P (x, τ ) by com-
paring with the case treated in Chap. 8, and read off the results for ⟨f(τ )⟩ and
v(τ ) = ⟨[f(τ ) − ⟨f(τ )⟩]2⟩ obtained in a different way in problem 10.12 (each under
the condition that f(τ = 0) = f0).
(c) What is the associated Langevin equation? Interpret the forces which appear.
Compare the potential which corresponds to the non-stochastic part of the force
with the Boltzmann entropy SB(x) = k log |Γx|, where Γx is the set of microstates
characterized by x. (Use the fact that the binomial distribution can be approximated
by a Gaussian distribution for large N .)
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A. Nernst’s Theorem (Third Law)

A.1 Preliminary Remarks on the Historical Development of
Nernst’s Theorem

Based on experimental results1, Nernst (1905) originally postulated that
changes in the entropy ∆S in isothermal processes (chemical reactions, phase
transitions, pressure changes or changes in external fields for T = const.) have
the property

∆S → 0

in the limit T → 0. This postulate was formulated in a more stringent way
by Planck, who made the statement S → 0, or, more precisely,

lim
T→0

S(T )
N

= 0 , (A.1)

where, depending on the physical situation, N is the number of particles or
of lattice sites. One refers to (A.1) as Nernst’s theorem or the Third Law of
thermodynamics2.

According to statistical mechanics, the value of the entropy at absolute
zero, T = 0, depends on the degeneracy of the ground state. We assume that
the ground state energy E0 is g0−fold degenerate. Let P0 be the projection
1 The determination of the entropy as a function of the temperature T is carried

out by measuring the specific heat CX(T ) in the interval [T0, T ] and integrating

according to the equation S(T ) = S0 +
R T

T0
dT CX (T )

T , where the value S0 at the

initial temperature T0 is required. Nernst’s Theorem in the form (A.1) states
that this constant for all systems at T = 0 has the value zero.

2 Nernst’s theorem is understandable only in the framework of quantum mechanics.
The entropy of classical gases and solids does not obey it. Classically, the energy

levels would be continuous, e.g. for a harmonic oscillator, E = 1
2

“
p2

m + mω2q2
”

instead of E = !ω
`
n+ 1

2

´
. The entropy of a classical crystal, effectively a system

of harmonic oscillators, would diverge at T = 0, since per vibrational degree
of freedom, S = k + k log T . In this sense, Nernst’s theorem can certainly be
regarded as visionary.
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operator onto states with E = E0. Then the density matrix of the canonical
ensemble can be cast in the form

ρ =
e−βH

Tr e−βH
=

∑
n e−βEn |n⟩ ⟨n|∑

n e−βEn
=

P0 +
∑

En>E0
e−β(En−E0) |n⟩ ⟨n|

g0 +
∑

En>E0
e−β(En−E0)

.

(A.2)

For T = 0, this leads to ρ(T = 0) = P0
g0

, and thus for the entropy to

S(T = 0) = −k⟨log ρ⟩ = k log g0 . (A.3)

The general opinion in mathematical physics is that the ground state of
interacting systems should not be degenerate, or that the degree of degeneracy
in any case should be considerably less than the number of particles. If g0 =
O(1) or even if g0 = O(N), we find

lim
N→∞

S(T = 0)
kN

= 0 , (A.4)

i.e. for such degrees of degeneracy, Nernst’s theorem follows from quantum
statistics.

In Sect. A.2, the Third Law is formulated generally taking into account
the possibility of a residual entropy. This is in practice necessary for the
following reasons: (i) there are model systems with greater ground-state de-
generacies (ice, non-interacting magnetic moments); (ii) a very weak lifting
of the degeneracy might make itself felt only at extremely low temperatures;
(iii) a disordered metastable state can be ‘frozen in’ by rapid cooling and
retains a finite residual entropy. We will discuss these situations in the third
section.

A.2 Nernst’s Theorem and its Thermodynamic Consequences

The General Formulation of Nernst’s Theorem:

S(T = 0)/N is a finite constant which is independent of parameters X such
as V and P (i.e. the degeneracy does not change with X) and S(T ) is finite
for finite T .

Results of Nernst’s theorem for the specific heat and other thermodynamic
derivatives:

Let A be the thermodynamic state which is attained on increasing the tem-
perature starting from T = 0 at constant X . From CX = T

(
∂S
∂T

)
X

, it follows
that

S(T ) − S(T = 0) =
∫ A

0
dT

CX(T )
T

. (A.5)
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From this, we find furthermore

CX(T ) −→ 0 for T −→ 0 ,

since otherwise S(T ) = S(T = 0) + ∞ = ∞. This means that the heat
capacity of every substance at absolute zero tends to zero; in particular, we
have CP → 0, CV → 0, as already found explicitly in Chap. 4 for ideal
quantum gases. Thus the specific heat at constant pressure takes on the form

CP = T x(a + bT + . . .) , (A.6)

where x is a positive exponent. For the entropy, (A.5), one obtains from this
expression

S(T ) = S(T = 0) + T x

(
a

x
+

bT

x + 1
+ . . .

)
. (A.7)

Other thermodynamic derivatives also vanish in the limit T → 0, as one can
see by combining (A.7) with various thermodynamic relations.

The thermal expansion coefficient α and its ratio to the isothermal compress-
ibility fulfill the relations

α ≡ 1
V

(
∂V

∂T

)

P

= − 1
V

(
∂S

∂P

)

T

→ 0 for T → 0 (A.8)

α

κT
=

(
∂P

∂T

)

V

=
(

∂S

∂V

)

T

→ 0 for T → 0 . (A.9)

The first relation can be seen by taking the derivative of (A.7) with respect
to pressure

V α =
(

∂V

∂T

)

P

= −
(

∂S

∂P

)

T

= −T x

(
a′

x
+

b′T

x + 1
+ . . .

)
; (A.10)

the second relation is found by taking the derivative of (A.7) with respect
to V .

From the ratio of (A.10) and (A.6) we obtain

V α

CP
= − a′

ax
+ . . . ∝ T 0 .

In an adiabatic pressure change, the temperature changes as3 dT =
(

V α
CP

)
TdP .

A finite temperature change requires that dP increase as 1
T . Absolute zero

therefore cannot be reached by an adiabatic expansion .

3
`

∂P
∂T

´
S

= − ( ∂S
∂T )

P

( ∂S
∂P )

T

= T−1CP

( ∂V
∂T )

P

= CP
TV α
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To clarify the question of whether absolute zero can be reached at all,
we consider the fact that cooling processes always take place between two
curves with X = const., e.g. P = P1, P = P2 (P1 > P2) (see Fig. A.1).
Absolute zero could be reached only after infinitely many steps. An adiabatic
change in X leads to cooling. Thereafter, the entropy must be decreased by
removing heat; since no still colder heat bath is available, this can be done
at best for T = const. If a substance with a T − S diagram like that shown
in Fig. A.2 were to exist, i.e. if in contradiction to the Third Law, S(T = 0)
were to depend upon X , then one could reach absolute zero.

Fig. A.1. The approach to absolute
zero by repeated adiabatic changes
(e.g. adiabatic expansions)

Fig. A.2. Hypothetical adiabats
which would violate the Third Law

A.3 Residual Entropy, Metastability, etc.

In this section, we shall consider systems which exhibit a residual entropy even
at very low temperatures, or metastable frozen-in states and other particular
qualities which can occur in this connection.

(i) Systems which contain non-coupled spins and are not subject to an ex-
ternal magnetic field have the partition function Z = (2S + 1)NZ ′ and the
free energy F = −kTN log(2S +1)+F ′. The spins then have a finite residual
entropy even at T = 0:

S(T = 0) = Nk log(2S + 1) .

For example: paraffin, C20H42; owing to the proton spins of H, the partition
function is proportional to Z ∼ 242N , from which we find for the residual
entropy S = 42kN log 2.
(ii) Metastable states in molecular crystals: the ground state of crystalline
carbon monoxide, CO, has a uniformly oriented ordered structure of the linear
CO molecules. At higher temperatures, the CO molecules are not ordered. If
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Fig. A.3. The structure of ice4 Fig. A.4. Two-dimensional ice: ◦
oxygen, • hydrogen, • other possible
positions of H

a sample is cooled to below T = ∆ϵ
k , where ∆ϵ is the very small energy differ-

ence between the orientations CO–OC and CO–CO of neighboring molecules,
then the molecules undergo a transition into the ordered equilibrium state.
Their reorientation time is however very long. The system is in a metastable
state in which the residual entropy has the value

S(T = 0) = k log 2N = Nk log 2 ,

i.e. S = 5.76 J mol−1 K−1. The experimental value is somewhat smaller,
indicating partial orientation.
(iii) Binary alloys such as β-brass, (CuZn), can undergo a transition from a
completely disordered state to an ordered state when they are cooled slowly.
This phase transition can also be described by the Ising model, by the way.
On the other hand, if the cooling is rapid, i.e. if the alloy is quenched, then the
Cu and Zn atoms stay in their disordered positions. At low temperatures, the
rate of reordering is so negligibly small that this frozen-in metastable state
remains permanent. Such a system has a residual entropy.
(iv) Ice, solid H2O: ice crystallizes in the Wurtzite structure. Each hydrogen
atom has four oxygen atoms as neighbors (Fig. A.3). Neighboring oxygen
atoms are connected by hydrogen bonds. The hydrogen atom which forms
these bonds can assume two different positions between the two oxygen
atoms (Fig. A.4). Because of the Coulomb repulsion, it is unfavorable for an
oxygen atom to have more or fewer than two hydrogen atoms as neighbors.
Thus one restricts the possible configurations of the hydrogen atoms by the
ice rule: the protons are distributed in such a manner that two are close and
two are more distant from each oxygen atom5. For N lattice sites (N oxygen
4 The structure of common (hexagonal) H2O-ice crystals: S.N. Vinogrado,

R.H. Linnell, Hydrogen Bonding, p. 201, Van Nostrand Reinhold, New York,
1971.

5 L. Pauling: J. Am. Chem. Soc., 57, 2680 (1935)
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atoms), there are 2N hydrogen bonds. The approximate calculation of the
partition function5 at T = 0 yields

Z0 = 22N

(
6
16

)N

=
(

3
2

)N

.

(The number of unhindered positions of the protons in the hydrogen bonds)
times (reduction factor per lattice site, since of 16 vertices, only 6 are allowed).
Using W = limN→∞ Z1/N

0 = 1.5, we find for the entropy per H2O:

S(T = 0)
kN

= log W = log 1.5 .

An exactly soluble two-dimensional model to describe the structure of ice has
been given6 (Fig. A.4). A square lattice of oxygen atoms is bound together
by hydrogen bonds. The near-neighbor structure is the same as in three-
dimensional ice. The statistical problem of calculating Z0 can be mapped onto
a vertex model (Fig. A.5). The arrows denote the position of the hydrogen
bonds. Here, H assumes the position which is closer to the oxygen towards
which the arrow points. Since each of the four arrows of a vertex can have
two orientations, there are all together 16 vertices. Because of the ice rule, of
these 16 vertices only the six shown in Fig. A.5 are allowed.

Fig. A.5. The vertices of the two-dimensional ice model which obey the ice rule
(two hydrogen atoms near and two more distant)

The statistical problem now consists in determining the number of possibil-
ities of ordering the 6 vertices in Fig. A.5 on the square lattice. The exact
solution6 of the two-dimensional problem is obtained using the transfer ma-
trix method (Appendix F.).

W = lim
N→∞

Z1/N
0 =

(
4
3

)3/2

= 1.5396007 . . . .

The numerical result for three-dimensional ice is7 :

W = 1.50685± 0.00015, S(T = 0) = 0.8154± 0.0002 cal/K mole
Experiment at 10 K: S(T = 0) = 0.82 ± 0.05 cal/K mole .

6 E. H. Lieb, Phys. Rev. Lett. 18, 692 (1967); Phys. Rev. 162, 162 (1967)
7 Review: E. H. Lieb and F.Y. Wu in: Domb and Green, Phase Transitions and

Critical Phenomena I, p. 331, Academic Press, New York, 1972.
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The approximate formula of Pauling gives a lower limit for the residual en-
tropy.

If the orientations of the hydrogen bonds were allowed to be completely
unhindered, the residual entropy per lattice site would be log 22 = log 4. Due
to the ice rule (as a result of the Coulomb repulsion), the residual entropy is
reduced to log 1.5. If other interactions of the protons were taken into account,
there would be still finer energy splittings among the various configurations of
the vertex arrangements. Then, on lowering the temperature, only a smaller
number would be allowed and presumably at T → 0 no residual entropy would
be present. The fact that ice has a residual entropy even at low temperatures
indicates that the reorientation becomes very slow under these conditions.
(v) The entropy of a system with low-lying energy levels typically shows the
dependence shown in Fig. A.6. Here, the value of the entropy between T1 and
T2 is not the entropy S0. In case energy levels of the order of kT1 are present,
these are practically degenerate with the ground state for T ≫ T1, and only
for T < T1 is the residual entropy (possibly S0 = 0) attained. An example of
this is a weakly coupled spin system. The plateau in the temperature interval

Fig. A.6. The entropy of a system with
energy levels of the order of kT1 and kT2

[T1, T2] could appear as a residual entropy on cooling. In this interval, the
specific heat is zero. In the region of T1, the specific heat again increases with
decreasing temperature, then drops below T1 towards the value zero after
the degrees of freedom at the energy kT1 are frozen out; this could possibly
indicate a final decrease of the entropy to its value at T = 0.

For degrees of freedom with a discrete excitation spectrum (spins in a field,
harmonic oscillators), the excitation energy determines the temperature be-
low which the entropy of these degrees of freedom is practically zero. This is
different for translational degrees of freedom, where the energy levels become
continuous in the limit N → ∞ and for example the spacing of the first ex-
cited state from the ground state is of the order of !2

mV 2/3 . The corresponding
excitation temperature of about 5× 10−15 K is however unimportant for the
region of application of the Third Law, which already applies at considerably
higher temperatures. The spacing of the energy levels tends towards zero in
the thermodynamic limit, and they are characterized by a density of states.
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The temperature dependence of the entropy and the specific heat does not
depend on the value of individual energy levels, but instead on the form of
the density of states. For crystals, the density of states of the phonons is
proportional to the square of the energy and therefore it gives S ∝ T 3 at low
temperatures. The density of states of the electrons at the Fermi energy is
constant, and thus one obtains S ∝ T .
(vi) It is also interesting to discuss chemical substances which exhibit al-
lotropy in connection with the Third Law. Two famous examples are carbon,
with its crystalline forms diamond and graphite, and tin, which crystallizes
as metallic white tin and as semiconducting grey tin. White tin is the high-
temperature form and grey tin the low-temperature form. At T0 = 292K,
grey tin transforms to white tin with a latent heat QL. Upon cooling, the
transformation takes place in the reverse direction, so long as the process oc-
curs slowly and crystallization seeds of grey tin are present. On rapid cooling,
white tin remains as a metastable structure. For the entropies of white and
grey tin, the following relations hold:

SW (T ) = SW (0) +
∫ T

0

dT

T
CW (T )

SG(T ) = SG(0) +
∫ T

0

dT

T
CG(T ) .

From the general formulation of Nernst’s theorem, it follows that

SW (0) = SG(0) ,

since the two forms are present under identical conditions. (Statistical me-
chanics predicts in addition for these two perfect crystal configurations
SW (0) = SG(0) = 0.) It thus follows that

SW (T ) − SG(T ) =
∫ T

0

dT

T

(
CW (T ) − CG(T )

)
.

From this we find in particular that the latent heat at the transition temper-
ature T0 is given by

QL(T0) ≡ T0

(
SW (T0)−SG(T0)

)
= T0

∫ T0

0

dT

T

(
CW (T )−CG(T )

)
. (A.11)

The temperature dependence of the specific heat at very low temperatures
thus has an influence on the values of the entropy at high temperatures.
(vii) Systems with continuous internal symmetry, such as the Heisenberg
model: for both the Heisenberg ferromagnet and the Heisenberg antiferro-
magnet, owing to the continuous rotational symmetry, the ground state is
continuously degenerate. Classically, the degree of degeneracy would not, to
be sure, depend on the number of lattice sites, but it would be infinitely
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large. For N spin-1/2 sites, in quantum mechanics the z-component of the
total spin has N + 1 possible orientations. The ground state is thus only
(N + 1)-fold degenerate (see Eq. (A.4)). This degeneracy thus does not lead
to a residual entropy at absolute zero.

Reference: J. Wilks, The Third Law of Thermodynamics, Oxford University Press,

1961.

B. The Classical Limit and Quantum Corrections

B.1 The Classical Limit

We will now discuss the transition from the quantum-mechanical density ma-
trix to the classical distribution function, beginning with the one-dimensional
case. At high temperatures and low densities, the results of quantum statis-
tics merge into those of classical physics (see e.g. Sect. 4.2). The general
derivation can be carried out by the following method8:

If we enclose the system in a box of linear dimension L, then the position
eigenstates |q⟩ and the momentum eigenstates |p⟩ are characterized9 by10

q̂ |q⟩ = q |q⟩ , ⟨q|q′⟩ = δ(q − q′) ,

∫
dq |q⟩ ⟨q| = 11 , (B.1a)

p̂ |p⟩ = p |p⟩ , ⟨p|p′⟩ = δpp′ ,
∑

p

|p⟩ ⟨p| = 11 ,

⟨q|p⟩ =
eipq/!
√

L
, with p =

2π!
L

n . (B.1b)

We associate with each operator Â a function9 A(p, q),

A(p, q) ≡ ⟨p| Â |q⟩ ⟨q|p⟩ L . (B.2a)

These matrix elements are related to the classical quantities which correspond
to the operators. For example, an operator of the form Â = f(p̂)g(q̂) is
associated with the function

A(p, q) = ⟨p| f(p̂) g(q̂) |q⟩ ⟨q|p⟩ L = f(p)g(p) . (B.2b)

8 E. Wigner, Phys. Rev. 40, 749 (1932); G. E. Uhlenbeck, L. Gropper,
Phys. Rev. 41, 79 (1932); J.G. Kirkwood, Phys. Rev. 44, 31 (1933) and 45,
116 (1934).

9 For clarity, in this section operators are denoted exceptionally by a ‘hat’.
10 QM I, Chap. 8
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The Hamiltonian

Ĥ ≡ H(p̂, q̂) =
p̂2

2m
+ V (q̂) (B.3a)

is thus associated with the classical Hamilton function

H(p, q) =
p2

2m
+ V (q) . (B.3b)

The commutator of two operators is associated with the function

⟨p| [Â, B̂] |q⟩ ⟨q|p⟩ L

= L

∫
dq′

∑

p′

{
⟨p| Â |q′⟩ ⟨q′|p′⟩ ⟨p′| B̂ |q⟩ − ⟨p| B̂ |q′⟩ ⟨q′|p′⟩ ⟨p′| Â |q⟩

}

× ⟨q|p⟩

= L

∫
dq′

∑

p′

(
A(p, q′)B(p′, q) − B(p, q′)A(p′, q)

)

× ⟨p|q′⟩ ⟨p′|q⟩ ⟨q′|p′⟩ ⟨q|p⟩
(B.3c)

according to (B.2b), where ⟨p|q′⟩ ⟨q′|p⟩ = 1
L was used. We note at this point

that for the limiting case of large L relevant to thermodynamics, the sum-
mation

∑

p

↔ L

2π!

∫
dp (B.3d)

can be replaced by an integral and vice versa. The expression in round brack-
ets in (B.3c) can be expanded in (q′ − q) and (p′ − p):

A(p, q′)B(p′, q) − B(p, q)A(p′, q) =
(

A(p, q) + (q′ − q)
∂A

∂q
+

1
2
(q′ − q)2

∂2A

∂q2
+ . . .

)

×
(

B(p, q) + (p′ − p)
∂B

∂p
+

1
2
(p′ − p)2

∂2B

∂p2
+ . . .

)

−
(

B(p, q) + (q′ − q)
∂B

∂q
+

1
2
(q′ − q)2

∂2B

∂q2
+ . . .

)

×
(

A(p, q) + (p′ − p)
∂A

∂p
+

1
2
(p′ − p)2

∂2A

∂p2
+ . . .

)
. (B.3e)

The zero-order terms cancel, and pure powers of (q′− q) or (p′−p) yield zero
on insertion into (B.3c), since the p′-summation and the q′-integration lead
to a δ-function. The remaining terms up to second order are
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⟨p| [Â, B̂] |q⟩ ⟨q|p⟩L =

= L

∫
dq′

∑

p′

(q′ − q)(p′ − p)
∂(A, B)
∂(q, p)

⟨p|q′⟩ ⟨p′|q⟩ ⟨q′|p′⟩ ⟨q|p⟩

= L ⟨p| (q̂ − q)(p̂ − p) |q⟩ ∂(A, B)
∂(q, p)

⟨q|p⟩

= L i!∂(A, B)
∂(q, p)

| ⟨q|p⟩ |2 =
!
i
∂(A, B)
∂(q, p)

,

(B.3f)

where the scalar product (B.1b) and Eq. (B.1a) have been inserted. For higher
powers of (q̂ − q) and (p̂ − p), double and multiple commutators of q̂ and p̂
occur, so that, expressed in terms of Poisson brackets (Footnote 4, Sect. 1.3),
we finally obtain

⟨p| [Â, B̂] |q⟩ ⟨q|p⟩ L =
!
i
{A, B} + O(!2) . (B.4)

Application of the definition (B.2a) and Eq. (B.2b) to the partition func-
tion leads to

Z = Tr e−βĤ =
∑

p

⟨p| e−βH(p̂,q̂) |p⟩ =
∑

p

∫
dq ⟨p| e−βH(p̂,q̂) |q⟩ ⟨q|p⟩

=
∑

p

∫
dq ⟨p|

(
e−βK(p̂)e−βV (q̂) + O(!)

)
|q⟩ ⟨q|p⟩

=
1
L

∑

p

∫
dq e−βH(p,q) + O(!) =

∫
dp dq

2π! e−βH(p,q) + O(!) .

(B.5)

Z is thus – apart from terms of the order of !, which result from commutators
between K(p̂) und V (q̂) – equal to the classical partition integral. In (B.5),
K̂ ≡ K(p̂) is the operator for the kinetic energy.

Starting from the density matrix ρ̂, we define the Wigner function:

ρ(p, q) =
L

2π! ⟨p|q⟩ ⟨q| ρ̂ |p⟩ . (B.6)

Given the normalization of the momentum eigenfunctions, the factor L
2π! is

introduced in order to guarantee that the Wigner function is independent of
L for large L.

The meaning of the Wigner function can be seen from its two important
properties:

(1) normalization :
∫

dq

∫
dp ρ(p, q) =

∫
dq

∑

p

⟨p|q⟩ ⟨q| ρ̂ |p⟩

= Tr ρ̂ = 1 .

(B.7)

Here, the completeness relation for the position eigenstates, (B.1a), was used.
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(2) mean values :
∫

dq

∫
dp ρ(p, q)A(p, q)

=
∫

dq
∑

p

L

2π! ⟨p|q⟩ ⟨q| ρ̂ |p⟩ ⟨p| Â |q⟩ ⟨q|p⟩

=
∫

dq
∑

p

⟨q| ρ̂ |p⟩ ⟨p| Â |q⟩ = Tr (ρ̂Â) .

(B.8)

Following the second equals sign, ⟨p|q⟩ ⟨q|p⟩ = 1
L and Eq. (B.3d) were used.

For the canonical ensemble, we find using (B.5)

ρ(p, q) =
L

2π! ⟨p|q⟩ ⟨q| e−βĤ

Z
|p⟩

=
L

2π! ⟨p|q⟩ ⟨q|
(
e−βK̂e−βV + O(!)

)
|p⟩ 1

Z

=
L

2π! | ⟨p|q⟩ |2 e−βH(p,q)

Z
+ O(!) =

e−βH(p,q)

2π!Z
+ O(!)

(B.9)

and

⟨Â⟩ =
1
L

∑
p

∫
dq e−βH(p,q)A(p, q)

1
L

∑
p

∫
dq e−βH(p,q)

+ O(!)

=
∫ dp dq

2π! e−βH(p,q)A(p, q)
∫ dp dq

2π! e−βH(p,q)
+ O(!) .

(B.10)

The generalization to N particles in three dimensions gives:

Ĥ =
N∑

i=1

p̂2
i

2m
+ V (q̂1, . . . , q̂N ) . (B.11)

We introduce the following abbreviations for many-body states:

|q⟩ ≡ |q1⟩ . . . |qN ⟩ , |p⟩ ≡ |p1⟩ . . . |pN ⟩ , (B.12a)

⟨p|p′⟩ = δpp′ , ⟨q|p⟩ =
eipq/!

L3N/2
,

∑

p

|p⟩ ⟨p| = 11 . (B.12b)

Applying periodic boundary conditions, the pi take on the values

pi =
L

2π! (n1, n2, n3)

with integer numbers ni.
The many-body states which occur in Nature are either symmetric

(bosons) or antisymmetric (fermions):
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|p⟩s =
1√
N !

∑

P

(±1)P P |p⟩ . (B.13)

The index s here stands in general for “symmetrization”, and includes sym-
metrical states (upper sign) and antisymmetrical states (lower sign). This
sum includes N ! terms. It runs over all the permutations P of N objects. For
fermions, (−1)P = 1 for even permutations and (−1)P = −1 for odd permu-
tations, while for bosons, (+1)P = 1 always holds. In the case of fermions,
all of the pi in (B.13) must therefore be different from one another in agree-
ment with the Pauli principle. In the case of bosons, the same pi can occur;
therefore, these states are in general not normalized: a normalized state is
given by

|p⟩sn =
1√

n1! n2! . . .
|p⟩s , (B.14)

where ni is the number of particles with momentum pi. We have

Tr Â =
∑

p1,...,pN

′
sn ⟨p| Â |p⟩ sn =

∑

p1,...,pN

n1! n2! . . .
N ! sn ⟨p| Â |p⟩ sn

=
∑

p1,...,pN

1
N ! s ⟨p| Â |p⟩ s .

(B.15)

The prime on the sum indicates that it is limited to different states. For
example, p1p2 . . . and p2p1 . . . would give the same state. Rewriting the
partition function in terms of the correspondence (B.2b) yields

Z = Tr e−βH =
1

N !

∑

{pi}
s ⟨p| e−βĤ |p⟩ s

=
1

N !

∫
d3N q

∑

{pi}
s ⟨p| e−βĤ |q⟩ ⟨q|p⟩ s

=
1

N !

(
V

(2π!)3

)N ∫
d3Np

∫
d3Nq e−βH(p,q)| ⟨q|p⟩s |

2 + O(!) .

(B.16)

The last factor in the integrand has the form | ⟨q|p⟩s | = V −N (1 + f(p, q)),
where the first term leads to the partition integral

Z =
∫

d3Np d3Nq

N ! (2π!)3N
e−βH(p,q) + O(!) . (B.16′)

Remarks:

(i) In (B.16), the rearrangement s⟨p| e−βĤ |p⟩s =
∫

d3Nq s ⟨p| e−βK̂e−βV |q⟩
× ⟨q|p⟩s +O(!) =

∫
d3Nq e−βH(p,q)| ⟨q|p⟩s |2 +O(!) was employed, where

the symmetry of Ĥ under particle exchange enters.
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(ii) The quantity | ⟨q|p⟩s |2 = V −N (1 + f(p, q)) contains, in addition to the
leading term V −N in the classical limit, also p- and q-dependent terms.
The corrections due to symmetrization yield contributions of the order
of !3. Cf. the ideal gas and Sect. B.2.

(iii) Analogously (to B.16), one can show that the distribution function is

ρ(p, q) =
e−βH(p,q)

Z(2π!)3NN !
. (B.17)

We have thus shown that, neglecting terms of the order of !, which result
from the non-commutativity of the kinetic and the potential energies and the
symmetrization of the wave functions, the classical partition integral (B.16′)
is obtained.

The classical partition integral (B.16′) shows some features which indicate
the underlying quantum nature: the factors 1/N ! and (2π!)−3N . The first of
these expresses the fact that states of identical particles which are converted
into one another by particle exchange must be counted only once. This fac-
tor makes the thermodynamic potentials extensive and eliminates the Gibbs
paradox which we discuss following Eq. (2.2.3). The factor (2π!)−3N renders
the partition integral dimensionless and has the intuitively clear interpreta-
tion that in phase space, each volume element (2π!)3N corresponds to one
state, in agreement with the uncertainty relation.

B.2 Calculation of the Quantum-Mechanical Corrections

We now come to the calculation of the quantum-mechanical corrections to
the classical thermodynamic quantities. These arise from two sources:
a) The symmetrization of the wave function
b) the noncommutativity of K̂ and V .
We will investigate these effects separately; their combination yields correc-
tions of higher order in !.
a) We first calculate the quantity | ⟨q|ps⟩ |2, which occurs in the second line
of (B.16), inserting Eq. (B.13):

| ⟨q|p⟩s |
2 =

1
N !

∑

P

∑

P ′

(−1)P (−1)P ′
⟨q|P ′ |p⟩ ⟨q|P |p⟩∗

=
1

N !

∑

P

∑

P ′

(−1)P (−1)P ′
⟨P ′q|p⟩ ⟨Pq|p⟩∗

=̂
1

N !

∑

P

∑

P ′

(−1)P (−1)P ′
⟨q|p⟩

〈
PP ′−1q|p

〉∗

=
∑

P

(−1)P ⟨q|p⟩ ⟨Pq|p⟩∗

=
1

V N

∑

P

e
i
! (p1·(q1−Pq1)+...+pN ·(qN−PqN )) .

(B.18)
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Here, in the second line, we have used the fact that the permutation of the
particles in configuration space is equivalent to the permutation of their spa-
tial coordinates. In the third line we have made use of the fact that we can
rename the coordinates within the integral

∫
d3Nq which occurs in (B.16),

replacing P ′q by q. In the next-to-last line, we have used the general prop-
erty of groups that for any fixed P ′, the elements PP ′−1 run through all
the elements of the group. Finally, in the last line, the explicit form of the
momentum eigenfunctions in their configuration-space representation was in-
serted.

Inserting the final result of Eq. (B.18) into (B.16), we can express each of
the momentum integrals in terms of

∫
d3p e−

βp2
2m +ipx=

∫
d3p e−

βp2
2m f(x) , (B.19)

with

f(x) = e−
πx2

λ2 , (B.20)

where λ = 2π!√
2π!mkT

[Eq. (2.7.20)] is the thermal wavelength. Then we find
for the partition function, without quantum corrections which result from
non-commutatitivity,

Z =
∫

d3Nq d3Np

N !(2π!)3N
e−βH(p,q)

∑

P

(−1)P f(q1−Pq1) . . . f(qN−PqN ) . (B.21)

The sum over the N ! permutations contains the contribution f(0)N = 1 for
the unit element P = 1; for transpositions (in which only pairs of parti-
cles i and j are exchanged), it contains the contribution (f(qi − qj))2, etc.
Arranging the terms according to increasing number of exchanges, we have

∑

P

(−1)P f(q1 − Pq1) · · · f(qN − PqN ) =

= 1 ±
∑

i<j

(
f(qi − qj)

)2 +
∑

ijk

f(qi − qj)f(qj − qk)f(qk − qi) ± . . . .

(B.22)

The upper sign refers to bosons, the lower to fermions. For sufficiently high
temperatures, so that the average spacing between the particles obeys the
inequality (v is the specific volume)

v1/3 ≫ λ , (B.23)

we find that f(qi − qj) is vanishingly small for |qi − qj | ≫ λ, and therefore
only the first term in (B.22) is significant; according to the preceding section,
it just yields the classical partition integral, (B.16).
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The more factors f that are present in (B.22), the stronger the constraints
on the spatial integration region in (B.16). The leading quantum correction
therefore comes from the second sum in (B.22), which we can rewrite in the
following approximate way:

1±
∑

i<j

(
f(qi −qj)

)2 ≈
∏

i<j

(
1±

(
f(qi −qj)

)2) = e−β
P

i<j ṽi(qi−qj) . (B.24)

Here, the effective potential

ṽi(qi − qj) = −kT log
(
1 ± e−2π|qi−qj|/λ2

)
(B.25)

is attractive for bosons and repulsive for fermions. This effective potential
arises from the symmetry properties of the wave function and not from any
microscopic mutual interaction of the particles. It permits us to take the
leading quantum correction into account within the classical partition inte-
gral. For the ideal gas, these quantum corrections lead to contributions of the
order of !3 in the thermodynamic quantities, as we have seen in Sect. 4.2.

b) The exact quantum-mechanical expression for the partition function is
given by

Z =
1

N !

∑

{pi}
s ⟨p| e−βĤ |p⟩ s

=
1

N !

(
V

(2π!)3

)N ∫
d3Np

∫
d3Nq s ⟨p| e−βĤ |q⟩ ⟨q|p⟩ s .

(B.26)

If we neglect exchange effects (symmetrization of the wave function), we
obtain

Z =
1

N !

(
V

(2π!)3

)N ∫
d3Np

∫
d3Nq ⟨p| e−βĤ |q⟩ ⟨q|p⟩

=
1

N !

(
1

(2π!)3

)N ∫
d3Np

∫
d3Nq I .

(B.27)

To compute the integrands which occur in this expression, we introduce the
following relation, initially for a single particle,

I = ⟨p| e−βĤ |q⟩ ⟨q|p⟩V = eipq/!e−βĤe−ipq/! . (B.28)

After the last equals sign and in the following, Ĥ denotes the Hamiltonian in
the coordinate representation. To calculate I, we derive a differential equation
for I using the Baker–Hausdorff formula:
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∂I

∂β
= −eipq/!Ĥe−βĤe−ipq/! = −eipq/!Ĥe−ipq/!I

= −
(

Ĥ − i
[
−pq

! , Ĥ
]
− 1

2!2

[
pq, [pq, Ĥ]

]
+ . . .

)
I

= −
[
Ĥ − !2

2m

(
−2i

! p
∂

∂q
− p2

!2

)
I

]
.

(B.29)

The higher-order commutators (indicated by dots) vanish, so that

∂I

∂β
=

[
−H(p, q) +

!2

2m

(
−2i

! p
∂

∂q
+

∂2

∂q2

)]
I , (B.29′)

where H(p, q) is the classical Hamilton function. To solve this differential
equation, we use the ansatz:

χ = eβH(p,q)I . (B.30)

We find the following differential equation for χ from (B.29′):

∂χ

∂β
= H(p, q)χ + eβH(p,q) ∂I

∂β
= eβH(p,q) !2

2m

(
2i
! p

∂

∂q
+

∂2

∂q2

)
I

= eβH(p,q) !2

2m

(
2i
! p

∂

∂q
+

∂2

∂q2

)
eβH(p,q)χ

=
!2β

2m

[
2ip
!

∂V

∂q
− 2ip

!β

∂

∂q
− ∂2V

∂q2
+ β

(
∂V

∂q

)2

− 2
∂V

∂q

∂

∂q
+ β−1 ∂2

∂q2

]
χ .

(B.31)

Transferring to a many-body system with the coordinates and momenta qi

and pi yields

∂χ

∂β
=

∑

i

!2β

2mi

[
2ipi

!
∂V

∂qi
− 2ipi

!β

∂

∂qi
− ∂2V

∂qi
2

+ β

(
∂V

∂qi

)2

− 2
∂V

∂qi

∂

∂qi
+ β−1 ∂2

∂qi
2

]
χ . (B.31′)

The solution of this equation is obtained with the aid of a power series ex-
pansion in !:

χ = 1 + !χ1 + !2χ2 + O(!3) . (B.32)

Because of (B.28) and (B.30), χ must obey the boundary condition χ = 1 for
β = 0. Inserting this ansatz into (B.31′), we obtain
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∂χ1

∂β
= ±iβ

∑

i

pi

mi

∂V

∂qi
(B.33a)

and

∂χ2

∂β
=

∑

i

1
2mi

[
−2iβpi

∂V

∂qi
χ1 + 2ipi

∂χ1

∂qi
− β

∂2V

∂qi
2

+ β2

(
∂V

∂qi

)2
]

. (B.33b)

From this, it follows that

χ1 = − iβ2

2

∑

i

pi

mi

∂V

∂qi
(B.34a)

χ2 = ±β4

8

(∑

i

pi

mi

∂V

∂qi

)2

+
β3

6

∑

i

∑

k

pi

mi

pk

mk

∂2V

∂qi∂qk

+
β3

6

∑

i

1
mi

(
∂V

∂qi

)2

− β2

4

∑

i

1
mi

∂2V

∂qi
2

. (B.34b)

Inserting (B.30) and (B.27), we finally obtain the partition function

Z =
∫

d3Nq d3Np

(2π!)3N N !
e−βH(p,q)(1 + !χ1 + !2χ2) . (B.35)

The term of order O(!) vanishes, since χ1 is an odd function of p1, so that
the remaining expression is

Z =
(
1 + !2⟨χ2⟩cl

)
Zcl . (B.36)

Here, ⟨ ⟩cl refers to the average value with the classical distribution function,
and Zcl is the classical partition function. From it, we thus obtain for the
free energy

F = − 1
β

log Z = Fcl −
1
β

log
(
1 + !2⟨χ2⟩cl

)
≈ Fcl −

!2

β
⟨χ2⟩cl . (B.37)

With

⟨pipk⟩cl =
m

β
δik (B.38)

and
〈

∂2V

∂qi
2

〉

cl
= β

〈(
∂V

∂qi

)2〉

(proof via partial integration), it follows that

F = Fcl +
!2

24m(kT )2
∑

i

〈(
∂V

∂qi

)2〉

cl
. (B.39)
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The classical approximation is therefore best at high T and large m.
Remark: Using the thermal wavelength λ = 2π!/

√
2πmkT and the length l which

characterizes the spatial variation of the potential (range of the interaction poten-

tials), the correction in Eq. (B.39) becomes λ2

l2
V 2

kT . This gives as a condition for the
validity of the classical approximation

λ ≪ l (from the non-commutativity of K̂ and V̂ ) (B.39a)

and, according to Eq. (B.23)

λ ≪
„

V
N

«1/3

(from symmetrization of the wave function) . (B.39b)

Rearranging Eq. (2.7.20), one gets

T [K] =
5 ×10−38

λ2[cm2]m[g]
=

5.56 ×105

λ2[Å
2
]m[me]

.

For electrons in solids, we have
`

V
N

´1/3 ≈ 1Å, so that even at a temperature of T =
5.5 ×105 K, their behavior remains nonclassical.
For a gas with the mass number A: m = A · mp,

`
V
N

´1/3 ≈ 10−7 cm, T ≈ 3
A K

B.3 Quantum Corrections to the Second Virial Coefficient B(T )

B.31 Quantum Corrections Due to Exchange Effects

We neglect the interactions; however, the second virial coefficient from
Eq. (5.3.7)

B(T ) =
(
Z2 −

1
2
Z2

1

) V

Z2
1

(B.40)

is still nonzero due to exchange effects. A two-particle eigenstate has the form

|p1, p2⟩ =
1√
2!

(
|p1⟩ |p2⟩± |p2⟩ |p1⟩

)
for p1 ̸= p2

(B.41)

|p1, p2⟩ =

⎧
⎪⎨

⎪⎩

|p1⟩ |p1⟩ bosons
for p1 = p2

0 fermions .

The partition function for two non-interacting particles is

Z2 = Tr e−(p̂2
1+p̂2

2)/2mkT =
1
2

∑

p1,p2
p1 ̸=p2

e−(p2
1+p2

2)/2mkT +

⎧
⎨

⎩

∑

p

e−p2/mkT

0

=
1
2

∑

p1

∑

p2

e−(p2
1+p2

2)/2mkT ± 1
2

∑

p

e−p2/mkT

=
1
2
Z2

1 ± 1
2

∑

p

e−p2/mkT for

{
bosons
fermions

. (B.42)
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From this11, we find for the second virial coefficient (5.3.7):

B(T ) = ∓λ6

2V

∑

p

e−p2/mkT = ∓ λ3

25/2

= ∓1
2

(
π!2

mkT

)3/2

for

{
bosons
fermions

. (B.43)

B.32 Quantum-Mechanical Corrections to B(T ) Due to
Interactions

In the semiclassical limit (unsymmetrized wave functions), from Eq. (B.35)
we obtain for the partition function of two particles

Z2 =
1
2

(
1
λ3

)2 ∫
d3x1 d3x2 e−v12(x1−x2)/kT

(
1 + !χ1︸︷︷︸

=0

+!2χ2

)
. (B.44)

This leads to the following expression for the second virial coefficient ((5.3.7),
(B.40)):

B =
1
2

(
1
V

∫
d3x1 d3x2

(
e−v12(x1−x2)/kT (1 + !2χ2) − 1

))
. (B.45)

The quantum correction is therefore given by

Bqm =
∫

d3y e−v(y)/kT 1
kT

(
∂v

∂y

)2 !2

24m(kT )2

=
!2π

6m(kT )3

∞∫

0

dr r2e−v(r)/kT

(
∂v

∂r

)2

,

(B.46)

where in the second line we have assumed a central potential. This quantum
correction adds to the classical value of B; it is always positive. The exchange
corrections (B.43) are of the order O(!3). The lowest-order quantum correc-
tions, i.e. (B.46), are of order !2. At low temperatures, these quantum effects
(due to non-commuting V̂ and K̂) become important. The contribution from
symmetrization is relatively small.

B.33 The Second Virial Coefficient and the Scattering Phase

One can also represent the second virial coefficient in terms of the phase shift
of the interaction potential. The starting point is the formula for the virial

11 Z1 ≡
P

p e−p2/2mkT = V
λ3

We do not take the spin degeneracy factor g = 2S + 1 into account here.



B. The Classical Limit and Quantum Corrections 533

coefficient, Eq. (5.3.7)

B = −
(

Z2

Z2
1

− 1
2

)
V . (B.47)

The interaction does not appear in the partition function for a single particle

Z1 =
∑

p

e−
p2

2mkT =
V

(2π!)3

∫
d3p e−

p2
2mkT =

V

λ3
. (B.48)

The Hamiltonian for two particles is given by

Ĥ =
p2

1 + p2
2

2m
+ V (x1 − x2) (B.49)

and, introducing coordinates for the center of mass (CM) and the relative
position (r):

xCM =
1
2
(x1 + x2) , xr = x2 − x1 , (B.50)

it can be written as

Ĥ =
p2

CM

4m
+

p2
r

m
+ V (xr) . (B.51)

Then the partition function for two particles becomes

Z2 = TrCM e−
p2
CM

4mkT Trr e
−

„
p2
r

m +V (xr)

«
/kT

= 23/2 V

λ3

∑

n

e−
εn
kT . (B.52)

In this expression, εn denotes the energy levels of the two-particle system in
relative coordinates taking into account the different symmetries of bosons
and fermions. It leads to

B = −
(
23/2λ3

∑

n

e−εn/kT − V

2

)
. (B.53)

We now remind the reader that for non-interacting particles, (B.43) gives for
the second virial coefficient

B(0) = −
(

23/2λ3
∑

n

e−ε0
n/kT − V

2

)
= ∓2−5/2λ3

{
bosons
fermions

. (B.54)

The change in the second virial coefficient due to the interactions of the
particles is thus given by

B(T ) − B0(T ) = −23/2λ3
∑

n

(
e−βεn − e−βε(0)

n

)
. (B.55)
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The energy levels of the non-interacting system are

ε(0)
n =

!2k2

m
, (B.56a)

while in the interacting system, along with the continuum states of energy

εn =
!2k2

m
, (B.56b)

bonding states of energy εB can also occur. The values of k are found from
the boundary conditions and are different for the interacting system and for
the free system, so that also different densities of states are obtained. The
number of energy levels g(k)dk in the interval [k, k + dk] defines the density
of states, g(k). We thus find

B(T ) − B(0)(T )

= −23/2λ3

[∑

B

e−εB/kT +
∞∫

0

dk
(
g(k) − g(0)(k)

)
e−εk/kT

]
. (B.57)

The change in the density of states which occurs here can be related to the
derivative of the scattering phase. We assume that the potential V (r) has
rotational symmetry and consider the eigenstates of the relative part of the
Hamiltonian. Then we can represent the wave functions for the free and the
interacting problem in the form12

ψ(0)
klm(x) = A(0)

klmYlm(ϑ, ϕ)R(0)
kl (r)

ψklm(x) = AklmYlm(ϑ, ϕ)Rkl(r) .
(B.58)

The free radial functions are given in terms of spherical Bessel functions. The
asymptotic forms for r → ∞ are

R(0)
kl (r) =

1
kr

sin
(
kr +

lπ

2

)

Rkl(r) =
1
kr

sin
(
kr +

lπ

2
+ δl(k)

) (B.59)

with the phase shifts known from scattering theory, δl(k). The allowed values
of k are found from the boundary conditions

R(0)
kl (R) = Rkl(R) = 0 (B.60)

at a large radius R (which finally goes to infinity). From this it follows that

kR +
lπ

2
= πn and kR +

lπ

2
+ δl(k) = πn , (B.61)

12 QM I, Chap. 17



B. The Classical Limit and Quantum Corrections 535

where n = 0, 1, 2, . . . . The values of k therefore depend upon l. Neighboring
values of k for fixed l differ by

∆k(0) =
π

R
and ∆k =

π

R + ∂δl(k)
∂k

. (B.62)

We still must take into account the fact that every value of l occurs with a
multiplicity of (2l + 1). Since each interval ∆k or ∆k(0) contains a value of
k, the densities of states are

g(0)
l (k) =

2l + 1
π

R and gl(k) =
2l + 1

π

[
R +

∂δl(k)
∂k

]
. (B.63)

From this the second virial coefficient follows:

B(T ) − B(0)(T )

= −23/2λ3

{∑

B

e−εB/kT +
1
π

∞∫

0

dk
∑

l

′
fl(2l + 1)

∂δl(k)
∂k

e−
!2k2
mkT

}
.

(B.64)

Now we need to determine the values of l which are allowed by the symmetry
properties. For bosons, we have ψ(−x) = ψ(x), and for spin-1/2 fermions,
ψ(−x) = ±ψ(x), depending on whether a spin singlet or a triplet state is
considered. For spin-0 bosons, we thus have l = 0, 2, 4, . . . and fl = 1. For
spin-1/2 fermions,

l = 0, 2, 4, . . . fl = 1 (singlet)
l = 1, 3, 5, . . . fl = 3 (triplet) .

(B.65)

The change in the second virial coefficient is expressed in terms of the binding
energies and the phase shifts. An important contribution to the k-integral
comes from the resonances. Very sharp resonances have ∂δl(k)

∂k = πδ(k − k0),
and one obtains a similar contribution to that of the bonding states, however
with positive energy. More generally, one can interpret the quantity

1
!

∂δl(k)
∂k

=
∂E

∂!k

∂δl

∂E
= v

∂δl

∂E
,

as velocity times the dwell time13 in the potential. The shorter the dwell time
within the potential, the more nearly ideal is the interacting gas.
Literature:
S.K. Ma, Statistical Mechanics, Sect. 14.3, World Scientific, Singapore, 1985
E. Beth and G. E. Uhlenbeck, Physics 4, 915 (1937)
A. Pais and G.E. Uhlenbeck, Phys. Rev. 116, 250 (1959)

13 See e.g. QM I, Eq. (3.126)
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Problems for Appendix B.:

B.1 Carry out in detail the rearrangements which occur in Eq. (B.3f).
B.2 Carry out the rearrangement in Eq. (B.28).
B.3 Show that (B.29′) follows from (B.29).
B.4 Determine the behavior of the effective potentials ṽ(x) in Eq. (B.25) for small

and large distances. Plot ṽ(x) for bosons and fermions.

C. The Perturbation Expansion

For the calculation of susceptibilities and in other problems in which the
Hamiltonian H = H0 + V is composed of an “unperturbed” part and a
perturbation V , we require the relation

eH0+V = eH0 +
∫ 1

0
dt etH0V e(1−t)H0 + O(V 2) . (C.1)

To prove this relation, we introduce the definition

A(t) = eHte−H0t

and take its time derivative

Ȧ(t) = eHt(H − H0)e−H0t = eHtV e−H0t .

By integrating over time between 0 and 1,

A(1) − A(0) = eHe−H0 − 1 =
∫ 1

0
dt eHtV e−H0t ,

we obtain after multiplication by eH0 the exact identity

eH = eH0 +
∫ 1

0
dt eHtV e(1−t)H0 . (C.2)

Expanding eHt = e(H0+V )t in a power series, we obtain the assertion (C.1).

Iteration of the likewise exact identity which follows from (C.2),

eHt = eH0t +
∫ t

0
dt′ eHt′V e(t−t′)H0 , (C.2′)

yields

eH = eH0 +
∫ 1

0
dt eH0tV e(1−t)H0+

+
∫ 1

0
dt

∫ t

0
dt′ eH0t′V e(t−t′)H0V e(1−t)H0 + . . .+

+
∫ 1

0
dt1

∫ t1

0
dt2 . . .

∫ tn−1

0
dtneH0tnV e(tn−1−tn)H0V e(tn−2−tn−1)H0 . . .

× V e(1−t1)H0 + . . . .

(C.3)
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With the substitution

1 − tn = un, 1 − tn−1 = un−1, . . . , 1 − t1 = u1

we obtain

eH = eH0 +
∞∑

n=1

∫ 1

0
du1

∫ 1

u1

du2 . . .

∫ 1

un−1

dun e(1−un)H0V e(un−un−1)H0 . . .

× V e(u2−u1)H0V eu1H0 .

(C.3′)

D. The Riemann ζ-Function and the Bernoulli Numbers

In dealing with fermions, the following integrals occur:

1
Γ (ν)

∞∫

0

dx
xν−1

ex + 1
=

∞∑

k=1

(−1)k+1 1
kν

=
∞∑

k=1

1
kν

− 2
∞∑

l=1

1
(2l)ν

=
(
1 − 21−ν

)
ζ(ν) . (D.1)

After the last equals sign, the Riemann ζ-function

ζ(ν) =
∑

k

1
kν

for Re ν > 1 (D.2)

was introduced. The integrals which occur for bosons can also be related
directly to it:

1
Γ (ν)

∞∫

0

dx
xν−1

ex − 1
=

∞∑

k=1

1
kν

= ζ(ν) . (D.3)

According to the theorem of residues, ζ(ν) can be written in the following
manner:

ζ(ν) =
1
4i

∫

C

dz
cotπz

zν
=

1
4i

∫

C′

dz
cotπz

zν
. (D.4)

Definition of the Bernoulli numbers:

1
2
z cot

1
2
z = 1 −

∞∑

n=1

Bn
z2n

(2n)!
, (D.5)
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Fig. D.1. The integration
path in (D.4)

B1 =
1
6

, B2 =
1
30

, B3 =
1
42

, . . .

ν = 2k :

ζ(2k) =
π−1

4i

∫

C′

dz
1 −

∑∞
n=1 Bn

(2zπ)2n

(2n)!

z2kπz
=

(2π)2kBk

2(2k)!
, (D.6)

since only the term n = k makes a nonzero contribution.

1
Γ (2k)

∫
dx

x2k−1

ex + 1
=

(
22k−1 − 1

)
π2kBk

(2k)!
∫ ∞

0
dx

x2k−1

ex + 1
=

(
22k−1 − 1

)
π2kBk

2k
(D.7)

∫ ∞

0
dx

x2k−1

ex − 1
= (2k − 1)!

(2π)2kBk

2(2k)!
=

(2π)2kBk

4k
. (D.8)

E. Derivation of the Ginzburg–Landau Functional

For clarity, to carry out the derivation we first consider a system of ferromag-
netic Ising spins (n = 1), which are described by the Hamiltonian

H = −1
2

∑

l,l′

J(l − l′)SlSl′ − h
∑

l

Sl , (E.1)

where Sl takes on the values Sl = ±1. We assume a d-dimensional, simple
cubic lattice; its lattice constant is taken to be a0 and the side length of the
crystal to be L. This d-dimensional lattice is then divided into cells of volume
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Fig. E.1. Division of the lattice into cells

v = ad
c , whereby the linear dimensions of the cells ac are assumed to fulfill

the inequality a0 ≪ ac ≪ L. The number of cells is Nc =
(

L
ac

)d = N
Ñ

, and

the number of lattice points within a cell is Ñ =
(

ac
a0

)d
. Finally, we define

the cell spin of cell ν:

mν =
1
Ñ

∑

l∈ν

Sl , (E.2)

whose range of values lies in the interval −1 ≤ mν ≤ 1. We now define a new,
effective Hamiltonian F({mν}) for the cell spins by carrying out the exact
rearrangement

Z = Tr e−βH ≡
∑

{Sl=± 1}

e−βH =
∑

{mν}

Tr
(
e−βH

∏

ν

δP
l∈ν Sl,Ñmν

)

≡
∑

{mν}

e−βF({mν}) ,
(E.3)

which corresponds to a partial evaluation of the trace, i.e.

F({mν}) = − 1
β

log
∑

{Sl=± 1}

e−βH
∏

ν

δP
l∈ν Sl,Ñmν

. (E.4)

For sufficiently many spins per cell, mν becomes a continuous variable(
∆mν = 2

Ñ

)

∑

mν

. . . −→ Ñ

2

∫ 1

−1
dmν . . . (E.5)

F({mν}) = Ñf({mν}) for sufficiently large Ñ .
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The field term expressed in the new variables is

−h
∑

l

Sl = −h
∑

ν

∑

l∈ν

Sl = −hÑ
∑

ν

mν . (E.6)

Thus, the factor e−h
P

l Sl = e−hÑ
P

ν mν is not affected at all by the trace
operation after the third equals sign in (E.3), and is transferred unchanged
to F({mν}). This has the important effect that all the remaining terms in
F({mν}) are independent of h, and due to the invariance of the exchange
Hamiltonian (see Chap. 6) under the transformation {Sl} → {−Sl}, they are
also even functions of the mν .

We can decompose f({mν}) into terms which depend only on one, two,
. . . mν :

f({mν}) =
Nz∑

ν=1

f1(mν) +
1
2

∑

µ̸=ν

fνµ
2 (mν , mµ) + . . . . (E.7)

The Taylor expansion of the functions in (E.7) is given by

f1(mν) = f1(0) + c2m
2
ν + c4m

4
ν + . . . − hmν (E.8a)

and

f2(mν , mµ) = −
∑

µ,ν

2Kµνmµmν + . . . . (E.8b)

It then follows from (E.3) and (E.5) that

Z =
∏

ν

Ñ

2

∫ 1

−1
dmνe−βÑf({mν}) (E.8c)

with

f({mν}) = Ncf1(0) +
∑

ν

(
am2

ν +
b

2
m4

ν + . . . − hmν

)

+
1
2

∑

µ,ν

Kµν(mµ − mν)2 + . . . . (E.8d)

The coefficients f1(0), a, b and Kµν are functions of T and Jll′ . The cells, like
the original lattice, form a simple cubic lattice, which is the cell lattice with
lattice constants az and lattice vectors aν . Let Ni be the number of lattice
points (cells) in the direction i, whose product N1N2N3 must give Nc; we
then define the wavevectors with components

ki =
2πri

Niac
, where − Ni

2
< ri ≤

Ni

2
. (E.9)
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The reciprocal lattice vectors for the cell lattice are given by

g =
2π

az
(n1, n2, n3) . (E.10)

The Fourier transform of the cell spins is introduced via

mν =
1√
Nc

∑

k

eikaν mk (E.11a)

mk =
1√
Nc

∑

ν

e−ikaν mν . (E.11b)

The orthogonality and completeness relations of the Fourier coefficients
are

∑

k

eik(aν−aν′) = Ncδνν′ (E.12a)

∑

ν

ei(k−k′)aν = Nc∆(k − k′) ≡ Nc

{
1 for k − k′ = g
0 otherwise

, (E.12b)

where g is an arbitrary vector of the reciprocal lattice.

The transformation of the individual terms of the free energy is given by

a
∑

ν

m2
ν = a

∑

k

mkm−k ,

b
∑

ν

m4
ν =

b

N2
c

∑

ν

∑

k1,...,k4

ei(k1+...+k4)aν mk1 . . .mk4

=
b

Nc

∑

k1,...k4

∆(k1 + . . . + k4)mk1mk2mk3mk4 ,
(E.13a)

hÑ
∑

ν

mν = hÑ
√

Ncmk=0 .

Due to translational invariance, the interaction Kµν depends only on the
separation,

1
2

∑

ν,ν′

K(ν − ν′)(mν − mν′)2

=
1

2Nc

∑

ν

∑

δ

∑

kk′

K(δ)eikaν
(
1 − eikaδ

)
mke−ik′aν

(
1 − e−ik′aδ

)
m−k′

=
∑

k

v(k)mkm−k .
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Here, δ ≡ ν − ν′ was introduced, and

v(k) =
∑

δ

K(δ)(1 − coskaδ) =
∑

δ

K(δ) 2 sin2 kaδ

2
(E.13b)

was defined. Due to the short range of the interaction coefficients K(δ), we
can expand sin2 kaδ

2 for small k in a Taylor series, and terminate the series
after the first term. Taking the cubic symmetry into account, in d dimensions
we find

v(k) = k2 1
2d

∑

δ

K(δ)aδ
2 + O(k4) . (E.13c)

Then the partition function in Fourier space is

Z = Z0

(∏

k

∫
dmk

)
exp

{
− βÑ

[∑

k

(a + ck2)mkm−k

+
b

2
1

Nc

∑

k1...k4

∆(k1 + . . . + k4) mk1 . . . mk4 − h
√

Nc mk=0 + . . .

]}
,

(E.14)

where Z0 is the part of the partition function which is independent of mk, as
follows from (E.8c).

Definition of
∫

dmk :

Due to m∗
k = m−k, (E.11a) can be written in the form

mν =
1√
Nz

∑

k∈HS

(
eikaν (Re mk + iImmk)

+ e−ikaν (Re mk − i Immk)
)

=
1√
Nz

∑

k∈HS

(
eikaν + e−ikaν

√
2

(√
2 Re mk

)
︸ ︷︷ ︸

yk

+ i
eikaν − e−ikaν

√
2

(√
2 Im mk

)
︸ ︷︷ ︸

y−k

)
,

(E.15a)

where the sums over k extend only over half of the k-space (HS). This is an
orthogonal transformation

∑

ν

(
eikaν + e−ikaν

) (
eik′aν + e−ik′aν

) 1
2Nc

= δk,k′ ; (E.15b)
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and correspondingly for sinkaν . The cross terms give zero. It follows that
∫ ∏

ν

dmν . . . =
∫ ∏

k∈HS

(√
2d Re mk

)(√
2d Im mk

)
. . . =

∫ ∏

k

dyk . . . .

(E.15c)

Clearly, from (E.13b),

v(k) = v(−k) = v(k)∗ (E.15d)

and
∑

k

v(k)mkm−k =
∑

k∈HS

v(k)
((√

2 Re mk

)2
+

(√
2 Im mk

)2
)

=
∑

k

v(k)y2
k . (E.15e)

In the harmonic approximation, it follows from (E.15d), as will be verified in
(7.4.47), that

⟨mkmk′⟩ =
∫ (∏

k

dmk

)
e−

P
k v(k)|mk|2

Z
mkmk′ =

δk′,−k

2v(k)
. (E.16)

Continuum limit v = ad
c → 0 .

If we consider wavelengths which are large compared to az, we take the
continuum limit:

m(xν) =
1√
v
mν (E.17)

m(x) =
1√

Ncad
c

∑

k∈B

eikxmk . (E.18)

In the strict continuum limit, the Brillouin zone goes to ∞. The terms in the
Ginzburg–Landau functional are

∑

ν

m2
ν =

∫
ddx m(x)2 ,

∑

ν

m4
ν = v

∫
ddx m(x)4 ,

∑

ν

hmν =
h√
v

∫
ddx m(x) ,

∑

k

k2|mk|2 =
∫

ddx
(
∇m(x)

)2
,

(E.19)

∫ ∏

ν

dmν . . . →
∫

D[m(x)] . . . ≡
∫ ∏

ν

(√
vdm(xν)

)
.

The functional integrals are defined by discretization. Then as our result for
the Ginzburg–Landau functional, we can write
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F [m(x)] =
∫

ddx

[
am2(x) +

b

2
m4(x) + c(∇m)2 − hm(x) + . . .

]
(E.20)

which yields the partition function in terms of the following functional inte-
gral:

Z = Z0(T )
∫

D[m(x)]e−βF [m(x)] . (E.21)

(i) Here, we have redefined the coefficients once again; e.g. 1√
v

was combined
with h. The coefficient Z0(T ) is found from the prefactors defined earlier, but
it is not important in what follows.
(ii) Owing to the fact that the trace is only partially evaluated, the coeffi-
cients a, b, c and Z0(T ) are “uncritical”, i.e. they are not singular in T, J, . . .
etc.
(iii) In the following, we extend the integration range for

∫ 1
−1 dmν . . . =

∫ 1/
√

v
−1/

√
v dm(x) →

∫ ∞
−∞ dm(x), since m(x) is in any case limited by e−bm4

. Its

most probable value is m(x) ∼
√

−a
b , and thus mν ∼

√
v
√

a
b ≪ 1.

(iv) General statements about the coefficients in the Ginzburg–Landau func-
tional:
α)F [m(x)] has the same symmetry as the microscopic spin Hamiltonian;
i.e. except for the term with h, F [m(x)] is an even function of m(x).
β) From the preceding rearrangement of the h term, it may be seen that
a, b, c are independent of h. In particular, the partial evaluation of the trace
produces no higher odd terms.
γ) Stability requires b > 0. Otherwise, one cannot terminate at m4. At the
tricritical point, b = 0 and one must take the term of order m6 into account,
also.
δ) The ferromagnetic interaction favors parallel spins, i.e. nonuniformity of
spin direction costs energy. Thus c∇m∇m with c > 0.
ϵ) Concerning the temperature dependence of the G.-L. coefficient a, we refer
to the main part of the text, Eq. (7.4.8).
(v) In the thermodynamic limit, the linear dimension L → ∞,

m(x) =
1

Ld/2

∑

k∈B

eikxmk =
1
Ld

∑

k

eikxm(k)

and m(x) L→∞−→
∫

B
ddk

(2π)d eikxm(k), where the integral is extended over the
whole Brillouin zone B : ki ∈

[
− π

ac
, π

ac

]
, and m(k) = Ld/2mk.

Later, the integral over the cubic Brillouin zone will be approximated by an
integral over a sphere:

m(x) =
∫

|k|<Λ

ddk

(2π)d
eikxm(k) .
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F. The Transfer Matrix Method

The transfer matrix method is an important tool for the exact solution of
statistical-mechanical models. It is particularly useful for two-dimensional
and one-dimensional models. We introduce the transfer matrix method by
solving the one-dimensional Ising model. The one-dimensional Ising model
for N spins with interactions between nearest neighbors is described by the
Hamiltonian

H = −J
N∑

j=1

σjσj+1 − H
N∑

j=1

σj , (F.1)

where periodic boundary conditions are assumed, σN+1 = σ1. The partition
function (K ≡ βJ, h ≡ βH) has the form

ZN =
∑

{σi=± 1}

N∏

j=1

eKσjσj+1+ h
2 (σj+σj+1) = Tr (T N) . (F.2)

Following the second equals sign, the transfer matrix, defined by

Tσσ′ ≡ eKσσ′+ h
2 (σ+σ′) , (F.3)

was introduced. Its matrix representation is given by

T =
(

eK+h e−K

e−K eK−h

)
. (F.4)

One readily finds the two eigenvalues of this (2 × 2) matrix:

λ1,2 = eKcosh h ±
(
e−2K + e2Ksinh2h

)1/2
. (F.5)

The trace in (F.2) is invariant under orthogonal transformations. By trans-
forming to the basis in which T is diagonal, one can verify that

ZN = λN
1 + λN

2 . (F.6)

The free energy per spin is given by the logarithm of the partition function

f(T, H) = −kT lim
N→∞

1
N

log ZN . (F.7)

In the thermodynamic limit, N → ∞, the largest eigenvalue dominates:

f = −kT log λ1 (due to λ1 ≥ λ2 for all T ≥ 0) . (F.8)

There is no phase transition in one dimension, since
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f(T, 0) = −kT
[
log 2 + log(coshβJ)

]
(F.9)

is a smooth function for T > 0. Owing to the short range of the interactions,
disordered spin configurations (with high entropy S) are more probable than
ordered configurations (with low internal energy E) in equilibrium (where
F (T, 0) = E − TS is a minimum). The isothermal susceptibility χ =

(
∂m
∂H

)
T

for H = 0 is found from (F.8) to be χ = βe2βJ at low T . There is a pseudo-
phase transition at T = 0: m2

0 = 1, χ0 = ∞.

Magnetization: m = −∂f/∂B Specific Heat: CH = −T∂2f/∂T 2

Fig. F.1. The magnetization and specific heat in the one-dimensional Ising model

The spin correlation function can also be expressed using the transfer
matrix and computed:

⟨σkσl⟩N ≡ 1
ZN

∑

{σi=± 1}

e−βHσkσl

=
1

ZN

∑

{σi=± 1}

Tσ1σ2 . . . Tσk−1σkσkTσkσk+1 . . . Tσl−1σl

× σlTσlσl+1 . . . TσN−1σ1

=
1

ZN

∑

±
⟨χ± | T kτzT l−kτzT N−l |χ± ⟩

= Z−1
N Tr (τzT l−kτzT N−l+k) , τz ≡

(
1 0
0 −1

)
, l ≥ k .

(F.10)

To distinguish them from σi = ±1, the Pauli matrices are denoted here by
τx,y,z. The trace in the last line of (F.10) refers to the sum of the two diagonal
matrix elements in the Pauli spinor states χ± . Further evaluation is carried
out by diagonalizing T :

Γ T Γ−1 =
(

λ1 0
0 λ2

)
≡ Λ , where Γ =

1√
2

(
1 1
−1 1

)
.
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With

Γ τz Γ−1 = −
(

0 1
1 0

)
≡ −τx ,

it follows from (F.10) that

⟨σkσl⟩N = Z−1
N Tr(τxΛl−k τxΛN−l+k)

and thus for l − k ≪ N in the thermodynamic limit N → ∞ we obtain the
final result

⟨σkσl⟩ =
(

λ2

λ1

)l−k

. (F.11)

For T > 0, λ2 < λ1, i.e. ⟨σkσl⟩ decreases with increasing distance l − k. For
T → 0, λ1 → λ2 (asymptotic degeneracy), so that the correlation length
ξ → ∞.

By means of the transfer matrix method, the one-dimensional Ising model
is mapped onto a zero-dimensional quantum system (one single spin). The
two-dimensional Ising model is mapped onto a one-dimensional quantum sys-
tem. Since it is possible to diagonalize the Hamiltonian of the latter, the
two-dimensional Ising model can in this way be solved exactly.

G. Integrals Containing the Maxwell Distribution

f0(v) = n
( m

2πkT

)3/2
e−

mv2
2kT (G.1a)

∫
d3v f0(v) = n (G.1b)

∫
d3v

(
mv2

2

)s

f0(v) = n
( m

2πkT

)3/2
(
− ∂

∂(1/kT )

)s ∫
d3v e−

mv2
2kT

︸ ︷︷ ︸
( π

m/2kT )3/2

= n(kT )s 3
2

5
2
· · · 1 + 2s

2
s = 1, 2, . . .

(G.1c)

∫
d3v

mv2

2
f0(v) =

3
2
nkT (G.1d)

∫
d3v

(
mv2

2

)2

f0(v) =
15
4

n(kT )2 (G.1e)

∫
d3v

(
mv2

2

)3

f0(v) =
105
8

n(kT )3 (G.1f)
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∫
d3v vkvivjvlf

0(v) = λ
(
δkiδjl + δkjδil + δklδij

)
, λ =

kT

m
(G.1g)

Eq. (G.1g) can be demonstrated by first noting that the result necessarily
has the form given and then taking the sum

∑
k=i

∑
j=l: comparison with

(G.1e) leads using
∫

d3v
(
v2

)2
f0(v) = 15λ to the result λ = kT

m .

H. Hydrodynamics

In the appendix, we consider the microscopic derivation of the linear hydro-
dynamic equations. The hydrodynamic equations determine the behavior of
a system at low frequencies or over long times. They are therefore the equa-
tions of motion of the conserved quantities and of variables which are related
to a broken continuous symmetry. Nonconserved quantities relax quickly to
their local equilibrium values determined by the conserved quantities. The
conserved quantities (energy, density, magnetization...) can exhibit a time
variation only by flowing from one spatial region to another. This means
that the equations of motion of conserved quantities E(x) typically have the
form Ė(x) = −∇jE(x). The gradient which occurs here already indicates
that the characteristic rate (frequency, decay rate) for the conserved quan-
tities is proportional to the wavenumber q. Since jE can be proportional to
conserved quantities or to gradients of conserved quantities, hydrodynamic
variables exhibit a characteristic rate ∼ qκ, i.e. a power of the wavenumber q,
where in general κ = 1, 2. In the case of a broken continuous symmetry there
are additional hydrodynamic variables. Thus, in an isotropic antiferromag-
net, the alternating (staggered) magnetization N is not conserved. In the
ordered phase, its average value is finite and may be oriented in an arbi-
trary direction in space. Therefore, it costs no energy to rotate the staggered
magnetization. This means that microscopic variables which represent fluc-
tuations transverse to the staggered magnetization likewise belong to the set
of hydrodynamic variables, Fig. H.1.

Fig. H.1. Conserved
quantities and broken-
symmetry variables: (a)
the energy density E(x)
and (b) the alternating
(staggered) magnetization
N(x) in an isotropic or
planar antiferromagnet
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H.1 Hydrodynamic Equations, Phenomenological Discussion

In order to gain some insight into the structure of the hydrodynamic equa-
tions, we first want to consider a simple example: the hydrodynamics of a
ferromagnet, for which only the magnetization density is conserved. The mag-
netization density M(x) obeys the equation of continuity

Ṁ(x) = −∇jM (x) . (H.1)

Here, jM is the magnetization current density. This becomes larger the greater
the difference between magnetic fields at different positions in the material.
From this fact, we obtain the phenomenological relation

jM (x) = −λ∇H(x) , (H.2)

where λ is the magnetization conductivity. The local magnetic field depends
on the magnetization density via the relation

H(x) =
1
χ

M(x) , (H.3)

in which the magnetic susceptibility χ enters. Inserting (H.3) into (H.2) and
the latter into (H.1), one finds the diffusion equation

Ṁ(x, t) = D∇2M(x, t) , (H.4)

where the magnetization diffusion constant is defined by

D =
λ

χ
.

To solve (H.4), it is expedient to apply a spatial Fourier transform; then the
diffusion equation (H.4) takes on the form

Ṁq = −Dq2Mq , (H.5)

with the obvious result

Mq(t) = e−Dq2tMq(0) . (H.6)

The diffusive relaxation rate Dq2 decreases as the wavenumber becomes
smaller. For several variables Xc

q, whose deviations from equilibrium are de-
noted by δ

〈
Xc

q

〉
, the hydrodynamic equations have the general form

∂

∂t
δ
〈
Xc

q

〉
+ M cc′(q) δ

〈
Xc′

q

〉
= 0 . (H.7)

Here, M cc′(q) is a matrix which vanishes as q → 0. For the hydrodynamics
of liquids, we recall Eq. (9.4.46a–c).
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H.2 The Kubo Relaxation Function

In linear response theory14, one investigates the effects of an external force
F (t) which couples to the operator B. The Hamiltonian then contains the
additional term

H ′(t) = −F (t)B . (H.8)

For the change of the expectation value of an operator A with respect to its
equilibrium value, one obtains to first order in F (t)

δ⟨A(t)⟩ =
∫ ∞

−∞
dt′χAB(t − t′)F (t′) (H.9)

with the dynamic susceptibility

χAB(t − t′) =
i
!Θ(t − t′)⟨[A(t), B(t′)]⟩ . (H.10)

Its Fourier transform reads

χAB(ω) =
∫ ∞

−∞
dteiωtχAB(t) . (H.11)

We now consider a perturbation which is slowly switched on and then
again switched off at the time t = 0: F (t) = eϵtΘ(−t)F . One then finds from
(H.9)

δ⟨A(t)⟩ =
∫ ∞

−∞
dt′χAB(t − t′)FΘ(−t′)eϵt′

=
∫ ∞

t
duχAB(u)F eϵ(t−u) , (H.12)

where the substitution t − t′ = u has been employed. The decay of the
perturbation for t > 0 is thus described by

δ⟨A(t)⟩ = φAB(t)F eϵt , (H.13)

where15 the Kubo relaxation function φAB(t) is defined by

φAB(t) ≡ i
!

∫ ∞

t
dt′⟨[A(t′), B(0)]⟩e−ϵt′ . (H.14)

Its half-range Fourier transform is given by

φAB(ω) ≡
∫ ∞

0
dt eiωtφAB(t) . (H.15)

14 QM II, Sect. 4.3
15 The factor eϵt is of no importance in (H.13), since φAB(t) relaxes faster.
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The Kubo relaxation function has the following properties:

φAB(t = 0) = χAB(ω = 0) , (H.16)

φ̇AB(t) = −χAB(t) for t > 0 , (H.17)

φAB(ω) =
1
iω

(
χAB(ω) − χAB(ω = 0)

)
. (H.18)

Eq. (H.16) follows from the comparison with the Fourier transformed
dynamical susceptibility, Eq. (H.11). The second relation is obtained imme-
diately by taking the derivative of (H.14). The third relation can be obtained
by half-range Fourier transformation of (H.17)

−
∫ ∞

0
dt eiωtχAB(t) =

∫ ∞

0
dt eiωtφ̇AB(t)

= eiωtφAB(t)
∣∣∞
0

− iω
∫ ∞

0
dt eiωtφAB(t) = φAB(t = 0) − iωφAB(ω)

and application of φAB(t = ∞) = 0, (H.16) and
∫ ∞

0
dt eiωtχAB(t) =

∫ ∞

−∞
dt eiωtχAB(t) = χAB(ω) .

Further, one can show for t ≥ 0 that

φȦB(t) =
∫ ∞

t
dt′

i
!

〈[
Ȧ(t′), B(0)

]〉
e−ϵt′ = − i

!
〈[

A(t), B(0)
]〉

= −χAB(t) ,

i.e.

φȦB(ω) = −χAB(ω) (H.19)

and, together with (H.18),

ωφAB(ω) = iφȦB(ω) + iχAB(ω = 0) . (H.20)

Later, we will also require the identity

χȦB†(ω = 0) =
i
!

∫ ∞

0
dt′

〈[
Ȧ(t′), B(0)†

]〉
= − i

!
〈[

A(0), B(0)†
]〉

, (H.21)

which follows from the Fourier transform of (H.10) and the fact that the
expectation value

〈
[A(∞), B(0)†]

〉
vanishes.
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H.3 The Microscopic Derivation of the Hydrodynamic
Equations

H.31 Hydrodynamic Equations and Relaxation

We introduce the following notation here:

X i(x, t) i = 1, 2, . . . densities (Hermitian)

X i
q(t) =

1√
V

∫
d3x e−iqxX i(x, t) Fourier transforms (H.22a)

X i(x, t) =
1√
V

∑

q

eiqxX i
q(t) , X i†

q = X i
−q (H.22b)

χij(q, t) ≡ χXi
q,Xj

−q
(t) etc.

Conserved densities are denoted by indices c, c′, ... etc. and nonconserved
densities by n, n′, ....

We now consider a perturbation which acts on the conserved densities.
At t = 0, it is switched off, so that the perturbation Hamiltonian takes on
the form

H ′ = −
∫

d3xXc(x, t)Kc(x)Θ(−t)eϵt = −
∑

q

Xc
−q(t)Kc

qΘ(−t)eϵt

and leads according to Eq. (H.13) to the following changes in the conserved
quantities for t > 0:

δ
〈
Xc

q(t)
〉

= φcc′(q, t)Kc′

q eϵt . (H.23)

The decay of the perturbation is determined by the relaxation function.
The situation considered here is, on the other hand, also described by the

hydrodynamic equations (H.7)

{
δcc′ ∂

∂t
+ M cc′(q)

}
δ
〈
Xc′

q (t)
〉

= 0 . (H.24a)

If we insert Eq. (H.23) into (H.24a), we obtain

{
δcc′ ∂

∂t
+ M cc′(q)

}
φc′c′′(q, t)Kc′′

q = 0 .

Since this equation is valid for arbitrary Kc′′
q , it follows that

{
δcc′ ∂

∂t
+ M cc′(q)

}
φc′c′′(q, t) = 0 . (H.24b)

From this, we find φc′c′′(q, ω) by taking the half-range Fourier transform
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∫ ∞

0
dt eiωt

{
δcc′ ∂

∂t
+ M cc′(q

}
φc′c′′(q, t) = 0

and carrying out an integration by parts, i.e.

−φcc′′(q, t = 0) +
{
− iωδcc′ + M cc′(q)

}
φc′c′′(q, ω) = 0 .

Using (H.16), we obtain finally
{
− iωδcc′ + M cc′(q)

}
φc′c′′(q, ω) = χcc′′(q) . (H.24c)

Therefore, the relaxation functions φcc′(q, ω) and thus the dynamic response
functions are obtained from hydrodynamics for small q and ω.

If, conversely, we can determine φcc′(q, ω) for small q and ω from a micro-
scopic theory, we can then read off the hydrodynamic equations by comparing
with (H.24a) and (H.24c).

We consider an arbitrary many-body system (liquid, ferromagnet, antifer-
romagnet, etc.) and divide up the complete set of operators X i

q into conserved
quantities Xc

q and nonconserved quantities Xn
q . Our strategy is to find equa-

tions of motion for the Xc
q, where the forces are decomposed into a part which

is proportional to the Xc
q and a part which is proportional to the Xn

q . The
latter fluctuate rapidly and will lead after its elimination to damping terms
in the equations of motion, which then contain only the Xc

q.
In order to visualize this decomposition in a clear way, it is expedient to

choose the operators in such a manner that they are orthogonal. To do this,
we must first define the scalar product of two operators A and B:

⟨A|B⟩ = χA,B†(ω = 0) . (H.25)

Remark: one can readily convince oneself that this definition fulfills the properties
of a scalar product:

⟨A|B⟩∗ = ⟨B|A⟩
⟨c1A1 + c2A2|B⟩ = c1 ⟨A1|B⟩ + c2 ⟨A2|B⟩

⟨A|A⟩ is real and ⟨A|A⟩ ≥0 (0 only for A ≡ 0) .

We now choose our operators to be orthonormalized:
〈
X i

q|Xj
q

〉
= χij(q, ω = 0) = δij . (H.26)

To construct these operators, one uses the Schmidt orthonormalization pro-
cedure.
The Heisenberg equations of motion Ẋc

q = i
! [H, Xc

q] etc. can now be written
in the form

Ẋc
q = −iCcc′(q)Xc′

q − iCcn(q)Xn
q (H.27a)

Ẋn
q = −iCnc(q)Xc

q − iDnn′
(q)Xn′

q . (H.27b)
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Here, the derivatives Ẋc
q and Ẋn

q were projected onto Xc′
q and Xn′

q . If we
take e.g. the scalar product of Ẋc

q with Xc′
q , we find using Eq. (H.21)

〈
Ẋc

q

∣∣Xc′

q

〉
≡ −iCcc′(q) = − i

!
〈
[Xc

q, Xc′†
q ]

〉
.

That is:

Ccc′(q) =
1
!
〈
[Xc

q, Xc′†
q ]

〉
, (H.28a)

and analogously

Ccn(q) =
1
!
〈
[Xc

q, Xn†
q ]

〉
, Dnn′

(q) =
1
!
〈
[Xn

q , Xn′†
q ]

〉
. (H.28)

These coefficients obey the following symmetry relations:

Ccc′∗(q) = Cc′c(q) , Cnc∗(q) = Ccn(q) , Dnn′∗(q) = Dn′n(q) . (H.29)

It thus follows from (H.20) that

ωφcc′(q, ω) = Ccc′′(q)φc′′c′(q, ω) + Ccn(q)φnc′(q, ω) + iδcc′

ωφnc(q, ω) = Cnc′(q)φc′c(q, ω) + Dnn′
(q)φn′c(q, ω)

ωφnn′
(q, ω) = Cnc(q)φcn′

(q, ω) + Dnn′′
(q)φn′′n′

(q, ω) + iδnn′

ωφcn(q, ω) = Ccc′(q)φc′n(q, ω) + Ccn′
(q)φn′n(q, ω) .

(H.30)

From (H.30b) we read off the result

φnc(q, ω) = (ω11 − D(q))−1
nn′Cn′c′(q)φc′c(q, ω) ; (H.31)

then inserting (H.31) into (H.30a) leads to
[
ωδcc′ − Ccc′(q) − Ccn(q)

(
1

ω11 − D(q)

)

nn′
Cn′c′(q)

]
φc′c′′(q, ω)

= iδcc′′ . (H.32)

For the conserved quantities, the coefficients Ccc′(q) and Ccn(q) vanish in
the limit q → 0. Therefore, in the limit of small q, we find

i
(
Ccc′(q)Xc′

q + Ccn(q)Xn
q

)
= iqαjc

α(q) . (H.33)

We define also the nonconserved part of the current density

Ccn(q)Xn
q = qαj̃c

α(q) . (H.34)

In contrast to (H.33) and (H.34), the Dnn′(q) remain finite in the limit q → 0.
For the behavior at long wavelengths (q → 0), we can therefore take 1

ω11−D
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in the limit ω,q → 0, whereby due to the finiteness of D(q), we can expect
that

lim
ω→0

lim
q→0

1
ω11 − D(q)

= lim
q→0

lim
ω→0

1
ω11 − D(q)

. (H.35)

In the limit q → 0, we can find a relation between 1
ω11−D

from Eq. (H.30c)
and a correlation function. Owing to limq→0 Cnc(q) = 0, it follows from
(H.30c), with the abbreviation D ≡ limq→0 D(q), that

(
ω11 − D

)nn′′

lim
q→0

φn′′n′
(q, ω) = iδnn′

or
(

1
ω11 − D

)

nn′
= −i lim

q→0
φnn′

(q, ω) . (H.36)

Inserting this into (H.32) and taking the the double limits, we obtain
(

ωδcc′ − Ccc′(q) + iCcn(q)
(

lim
ω→0

lim
q→0

φnn′
(q, ω)

)
Cn′c′(q)

)
φc′c′′(q, ω)

= iδcc′′ ,

i.e. finally:
(
ωδcc′ − Ccc′(q) + iqαqβΓ cc′

αβ

)
φc′c′′(q, ω) = iδcc′′ , (H.37)

with the damping coefficients

Γ cc′

αβ ≡ lim
ω→0

lim
q→0

φj̃c
α j̃c′

β
(q, ω) . (H.38)

Here, the sums over n and n′ were combined into the nonconserved current
densities defined in Eq. (H.34).

When the system exhibits symmetry under reflection, rotation, etc., the
number of nonvanishing coefficients Γ cc′

αβ can be reduced. We assume that for
the remaining functions φj̃c

α j̃c′
β

, the operators jc and jc′ have the same sig-
nature16 under time reversal: ϵjc = ϵjc′ . Applying (H.18) and the dispersion
relations17 , one obtains

φ(ω) = − i
ω

(
χ′(ω) − χ(0)

)
+

χ′′(ω)
ω

= − i
π

P
∫

dω′ χ′′(ω′)
(ω′ − ω)ω′ +

χ′′(ω)
ω︸ ︷︷ ︸

1−e−β!ω

2!ω G>(ω)

, (H.39)

16 QM II, Sect. 4.8.2.2
17 QM II, Sect. 4.4
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which, owing to the fluctuation-dissipation theorem18 and the antisymmetry
of χ′′(ω), finally leads to limω→0 φ(ω) = limω→0

β
2 G>(ω) and

Γ cc′

αβ =
1

2kT
lim
ω→0

lim
q→0

∫ ∞

−∞
dt eiωt

〈
j̃c
αq(t)j̃c′

β−q(0)
〉

. (H.40)

This is the Kubo formula for the transport coefficients, expressed in terms
of current-current correlation functions. Without taking up their straightfor-
ward proofs, we mention the following symmetry properties:

Γ cc′∗
αβ = Γ c′c

βα , Γ cc
αα > 0 , Γ cc′

αβ = Γ c′c
βα real. (H.41)

In summary, one can read off the following linear hydrodynamic equations by
comparison with Eqns. (H.24c) and (H.24a):

[
∂

∂t
δcc′ + iCcc′(q) + qαqβΓ cc′

αβ

]
δ
〈
Xc′

q (t)
〉

= 0 , (H.42a)

Ccc′(q) =
1
!
〈
[Xc

q, Xc′

−q]
〉

, (H.42b)

Γ cc′(q) =
1

4kT
lim
ω→0

lim
q→0

∫ ∞

−∞
dt eiωt

〈{
jc
q(t), jc′

−q(0)
}〉

. (H.42c)

The elements of the frequency matrix Ccc′(q) ∼ q (or q2) are functions of
expectation values of the conserved quantities and the order parameters and
susceptibilities of these quantities. They determine the periodic, reversible
behavior of the dynamics. For example, for a ferromagnet, the spinwave
frequency (H.42b)follows from ω(q) = M

χT
q

∝ q2, where M is the magneti-
zation and χT

q ∝ q−2 the transverse susceptibility. The damping terms re-
sult from the elimination of the nonconserved degrees of freedom. They can
be expressed via Kubo formulas for the current densities. For the deriva-
tion it was important that the nonconserved quantities have a much shorter
time scale than the conserved quantities, which also permits taking the limit
limω→0 limq→0. We note the similarity of this procedure to that used in the
case of the linearized Boltzmann equation (Sect. 9.4). The present deriva-
tion is more general, since no constraints were placed on the density or the
strength of the interactions of the many-body system.

Literature:
H. Mori, Prog. Theor. Phys. (Kyoto) 33, 423 (1965); 34, 399 (1965); 28, 763 (1962)
F. Schwabl and K.H. Michel, Phys. Rev. B2, 189 (1970)
K. Kawasaki, Ann. Phys. (N.Y.) 61, 1 (1970)

18 QM II, Sect. 4.6
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I. Units and Tables

In this Appendix we give the definitions of units and constants which are used in
connection with thermodynamics. We also refer to the Table on page 562.

Conversion Factors
1 eV = 1.60219 ×10−19 J
1 N = 105 dyn
1 J = 1 ×107 erg

1 C = 2.997925 ×109 esu = 2.997925 ×109
p

dyn cm2

1 K =
∧ 0.86171 ×10−4 eV

1 eV =
∧ 2.4180 ×1014 Hz =

∧ 1.2399 ×10−4 cm
1 T = 104 Gauss (G)
1 Å = 10−8 cm

1 sec ≡ 1 s

Pressure
1 bar = 106dyn/cm2 = 105N/m2 = 105Pa

1 Torr = 1 mm Hg

Physical Atmosphere:

1 atm = air pressure at 760 mm Hg ≡ 760 Torr = 1.01325 bar

This relation between Torr and bar follows from the mass density of mercury ρHg =
13.5951g cm−3 at 1◦C and the acceleration of gravity g = 9.80655 ×102cm s−2.
Technical Atmosphere:

1 at = 1 kp/cm2 = 0.980655 bar

Temperature

The absolute temperature scale was defined in Sect. 3.4 using Tt = 273.16 K, the
triple point of H2O.

The zero point of the Celsius scale 0◦C lies at 273.15 K. Thus in this scale,
absolute zero is at −273.15◦C. With this definition, the equilibrium temperature of
ice and water saturated with air under a pressure of 760 mm Hg ≡ 1 atm is equal
to 0◦C.

Table I.1. Fixed points of the international temperature scale:

0◦C ice point of water
100◦C equilibrium temperature of water and water vapor

−182.970◦C boiling point of oxygen
444.600◦C boiling point of sulfur

960.8◦C solidification point of silver
1063.0◦C solidification point of gold
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For a comparative characterization of materials, their properties are quoted at
standard temperatures and pressures. In the physics literature, these are 0◦C and
1 atm, and in the technical literature, they are 20◦C and 1 at.
Physical Standard State ≡ standard pressure (1 atm) and standard temperature
(0◦C).
Technical Standard State ≡ 1 at and 20◦C.
Density of H2 at Tt and P = 1 atm:

ρ = 8.989 ×10−2g/Liter = 8.989 ×10−5g cm−3 .

Molar volume under these conditions:

VM =
2.016 g

8.989 ×10−2 g Liter−1 = 22.414 Liter

„
=
∧ 22.414

Liter
mole

«
.

1 mole =
∧ atomic weight in g (e.g. one mole of H2 corresponds to a mass of 2.016 g).

k =
PV
NT

=
1atm VM

L ×273.16 K
= 1.38065 ×10−16erg/K .

Loschmidt’s number ≡ Avogadro’s number:

L ≡ NA = number of molecules per mole

=
2.016 g

mass H2
=

2.016
2 ×1.6734 ×10−24

= 6.02213 ×1023 .

Energy

The unit calorie (cal) is defined by

1 cal = 4.1840 ×107 erg = 4.1840 Joule .

A kilocalorie is denoted by Cal (large calorie). With the previous definition, 1 Cal
up to the fourth place past the decimal point has the meaning

1 Cal ≡ 1 kcal ≡ 1000 cal

= the quantity of heat which is required to warm 1 kg H2O at 1 atm from 14.5 to
15.5◦C19.

1 J = 1 Nm = 107 dyn cm = 107 erg .

Power

1 W = 1 VA = 1 J s−1 = 107 erg s−1

1 HP = 75 kp m s−1 = 75 ×9.80665 ×105dyn m s−1 = 735.498 W .

The universal gas constant R is defined via Loschmidt’s/Avogadro’s number by

R = NAk = 8.3145 ×107 erg mol−1K−1 .

Using the gas constant R, one can write the equation of state of the ideal gas in
the form

PV = nRT , (I.1)

where n is the amount of matter in moles (mole number).

19 Note that the nutritional values of foods are quoted either in kJ or in kilocalories.
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We close this section with some numerical values of thermodynamic quantities.
Table I.2, below, gives values of specific heats (CP ).

As can be seen, the specific heat of water is particularly large. This fact plays
an important role in the thermal balance of Nature. Water must take up or release
a large quantity of heat in order to change its temperature noticeably. Therefore,
the water of the oceans remains cool for a relatively long time in Spring and warm
for a relatively long time in Autumn. It therefore acts in coastal regions to reduce
the annual temperature fluctuations. This is an essential reason for the typical
difference between a coastal climate and a continental climate.

Table I.2. The Specific Heat of Some Materials under Standard Conditions

Specific heat C Molecular Molar
weight heat capacity

[cal K−1 g−1] [cal K−1 mole−1]

Aluminum 0.214 27.1 5.80
Iron 0.111 55.84 6.29
Nickel 0.106 58.68 6.22
Copper 0.091 63.57 5.78
Silver 0.055 107.88 5.93
Antimony 0.050 120.2 6.00
Platinum 0.032 195.2 6.25
Gold 0.031 197.2 6.12
Lead 0.031 207.2 6.42
Glass 0.19 — —
Quartz Glass 0.174 — —
Diamond 0.12 — —
Water 1.00 — —
Ethanol 0.58 — —
Carbon Disulfide 0.24 — —

Table I.3. Expansion Coefficients of Some Solid and Liquid Materials in K−1

linear volume

Lead 0.0000292 Diamond 0.0000013 Ethanol 0.0011
Iron 120 Graphite 080 Ether 163
Copper 165 Glass 081 Mercury 018
Platinum 090 Quartz Crystal ⊥axis 144 Water 018
Invar (64Fe+36Ni) 016 Quartz Crystal ∥ axis 080

Quartz Glass 005

The linear expansion coefficient αl is related to the volume or cubic expansion
coefficient in (3.2.4) via

α = 3αl .

This follows for a rectangular prism from V + ∆V = (a + ∆a)(b + ∆b)(c + ∆c) =
abc
`
1 + ∆a

a + ∆b
b + ∆c

c

´
+ O(∆2), thus ∆V

V = 3∆a
a under the assumption of
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isotropic thermal expansion as found in isotropic materials (liquids, amorphous
substances) and cubic crystals.

Table I.4. Some Data for Gases: Boiling Point (at 760 Torr), Critical Temperature,
Coefficients in the van der Waals Equation, Inversion Temperature

Gas
Boiling point

in K Tc[K] a
h
atm cm6

mole2

i
b
h

cm3

mole

i
Tinv = 27

4 Tc[K]

He 4.22 5.19 0.0335×106 23.5 35
H2 20.4 33.2 0.246 ×106 26.7 224
N2 77.3 126.0 1.345 ×106 38.6 850
O2 90.1 154.3 1.36 ×106 31.9 1040
CO2 194.7 304.1 3.6 ×106 42.7 2050

Table I.5. Pressure Dependence
of the Boiling Point of Water

Pressure Boiling Point
in Torr in ◦C

720 98.49
730 98.89
740 99.26
750 99.63
760 100.00
770 100.37
780 100.73
790 101.09
800 101.44

Table I.6. Heats of Vaporiza-
tion of Some Materials in cal ·g−1

Ethyl Alcohol 202
Ammonia 321
Ether 80
Chlorine, Cl2 62
Mercury 68
Oxygen, O2 51
Nitrogen, N2 48
Carbon Disulfide 85
Water 539.2
Hydrogen, H2 110

Table I.7. Heats of Melting of Some Materials in cal · g−1

Aluminum 94 Silver 26.0
Lead 5.5 Table Salt 124
Gold 15.9 Water (Ice) 79.5
Copper 49
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Table I.8. Vapor Pressure of
Water (Ice) in Torr

−60◦C 0.007
−40◦C 0.093
−20◦C 0.77
+0◦C 4.6

+20◦C 17.5
+40◦C 55.3
+60◦C 149.4
+80◦C 355.1

+100◦C 760.0
+200◦C 11665,0

Table I.9. Vapor Pressure of Iodine in
Torr

−48.3◦C 0.00005
−32.3◦C 0.00052
−20.9◦C 0.0025

0◦C 0.029
15◦C 0.131
30◦C 0.469
80◦C 15.9

114.5◦C 90.0 (melting point)
185.3◦C 760.0 (boiling point)

Table I.10. Freezing Mixtures and Other Eutectics

Constituents Eutectic
with Melting Points Temperature in ◦C Concentration

NH4Cl Ice (0) -15.4
NaCl Ice (0) -21 29/71 NaCl
Alcohol Ice (0) -30
CaCl2·6H2O Ice (0) -55
Alcohol CO2(-56) -72
Ether CO2(-56) -77
Sn (232) Pb (327) 183 74/26
Au (1063) Si (1404) 370 69/31
Au (1063) Tl (850) 131 27/73
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Subject Index

absolute temperature, 91
absolute zero, 513
acoustic resonances, 466
activation energy, 425
adiabatic change, 515
adiabatic equation, 102
– of the ideal quantum gas, 174
allotropy, 520
ammonia synthesis, 155
amplitude ratios, 372
anharmonic effects, 211
antiferromagnet, 336, 337, 548
antiferromagnetism, 287–288
Arrhenius law, 425
atmosphere, 167
average value, 65
average-potential approximation, 244
Avogadro’s number, 92, 558

background radiation, 203, 508
barometric pressure formula, 53, 72,

414
barrier, see reaction rates
BBGKY hierarchy, 442
Bernoulli numbers, 228, 537
Bethe lattice, 393–398
– percolation threshold, 394
Bethe–Peierls approximation, 327
binary alloys, 517
black body, 203
black holes, 188, 508
black-body radiation, 198, 203
Bloch equations, 429
– in the ferromagnetic phase, 435
block-spin transformation, 359, 360
Bohr magneton, 269
Bohr–van Leeuwen theorem, 276
boiling boundary, 133
boiling point
– numerical values for some materials,

560

boiling-point elevation, 263, 265
Boltzmann constant, 36, 92
– experimental determination of, 92,

414
Boltzmann equation, 437–475
– and irreversibility, 443, 445, 505
– derivation of, 438–443
– linearized, 455–468
– symmetry properties of, 440, 444,

476
Boltzmann’s entropy, 480, 498–499
– in the urn model, 512
bond percolation, 389
Bose distribution function, 171
Bose–Einstein condensation, 190–197,

223
Bose–Einstein statistics, 170
bosons, 170
– second virial coefficient, 532
Bravais crystal, 208
Brillouin function, 281
Brownian motion, 409–410
– in a force field, 414
– in the limit of strong damping, 414
– microscopic model of, 484–490, 510
– of a sphere in a liquid, 414
bubble point line, 165
Buckingham potential, 240
bulk viscosity, 465, 477

canonical momentum, 269
canonical variables, 80
Carnot cycle, 126, 162
– efficiency of, 127
– inverse, 127
catalyst, 154
cavity radiation, 198, 203
Cayley tree, see Bethe lattice
central limit theorem, 7, 9
characteristic function, 5
chemical constants, 152, 235



566 Subject Index

chemical potential, 45, 64
– of a photon gas, 205
– of an ideal Bose gas, 195
– of an ideal Fermi gas, 182
chemical reactions, 150–155, 422–425
– rates of , see reaction rates
circuit, electrical, 434
classical limit of quantum statistics,

521–526
Clausius principle, 105
Clausius’ equation of state, 247
Clausius–Clapeyron equation, 134–139,

163, 323
cluster, 388
cluster number, 391
cluster radius, 399
coefficient of expansion (thermal), 84,

213
coefficients
– stoichiometric, 150
coexistence curve
– in the van der Waals theory, 253,

256
coexistence region, 131, 298, 376
– in the van der Waals theory, 250
coexistence singularities, 376
collective degrees of freedom, 425
collective density excitations, 215
collision duration, 437
collision operator
– linear, 457
– – eigenfunctions of, 458, 468
collision term, 439, 468, 478
– linearized, 456
collision time, 410, 437, 462, 476
collisional invariants, 448–449, 457, 458
components, 130
compressibility, 83, 88
– adiabatic, 83, 454
– and particle-number fluctuations, 90
– in the van der Waals theory, 254
– isentropic, 83
– isothermal, 83, 88, 90, 467
– – at absolute zero, 515
compression
– adiabatic, 126
– isothermal, 126
compressional viscosity, see bulk

viscosity, 477
concentration, 257
condensation boundary, 133
conditions for equilibrium, 122

configuration-space transformations,
346

conservation
– of energy, 450
– of momentum, 450
– of particle number, 450
conserved quantities, 26, 553
– in the Boltzmann equation, 447–451
constraints, 97, 105, 494
continuous symmetry, 373
continuum percolation, 388
cooling efficiency, 128
correlation function, 300–301, 306–307,

367, 370
– longitudinal, 371, 375, 377, 407, 408
– Ornstein–Zernike, 303
– radial, 393
– transverse, 371–374
correlation length, 302, 307, 339, 367,

390, 399
– critical exponent of, 401
correlation time, 410
correlations, 6, 304
corresponding states, law of, 251
Coulomb interaction, 184
coupling coefficients, see coupling

constants
coupling constants, 345, 346, 348,

351
critical dimension, 373, 385
critical dynamics, 425–429, 468
critical exponent
– dynamic, see dynamic critical

exponent
critical exponents, 299, 334, 340, 354
– correlation length, 339
– dynamic exponents, 391
– for the specific heat, 334
– logarithmic divergence, 335
– of a ferromagnet, 336
– of a liquid, 336
– of the correlation function, 343
– of the van der Waals theory, 255
– scaling laws, 341, 344
– – hyperscaling relation, 344
– scaling relations, 343
– tables, 255, 336, 387
critical isotherm, 336
– in the van der Waals theory, 254
critical opalescence, 255, 304, 343, 468
critical phenomena, 331
critical point, 132, 332, 334, 426
– in the van der Waals theory, 251–257



Subject Index 567

critical slowing down, 428
critical temperature
– numerical values for some materials,

560
crossover, 386, 405
cumulant, 8, 244, 377
Curie law, 282
Curie temperature, 287, 292
Curie–Weiss law, 294
current density, 444
cyclic process, 107, 125–130
– Carnot, 126, 161
– Diesel, 162
– general, 128
– Joule, 162
– Stirling, 163

damping, 414, 461, 489
– see also friction
– by a bath of harmonic oscillators,

484, 510
damping coefficient (hydrodynamic),

555
damping term, 464
de Haas–van Alphen oscillation, 287
Debye approximation, 210
Debye frequency, 211
Debye’s law, 210
decimation procedure, 349
decimation transformation, 346, 356,

359, 400
degree of dissociation, 153
degree of polymerization, 320
demagnetizing factor, 308
demagnetizing field, 308
demixing transition
– binary liquids, 337
density
– of normal fluid, 220
– of states, 37
– superfluid, 220
density matrix, 14, 35
– canonical, 51
– – magnetic, 271
– grand canonical, 64
– in the molecular field approximation,

291
– microcanonical, 29
density of states, 183, 209, 211, 285,

287
– of free electrons, 183
– of phonons, 209, 211
density operator, see density matrix

density-density correlation function,
467, 477

deviation
– of particle number, 90
deviation, relative, 9, 41, 42
dew formation, 160
dew point line, 165
diamagnetism, 278–279
Diesel cycle, 162
diffusion constant, 413
diffusion equation, 413, 421, 433, 549
– for temperature, 463
dilute solutions, 257–266
– chemical potential of, 258
– free enthalpy of, 260
– pressure, 257
dipole interaction, 278, 307–317
direction, 156
discrete symmetry, 338
dissipative systems, 387
distortive transition, 336, 337
distribution
– binomial, 17
– Poisson, 17
distribution function, 9, 11
– canonical, 51
– derivation from the density matrix,

521
– grand canonical, 65
– microcanonical, 27
domains, 298, 316–317, 404
dual lattice, 400
duality transformation, 400
Dulong–Petit law, 210
dynamic critical exponent, 428
dynamic susceptibility, 550

effective exponents, 386
effective mass, 186
efficiency, 129, 163
Ehrenfest’s classification, 332
Einstein relation, 411–412
elastic transition, 337
electron gas
– in solids, 185, 531
electronic energy, 227, 230
empirical temperature, 91
endothermic reaction, 156
energy
– canonical free, 271
– free, see free energy
– internal, 75, 275
– rotational, see rotational energy
– translational, see translational energy



568 Subject Index

– units, 558
– vibrational, see vibrational energy
energy conservation, 441
energy density, 447
– equation of motion for, 461
– spectral, 201
energy levels, spacing of, 3, 37
energy shell, 26
– for a spin- 1

2 paramagnet, 34
– for classical ideal gas, 30
– of harmonic oscillators, 33
– surface areaΩ (E), 27
– volume, 27
– volume inside, 29
ensemble, 3, 9
– canonical, 50–63
– grand canonical, 63–68
– microcanonical, 26–30
– – magnets, 271
– mixed, 15
– pure, 14
– table of, 67
ensemble average, 497
enthalpy, 77
– free, see free enthalpy
entropy, 35, 59
– additivity of, 60
– and Nernst’s theorem, 513–521
– Boltzmann, see Boltzmann’s entropy
– canonical, 54
– extremal property of, 36
– Gibbs, see Gibbs’ entropy
– grand canonical, 65
– in sound propagation, 454, 455
– increase of, 105, 446, 493
– maximum, 36, 37, 70, 121
– microcanonical, 37
– of a paramagnet, 283, 320
– relation to H , 443, 476
– residual entropy, 516–521
entropy balance, 508
entropy death, 507
entropy flow, 444
entropy of mixing, 115
ϵ-expansion, 382
equation of continuity, 441, 449, 453,

476
– for the particle density, 413
equation of state
– in the molecular field approximation,

295
– magnetic, 293, 339, 340, 365
– Mie–Grüneisen, 212

– of a molecular gas, 226, 234
– of ideal gas, 47
– van der Waals, 112
equilibrium
– chemical, 150
– local, see local equilibrium
– thermodynamic, 120, 150
equilibrium conditions, 120–146
equilibrium distribution function
– local, 449
equilibrium state, 26
ergodic, 497
ergodic theorem, 25, 497
Euler’s equation, 453
Euler–MacLaurin summation formula,

228
eutectic, 149
– table, 561
eutectic point, 148
evaporation curve, 130, 132
Ewald method, 314
exact (perfect) differential, 85, 87
exact differential, 86, 160
exchange
– direct, 288
– indirect, 288
exchange corrections, 176
– to the second virial coefficient, 241,

531
exchange interaction, 287–289
exothermic reaction, 156
exp-6-potential, 240
expansion
– adiabatic, 99, 126
– – Third Law, 515
– isothermal, 98, 126
expansion coefficient (thermal), 88
– at absolute zero, 515
– linear, 559
– numerical values for various

materials, 559
expansion of a gas
– and irreversibility, 97, 500
expectation value, see mean value
exponents, critical, see critical

exponents
extremal properties, 120–122, 275

Fermi
– distribution function, 171, 179
– energy, 177, 184, 221
– gas, 176–185
– – nearly degenerate, 176
– liquid, 186
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– – Landau theory of, 188
– momentum, 177
– sphere, 177
– temperature, 181, 182, 184
Fermi–Dirac statistics, 170, 278
fermions, 170, 278
– interacting, 185
ferrimagnet, 336
ferroelectric, 336
ferromagnet, 287–307, 333, 336, 361
– isotropic, 337, 429
– planar, 338
– uniaxial, 337, 338
ferromagnetism, 287–307
fields
– irrelevant, 355
– relevant, 355
fixed point, 345, 347, 352, 356, 384, 401
flow diagram, 351
flow term, 439, 456, 476
fluctuation-dissipation theorem, 556
fluctuation-response theorem, 90, 300,

326
fluctuations, 6, 312, 366
– in Gaussian approximation, 406
– of energy, 89–90
– of particle numbers, 205, 494
– time interval of large fluctuations,

494–497
Fokker–Planck equation
– for a free particle, 416–418
– – solution of, 420
– for particles in a force field, 420
– for stock-market prices, 436
fractal dimension, 399, 402
free energy, 59, 77, 274–275, 310, 311
– canonical, 272
– convexity of, 139
– Helmholtz, 272
free enthalpy, 145
– concavity of, 139
free enthalpy (Gibbs’ free energy), 78
freezing mixture, 149
– table, 561
freezing-point curve, 148
freezing-point depression, 137, 263
frequency matrix, 556
fugacity, 68, 172, 191, 237
functional integration, 415

gain processes, rate
– in the collision term of the Boltzmann

equation, 439, 473

Galilei transformation, 217
Galton board, 22
Γ space, 9
gas
– adiabatic expansion of, 95, 99
– ideal, see ideal gas
– ideal molecular gas, see ideal

molecular gas
– isothermal expansion of, 98
– real, see real gas
– reversible expansion of, 98
gas constant, 558
Gaussian approximation, 366, 372
Gaussian distribution, 23
Gaussian integral, 32
Gay-Lussac experiment, 95, 494
– irreversible, 95, 119
– reversible, 98, 99
Gibbs distribution, 64
Gibbs free energy, 78
Gibbs’ entropy, 479, 498
– time independence of, 511
Gibbs’ paradox, 27, 117, 526
Gibbs’ phase rule, 146–150
Gibbs–Duhem relation, 81, 145
– differential, 81
Gibbs-Duhem relation, 166
Ginzburg–Landau approximation,

364
Ginzburg–Landau functionals, 361
Ginzburg–Landau model
– time-dependent, 427
Ginzburg–Landau theory, 361, 404,

538–544
Ginzburg–Levanyuk temperature, 373
Goldstone modes, 406
Grüneisen constant, 212
grand canonical density matrix
– in the second quantization, 69
grand canonical potential, 146
grand partition function, 64
– of an ideal quantum gas
– – in the second quantization, 172
– of the ideal quantum gas, 170
grand potential, 65, 78
– of the ideal quantum gas, 169, 171
gravitational instability, 508, 509
growth processes, 387
gyromagnetic ratio, 270

H-theorem, 443–446, 480
Hamiltonian, 11
– of the dipole interaction, 307, 314
– of the exchange interaction, 288
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Hamiltonian equations of motion, 11
Hamiltonian operator, 11
hard core potential, 239
harmonic oscillators, 9, 325, 433, 481,

484
– non-coupled quantum-mechanical,

33, 48
heat, 60, 61, 76
– latent, see latent heat
heat bath, 50
heat capacity, 82, 88
– see also specific heat
– at absolute zero, 515
heat conductivity, 433, 463, 477
heat current density, 450, 463
heat death, 507
heat diffusion, 463, 466, 467
heat input, 76
heat of melting, 265
– numerical values for some materials,

560
heat of reaction, 153, 156
heat of vaporization
– numerical values for some materials,

560
heat pump, 126
heat transfer, 62
heating
– of a room, 117
heating efficiency, 128
Heisenberg model, 288, 328
– anisotropic, ferromagnetic, 337
– at absolute zero, 520
– isotropic, 337, 338
helical phases, 336
3He, 137, 186, 187
– melting curve, 323, 324
– phase diagram of, 186
4He, 187, 196, 213–221
– phase diagram of, 196
He I–He II transition, 337
He II, 213–221
– excitation spectrum of, 214
– quasiparticles in, 213
Helmholtz free energy, 77, 272, 296
Hertzsprung–Russell diagram, 188
high-temperature fixed point, 352
Holstein–Primakoff transformation, 328
homogeneous function, 397, 404
Hubbard model, 224, 289
Hubbard–Stratonovich transformation,

407
Hund’s rules, 278

hydrodynamic equations, 460–468
– microscopic derivation of, 490,

552–556
– phenomenological discussion of, 549
– solution of, 466–468
hydrodynamic limit, 460–466
hydrodynamic variables, 460
hydrodynamics, 425, 451, 548–556
– of a ferromagnet, 549, 556
hydrogen bonds, 406, 518
hydrogen in metals, 262
hydrogen-oxygen reaction, 153
hyperscaling relation, 344
hypersphere, 32
hysteresis behavior
– in a first-order phase transition, 405

ice, 136, 517–519
– regelation of, 137
ideal gas, 39, 46–48, 558
– caloric equation of state of, 46, 558
– classical, 30, 67, 89, 437
– thermal equation of state of, 47
ideal gases
– reactions of, 152
ideal molecular gas, 225–236
– chemical potential of, 226
– free energy, 226
– influence of the nuclear spin, 232–233
– internal energy of, 226
– mixtures of, 234–236
ideal quantum gas, 169–221
– classial limit, 175
– of free particles, 173
integrability conditions, 84, 86
internal combustion engine, 125
internal degree of freedom, 225, 226
internal field, 314
inversion, 323
inversion curve, 111, 112, 266
irreversibility, 97, 443–446, 479–509
– and time reversal, 500–509
– and external perturbations, 503
– from microscopic equations of motion

in the limit of infinitely many degrees
of freedom, 484

– in quantum mechanics, 491–494
irreversible changes, see process
irreversible process, see process
Ising model, 289–304, 327
– Ginzburg–Landau functional, 538
– one-dimensional, 326, 346, 545–547
– two-dimensional, 349, 547
isobar, 47
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isochore, 47
isotherm, 47
isotropic ferromagnet, 429
isotropic Heisenberg model, 338

Jacobians, 87
Joule cycle, 162
Joule–Thomson coefficient, 111
Joule–Thomson process, 110

kinetic momentum, 269
kinetic theory, 437
Kubo formula, 490, 556
Kubo relaxation function, 490, 550–551

lambda point, 195
lambda transition, 337
Landau diamagnetism, 286
Landau quasiparticle interaction, 286
Landau–Ginzburg–Wilson functional,

380
Landau–Lifshitz equations, see Bloch

equations
Landau–Placzek peak, 467
Landau–Placzek ratio, 467
Landé g-factor, 270, 280
Langevin diamagnetism, 279
Langevin equation, 409–416
Langevin function, 72, 282, 319
lasers, 322
latent heat, 135, 520
– see also heat of melting, heat of

vaporization
– in the van der Waals theory, 255
lattice vibrations, 208
– see also phonons
lattice-gas model, 408
law of mass action, 150–155, 163
Law of Thermodynamics
– First, 1, 44, 60, 66, 76, 104, 106, 107,

145, 276
– – for magnetic systems, 272
– Second, 1, 76, 104, 106, 108
– Third, 109, 513–521
– Zeroth, 109
Legendre transformations, 79
Lennard–Jones potential, 238, 240
Le Chatelier’s principle, 124
limiting dimension, see critical

dimension
linear chain, 206, 481, 509
linear response, 550
Liouville equation, 11, 12, 511

liquid-gas transition, see liquid-vapor
transition, 250, 333

liquid-vapor transition, 130, 132
local equilibrium, 448, 451
local field, 311
local temperature
– equation of motion for, 462
log-normal distribution, 23
logarithmic corrections, 385
long time tails, 442
longitudinal susceptibility, see

susceptibility
Loschmidt’s number, 558
Loschmidt’s paradox, 479, 500, 503
loss processes, rate
– in the collision term of the Boltzmann

equation, 439, 472
low-temperature fixed point, 352
low-temperature physics, 138

macrostate, 3, 9, 25, 498
magnetic moment
– classical, 282
– of a body, 272
– of the electron, 270
– total, 270
magnetization, 272
– as a hydrodynamic quantity, 548
– in Pauli paramagnetism, 285
– in the one-dimensional Ising model,

546
– spontaneous, 287, 293, 364
magnetization fluctuations, 374
magnetomechanical ratio, see gyromag-

netic ratio
magnons, 213, 328
main sequence, 188
Markov process, 422
master equation and irreversibility

in quantum mechanics, see Pauli’s
master equation

Maxwell construction, 249
Maxwell distribution, 53, 438, 445, 456,

476
– integrals, 547
– local, 448, 452, 476, 478
Maxwell potential, 478
Maxwell relations, 84, 273, 275
mean field, 290, 298
mean free path, 443
mean square deviation, 5, 8, 41, 42
mean value, 4, 5, 27, 51
melting curve, 130
melting-point depression, 265
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metastable states, 516
microstate, 3, 9, 25, 498
Mie–Grüneisen equation of state, 212
mixing, 497
mixtures, 144, 152, 166, 234, 257–266
mobility, 413
molar heat capacity, 83
molar volume, 92, 154, 558
mole, 92, 558
molecular chaos, 442
molecular crystals (residual entropy),

516
molecular field approximation, 289–300
molecular gas, 152
moments, 4, 8
momentum conservation, 441
momentum current, 477
momentum density, 447
– equation of motion of, 465
momentum-shell renormalization

group, 380
monomers, 317
motion reversal, see time reversal
µ space, 438, 505

N-particle distribution function, 438
Néel temperature, 287
Natterer tube, 333
natural variables, 79
Navier–Stokes equations, 451
negative temperature, 320–322
Nernst’s theorem, 109, 513–521
neutron scattering, 304
neutron stars, 187, 188
noise
– electrical, 434
noise voltage, 434
non-equilibrium state, 121
non-integrability, 86
normal conductor–superconductor

transition, 337
nuclear matter, 187
nuclear spin
– in a magnetic field, 322
number of clusters, 396

occupation number, 170, 171, 200, 215
order, 507
– ferromagnetic, 333
order parameter, 193, 214, 293, 337,

390
order–disorder transition, 337
Ornstein–Zernike Correlation Function,

301, 303, 343, 371

ortho hydrogen, 232
osmotic pressure, 261

para hydrogen, 232
paraelectric–ferroelectric transition,

337
paramagnet, 34
– classical, 325
paramagnet–antiferromagnet transi-

tion, 337
paramagnet–ferromagnet transition,

337
paramagnetism, 280–283, 320
parameter flow, 345
partial pressure, 153, 155
particle number, 494
particle-number density, 447
– equation of motion for, 461
– local, 448
particle-number operator, 69
partition function, 51, 52, 59
– canonical, 52
– grand, 64
– in the magnetic field, 276
partition integral, 526
– derivation from the partition

function, 525
path integral, see functional integration
Pauli paramagnetism, 284–287
Pauli’s master equation, 491–494
percolation, 387–402
– bond percolation, 389
– cluster, 388
– continuum percolation, 388
– correlation length, 390
– critical exponents, see critical

exponents
– order parameter, 390
– percolation threshold, 387, 388, 391
– percolation transition, 390
– Potts model, 391
– radial correlation function, 392
– site percolation, 389
percolation behavior
– critical, 398
percolation threshold, 387, 388, 391,

401
percolation transition, 390
perfect differential, see exact differen-

tial, 86
perpetual motion machine
– of the first kind, 107
– of the second kind, 2, 108
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perturbation expansion, 536–537
perturbations
– irrelevant, 356
– relevant, 356
phase boundary curve, 334
phase space, 9
phase transition, 132, 140, 331, 332,

336, 337
– antiferromagnetic, 336
– continuous, 332
– correlation length, 339
– critical exponents, see critical

exponents
– critical point, 332, 334
– Ehrenfest’s classification, 332
– ferromagnetic, 333
– first order, 377
– helical phases, 336
– liquid-gas transition, 333
– n-th order, 332
– of a molecular zipper, 406
– of first order, 332, 373, 405
– of second order, 332
– order parameter of, 337
– phase boundary curve, 334
– power laws, 334
– separation, 336
– surface of equation of state, 334
– tricritical, 404
– vaporization, 333
– vaporization curve, 333
phase-boundary curves, 130–139
– slope of, 135
phases, 130, 331
– coexistence, 130
– in equilibrium, 130
phonon dispersion relation, 210
phonons, 206–221, 223
– acoustic, 208, 467
– damping, 434
– optical, 208
photon gas, 197–205
– chemical potential of, 205
Planck’s quantum of action, 445
Planck’s radiation law, see radiation

law
Poincaré
– recurrence time, see recurrence time
– recurrence-time theorem, 481
Poisson brackets, 12, 523
polyethylene, 317
polymers, 317–320, 329, 387
polystyrene, 317

Pomeranchuk effect, 137, 164, 324
potential
– Buckingham-, see Buckingham

potential
– exp-6-, see exp-6-potential
– grand, 65, 78, 276
– grand canonical, 146
– hard-core, see hard-core potential
– Lennard–Jones, see Lennard–Jones

potential
potentials, thermodynamic, see

thermodynamic potentials
Potts model, 391
pressure, 44, 45, 56, 64, 557
pressure tensor, 450, 465, 477
probability, 4
– conditional, 6, 421
probability density, 4
– characteristic function, 5
– moments of, 4, 5
probability density of F (X), 5
process
– adiabatic, 93, 99, 107
– cyclic, see cyclic process
– irreversible, 94–97, 104, 479
– isentropic, 93
– isobaric, 93
– isochoral, 93
– quasistatic, 93, 109, 110
– real and reversible, 100
– reversible, 94, 98–100
– thermally isolated, 93
pure system, 130

quantum corrections, 176, 241, 532–536
quantum liquid, 187
quasi-equilibrium states, 502, 504
quasi-ergodic theorem, 497
quasiparticles, 189, 190, 213, 215, 217
quasistatic process, see process

radial correlation function, 392
radiation law
– Planck, 201
– Rayleigh–Jeans, 202
– Wien, 202
radiation pressure, 200, 508
radius of gyration, 318
random motion, see random walk
random variable, 4–6
random walk, 7, 21
Raoult’s law, 266
Rayleigh–Jeans radiation law, see

radiation law
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reaction coordinate, 422
reaction equations, 150
reaction equilibrium, 154
reaction rates, 422, 425
real gas, 236–257
– see also van der Waals theory
– caloric equation of state for, 245
– free energy of, 244
– thermal equation of state for, 244,

245
real-space renormalization procedures,

see real-space transformations
real-space RG transformations, general,

346, 359
recurrence time, 479, 481–484, 488, 510
refrigerator, 126
relaxation-time approximation,

468–469, 477
– for the electrical conductivity, 478
relevant fields, 355
relevant perturbations, 356
renormalization group, 345–387
renormalization group theory, 345–387
– ϵ-expansion, 382
– block transformation, 360
– configuration-space RG transforma-

tions, 346
– coupling constants, 345, 346, 348,

351
– critical dimension, 373, see limiting

dimension, 383
– critical exponents, 354
– critical point, 351
– critical trajectory, 353
– crossover phenomena, 386
– cutoff length scale, 345
– decimation transformation, 346–354
– effective exponents, 386
– fields
– – irrelevant, 355
– – relevant, 355
– fixed point, 345, 347
– flow diagram, 351
– flux lines, 351
– high-temperature fixed point, 352
– Ising model
– – one-dimensional, 346, 545
– – two-dimensional, 349
– Landau–Ginzburg–Wilson functional,

380
– logarithmic corrections, 385
– low-temperature fixed point, 352

– momentum-shell renormalization
group, 380

– real-space RG transformations,
345–354, 359

– renormalization group transforma-
tion, 345

– renormalization group transforma-
tions, 346

– renormalization transformations, 400
– RG flow, 381
– scaling fields, 357
– two-point function, 383
– universality properties, 358
– Wick’s theorem, 383
– Wilson’s RG scheme, 380
residual entropy at absolute zero,

516–521
reversible changes, see process
reversible process, see process
RG flow, 381
Riemann ζ-function, see ζ-function
RKKY-interaction, 288
root mean square deviation, 5
rotational degrees of freedom, 117,

227
rotational energy, 227
rotational invariance, 338, 339
rotons, 214
rubber-like elasticity, 317–320

Sackur–Tetrode equation, 46
saturation curve, 132
saturation magnetization, 316
saturation region, 132
scalar product, 457, 476, 553
scale invariance, 305
scale transformations, 341
scaling fields, 357
scaling functions, 340
scaling hypothesis, 343
– for the correlation function, 343
– static, 339
scaling laws, 341, 344
– hyperscaling relation, 344
scaling relations, 343
scaling theory, percolation, 398–399
scattering
– and the collision term of the

Boltzmann equation, 469–475
– inelastic, 467
– of two hard spheres, 472, 475
scattering cross-section, 441, 469–475,

478
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– differential, 471
– elastic, 304
scattering phase
– and second virial coefficient, 532
Schottky anomaly, 283
Schrödinger equation, 15
– relation to the Smoluchowski

equation, 430
second viscosity, see bulk viscosity
self-avoiding random walk, 387
self-organized criticality, 387
separation of time scales, 426
separation transition, 336
shape dependence, 309
shear viscosity, 465, 477
Sievert’s law, 263
single-particle distribution function,

438
site percolation, 389
Smoluchowski equation, 418–419
– and supersymmetric quantum

mechanics, 429–432
– relation to the Schrödinger equation,

430
– solution for a harmonic potential,

421
solutions, see dilute solutions
Sommerfeld expansion, 179, 285
sound damping, 476
sound propagation
– in gases, 453–455
sound velocity, adiabatic, 454, 477
specific heat, 83, 90, 273, 310
– and fluctuations of internal energy,

90
– at absolute zero, 514
– at constant pressure, 83, 256, 466
– at constant volume, 83, 253, 463
– in the one-dimensional Ising model,

546
– in the van der Waals theory, 253
– negative, 508
– numerical values for various

materials, 559
– of a paramagnet, 322
– of a solid, 186, 211–213, 223
– of ideal molecular gas, 231
– rotational contribution to, 229, 233
– vibrational contribution to, 230
spectroscopic splitting factor, see

Landé-g-factor
spin waves, 328, 429
spin-orbit coupling, 280

spin-spin correlation function, 405
– see also Ornstein–Zernike correlation

function
– in the one-dimensional Ising model,

546
spinwaves, 556
spontaneous magnetization, 287, 293,

364
stability, 90, 124
– mechanical, 124
– thermal, 124
staggered magnetization, 336, 337, 548
standard deviation, 5
state functions, 85, 86
state of aggregation, 331
– see also phase
state variables, 1
– extensive, 81, 93
– intensive, 81, 93
static scaling hypothesis, 339
stationarity, 122, 123
statistical operator, see density matrix
steam engine, 125
Stefan–Boltzmann law, 200
Stirling formula, 21, 31
stochastic equation of motion, 410
stochastic force, 409
stochastic process, 410
stock-market prices
– as a stochastic process, 435
stoichiometric coefficients, 150
Stosszahlansatz, 440, 442
sublimation, 138
sublimation curve, 130, 138
Sun’s temperature, 205
superconductivity, 336, 364
supercooling, 379
superexchange, 289
superfluidity, 187, 217, 336
superheating, 379
supersymmetric quantum mechanics,

429, 435
surface of equation of state, 47, 132,

334
surface of states, 132
susceptibility, 84, 300–301
– adiabatic, 274
– diamagnetic, 283
– dielectric, 325
– dynamic, 550
– for Pauli paramagnetism, 285
– in the molecular field approximation,

302
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– in the one-dimensional Ising model,
546

– isothermal, 273, 293
– longitudinal, 375
– molar, 279
– of harmonic oscillators, 325
– paramagnetic, 283
– rel. to applied field, 309
– rel. to internal field, 309
– transverse, 372, 373
symmetry
– continuous, 373
– discrete, 338
symmetry properties, 331
system
– interacting, 42
– isolated, 26
– multicomponent, 144
– single-component, 130

temperature, 38, 39, 45, 64
– absolute, 91, 143
– absolute zero of, 513
– definition of, 39
– empirical, 91
– local, 448
– negative, 320–323
– scale, 557
– scale, absolute, 91
temperature equilibration, 113
– quasistatic, 109
temperature fixed point, 143
thermal efficiency, 127
thermal pressure coefficient, 84, 88
thermal wavelength, 67, 95, 204, 437,

527
thermalization, 71
thermodynamic inequalities, 123–124,

274
thermodynamic potentials, 75–80,

144–146, 271–276
– extremal properties of, 120–122
– table of, 80
thermodynamic processes, 92
thermodynamic quantities
– derivatives of, 82
thermodynamic inequalities, 89
time average, 497
time reversal
– and irreversibility, see irreversibility
– in the Boltzmann equation, 446–447
time-reversal invariance, 479
time-reversal transformation, 480, 501

time-scale separation, 461, 490
tin (allotropy of), 520
total (exact) differential, 84
trajectory, critical, 353
transfer matrix method, 349, 518,

545–547
transition
– thermally activated, 422
transition probability
– in the Boltzmann equation, 440, 469,

475
transition rate, see reaction rate, 425
translational degree of freedom, 225
translational energy, 225
transverse susceptibility, see suscepti-

bility
tricritical point, 405
triple line, 132
triple point, 132, 141–144
– center-of-gravity rule for, 143
triple-point cell, 144
two-fluid model, 217–221
two-level systems, 34, 48, 320–322, 326
two-phase region
– in the van der Waals theory, 250
two-point function, 383

uniaxial ferromagnet, 338
unit cell, 208
universality, 299, 338–339, 358
universality classes, 338
urn model, 511
– and the H theorem, 512
– and the Fokker–Planck equation, 512
– and the Langevin equation, 512
– and the paramagnet, 511

van der Waals
– coefficients, 246
– – numerical values for some materials,

560
– equation of state, 245, 256
– – dimensionless, 251
– isotherm, 246, 248
– S-shaped isotherm, 246
– theory, 242–257
van Hove singularities, 210, 211
Van Vleck paramagnetism, 284
van’t Hoff formula, 261, 267
vapor, 132
vapor pressure, 130, 138, 561
vapor pressure curve, 130–132
– see also evaporation curve
– in the van der Waals theory, 253, 256
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vapor pressure increase
– by surface tension, 159–160
vapor pressure increase by other gases,

156–159
vapor pressure reduction, 263, 266
vaporization curve, 333
vaporization transition, 333, 337
variables of state
– see also state functions
variance, 5
– see also mean square deviation
velocity
– equation of motion for, 461
– local, 448
vertex model, 518
vibrational degree of freedom, 230
vibrational energy, 227
virial, 55
virial coefficient, 237
– classical approximation for, 238–241
– for Lennard–Jones potential, 240
– quantum corrections to, 241, 531–536
virial expansion, 236–242
virial theorem
– classical, 54
– quantum statistical, 57

virtual process, 121
viscosity, 477
– see also shear viscosity
Von Neumann equation, 15

water, 134
– see also ice, vapor pressure of
– anomaly, 136
Weiss model, 328
white dwarfs, 188, 222
Wick’s theorem, 383
Wien’s displacement law, 201
Wien’s law, see radiation law
Wigner function, 523
Wilson’s RG scheme, 380, 422
work, 44, 60, 62, 76, 98, 100, 125
work engine, 126
work performance, see work

Yukawa potential, 307

Zeeman effect, 280
Zermelo’s paradox, 479, 481, 483
ζ-function, 199
– and Bernoulli numbers, 537
– generalized, 173


