Random physics

Alberto Verga, research notebook

\(\newcommand{\I}{\mathrm{i}} \newcommand{\E}{\mathrm{e}} \newcommand{\D}{\mathop{}\!\mathrm{d}} \newcommand{\bra}[1]{\langle{#1}|} \newcommand{\ket}[1]{|{#1}\rangle} \newcommand{\braket}[1]{\langle{#1}\rangle} \newcommand{\bbraket}[1]{\langle\!\langle{#1}\rangle\!\rangle} \newcommand{\bm}{\boldsymbol}\)

Lectures on statistical mechanics.

Midterm November 2022

Bosons

1.

Black Body. Use dimensional analysis to find the energy density of a gas of photons at temperature \(T\) (Stefan law). Apply the experimental fact that \(E/V\) only depends on \(T\) (\(E\) and \(V\) are the thermodynamic energy and volume of the black body).

Solution

We must determine the function

$$\epsilon = E/V = \epsilon(T)$$

for a noninteracting photon gas. A photon is a quantum (\(\hbar\) planck constant) of the electromagnetic field (\(c\) light speed); therefore we assume that

$$\epsilon=\epsilon(T)=f(T; \hbar, c).$$

The dimensions are:

$$[\epsilon]=EL^{-3}, \; [\hbar c]=E L, \; [k_BT]= E$$

where \(E\) and \(L\) are dimensions of energy and length, respectively. Noting that to make a volume we need a factor \((\hbar c)^3\), and compensating for the extra powers of \(E\), we obtain that

$$\epsilon=\text{const.} \frac{(k_BT)^4}{(\hbar c)^3}$$

has the correct dimensions (\(\text{const.}\) is a number). This is the Stefan law.

2.

Debye phonons. Use dimensional analysis to find the maximum energy \(\epsilon_M\) a phonon can take in a solid of \(N\) atoms and volume \(V\); the sound velocity \(c_s\) is isotropic. (Hint: assume that the energy is a function of the density \(n=N/V\).) Compute \(\epsilon_M\) using the exact density of states. Compare the two results.

Solution

A phonon is the quantum of cristal lattice excitations of energy \(\epsilon = \hbar \omega\): its frequency \(\omega\) is related to its wavenumber \(k\) by the sound velocity \(c_s\), \(\omega=c_s k\). The Debye cutoff frequency is a function of the density:

$$\omega_M=\epsilon_M/\hbar=\omega_M(n)=f(n; c_s).$$

To determine \(f\) we analyze the parameter dimensions:

$$[\omega_M]=T^{-1}, \; [c_s] = LT^{-1}, \; [n] = L^{-3}.$$

From these relations we find that

$$\omega_M = \text{const.} c_s n^{1/3},$$

because \(n^{-1/3}\) has dimension of length.

To compute the unknown constant, we use the definition of the cutoff frequency:

$$\text{number of modes} = \text{number of dof} = 3N$$

which states that the number of phonons must not exceed the number of degrees of freedom (dof) \(3N\) (for \(N\) lattice sites). Therefore,

$$3 V \frac{4\pi}{3} \left( \frac{\omega_M}{2\pi c} \right)^3 = 3N,$$

where the first term is \(3\) times (for the longitudinal and transversal phonon polarizations) the volume of a sphere of radius \(\omega/2\pi c_s\). We finally obtain,

$$\omega_M = (6\pi^2 n)^{1/3} c_s\,.$$

Rigid rotator

We consider a material formed in first approximation, by independent rotators of inertia moment \(I\). We are interested in the low temperature limit and assume a Boltzmann distribution.

  1. Write the hamiltonian of the set of \emph{fixed} rotators.

  2. Use dimensional analysis to determine the low temperature condition. (Hint: compare the temperature with a characteristic energy of a rotator.)

  3. Write the exact expression of the one particle partition function and compute its low temperature expansion. (Remark: take into account the degeneracy of the angular momentum.)

  4. Find the specific heat at low temperature.

  5. Plot the specific heat as a function of the temperature. Discuss the result (compare with the classical expectation.)

Solution

The hamiltonian of a rigid rotator of inertia moment \(I\) and angular momentum \(L\) is

$$H = \frac{L^2}{2I}\,.$$

The eigenspectum is given by the spherical harmonics \(\ket{lm}\) of orbital number \(l=0,1,\ldots\) and magnetic number \(-l\le m \le l\):

$$H\ket{lm} = \frac{\hbar^2}{2I} l(l+1) \ket{lm}.$$

The energy levels are then given by

$$\epsilon_l = \frac{\hbar^2}{2I} l(l+1).$$

This leads to a characteristic energy of the rotator \(\hbar^2/I\), which combined with the temperature defines the nondiemnsional parameter:

$$\theta = \frac{\hbar^2}{Ik_BT}\; ;$$

the low temperature regime corresponds to \(\theta\gg 1\).

The one particle partition function \(Z_1 = \sum_s \exp(-\epsilon_s/T)\) (\(k_B=1\) from now on), where the quantum state here is determined by \(s=\{l,m\}\), writes

$$Z_1 = \sum_{l=0}^\infty \sum_{m=-l}^l \E^{-\theta l(l+1)/2}= \sum_{l=0}^\infty (2l+1) \E^{-\hbar^2 l(l+1)/2IT} \,,$$

where we took into account the degeneracy of \(\epsilon_l\) (just the sum over \(m\)). At low temperature each term of the sum is exponentially small (for \(l>0\)), therfore up the first relevant term we have

$$Z_1 = 1 + 3\E^{-\theta},$$

and, to the same order,

$$F=-3 T \E^{-\hbar^2/IT},$$

for the free energy.

The thermodynamic energy is

$$\frac{E}{N} = \frac{\partial (F/T)}{\partial (1/T)} = \frac{3\hbar^2}{I} \E^{-\hbar^2/IT},$$

and the specific heat per particle,

$$c_v = \frac{\partial E}{N \partial T} = 3 \left( \frac{\hbar^2}{IT} \right)^2 \E^{-\hbar^2/IT}.$$

To plot \(c_v(T)\) we note that it tends to zero when \(T \rightarrow 0\) and that, for high temperatures, it must match the classical result \(c_v = 1\), in units of the boltzmann constant; the change between the two regimes occurs about \(\theta=1\).

cv

van der Waals

Find the van der Waals equation of state of parameters \(a\) and \(b\)

\begin{equation} \label{e:vdW} \left( P + N^2a/V^2 \right)(V - Nb) = Nk_B T \end{equation}

where \(P\) is the pressure, \(V\) the volume, \(N\) the number of atoms and \(T\) the temperature (\(k_B\) is the Boltzmann constant), corresponding to the interaction energy

\begin{equation} \label{e:wr} w(r) = \begin{cases} \infty & r < r_0\\ -\epsilon & r_0<r<r_1 \\ 0 & r>r_1 \end{cases}\,. \end{equation}

Here \(r_0,r_1\) have the dimension of a length and \(\epsilon > 0\) is an energy.

  1. Plot \(w\) and explain the significance of the dimensional parameters appearing in its definition.

  2. Compute the second virial coefficient:

    \begin{equation} \label{e:B} B(T) = 2\pi \int_0^\infty r^2 \D r \left[ 1 - \E^{-w(r)/T} \right]\,. \end{equation}

3.Show that one can write

\begin{equation} \label{e:ab} B(T) = v_0 - \frac{a(T)}{T}, \quad v_0 = \frac{2\pi r_0^3}{3}\,, \end{equation}

and demonstrate that \(a(T)\) is independent of the temperature at high \(T\).

  1. Show how to obtain the excluded volume term and compute the van der Waals parameters \(a\) and \(b\).

Solution

We :se \(k_B=1\). The interaction energy is piecewise constant, repulsive for \(r<r_0\), attractive for \(r \in (r_0,r_1)\) with a characteristic energy \(\epsilon\), and free for \(r>r_1\); it can be considered as a crude approximation of the lennard-jones potential.

vdw

The second virial coefficient

$$B(T) = 2\pi \int_0^\infty \D r r^2 \left[ 1 - \E^{-w(r)/T} \right] $$

is (the integrals give the volume of a sphere over 2):

$$B(T) = \frac{2\pi}{3}r_0^3 + \frac{2\pi}{3} (r_1^3 - r_0^3)\big(1-\E^{\epsilon/T}\big) \,.$$

It can be written as \(B=v_0-a/T\),

$$v_0 = \frac{2\pi}{3}r_0^3, \; a(T) = -\frac{2\pi}{3} (r_1^3 - r_0^3)\big(1-\E^{\epsilon/T}\big)T \,.$$

We note that when \(T \gg \epsilon\) (high temperature case) we have \(\E^{\epsilon/T}\approx 1 + \epsilon/T\), which leads to

$$a(T) = \frac{2\pi}{3} (r_1^3 - r_0^3)\epsilon = \text{const.} \,,$$

independent of \(T\)

Putting \(B(T)\) in the virial formula \(PV = NT (1+ B N/V)\), we obtain

$$PV = NT (1 + \frac{N}{V} v_0) - \frac{N^2}{V} a(T)$$

or

$$\left[ P + a(T) \frac{N^2}{V^2} \right] V = NT(1 +Nv_0/V) \approx \frac{NTV}{V-Nv_0}$$

where, in the last equality we used that \(Nv_0 \ll V\). Therefore, we found the van der Waals equation of state with the microscopic parameters:

$$b = Nv_0, \; \text{and} \; a(T) = a(T) = \frac{2\pi T}{3} (r_1^3 - r_0^3)\big(\E^{\epsilon/T} - 1 \big) \,.$$