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QUANTUM ENTANGLEMENT

Probing Rényi entanglement entropy
via randomized measurements
Tiff Brydges1,2*, Andreas Elben1,2*, Petar Jurcevic1,2, Benoît Vermersch1,2,
Christine Maier1,2, Ben P. Lanyon1,2, Peter Zoller1,2, Rainer Blatt1,2, Christian F. Roos1,2†

Entanglement is a key feature of many-body quantum systems. Measuring the entropy of
different partitions of a quantum system provides a way to probe its entanglement structure.
Here, we present and experimentally demonstrate a protocol for measuring the second-order
Rényi entropy based on statistical correlations between randomized measurements. Our
experiments, carried out with a trapped-ion quantum simulator with partition sizes of up to
10 qubits, prove the overall coherent character of the system dynamics and reveal the growth of
entanglement between its parts, in both the absence and presence of disorder. Our protocol
represents a universal tool for probing and characterizing engineered quantum systems in the
laboratory, which is applicable to arbitrary quantum states of up to several tens of qubits.

E
ngineered quantum systems that consist
of tens of individually controllable inter-
acting quantum particles are currently
being developed using a number of differ-
ent physical platforms, including atoms in

optical arrays (1–3), ions in radio-frequency traps
(4, 5), and superconducting circuits (6–9). These
systems offer the possibility of generating and
probing complex quantum states and dynamics
particle by particle and are finding application in
the near term as quantum simulators and in the
longer term as quantum computers. As these
systems are developed, more and more sophisti-
cated protocols are required to characterize them—
i.e., to verify that they are performing as desired
and tomeasure quantumphenomena of interest.
A key property to measure in engineered

quantum systems is entanglement; for example,
for quantum simulators and computers to pro-
vide an advantage over their classical analogs,
they must generate large amounts of entangle-
ment between their parts (10). Furthermore, en-
tanglement provides signatures of a wide range
of phenomena, including quantum criticality and
topological phases (11) as well as thermalization
dynamics (12) andmany-body localization (13, 14).
In addition, entanglement underpins theworking
mechanism of widely used numerical methods
based on tensor network states (11).
Entanglement can be probed by measuring

entanglement entropies. In particular, consider
the second-order Rényi entropy

Sð2ÞðrAÞ ¼ �log2Trðr2AÞ ð1Þ
with rA as the reduced density matrix for a part
A of the total system described by r. If the en-

tropy of part A is greater than the entropy of the
total system—i.e., Sð2ÞðrAÞ > Sð2ÞðrÞ—bipartite
entanglement exists between A and the rest of
the system (15). Thus, measuring the entropy
of the whole system and that of its subsystems
provides information about the entanglement
contained in the system. Additionally, a measure-
ment of the entropy of the total state r provides a
test of the overall purity of the system, as for pure
quantum states Sð2ÞðrÞ ¼ 0.
Recently, a protocol to directly measure the

second-order Rényi entropy, Sð2Þ , has been de-
monstrated, requiring collective measurements
to be made on two identical copies r of a quan-
tum system (16–19). In (18), that protocol was
used to study entanglement growth and ther-
malization in a six-site Bose-Hubbard system,
realized with atoms in an optical lattice.
Here, we introduce and experimentally de-

monstrate a different protocol to measure the
second-order Rényi entropy Sð2Þ, which is based
on and extends the proposals in (20–23). Key
strengths of the protocol are that it requires pre-
paration of only a single copy of the quantum
system at a time and can be implemented on any
physical platform with single-particle readout
and control. In contrast to recently developed,
efficient tomographic methods (24, 25) to char-
acterize weakly entangled states, our approach
imposes no a priori assumption on the struc-
ture of the quantum state. Instead, it provides
direct access to properties of the density matrix
that are invariant under local unitary transfor-
mations, such as Sð2Þ, without the need for prior
tomographic reconstruction. Sð2Þ can therefore
be estimated with a significantly lower number
of measurements than is necessary for quan-
tum state tomography (see last paragraph).
In our experiments, we used the protocol to
measure the dynamical evolution of entangle-
ment entropy of up to 10-qubit partitions of a
trapped-ion quantum simulator.

The key insight of the protocol is that infor-
mation about the second-order Rényi entropies
of a system is contained in statistical correlations
between the outcomes of measurements per-
formed in randombases. Specifically, for a system
of N qubits, the approach (21) is to apply a pro-
duct of single-qubit unitariesU ¼ u1 � :::� uN ,
where each unitary ui is drawn independently
from the circular unitary ensemble (CUE) (26),
and then tomeasure the qubits in a fixed (logical)
basis. For each U, repeated measurements are
made to obtain statistics, and the entire process
is repeated for many different randomly drawn
instances of U. The second-order Rényi entropy,
Sð2Þ , of the density matrix rA for an arbitrary
partition A ¼ fi½1�; :::; i½NA�g ofNA ≤ N qubits is
then obtained from

Sð2ÞðrAÞ ¼ �log2 �X ;with X ¼

2NA
X
sA;s′A

ð�2Þ�D½sA;s0A�PðsAÞPðs′AÞ ð2Þ

In Eq. 2, the bar denotes the ensemble aver-
age of (cross-) correlations of excitation probabil-
ities PðsAÞ ¼ hsAjUArAU

†
AjsAi; sA are the logical

basis states of partition A, UA ¼ U jA is the
restriction of U to A, D½sA; s0A� is the Hamming
distance between sA and s0A , and † represents
the Hermitian conjugate. �X is equal to the pu-
rity Trðr2AÞ of the density matrix rA . Equation 2
represents an explicit formula, proven in the sup-
plementary text (27), to reconstruct the second-
order Rényi entropy of the subsystem of interest
directly from statistical correlations between ran-
domized measurements. As a result, compared
with the recursive scheme presented in (21), an
exponential overhead in the classical postpro-
cessing is avoided.
For the partition of a single qubit, NA = 1, the

Bloch sphere provides a simple graphical repre-
sentation to clarify the relation between the
purities and the distribution of excitation prob-
abilities (Fig. 1A). For a pure state,Trðr2AÞ ¼ 1, the
quantum state can be represented as a unit Bloch
vector on the sphere, with random rotations
leading to a uniform distribution of probabil-
ities covering the full range [0, 1]. For a mixed
state, Trðr2AÞ < 1, the length of the Bloch vector
is less than 1, and the probabilities take values
in a reduced interval. Generalizing to the multi-
qubit scenario, the purities are directly inferred
from the mean of the statistical distribution of a
weighted sum of cross-correlations by using
Eq. 2. Examples of cross-correlations that were
measured for different partition sizes of the
trapped-ion system are shown in Fig. 1B, togeth-
er with the estimated purities.
Our experiments were implemented by using

strings of up to 20 trapped 40Ca+ ions, each of
which encodes a qubit that can be individually
manipulated by spatially focused, coherent laser
pulses. When dressed with suitably tailored laser
fields, the ions are subject to a quantum evolution
that is equivalent to a model of spins interact-
ing through a long-range XY model (28) in the
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presence of a transverse field

HXY ¼ ℏ
X
i<j

Jijðsþi s�j þ s�i s
þ
j Þ þ ℏB

X
j

s z
j ð3Þ

Here, ℏ is Planck’s constant divided by 2p,
sbi ðb ¼ x; y; zÞ are the spin-½ Pauli operators,
sþi ðs�i Þ the spin-raising (lowering) operators
acting on spin i, and Jij ≈ J0=ji � jja the cou-
pling matrix with an approximate power-law
decay and 0 < a < 3. For further experimental
details, see (27, 29). Optionally, a locally dis-
ordered potential could be added (30, 31), real-
izing the Hamiltonian H ¼ HXY þHD , with

HD ¼ ℏ
X

j
Djs

z
j andDj themagnitude of disorder

applied to ion j. For entropy measurements, the
following experimental protocol was used through-
out: The system was initially prepared in the
Néel ordered product state r0 ¼ jyihyj with
jyi ¼ j↓↑↓:::↑i. This statewas subsequently time-
evolved under HXY (or H) into the state rðtÞ.
The coherent interactions arising from this
time evolution generated varying types of en-
tanglement in the system. Subsequently, random-
ized measurements on rðtÞ were performed
through individual rotations of each qubit by
a random unitary (ui), sampled from the CUE
(26), followed by a state measurement in the z
basis. Each ui can be decomposed into three
rotations Rzðq3ÞRyðq2ÞRzðq1Þ, and two random
unitaries were concatenated to ensure that
drawing of the ui was stable against small drifts
of physical parameters controlling the rotation
angles qi (27). Finally, spatially resolved fluores-
cence measurements realized a projective mea-
surement in the logical z basis. To measure the
entropy of a quantum state, NU sets of single-
qubit randomunitaries,U ¼ u1 �…� uN , were
applied. For each set of applied unitaries, U,
the measurement was repeated NM times.
In the first experiment, a 10-qubit state r0 was

prepared and subsequently time-evolved under
HXY (Eq. 3), without disorder, for t ¼ 0;…; 5ms.

Figure 2, A and B, respectively show measured
purities and entropies of all connected parti-
tions that include qubit 1 during this quench. The
overall purity (and thus entropy) remained at
a constant value of Tr½r2� ¼ 0:74 T 0:07, within
error, throughout the time evolution, implying
that the time evolution was approximately uni-
tary. The initial state’s reconstructed purity is

in agreement with control experiments, which
show a purity loss of 0.08 caused by imperfect
state preparation and an underestimation of the
purity by ~0.17 caused by decoherence during
the random spin rotations (27). At short times,
the single-spin subsystem became quickly en-
tangled with the rest of the system, seen as a
rapid decrease (increase) of the single-spin
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Fig. 1. Measuring second-order Rényi entropies through randomized
measurements. (A) Single-qubit Bloch sphere. The purity is directly related
to the width of the distribution of measurement outcomes after applying
random rotations ui. Initial pure state (blue) and mixed state (red) cases are
shown. See text. (B) Generalization to multiple qubits: Measuring NA-qubit
(up to 10) partitions of a 20-qubit string, as shown (top). Repeated

measurements (NM = 150 and NU = 500) were made to obtain statistics; see
text. Experimental data (bottom): Histograms of the weighted sum X of
cross-correlations (as defined in Eq. 2), with mean values corresponding
to the purities (dashed lines). Results are shown for two different times during
evolution under HXY (Eq. 3), starting from a highly pure, separable state
(blue) and evolving into a high-entropy state (red).
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Fig. 2. Purity and second-order Rényi entropies of a 10-qubit system. (A) Measured purity and
(B) second-order Rényi entropy of a Néel state, time-evolved under HXY (J0 = 420 s−1, a = 1.24), for
connected partitions ½1→i�. Dotted curves are purities derived from a numerical simulation; see
supplementary materials (27). Maximally mixed states with minimal purity fall on the boundary of

the shaded area. (C) Second-order Rényi entropy, Sð2ÞðrAÞ, of all 210 − 1 = 1023 partitions at t = 5 ms,
with NA denoting the number of ions in a partition A. For all data points, NM = 150 and NU = 500.

Error bars, which increase with subsystem size (27), are standard errors of the mean �X. Lines in (C)
are drawn at three standard errors above the full system’s entropy (black, dashed) and three
standard errors below the minimal subsystem’s entropy (blue, solid).
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purity (entropy) (Fig. 2, A and B), until the re-
duced state became completelymixed. At longer
times, the purity (entropy) of larger subsystems
continued to decrease (increase), as they became
entangled with the rest. The dotted curves rep-
resent numerical simulations for the experimental
parameters, including decoherence, during state
initialization, evolution, and measurement (27).
Although Fig. 2, A and B, correspond to a specific
set of connected partitionsA, the data give access
to the purities for all partitions A of the system,

as shown in Fig. 2C for a specific time t = 5 ms.
Because the second-order Rényi entropy of every
subsystem is, within three standard deviations,
larger than for the total system, this demonstrates
entanglement between all 29 – 1 = 511 bipartitions
of the 10-qubit system.
Next, a 20-qubit experimentwas performed, in

which the entropy growth of the central part of
the chain was measured during time evolution
under HXY, for partitions of up to 10 qubits. Our
observations (Fig. 3) are consistent with the for-
mation of highly entangled states. The entropy
increases rapidly over the time evolution of 10 ms,
with the reduced density matrices of up to seven
qubits becoming nearly fully mixed. The ex-
perimental data agree very well with numerical
simulations (dotted curves) obtainedwith amatrix-
product state algorithm (32), which includes the
(weak) effect of decoherence using quantum
trajectories (33). The measurement highlights
the ability of our protocol to access the entropy
of highly mixed states, despite larger statistical
errors compared with pure states (27).
Monitoring the entropy growth of arbitrary

yet highly entangled states during their time
evolution constitutes a universal tool for studying
dynamical properties of quantum many-body
systems, in connection with the concept of quan-
tum thermalization (12). In this context, a slow
entropy growth can be used to signify localiza-
tion in generic many-body quantum systems
(14). Generically, in interacting quantum systems
without disorder, a ballistic (linear) entropy
growth is predicted after a quantum quench
(12). Such growth is assumed to persist until
saturation is reached, signaling thermalization of
the system at late times. On the contrary, in the
presence of (strong) disorder and sufficiently

short-ranged interactions, the existence of the
many-body localized (MBL) phase (13) is predicted
in one-dimensional systems (34). This phase is
characterized by the absence of thermalization,
the system’s remembrance on the initial state (35)
at late times, and, in particular, a logarithmic
entropy growth (36, 37), which constitutes the
distinguishing feature between an MBL state
and a noninteracting Anderson insulator. Experi-
ments probing this entropy growth have been
realized with superconducting qubits by using
tomography (8) and ultracold atoms based on
full-counting statistics of particle numbers (38).
The persistence and stability of localization in
long-range interacting systems have also been
explored, both theoretically (14, 34, 39) and ex-
perimentally (30). The measurement of a long-
time entropy growth rate is beyond the present
capabilities of our trapped-ion quantum simu-
lator, owing to its limited coherence time; however,
wewere able to observe the effects of local, random
disorder on the entropy growth rate at early times.
Figure 4A displays the measured evolution of

the second-order Rényi entropy at half partition
as a function of time, both in the absence and in
the presence of local random disorder. Without
disorder, a rapid, linear growth of entropy is ob-
served, in agreement with theoretical simulations
including the mentioned sources of decoherence
(solid lines). To investigate the influence of dis-
order, the initial Néel state was quenched with
H ¼ HXY þHD , where the static, random dis-
order strength Dj was drawn uniformly from
½�3J0; 3J0�. To efficiently access directly disorder-
averaged quantities, our protocol offers the pos-
sibility to reduce the number of randomunitaries
that must be applied per disorder pattern and
instead average in addition over different dis-
order patterns (27). Hence, only 10 random
unitaries per disorder pattern (NM = 150 mea-
surements per unitary) and 35 randomly drawn
disorder patterns were used to obtain an ac-
curate estimate of the disorder-averaged purity
Tr½r2A�e ( ~::: denotes the disorder average) and
subsequently the second-order Rényi entro-
py Sð2ÞðrAÞe ≈� log2Tr½r2A�e (27). The measured,
disorder-averaged entropy growth clearly dem-
onstrates how disorder reduces the growth of
entanglement. After an initial rapid evolution,
a considerable slowing of the dynamics is ob-
served, with a small but nonvanishing growth
rate at later times, a behavior consistent with
the scenario ofMBL. The system retainsmemory
of the initial Néel state during the dynamics,
which is manifest in the measured time evolu-
tion of the local magnetization (fig. S5) (27).
Finally, Fig. 4B shows the evolution of the

second-order Rényi mutual information (RMI),
defined as

I ð2ÞðrA : rBÞ ¼ Sð2ÞðrAÞ þ Sð2ÞðrBÞ

�Sð2ÞðrABÞ ð4Þ

In the presence of disorder, the RMI saturates
quickly to approximately constant values, which
decrease with increasing distance between the
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Fig. 3. Second-order Rényi entropy of 1- to
10-qubit partitions of a 20-qubit system.
The initial low-entropy Néel state evolves under
HXY (J0 = 370 s−1, a = 1.01) within 10 ms
into a state with high-entropy partitions,
corresponding to nearly fully mixed subsystems.
For the data taken at 6ms (10ms) of time evolution,
the two (three) data points corresponding
to highly mixed states are not shown, because they
have large statistical error bars. For details
regarding numerical simulations (dotted curves)
and error bars, see (27).

Fig. 4. Spread of quantum correlations under HXYwith and without disorder.The Hamiltonian
parameters are J0 = 420 s−1, a = 1.24. (A) Half-chain entropy growth versus time without disorder
(red data points) and with disorder, drawn uniformly from ½�3J0;3J0� (blue data points). Numerical
simulations based on unitary dynamics (dotted curves) including known sources of decoherence
(full lines) are in agreement with the measured second-order Rényi entropies [see supplementary
materials (27)]. (B) Second-order RMI of selected subsystems versus time in the presence of

disorder (see Eq. 4). The decrease of Ið2Þ with distance between subsystems is a manifestation of the
inhibition of correlation spreading by local disorder. For longer time scales, decoherence leads to a slow

increase in the entropy of the total system [Sð2ÞðrÞ ≈ 0:9 for t = 10 ms for the full system (27)].
Consequently, there is an additional contribution to the slow entropy growth of the system from this
decoherence, compared with the case of purely unitary dynamics. Error bars are the standard error of
the mean, calculated with jackknife resampling of the applied random unitaries (40).
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two partitions A and B. This indicates a spatial
decay of correlations in the system, a charac-
teristic feature of localization caused by the pre-
sence of disorder; this conclusion is supported by
a numerical comparison of the RMI to the von
Neumannmutual information, showing that they
behave in qualitatively the same way (27).
In our experiments, we studied the entropy of

partitions of up to 10 qubits because technical
restrictions currently limit our experimental re-
petition rate. Straightforward technical improve-
ments should allow the entropy of 20-qubit
systems to be measurable. Numerical simu-
lations (27) indicate that the total number of mea-
surements required to access the purity within a
statistical error of 0.12 is, for a pure product state
of NA qubits, given by 27:7 T 0:3 þ ð0:8 T 0:1ÞNA . The
number of measurements required to obtain
the purity of entangled pure states can be sig-
nificantly lower (27). Purity measurements of
systems containing tens of qubits are likely also
in reach in experiments with high quantum
state–generation rates, such as state-of-the-art
superconducting qubit setups. The number of
measurements could be further decreased by re-
placing the local random operations by global
random unitaries acting on the entire Hilbert
space of a subsystem of interest, by means of ran-
domquenches (21, 22), at the expense of obtaining
access to the purity of a single partition only.

REFERENCES AND NOTES

1. I. Bloch, J. Dalibard, S. Nascimbène, Nat. Phys. 8, 267–276
(2012).

2. A. Browaeys, D. Barredo, T. Lahaye, J. Phys. B 49, 152001 (2016).
3. M. Saffman, J. Phys. B 49, 202001 (2016).
4. J. Zhang et al., Nature 551, 601–604 (2017).

5. N. Friis et al., Phys. Rev. X 8, 021012 (2018).
6. M. Fitzpatrick, N. M. Sundaresan, A. C. Y. Li, J. Koch, A. Houck,

Phys. Rev. X 7, 011016 (2017).
7. J. M. Gambetta, J. M. Chow, M. Steffen, npj Quantum Inf. 3, 2

(2017).
8. K. Xu et al., Phys. Rev. Lett. 120, 050507 (2018).
9. C. Neill et al., Science 360, 195–199 (2018).
10. G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).
11. J. Eisert, M. Cramer, M. B. Plenio, Rev. Mod. Phys. 82, 277–306

(2010).
12. P. Calabrese, J. Cardy, J. Stat. Mech. 2005, P04010 (2005).
13. D. M. Basko, I. L. Aleiner, B. L. Altshuler, Ann. Phys. 321,

1126–1205 (2006).
14. D. A. Abanin, E. Altman, I. Bloch, M. Serbyn, arXiv:1804.

11065v1 [cond-mat.dis-nn] (30 April 2018).
15. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki,

Rev. Mod. Phys. 81, 865–942 (2009).
16. A. K. Ekert et al., Phys. Rev. Lett. 88, 217901 (2002).
17. R. Islam et al., Nature 528, 77–83 (2015).
18. A. M. Kaufman et al., Science 353, 794–800 (2016).
19. N. M. Linke et al., Phys. Rev. A 98, 052334 (2018).
20. S. J. van Enk, C. W. J. Beenakker, Phys. Rev. Lett. 108, 110503

(2012).
21. A. Elben, B. Vermersch, M. Dalmonte, J. I. Cirac, P. Zoller,

Phys. Rev. Lett. 120, 050406 (2018).
22. B. Vermersch, A. Elben, M. Dalmonte, J. I. Cirac, P. Zoller,

Phys. Rev. A 97, 023604 (2018).
23. A. Elben, B. Vermersch, C. F. Roos, P. Zoller, arXiv:1812.02624

[quant-ph] (6 Dec 2018).
24. B. P. Lanyon et al., Nat. Phys. 13, 1158–1162 (2017).
25. G. Torlai et al., Nat. Phys. 14, 447–450 (2018).
26. F. Mezzadri, Not. Am. Math. Soc. 54, 592 (2007).
27. See supplementary materials.
28. D. Porras, J. I. Cirac, Phys. Rev. Lett. 92, 207901 (2004).
29. P. Jurcevic et al., Nature 511, 202–205 (2014).
30. J. Smith et al., Nat. Phys. 12, 907–911 (2016).
31. C. Maier et al., Phys. Rev. Lett. 122, 050501 (2019).
32. M. P. Zaletel, R. S. K. Mong, C. Karrasch, J. E. Moore,

F. Pollmann, Phys. Rev. B 91, 165112 (2015).
33. A. J. Daley, Adv. Phys. 63, 77–149 (2014).
34. A. L. Burin, Phys. Rev. B 92, 104428 (2015).
35. M. Schreiber et al., Science 349, 842–845 (2015).
36. J. H. Bardarson, F. Pollmann, J. E. Moore, Phys. Rev. Lett. 109,

017202 (2012).

37. M. Serbyn, Z. Papić, D. A. Abanin, Phys. Rev. Lett. 110, 260601
(2013).

38. A. Lukin, M. Rispoli, R. Schittko, M. E. Tai, A. M. Kaufman,
S. Choi, V. Khemani, J. Léonard, M. Greiner, arxiv:1805.09819
[cond-mat.quant-gas] (13 Jun 2018).

39. A. Safavi-Naini, M. L. Wall, O. L. Acevedo, A. M. Rey,
R. M. Nandkishore, Phys. Rev. A 99, 033610 (2019).

40. B. Efron, C. Stein, Ann. Stat. 9, 586–596 (1981).
41. T. Brydges et al., Probing Rényi Entanglement Entropies via

Randomized Measurements, Version 2, Zenodo (2018);
https://doi.org/10.5281/zenodo.2527010.

42. T. Brydges et al., TiffBrydges/Renyi_Entanglement_Entropy v0,
Zenodo (2019); https://doi.org/10.5281/zenodo.2533875.

ACKNOWLEDGMENTS

Funding: We acknowledge funding from the ERC Synergy Grant
UQUAM, the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program under grant
agreement no. 741541, the SFB FoQuS (FWF project no. F4016-N23),
and QTFLAG–QuantERA. Also, the project leading to this application
has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement no. 817482
(PASQUANS). Author contributions: P.Z. suggested the research
topic, which was further developed by A.E., B.V., B.P.L., and C.F.R. A.E.,
B.V., and P.Z. developed the theoretical protocols. P.J., C.M., T.B.,
B.P.L., C.F.R., and R.B. contributed to the experimental setup. T.B.,
P.J., C.M., and C.F.R. performed the experiments. A.E., B.V., and
C.F.R. analyzed the data and carried out numerical simulations. T.B.,
A.E., B.V., B.P.L., P.Z., and C.F.R. wrote the manuscript. All authors
contributed to the discussion of the results and the manuscript.
Competing interests: There are no competing interests. Data and
materials availability: All data are publicly availableon Zenodo (41).
All code used for data evaluation and numerical simulations is
publicly available on Zenodo (42).

SUPPLEMENTARY MATERIALS

science.sciencemag.org/content/364/6437/260/suppl/DC1
Supplementary Text
Figs. S1 to S8
References (43–46)

15 June 2018; accepted 19 March 2019
10.1126/science.aau4963

Brydges et al., Science 364, 260–263 (2019) 19 April 2019 4 of 4

RESEARCH | REPORT

Corrected 9 April 2020. See full text. 
on N

ovem
ber 2, 2020

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

https://arxiv.org/abs/1804.11065v1
https://arxiv.org/abs/1804.11065v1
https://arxiv.org/abs/1812.02624
https://arxiv.org/abs/1805.09819
https://doi.org/10.5281/zenodo.2527010
https://doi.org/10.5281/zenodo.2533875
http://science.sciencemag.org/content/364/6437/260/suppl/DC1
http://science.sciencemag.org/


Probing Rényi entanglement entropy via randomized measurements

Christian F. Roos
Tiff Brydges, Andreas Elben, Petar Jurcevic, Benoît Vermersch, Christine Maier, Ben P. Lanyon, Peter Zoller, Rainer Blatt and

DOI: 10.1126/science.aau4963
 (6437), 260-263.364Science 

, this issue p. 260Science
of the system to grow, which was reflected in the growth of the Rényi entropy.

resteach of which encoded a qubit. As the system evolved, interactions caused entanglement between the chain and the 
 monitored the build-up of the so-called Rényi entropy in a chain of up to 10 trapped calcium ions,et al.system? Brydges 

quantum entanglement is key to this superior performance. But how does one gauge the degree of entanglement in a 
Quantum systems are predicted to be better at information processing than their classical counterparts, and

An entropic look into entanglement
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