
Quantum algorithms revisited

B y R. Cleve1, A. Ekert2, C. Macchiavello2,3 and M. Mosca2,4

1Department of Computer Science, University of Calgary,
Calgary, Alberta, Canada T2N 1N4

2Clarendon Laboratory, Department of Physics, University of Oxford,
Parks Road, Oxford OX1 3PU, UK

3I.S.I. Foundation, Villa Gualino, Viale Settimio Severo 65,
1033 Torino, Italy

4Mathematical Institute, University of Oxford, 24–29 St. Giles’,
Oxford OX1 3LB, UK

Quantum computers use the quantum interference of different computational paths
to enhance correct outcomes and suppress erroneous outcomes of computations. A
common pattern underpinning quantum algorithms can be identified when quantum
computation is viewed as multiparticle interference. We use this approach to review
(and improve) some of the existing quantum algorithms and to show how they are
related to different instances of quantum phase estimation. We provide an explic-
it algorithm for generating any prescribed interference pattern with an arbitrary
precision.

Keywords: quantum computation; quantum factoring; quantum networks;
quantum algorithms; quantum phase estimation

1. Introduction

Quantum computation is based on two quantum phenomena: quantum interference
and quantum entanglement. Entanglement allows one to encode data into non-trivial
multiparticle superpositions of some preselected basis states, and quantum inter-
ference, which is a dynamical process, allows one to evolve initial quantum states
(inputs) into final states (outputs) modifying intermediate multiparticle superpo-
sitions in some prescribed way. Multiparticle quantum interference, unlike single-
particle interference, does not have any classical analogue and can be viewed as an
inherently quantum process.

It is natural to think of quantum computations as multiparticle processes (just as
classical computations are processes involving several ‘particles’ or bits). It turns out
that viewing quantum computation as multiparticle interferometry leads to a simple
and a unifying picture of known quantum algorithms. In this language, quantum
computers are basically multiparticle interferometers with phase shifts that result
from operations of some quantum logic gates. To illustrate this point, consider, for
example, a Mach–Zehnder interferometer (figure 1a).

A particle, say a photon, impinges on a half-silvered mirror, and, with some prob-
ability amplitudes, propagates via two different paths to another half-silvered mirror
which directs the particle to one of the two detectors. Along each path between the
two half-silvered mirrors is a phase shifter. If the lower path is labelled as state |0〉
Proc. R. Soc. Lond. A (1998) 454, 339–354 c© 1998 The Royal Society
Printed in Great Britain 339 TEX Paper



340 R. Cleve, A. Ekert, C. Macchiavello and M. Mosca

(a) (b)

ϕ

ϕ

ϕ ϕ ϕ

Figure 1. (a) Scheme of a Mach–Zehnder interferometer with two phase shifters. The interference
pattern depends on the difference between the phase shifts in different arms of the interferometer.
(b) The corresponding quantum network representation.

and the upper one as state |1〉, then the state of the particle in between the half-
silvered mirrors and after passing through the phase shifters is a superposition of
the type 1/

√
2(|0〉+ ei(φ1−φ0)|1〉), where φ0 and φ1 are the settings of the two phase

shifters. This is illustrated in figure 1a. The phase shifters in the two paths can be
tuned to effect any prescribed relative phase shift φ = φ1 − φ0 and to direct the
particle with probabilities 1

2(1 + cosφ) and 1
2(1− cosφ), respectively, to detectors ‘0’

and ‘1’. The second half-silvered mirror effectively erases all information about the
path taken by the particle (path |0〉 or path |1〉) which is essential for observing
quantum interference in the experiment.

Let us now rephrase the experiment in terms of quantum logic gates. We identify
the half-silvered mirrors with the single-qubit Hadamard transform (H), defined as

|0〉 H−→ 1/
√

2(|0〉+ |1〉), |1〉 H−→ 1/
√

2(|0〉 − |1〉). (1.1)

The Hadamard transform is a special case of the more general Fourier transform,
which we shall consider in §4.

We view the phase shifter as a single-qubit gate. The resulting network correspond-
ing to the Mach–Zehnder interferometer is shown in figure 1b. The phase shift can
be ‘computed’ with the help of an auxiliary qubit (or a set of qubits) in a prescribed
state |u〉 and some controlled-U transformation where U |u〉 = eiφ|u〉 (see figure 2).
Here, the controlled U means that the form of U depends on the logical value of the
control qubit; for example, we can apply the identity transformation to the auxiliary
qubits (i.e. do nothing) when the control qubit is in state |0〉 and apply a prescribed
U when the control qubit is in state |1〉. The controlled-U operation must be followed
by a transformation which brings all computational paths together, like the second
half-silvered mirror in the Mach–Zehnder interferometer. This last step is essential
to enable the interference of different computational paths to occur—for example,
by applying a Hadamard transform. In our example, we can obtain the following
sequence of transformations on the two qubits:

|0〉|u〉 H−→ 1/
√

2(|0〉+ |1〉)|u〉 c−U−→ 1/
√

2(|0〉+ eiφ|1〉)|u〉
H−→ (cos( 1

2φ)|0〉 − i sin(1
2φ)|1〉)eiφ/2|u〉. (1.2)

We note that the state of the auxiliary register |u〉, being an eigenstate of U , is
not altered along this network, but its eigenvalue eiφ is ‘kicked back’ in front of the
|1〉 component in the first qubit. The sequence (1.2) is the exact simulation of the

Proc. R. Soc. Lond. A (1998)



Quantum algorithms revisited 341

Uf

Uf

x
xϕ

Figure 2. Network representation for the phase shift transformation of equation (1.2). Here, x
is a label for the state of the first qubit.

Mach–Zehnder interferometer and, as we will illustrate in the following sections, the
kernel of quantum algorithms.

The rest of the paper is organized as follows. In the next section, we discuss
Deutsch’s problem (1985) which shows how differentiation between interference pat-
terns (different phase shifts) can lead to the formulation of computational problems.
Then, in §3, we review, in a unified way, generalizations of Deutsch’s problem, and
propose further ones. In §4, we discuss an alternative and convenient way to view
the quantum Fourier transform. In §5, we propose an efficient method for phase
estimation based on the quantum Fourier transform. In order to illustrate how some
of the existing algorithms can be reformulated in terms of the multiparticle inter-
ferometry and the phase estimation problem, in §6 we rephrase Shor’s order-finding
algorithm (used to factor) using the phase estimation approach. Finally, in §7, we
present a universal construction which generates any desired interference pattern
with arbitrary accuracy. We summarize the conclusions in §8.

2. Deutsch’s problem

Since quantum phases in the interferometers can be introduced by some controlled-
U operations, it is natural to ask whether effecting these operations can be described
as an interesting computational problem. In this section, we illustrate how inter-
ference patterns lead to computational problems that are well suited to quantum
computations, by presenting the first such problem that was proposed by Deutsch
(1985).

To begin with, suppose that the phase shifter in the Mach–Zehnder interferometer
is set either to φ = 0 or to φ = π. Can we tell the difference? Of course we can.
In fact, a single instance of the experiment determines the difference: for φ = 0 the
particle always ends up in the detector ‘0’ and for φ = π always in the detector ‘1’.
Deutsch’s problem is related to this effect.

Consider the Boolean functions f that map {0, 1} to {0, 1}. There are exactly four
such functions: two constant functions (f(0) = f(1) = 0 and f(0) = f(1) = 1) and
two ‘balanced’ functions (f(0) = 0, f(1) = 1 and f(0) = 1, f(1) = 0). Informally, in
Deutsch’s problem, one is allowed to evaluate the function f only once and required
to deduce from the result whether f is constant or balanced (in other words, whether
the binary numbers f(0) and f(1) are the same or different). Note that we are not
asked for the particular values f(0) and f(1) but for a global property of f . Classical
intuition tells us that to determine this global property of f , we have to evaluate
both f(0) and f(1) anyway, which involves evaluating f twice. We shall see that

Proc. R. Soc. Lond. A (1998)



342 R. Cleve, A. Ekert, C. Macchiavello and M. Mosca

(a) (b)

π

Uf

Figure 3. Network representation of Deutsch’s algorithm.

this is not so in the setting of quantum information, where we can solve Deutsch’s
problem with a single function evaluation, by employing an algorithm that has the
same mathematical structure as the Mach–Zehnder interferometer.

Let us formally define the operation of ‘evaluating’ f in terms of the f-controlled-
NOT operation on two bits: the first contains the input value and the second contains
the output value. If the second bit is initialized to 0, the f -controlled-NOT maps (x, 0)
to (x, f(x)). This is clearly just a formalization of the operation of computing f . In
order to make the operation reversible, the mapping is defined for all initial settings
of the two bits, taking (x, y) to (x, y ⊕ f(x)). Note that this operation is similar to
the controlled-NOT (see, for example, Barenco et al. 1995), except that the second
bit is negated when f(x) = 1, rather than when x = 1.

If one is only allowed to perform classically the f -controlled-NOT operation once,
on any input from {0, 1}2, then it is impossible to distinguish between balanced and
constant functions in the following sense. Whatever the outcome, both possibilities
(balanced and constant) remain for f . However, if quantum mechanical superposi-
tions are allowed, then a single evaluation of the f -controlled-NOT suffices to classify
f . Our quantum algorithm that accomplishes this is best represented as the quan-
tum network shown in figure 3b, where the middle operation is the f -controlled-NOT,
whose semantics in quantum mechanical notation are

|x〉|y〉 f−c−N−→ |x〉|y ⊕ f(x)〉. (2.1)

The initial state of the qubits in the quantum network is |0〉(|0〉 − |1〉) (apart
from a normalization factor, which will be omitted in the following). After the first
Hadamard transform, the state of the two qubits has the form (|0〉+ |1〉)(|0〉 − |1〉).
To determine the effect of the f -controlled-NOT on this state, first note that, for
each x ∈ {0, 1},
|x〉(|0〉 − |1〉) f−c−N−→ |x〉(|0⊕ f(x)〉 − |1⊕ f(x)〉) = (−1)f(x)|x〉(|0〉 − |1〉). (2.2)

Therefore, the state after the f -controlled-NOT is

((−1)f(0)|0〉+ (−1)f(1)|1〉)(|0〉 − |1〉). (2.3)

That is, for each x, the |x〉 term acquires a phase factor of (−1)f(x), which corresponds
to the eigenvalue of the state of the auxiliary qubit under the action of the operator
that sends |y〉 to |y ⊕ f(x)〉.

This state can also be written as

(−1)f(0)(|0〉+ (−1)f(0)⊕f(1)|1〉), (2.4)

which, after applying the second Hadamard transform, becomes

(−1)f(0)|f(0)⊕ f(1)〉. (2.5)

Proc. R. Soc. Lond. A (1998)



Quantum algorithms revisited 343

Therefore, the first qubit is finally in state |0〉 if the function f is constant, and in
state |1〉 if the function is balanced, and a measurement of this qubit distinguishes
these cases with certainty.

This algorithm is an improved version of the first quantum algorithm for this prob-
lem proposed by Deutsch (1985), which accomplishes the following. There are three
possible outcomes: ‘balanced’, ‘constant’ and ‘inconclusive’. For any f , the algorithm
has the property that, with probability 1

2 , it outputs ‘balanced’ or ‘constant’ (correct-
ly corresponding to f), and, with probability 1

2 , it outputs ‘inconclusive’ (in which
case, no information is determined about f). This is a task that no classical com-
putation can accomplish (with a single evaluation of the f -controlled-NOT gate).
In comparison, our algorithm can be described as always producing the output ‘bal-
anced’ or ‘constant’ (correctly). Tapp (1997, personal communication) independently
discovered an algorithm for Deutsch’s problem that is similar to ours.

Deutsch’s result laid the foundation for the new field of quantum computation,
and was followed by several other quantum algorithms for various problems, which
all seem to rest on the same generic sequence: a Fourier transform, followed by an f -
controlled-U , followed by another Fourier transform. (In some cases, such as Grover’s
‘database search’ algorithm (1996), this sequence is a critical component to a larger
algorithm (see Appendix B)). We illustrate this point by reviewing several of these
other algorithms in the sections that follow.

3. Generalizations of Deutsch’s problem

Deutsch’s original problem was subsequently generalized by Deutsch & Jozsa
(1992) for Boolean functions f : {0, 1}n → {0, 1} in the following way. Assume
that, for one of these functions, it is ‘promised’ that it is either constant or balanced
(i.e. has an equal number of 0 outputs as 1s), and consider the goal of determining
which of the two properties the function actually has.

How many evaluations of f are required to do this? Any classical algorithm for this
problem would, in the worst case, require 2n−1+1 evaluations of f before determining
the answer with certainty. There is a quantum algorithm that solves this problem
with a single evaluation of f . The algorithm is presented in figure 4, where the control
register is now composed of n qubits, all initially in state |0〉, denoted as |00 · · · 0〉,
and, as in the quantum algorithm for Deutsch’s simple problem, an auxiliary qubit
is employed, which is initially set to the state |0〉 − |1〉 and is not altered during the
computation. Also, the n-qubit Hadamard transform H is defined as

|x〉 H−→
∑

y∈{0,1}n
(−1)x·y|y〉, (3.1)

for all x ∈ {0, 1}n, where

x · y = (x1 ∧ y1)⊕ · · · ⊕ (xn ∧ yn) (3.2)

(i.e. the scalar product modulo two). This is equivalent to performing a one-qubit
Hadamard transform on each of the n qubits individually. The actual computation of
the function f is by means of an f -controlled-NOT gate (the middle gate in figure 4),
which acts as

|x〉|y〉 f−c−N−→ |x〉|y ⊕ f(x)〉. (3.3)
This is similar to equation (2.1), except that now x ∈ {0, 1}n.

Proc. R. Soc. Lond. A (1998)



344 R. Cleve, A. Ekert, C. Macchiavello and M. Mosca

Uf

Figure 4. Network representation of Deutsch–Jozsa’s and Bernstein–Vazirani’s algorithms.

Stepping through the execution of the network, the state after the first n-qubit
Hadamard transform is applied is∑

x∈{0,1}n
|x〉(|0〉 − |1〉), (3.4)

which, after the f -controlled-NOT gate, is∑
x∈{0,1}n

(−1)f(x)|x〉(|0〉 − |1〉). (3.5)

Finally, after the last Hadamard transform, the state is∑
x,y∈{0,1}n

(−1)f(x)⊕(x·y)|y〉(|0〉 − |1〉). (3.6)

Note that the amplitude of |00 · · · 0〉 is
∑

x∈{0,1}n((−1)f(x))/2n, so if f is constant
then this state is (−1)f(00··· 0)|00 · · · 0〉(|0〉 − |1〉); whereas, if f is balanced then,
for the state of the first n qubits, the amplitude of |00 · · · 0〉 is zero. Therefore,
by measuring the first n qubits, it can be determined with certainty whether f is
constant or balanced. Note that, as in Deutsch’s simple example, this entails a single
f -controlled-NOT operation. (This is a slight improvement of Deutsch & Jozsa’s
original algorithm, which involves two f -controlled-NOT operations.)

Following Deutsch & Jozsa, Bernstein & Vazirani (1993) formulated a variation
of the above problem that can be solved with the same network. Suppose that f :
{0, 1}n → {0, 1} is of the form

f(x) = (a1 ∧ x1)⊕ · · · ⊕ (an ∧ xn)⊕ b = (a · x)⊕ b, (3.7)

where a ∈ {0, 1}n and b ∈ {0, 1}, and consider the goal of determining a. Note
that such a function is constant if a = 00 · · · 0 and balanced otherwise (though a
balanced function need not be of this form). Furthermore, the classical determination
of a requires at least n f -controlled-NOT operations (since a contains n bits of
information and each classical evaluation of f yields a single bit of information).
Nevertheless, by running the quantum network given in figure 4, it is possible to
determine a with a single f -controlled-NOT operation.

The initial conditions are the same as above. In this case, equation (3.5) takes the
simple form ∑

x∈{0,1}n
(−1)(a·x)⊕b|x〉(|0〉 − |1〉), (3.8)

Proc. R. Soc. Lond. A (1998)



Quantum algorithms revisited 345

which, after the final Hadamard transform, becomes

(−1)b
∑

x,y∈{0,1}n
(−1)x·(a⊕y)|y〉(|0〉 − |1〉), (3.9)

which is equivalent to (−1)b|a〉(|0〉−|1〉). Thus, a measurement of the control register
yields the value of a. (Bernstein & Vazirani’s algorithm is similar to the above, except
that it employs two f -controlled-NOT operations instead of one. Also, this problem,
and its solution, is very similar to the search problems considered by Terhal & Smolin
(1997).)

The network construction presented in this section (figure 4) can be generalized
to the case of a Boolean function f : {0, 1}n → {0, 1}m (with m 6 n), with the
promise that the parity of the elements in the range of f is either constant or evenly
balanced (i.e. its output values all have the same parity, or half of them have parity
0 and half have parity 1). In this case, by choosing an auxiliary register composed
of m qubits, and setting all of them in the initial state (|0〉 − |1〉), it is possible to
solve the problem with certainty in one run of the network. As in the above case,
the function is constant when the n qubits of the first register are detected in state
|00 · · · 0〉, and evenly balanced otherwise.

A particular subclass of the above functions consists of those that are of the form
f(x) = (A · x)⊕ b, where A is an m× n binary matrix, b is a binary m-tuple and ⊕
is applied bitwise (this can be thought of as an affine linear function in modulo-two
arithmetic). The output string of f has constant parity if (11 · · · 1) · A = (00 · · · 0)
and has balanced parity otherwise. It is possible to determine all the entries of A by
evaluating the function f only m times, via a suitable multiqubit f -controlled-NOT
gate of the form

|x〉|y〉 f−c−N−→ |x〉|y ⊕ f(x)〉, (3.10)
where x ∈ {0, 1}n and y ∈ {0, 1}m. The network described below is a generalization
of that in figure 4, and determines the n-tuple c ·A, where c is any binary m-tuple.
The auxiliary register is composed of m qubits, which are initialized to the state

(|0〉+ (−1)c1 |1〉)(|0〉+ (−1)c2 |1〉) · · · (|0〉+ (−1)cm |1〉). (3.11)

(This state can be ‘computed’ by first setting the auxiliary register to the state
|c1c2 · · · cm〉 and then applying a Hadamard transform to it.) The n-qubit control
register is initialized in state |00 · · · 0〉, and then a Hadamard transform is applied to
it. Then the f -controlled-NOT operation is performed, and is followed by another
Hadamard transform to the control register. It is straightforward to show that the
control register will then reside in the state |c ·A〉. By running the network m times
with suitable choices for c, all the entries of A can be determined. Høyer (1997)
independently solved a problem that is similar to the above, except that f is an
Abelian group homomorphism, rather than an affine linear function.

4. Another look at the quantum Fourier transform

The quantum Fourier transform (QFT) on the additive group of integers modulo
2m is the mapping

|a〉 F2m−→
2m−1∑
y=0

e(2πiay)/2m |y〉, (4.1)

Proc. R. Soc. Lond. A (1998)



346 R. Cleve, A. Ekert, C. Macchiavello and M. Mosca

Figure 5. A network for F2m shown acting on the basis state |a1a2 · · · am〉. At the end, the
order of the output qubits is reversed (not shown in diagram).

where a ∈ {0, . . . , 2m − 1} (Coppersmith 1994). Let a be represented in binary as
a1 · · · am ∈ {0, 1}m, where a = 2m−1a1 +2m−2a2 + · · ·+21am−1 +20am (and similarly
for y).

It is interesting to note that the state (4.1) is unentangled, and can in fact be
factorized as

(|0〉+ e2πi(0.am)|1〉)(|0〉+ e2πi(0.am−1am)|1〉) · · · (|0〉+ e2πi(0.a1a2...am)|1〉). (4.2)

This follows from the fact that

e2πiay/2m |y1 · · · ym〉 = e2πi(0.am)y1 |y1〉e2πi(0.am−1am)y2 |y2〉 · · · e2πi(0.a1a2...am)ym |ym〉,
(4.3)

so the coefficient of |y1y2 · · · ym〉 in (4.1) matches that in (4.2).
A network for computing F2n is shown in figure 5.
In the above network, Rk denotes the unitary transformation

Rk =

(
1 0
0 e2πi/2k

)
. (4.4)

We now show that the network shown in figure 5 produces the state (4.1). The
initial state is |a〉 = |a1a2 · · · am〉 (and a/2m = 0.a1a2 . . . am in binary). Applying H
to the first qubit in |a1 · · · am〉 produces the state

(|0〉+ e2πi(0.a1)|1〉)|a2 · · · am〉.
Then applying the controlled R2 changes the state to

(|0〉+ e2πi(0.a1a2)|1〉)|a2 · · · am〉.
Next, the controlled R3 produces

(|0〉+ e2πi(0.a1a2a3)|1〉)|a2 · · · am〉,
and so on, until the state is

(|0〉+ e2πi(0.a1...am)|1〉)|a2 · · · am〉.
The next H yields

(|0〉+ e2πi(0.a1···am)|1〉)(|0〉+ e2πi(0.a2)|1〉)|a3 · · · am〉
and the controlled R2 to Rm−1 yield

(|0〉+ e2πi(0.a1···am)|1〉)(|0〉+ e2πi(0.a2···am)|1〉)|a3 · · · am〉. (4.5)

Proc. R. Soc. Lond. A (1998)



Quantum algorithms revisited 347

Continuing in this manner, the state eventually becomes

(|0〉+ e2πi(0.a1···am)|1〉)(|0〉+ e2πi(0.a2···am)|1〉) · · · (|0〉+ e2πi(0.am)|1〉),
which, when the order of the qubits is reversed, is state (4.2).

Note that, if we do not know a1 · · · am, but are given a state of the form (4.2), then
a1 · · · am can be easily extracted by applying the inverse of the QFT to the state,
which will yield the state |a1 · · · am〉.

5. A scenario for estimating arbitrary phases

In §1, we noted that differences in phase shifts by π can, in principle, be detected
exactly by interferometry, and by quantum computations. In §§ 2 and 3, we reviewed
powerful computational tasks that can be performed by quantum computers, based
on the mathematical structure of detecting these phase differences. In this section,
we consider the case of arbitrary phase differences, and show in simple terms how
to obtain good estimators for them, via the quantum Fourier transform. This phase
estimation plays a central role in the fast quantum algorithms for factoring and for
finding discrete logarithms discovered by Shor (1994). This point has been nicely
emphasized by the quantum algorithms presented by Kitaev (1995) for the Abelian
stabilizer problem.

Suppose that U is any unitary transformation on n qubits and |ψ〉 is an eigenvector
of U with eigenvalue e2πiφ, where 0 6 φ < 1. Consider the following scenario. We
do not explicitly know U or |ψ〉 or e2πiφ, but instead are given devices that perform
controlled-U , controlled-U21

, controlled-U22
(and so on) operations. Also, assume

that we are given a single preparation of the state |ψ〉. From this, our goal is to
obtain an m-bit estimator of φ.

This can be solved as follows. First, apply the network of figure 6. This network
produces the state

(|0〉+ e2πi2m−1φ|1〉)(|0〉+ e2πi2m−2φ|1〉) · · · (|0〉+ e2πiφ|1〉) =
2m−1∑
y=0

e2πiφy|y〉. (5.1)

As noted in the last section, in the special case where φ = 0.a1 · · · am, the state
|a1 · · · am〉 (and hence φ) can be obtained by just applying the inverse of the QFT
(which is the network of figure 5 in the backwards direction). This will produce the
state |a1 · · · am〉 exactly (and hence φ).

However, φ is not in general a fraction of a power of two (and may not even
be a rational number). For such a φ, it turns out that applying the inverse of the
QFT produces the best m-bit approximation of φ with probability at least 4/π2 =
0.405 . . . . To see why this is so, let a/2m = 0.a1 · · · am be the best m-bit estimate of
φ. Then φ = a/2m + δ, where 0 < |δ| 6 1/2m+1. Applying the inverse QFT to state
(5.1) yields the state

1
2m

2m−1∑
x=0

2m−1∑
y=0

e(−2πixy)/2me2πiφy|x〉 =
1

2m

2m−1∑
x=0

2m−1∑
y=0

e(−2πixy)/2me2πi(a/2m+δ)y|x〉

=
1

2m

2m−1∑
x=0

2m−1∑
y=0

e(2πi(a−x)y)/2me2πiδy|x〉 (5.2)

Proc. R. Soc. Lond. A (1998)



348 R. Cleve, A. Ekert, C. Macchiavello and M. Mosca

Figure 6. A network illustrating estimation of phase φ with m-bit precision. The same network
forms the kernel of the order-finding algorithm discussed in §6.

(for clarity, we are now including the normalization factors) and the coefficient of
|a1 · · · am〉 in the above is the geometric series

1
2m

2m−1∑
y=0

(e2πiδ)y =
1

2m

(
1− (e2πiδ)2m

1− e2πiδ

)
. (5.3)

Since |δ| 6 1/2m+1, it follows that |2πδ2m| 6 π, and thus |1 − e2πiδ2m | >
|2πδ2m|/ 1

2π = |4δ2m|. Also, |1− e2πiδ| 6 |2πδ|. Therefore, the probability of observ-
ing a1 · · · am when measuring the state is∣∣∣∣ 1

2m

(
1− (e2πiδ)2m

1− e2πiδ

)∣∣∣∣2 > ( 1
2m

(
4δ2m

2πδ

))2

=
4
π2 . (5.4)

Note that the above algorithm (described by networks in figures 5 and 6) consists of
m controlled-U2k operations, and O(m2) other operations.

In many contexts (such as that of the factoring algorithm of Shor), the above
positive probability of success is sufficient to be useful; however, in other contexts,
a higher probability of success may be desirable. The success probability can be
amplified to 1 − ε for any ε > 0 by inflating m to m′ = m + O(log(1/ε)), and
rounding off the resulting m′-bit string to its most significant m bits. The details of
the analysis are in Appendix C.

The above approach was motivated by the method proposed by Kitaev (1995),
which involves a sequence of repetitions for each unit U2j . The estimation of φ
can also be obtained by other methods, such as the techniques studied for optimal
state estimation by Massar & Popescu (1995), Derka et al. (1997) and the techniques
studied for use in frequency standards by Huelga et al. (1997). Also, it should be noted
that the QFT, and its inverse, can be implemented in the fault tolerant ‘semiclassical’
way (see Griffiths & Niu 1996).

6. The order-finding problem

In this section, we show how the scheme from the previous section can be applied
to solve the order-finding problem, where one is given positive integers a and N
which are relatively prime and such that a < N , and the goal is to find the minimum
positive integer r such that ar modN = 1. There is no known classical procedure for
doing this in time polynomial in n, where n is the number of bits of N . Shor (1994)
presented a polynomial–time quantum algorithm for this problem, and noted that,

Proc. R. Soc. Lond. A (1998)



Quantum algorithms revisited 349

since there is an efficient classical randomized reduction from the factoring problem to
order-finding, there is a polynomial–time quantum algorithm for factoring. Also, the
quantum order-finding algorithm can be used directly to break the RSA cryptosystem
(see Appendix A).

Let us begin by assuming that we are also supplied with a prepared state of the
form

|ψ1〉 =
r−1∑
j=0

e(−2πij)/r|aj modN〉. (6.1)

Such a state is not at all trivial to fabricate; we shall see how this difficulty is circum-
vented later. Consider the unitary transformation U that maps |x〉 to |axmodN〉.
Note that |ψ1〉 is an eigenvector of U with eigenvalue e2πi(1/r). Also, for any j, it
is possible to implement a controlled-U2j gate in terms of O(n2) elementary gates.
Thus, using the state |ψ1〉 and the implementation of controlled-U2j gates, we can
directly apply the method of §5 to efficiently obtain an estimator of 1/r that has
2n bits of precision with high probability. This is sufficient precision to extract r.

The problem with the above method is that we are aware of no straightforward
efficient method to prepare state |ψ1〉. Let us now suppose that we have a device for
the following kind of state preparation. When executed, the device produces a state
of the form

|ψk〉 =
r−1∑
j=0

e(−2πikj)/r|aj modN〉, (6.2)

where k is randomly chosen (according to the uniform distribution) from {1, . . . , r}.
We shall first show that this is also sufficient to efficiently compute r, and then later
address the issue of preparing such states. For each k ∈ {1, . . . , r}, the eigenvalue
of state |ψk〉 is e2πi(k/r), and we can again use the technique from §5 to efficiently
determine k/r with 2n bits of precision. From this, we can extract the quantity k/r
exactly by the method of continued fractions. If k and r happen to be coprime then
this yields r; otherwise, we might only obtain a divisor of r. Note that we can efficient-
ly verify whether or not we happen to have obtained r by checking if ar modN = 1.
If verification fails then the device can be used again to produce another |ψk〉. The
expected number of random trials until k is coprime to r is O(log log(N)) = O(logn).

In fact, the expected number of trials for the above procedure can be improved
to a constant. This is because, given any two independent trials which yield k1/r
and k2/r, it suffices for k1 and k2 to be coprime to extract r (which is then the
least common denominator of the two quotients). The probability that k1 and k2 are
coprime is bounded below by

1−
∑

p prime

Pr[ p divides k1] Pr[ p divides k2] > 1−
∑

p prime

1/p2 > 0.54. (6.3)

This was also noted by Knill (1995) and Shor (1995).
Now, returning to our actual setting, where we have no special devices that produce

random eigenvectors, the important observation is that

|1〉 =
r∑

k=1

|ψk〉, (6.4)

and |1〉 is an easy state to prepare. Consider what happens if we use the previous

Proc. R. Soc. Lond. A (1998)



350 R. Cleve, A. Ekert, C. Macchiavello and M. Mosca

quantum algorithm, but with state |1〉 substituted in place of a random |ψk〉. In
order to understand the resulting behaviour, imagine if, initially, the control register
were measured with respect to the orthonormal basis consisting of |ψ1〉, . . . , |ψr〉.
This would yield a uniform sampling of these r eigenvectors, so the algorithm would
behave exactly as the previous one. Also, since this imagined measurement operation
is with respect to an orthonormal set of eigenvectors of U , it commutes with all the
controlled-U2j operations, and hence will have the same effect if it is performed at
the end rather than at the beginning of the computation. Now, if the measurement
were performed at the end of the computation, then it would have no effect on the
outcome of the measurement of the control register. This implies that state |1〉 can
in fact be used in place of a random |ψk〉, because the relevant information that
the resulting algorithm yields is equivalent. This completes the description of the
algorithm for the order-finding problem.

It is interesting to note that the algorithm that we have described for the order-
finding problem, which follows Kitaev’s methodology, results in a network (figure 6
followed by figure 5 backwards) that is identical to the network for Shor’s algorithm,
although the latter algorithm was derived by an apparently different methodology.
The sequence of controlled-U2j operations is equivalent to the implementation (via
repeated squarings) of the modular exponentiation function in Shor’s algorithm. This
demonstrates that Shor’s algorithm, in effect, estimates the eigenvalue corresponding
to an eigenstate of the operation U that maps |x〉 to |axmodN〉.

7. Generating arbitrary interference patterns

We will show in this section how to generate specific interference patterns with
arbitrary precision via some function evaluations. We require two registers. The first
we call the control register; it contains the states we wish to interfere. The second
we call the auxiliary register and it is used solely to induce relative phase changes in
the first register.

Suppose the first register contains n bits. For each n-bit string |x〉, we require
a unitary operator Ux. All of these operators Ux should share an eigenvector |Ψ〉
which will be the state of the auxiliary register. Suppose the eigenvalue of |Ψ〉 for
x is denoted by e2πiφ(x). By applying a unitary operator to the auxiliary register
conditioned upon the value of the first register we will get the following interference
pattern:

2n−1∑
x=0

|x〉|Ψ〉 →
2n−1∑
x=0

|x〉Ux(|Ψ〉) =
2n−1∑
x=0

e2πiφ(x)|x〉|Ψ〉. (7.1)

The controlled-Uf gate that was described in §2 can be viewed in this way. Namely,
the operator Uf(0) which maps |y〉 to |y ⊕ f(0)〉 and the operator Uf(1) which maps
|y〉 to |y⊕f(1)〉 have common eigenstate |0〉− |1〉. The operator Uf(j) has eigenvalue
e2πi(f(j)/2) for j = 0, 1.

In general, the family of unitary operators onm qubits which simply add a constant
integer kmod 2m share the eigenstates

2m−1∑
y=0

e−2πi(ly/2m)|y〉, l ∈ {1, 1, . . . , 2m − 1} (7.2)

and kickback a phase change of e2πi(kl/2m).

Proc. R. Soc. Lond. A (1998)



Quantum algorithms revisited 351

For example, suppose we wish to create the state |0〉 + e2πiφ|1〉, where φ =
0.a1a2a3 · · · am.

We could set up an auxiliary register with m qubits and set it to the state
2m−1∑
y=0

e−2πiφy|y〉. (7.3)

By applying the identity operator when the control bit is |0〉 and the ‘add 1 mod 2m’
operator, U1, when the control bit is |1〉, we see that

|0〉
2m−1∑
y=0

e−2πiφy|y〉

gets mapped to itself and

|1〉
2m−1∑
y=0

e−2πiφy|y〉

goes to

|1〉
2m−1∑
y=0

e−2πiφy|y + 1 mod 2m〉 = e2πiφ|1〉
2m−1∑
y=0

e−2πiφ(y+1)|y + 1 mod 2m〉

= e2πiφ|1〉
2m−1∑
y=0

e−2πiφy|y〉. (7.4)

An alternative is to set the m-bit auxiliary register to the eigenstate
2m−1∑
y=0

e−(2πi/2m)y|y〉 (7.5)

and conditionally apply Uφ which adds a = a1a2 · · · am to the auxiliary register.
Similarly, the state

|1〉
2m−1∑
y=0

e−(2πi/2m)y|y〉

goes to

|1〉
2m−1∑
y=0

e−(2πi/2m)y|y + amod 2m〉 = e2πiφ|1〉
2m−1∑
y=0

e−(2πi/2m)(y+a)|y + amod 2m〉

= e2πiφ|1〉
2m−1∑
y=0

e−(2πi/2m)y|y〉. (7.6)

Similarly, if φ = ab/2m for some integers a and b, we could also obtain the same
phase ‘kickback’ by starting with state

2m−1∑
y=0

e−2πi(a/2m)y|y〉 (7.7)

and conditionally adding b to the second register.

Proc. R. Soc. Lond. A (1998)



352 R. Cleve, A. Ekert, C. Macchiavello and M. Mosca

The method using eigenstate
2m−1∑
y=0

e−(2πi/2m)y|y〉 (7.8)

has the advantage that we can use the same eigenstate in the auxiliary register for any
φ. So in the case of an n-qubit control register where we want phase change e2πiφ(x)

for state |x〉, and if we have a reversible network for adding φ(x) to the auxiliary
register when we have |x〉 in the first register, we can use it on a superposition of
control inputs to produce the desired phase ‘kickback’ e2πiφ(x) in front of |x〉. Which
functions φ(x) will produce a useful result, and how to compute them, depends on
the problems we seek to solve.

8. Conclusions

Various quantum algorithms, which may appear different, exhibit remarkably simi-
lar structures when they are cast within the paradigm of multiparticle interferometry.
They start with a Fourier transform to prepare superpositions of classically different
inputs, followed by function evaluations (i.e. f -controlled unitary transformations)
which induce interference patterns (phase shifts), and are followed by another Fourier
transform that brings together different computational paths with different phases.
The last Fourier transform is essential to guarantee the interference of different paths.

We believe that the paradigm of estimating (or determining exactly) the eigen-
values of operators on eigenstates gives helpful insight into the nature of quantum
algorithms and may prove useful in constructing new and improving existing algo-
rithms. Other problems whose algorithms can be deconstructed in a similar manner
are Simon’s algorithm (1993), Shor’s discrete logarithm algorithm (1994), Boneh
& Lipton’s algorithm (1995) and Kitaev’s more general algorithm for the Abelian
stabilizer problem (1995), which first highlighted this approach.

We have also shown that the evaluation of classical functions on quantum super-
positions can generate arbitrary interference patterns with any prescribed precision,
and have provided an explicit example of a universal construction which can accom-
plish this task.

We thank David Deutsch, David DiVincenzo, Ignacio Cirac and Peter Høyer for helpful discus-
sions and comments.

This work was supported in part by the European TMR Research Network ERP-4061PL95-
1412, CESG, Hewlett-Packard, The Royal Society London, the US National Science Foundation
under grant no. PHY94-07194 and Canada’s NSERC. Part of this work was completed during
the 1997 Elsag–Bailey–I.S.I. Foundation research meeting on quantum computation.

Appendix A. Cracking RSA

What we seek is a way to compute M modN given M e, e and N ; that is, a
method for finding eth roots in the multiplicative group of integers modulo N (this
group is often denoted by Z∗N and contains the integers coprime to N). It is still an
open question whether a solution to this problem necessarily gives us a polynomial
time randomized algorithm for factoring. However, factoring does give a polynomial
time algorithm for finding eth roots for any e relatively prime to φ(N) and thus
for cracking RSA. Knowing the prime factorization of N , say

∏
pa1

1 p
a2
2 · · · pakk , we

Proc. R. Soc. Lond. A (1998)



Quantum algorithms revisited 353

Figure 7. Network representation of Grover’s algorithms. By repeating the basic sequence 2n/2

times, value k is obtained at the output with probability greater than 0.5.

can easily compute φ(N) = N
∏n
i=1(1− 1/pi). Then we can compute d such that

ed ≡ 1 modφ(N), which implies M ed ≡M modN .
However, to crack a particular instance of RSA, it suffices to find an integer d such

that ed ≡ 1 mod r where r is the order of M modulo N (i.e. the least positive integer
such that M r ≡ 1 modN); so ed = rk + 1 for some integer k. We would then have
Cd ≡M ed ≡M rk+1 ≡M modN .

Since e is relatively prime to φ(N), it is easy to see that the order od M is equal
to the order of C ≡Me. So given C ≡Me, we can compute r using Shor’s algorithm
and then compute d satisfying de ≡ 1 mod ord(P ) using the extended Euclidean
algorithm. Thus, we do not need several repetitions of Shor’s algorithm to find the
order of a for various random a; we just find the order of C and solve for M regardless
of whether or not this permits us to factor N .

Appendix B. Concatenated interference

The generic sequence: a Hadamard/Fourier transform, followed by an f -controlled-
U , followed by another Hadamard/Fourier transform, can be repeated several times.
This can be illustrated, for example, with Grover’s database search algorithm (1996).
Suppose we are given (as an oracle) a function fk which maps {0, 1}n to {0, 1} such
that fk(x) = δxk for some k. Our task is to find k. Thus in a set of numbers from 0
to 2n − 1 one element has been ‘tagged’ and by evaluating fk we have to find which
one. To find k with a probability of 50%, any classical algorithm, be it deterministic
or randomized, will need to evaluate fk a minimum of 2n−1 times. In contrast, a
quantum algorithm needs only O(2n/2) evaluations. Grover’s algorithm can be best
presented as a network shown in figure 7.

Appendix C. Amplifying success probability when estimating phases

Let φ be a real number satisfying 0 6 φ < 1 which is not a fraction with denomi-
nator 2m, and let a/2m = 0. a1a2 · · · am be the closest m-bit approximation to φ so
that φ = q/2m + δ, where 0 < |δ| 6 1/2m+1. For such a φ, we have already shown
that applying the inverse of the QFT to (5.1) and then measuring yields the state
|a〉 with probability at least 4/π2 = 0.405 . . . .

Without loss of generality, assume 0 < δ 6 1/(2m + 1). For t satisfying −2m−1 6
t < 2m−1, let αt denote the amplitude of |a− tmod 2m〉. It follows from (5.2) that

αt =
1

2m

(
1− (e2πi(δ+t/2m))2m

1− e2πi(δ+t/2m)

)
. (C 1)

Since
|1− e2πi(δ+t/2m)| 6 2π(δ + t/2m)/ 1

2π = 4(δ + t/2m) (C 2)

Proc. R. Soc. Lond. A (1998)



354 R. Cleve, A. Ekert, C. Macchiavello and M. Mosca

then

|αt| 6
∣∣∣∣ 2
2m4(δ + t/2m)

∣∣∣∣ 6 1
2m+1(δ + t/2m)

. (C 3)

The probability of getting an error greater than k/2m is

∑
k6t<2m−1

|αt|2 +
∑

−2m−16t<−k
|αt|2 6

2m−1−1∑
t=k

1
4(t+ 2mδ)2 +

−(k+1)∑
t=−2m−1

1
4(t+ 2mδ)2

6
2m−1−1∑
t=k

1
4t2

+
2m−1∑
t=k+1

1
4(t− 1

2)2

6
2m−1∑
t=2k

1
4( 1

2 t)
2 <

∫ 2m−1

2k−1

1
t2
<

1
2k − 1

. (C 4)

So, for example, if we wish to have an estimate that is within 1/2n+1 of the
value φ with probability at least 1 − ε, it suffices to use this technique with m =
n+ dlog2 (1/2ε+ 1

2)e bits.

References
Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P., Margolus, N., Shor, P., Sleater, T.,

Smolin, J. & Weinfurter, H. 1995 Phys. Rev. A 52, 3457.
Barenco, A., Deutsch, D., Ekert, A. & Jozsa, R. 1995 Phys. Rev. Lett. 74, 4083.
Bernstein, E. & Vazirani, U. 1993 Proc. 25th Ann. ACM Symp. on the Theory of Computing,

pp. 11–20. New York: ACM Press.
Boneh, D. & Lipton, R. J. 1995 Advances in cryptology. In Proc. Crypto ’95, Lecture Notes in

Computer Science, pp. 424–437. Berlin: Springer.
Coppersmith, D. 1994 An approximate Fourier transform useful in quantum factoring. IBM

research report no. RC19642.
Derka, R., Bužek, V. & Ekert, A. 1997 e-print quant-ph/9707028.
Deutsch, D. 1985 Proc. R. Soc. Lond. A 400, 97.
Deutsch, D. & Jozsa, R. 1992 Proc. R. Soc. Lond. A 439, 553.
Ekert, A. & Jozsa, R. 1996 Rev. Mod. Phys. 68, 733.
Griffiths, R. B. & Niu, C.-S. 1996 Phys. Rev. Lett. 76, 3228.
Grover, L. 1996 Proc. 28th Ann. ACM Symp. on the Theory of Computing, p. 212. New York:

ACM Press.
Høyer, P. 1997 Quantum Algorithms. Paper for qualifying exam at Odense University, Denmark.
Huelga, S. F., Macchiavello, C., Pellizzari, T., Ekert, A., Plenio, M. B. & Cirac J. I. 1997 e-print

quant-ph/9707014.
Kitaev, A. 1995 Quantum measurements and the Abelian stabilizer problem. e-print quant-

ph/9511026.
Knill, E. 1995 Los Alamos National Laboratory Report LAUR-95-2225 (also available at

http://www.c3.lanl.gov/ knill).
Massar, S. & Popescu, S. 1995 Phys. Rev. Lett. 74, 1259.
Shor, P. 1994 Proc. 35th Ann. Symp. on the Foundation of Computer Science, p. 124. Los

Alamitos, CA: IEEE Computer Society.
Shor, P. 1995 e-print quant-ph/9508027.
Terhal, B. & Smolin, J. 1997 e-print quant-ph/9705041.

Proc. R. Soc. Lond. A (1998)


