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Abstract

A discussion is given of Mayer’s theory of the condensation phenome-
non. It is shown that the theory is not restricted to classical statistical
mechanics, nor that it is necessary to assume the additivity property of
the intermolecular forces. The theory is based on Ursell’s development
of the partition function in powers of the volume (§ 2). Then the reasoning"
of Mayer isgiven (§ 3), which leads to the fundamental equations (I)
and (II), which represent the equation of state of a non-ideal gas. In § 4
the analogy is shown between these equations and the equations of
Einstein for the ideal Bose gas. For this latter case Einstein
had predicted already a condensation phenomenon. Attention is drawn
to the analogy between his argument and the reasoning, by which
M ayer explains the condensation of a vapour (§ 5). Assuming certain
properties (a —e, p. 19) of an analytic function y(z), which is characteristic
for the behaviour of a real gas, a rigorous derivation of the condensation
phenomenon is given (§ 6).

§ 1. Introduction. In a series of papers Mayer and collabora-
tors 1) have recently tried to explain the phenomenon of condensa-
tion on the basis of classical statistical mechanics. The contribution
which Mayer has made to this fundamental problem, although
quite important, was far from convincing, especially from the
mathematical standpoint. B orn *) has succeeded in simplifying
and improving the arguments of M a y er. We have been working
on the same lines and have partially reached the same results. Our
considerations however are somewhat more general than those of
Mayer and Born, in so far that they are not restricted to
classical statistical mechanics. Furthermore we shall show %) the

*) The first paper of Born 2) was presented at the Van der Waals Centenary
Congress in Amsterdam. The discussions there with him and other members of the
congress have been very clarifying for us. A second paper of Born and Fuchs will
appear in the Proc. roy. Soc. We are greatly indebted to Prof. B orn for showing us the
manuscript of this paper.
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400 B. KAHN AND G. E. UHLENBECK

analogy which exists between the theory of Mayer and the well
~ known argument of Einstein4), by which he predicted a con-
densation phenomenon for an ideal Bose gas. These are the main
reasons why. we think it useful to publish our account of Mayer’s
theory also. Moreover we believe that we are more sceptical than
- B orn. Because of the importance of the problem we think it worth
while to point out as precisely as possible the assumptions implied
'in Mayer’s work and the difficulties which stiil remain.
The problem can be stated as follows. Suppose one has N mono-
atomic molecules of mass m in a vessel of volume V, then the free
energy ¥(V, T) is determined by:

aNJ2
VT _ Z\ll" ZW;ZkT / / any . dnge ()

where U is the potential energy of the 1nte~rmolecular forces, and
where the integral over each r; has to be taken over the volume V.
The pressure follows-from ¥ according to:

p=—y @

The question now is whether one can prove from (1) that at
sufficiently low temperatures $ as a function of V consists of at least
three analytically diffevent parts, namely one representing the vapour,
a second horizontal part representing the saturated vapour in equili-
brium with the liquid, and a third one representing the liquid. '

The following remarks may help to elucidate the problem.

a. First one should perhaps point out that the wellknown Van
der Waals theory does not give a solution of the problem. One
may say that Van der Waals calculates the integral (1)
approximately. He then extrapolates in a certain way the result,
which is valid only for small densities, to higher densities. The
famous equation of state, which he obtains in this fashion, gives at
constant T the pressure as a smooth function of the volume. Below
the critical temperature one needs then a thermodynamical argu-
ment (the rule of Maxwell) to fix the pressure of the saturated
vapour. The real, stable isotherm is therefore‘ not derived from the
integral (1).

b. One might think perhaps that this stable isotherm cannot be
derived from the integral (1) without further assumptions. One argues
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then that (1) gives the free energy for one horpogeneous phase. One
should make a separate calculation for the case when the system
consists of fwo phases. For each volume one would obtain therefore
two values for the free energy, corresponding to one or to two phases,
and the real isotherm would be determined by the lowest value of the
free energy. In our opinion this argument is nof correct. The integral
(1) contains all possible states of the system *) and the ¥, which one
calculates from (1), will describe the most probable state, which is the
state of equilibrium. The real stable isotherm should therefore follow
automatically from (1) without further assumptions.

c. On the other hand, from the mathematical standpoint, it is
hard to imagine how it can follow from (1) that ¥ (and therefore )
as a function of V consists of three analytically different parts. It
seems to us that this is possible, because we are really only interested
in a limat property of ¥. The problem has only a physical sense when
N is very large. One may expect then that for a fixed specific volume

4
V= o

N

the free energy ¥ will become proportional to N. Or in other words,
the limit

(v, T) = LimlN W(V,N,T) . (3
for V — oo, N — oo, V/N = v fixed, will exist. Strictly speaking the
property mentioned above has to be proved for ¢ as a function of ».
It is not surprising that this function can consist of analytically
different parts. ’

d. One may remark that the stable isotherm does not represent all
states of the system which are realizable. There is for instance the
well known phenomenon of supersaturation, which is represented by
the continuation of the vapour part of the isotherm beyond the point
of condensation. These states however are not states of stable equili-
brium, except in vessels which are everywhere so narrow that capil-
lary phenomena become of importance. Since we shall discuss the
integral (1) only for the case that the vessel will become large in all
directions, it is clear that we shall #ot obtain the states corresponding
to the supersaturated vapour. '

*) This point was especially emphasized by Van der Waals ]Jr.inthe discussion
of Mayer's theory at the Van der Waals Congress.
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" § 2. The development of Ursell. To include the quantum theory we
will start not from (1) but from the more general expression:

1 1
e~ VT —

_ SRR AL .
where (4)
2 _ 2 )
2nemkT
QN_ /drl...drNW(rl,rz...rN)

W, ...ry) = WN represents the probability of position in
configuration space for a canonical ensemble; it is defined by:

WN = ”z e_E”/kT <P:': Pau (5)

where E, and ¢, are the energy states and thg eigenfunctions of the
whole system, and where one has to sum over all possible eigen-
functions. The ¢, must be normalized in such a fashion that Wy —1
when all the particles are far away from each ‘other. Wy has the
following properties:

a. Wy is a symmetric function of ry, r; ... ry

b. For high temperatures Wy becomes asymptotically the
Boltzmann factor exp (— U/RT).

¢. When we divide the N particles into different groups containing
®y, oy .... particles, then for configurations where particles of
different groups are so far away from each other that their interac-
tion vanishes, we have:

Wy=WoW,,.... 6)

This property is a consequence of the fact that for these configura-
tions the Hamiltonian is separable into the sum of the Hamiltonians
of the different groups. In the classical theory (6) follows immediate-
ly from this fact. In quantum theory also the proof is quite straight-
forward. It should be stressed that it is #ot necessary to assume the
additivity property of the intermolecular forces *). The Wy has
not the property that it can be split into factors, each containing
only a pair of molecules, as is.the case in the classical theory when
the forces are additive.

*) The range of the forces must of course be sufficiently short, so that a division into
noninteracting groups is possible.
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U rsell?) has shown that it is possible tof write the integral (1)
as a polynomial of the N** degree in the volume. His procedure can
easily be extended to (4). One introduces a set of functions S(ry,
I, ... r) =S, which depend symmetrically on the coordinates of
molecules in the volume V. They are expressed in terms of the
probabilities W, W, .... W, by means of the relations:

W) = S(r) = 1
W(r,, r;) = S(ry, r3) + S(ry) S(ry)
W(r,, 15, T3) = S(r;, T3, T) + S(r}, ) S(r3) + S(r2, r3)S(ry) +
’ + S(rs, ry) S(ry) + S(ry) S(ra) S(ra)

and so on. The general rule is the following. We divide the [ particles
which occur in W, into a number of groups, and form the product of
the functions S, which depend on the particles of these groups. Then
W, will be the sum of these products for all possible ways of division
of the particles. The §, in terms of W,, W, ... W, are uniquely
defined by these relations.

One finds for instance: *)

S(ry, t5) = W(ry, 1) — W(r)W(r,)
S(ry, Ty, 13) = W(rl: Iy, r3) — W(ry, 1)) W(r) — (8)
‘—.W(rz: ry) W(r,) — W(r,, r3) W(ry) + 2W(r,) W(r,) W(r,)

The importance of the development (7) lies in the following funda-
mental property of the functions S, When we divide the [ particles
into different groups, containing P, B,, ... particles, then, for con-
figurations where particles of different groups are so far way from
each other that their interaction vanishes, we have S; = 0. Less
exactly one may say that S, is different from zero only when all the
particles are near together **).

The proof of this theorem follows from the product property (6)
of the Wy. For S; for instance it can be verified immediately from
the explicit expression (8). In this way one could give a general proof.
It is simpler however to consider the configuration mentioned in the

()

*) The rule which expresses the S in the W is the same as the rule which expresses the
W in the S, except for a coefficient (— 1)#—1 (¢ — 1)! when % is the number of the groups
into which the I particles are divided.

**) This does not mean however, that each particle is interacting with all others, but
only that all particles are linked together.
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product property-of W . Develop both sides of (6) according to (7).
The right hand side will then contain no S, referring to particles of
different groups. The sum of those terms on the left hand side, which
contain S of this kind, must therefore be zero for this configuration.
By applying this argument successively to W,, W;etc., one shows by
induction that each S; of this kind must be zero, as the theorem
requires.

A consequence of this theorem is that the integral of S, over the
coordinates of the / particles will become proportional to the volume
V,when V is very large. To see this first perform the integration over
the coordinates of  — 1 particles, keeping the coordinates of the I*
particle fixed. Because of the fundamental property of S,, the result
will be independent of the volume and independent of the position
of the / particle, provided that V is sufficiently large and S, goes
sufficiently fast to zero when the / — 1 particles are separated from
the /" particle. The integration over the coordinates of the /*
particle will then contribute a factor V' to the integral. We shall
write:

[ far s S = Vi ©)
4 14

It will be clear now that by integrating the development (7) for
W y, one will obtain for @ a polynomial of degree N in V. The result
can be written in the following form:

= (Vo)™ .
=N/§ IT ~—— 10
On=NIS T 20 (10
The m, are positive integers or zero. The summation sign means
that one has to sum over all sets of values of the m,;, which fulfill the

condition:
N
Z Ilm=N (11)
I=1 :

To prove this, consider a definite partition of IV in m, groups of one
particle, m, groups of two particles, and so on. The m, will then
clearly fulfill (11). To a definite set of values of m, correspond many
terms in the development (7), due to the different ways of distribut-
ing the N particles over the groups. All these terms will give the same
result after integration, namely:

N
1 (Vi/o)s (12)
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The number of these terms will be: ¢

N 1
N!/'IT

=1 (l!)ml ml'l (13)

since the permutation of particles in one group and the permutation
of groups of equal size will not give rise to new terms. By multiplying
(12) and (13) and by summing over the m, one obtains (10).

§ 3. The equation of state for the vapour phase. Mayer has
shown how to derive from the development (10) of Ursell a
general expression for the equation of state of the vapour phase. We
shall give here essentially his first derivation, which, although not
rigorous, is very simple and gives the correct result. In § 6 an exact
proof will be given.

Suppose that all b, are positive (which they probably are at suf-
ficiently low temperatures), then for large N one may approximate
the sum (10) by its largest term. To find the set of m, which gives
this maximum term, one proceeds in a way which is quite analogous
to the usual derivation of the Maxwell-Boltzmann distri-
bution law in statistical mechanics. One then finds, using Stir-
lin g’s approximation for m,/, that this maximizing set of m,is given
by:

my = Vb 2 (14)
where the parameter z has to be determined by the condition (11),
so that:

N 1 x ’
v 3 =l§1lblzl (D

By introducing this set of , one finds that log Q is approximat-
ed by:

log Oy =log N/ —Nlogz+V = b 2
1=1
From (4) and (2) one obtains then for the pressure:

p= k:réf1 b 2 (1)

In order to find an explicit expression for the equation of state,
one has to eliminate z between the equations (I) and (II). One can
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do this for instance by successive approximation. In this way one
gets:

2
pV = NET | —Nb, N

A2+ B4+ | (1)
This is the well known expansion in virial coefficients. All the

other thermodynamical quantities can easily be expressed in terms of

z and ;. One finds for instance for the energy:

b, r

=3 2
NkT+kT VZ dT

ahd for the thermodynamic potential:
{ = NkT log (A3 2)

‘This equation shows the thermodynamic meaning of the para-
meter 2.

h Y

§4. The ideal Bose gas. The equations (I) and (II) show a re-
~ markable analogy to the equation of state of an ideal Bose ‘gas as
given by E-instein 4. He obtained:

N 1 _ 14
Vo TR (I2)
kTool
P =55 5 Th (Ila)

from which again the equation of state results by elimination of 4.

Egs. (I) and (IT) become identical with (Ia) and (IIa) by putting:
A A30—1)

2= 33 V= TR (16)

This analogy is especially of interest, since Ei nstein has
shown that the equations (Iz) and (I1a) give rise to a condensation
phenomenon. Furthermore the case of the ideal Bose gas furnishes an
example where the b,, which are characteristic for the behaviour of a
real gas, can be determined explicitly.

An alternative derivation of Eqs. (Ia) and (Ila) will show more
clearly the origin of their analogy with (I) and (II). We shall start
again from (4) and (5). When one neglects the influence of the walls
of the vessel, one may write for the properly normalized eigenfunc-
tions o,

iR (py .
P, = N2 Z ¢ Ph TR
P
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where one has to sum over all permutations P of the N indices k. The

eigenvalues are:
— 1 2
T 2m %i)"
To find Wy one has to sum over all possible eigenfunctions, which
means that one must integrate over all values of the momenta ¢,

and divide the result by N/. One gets:
Wy—3 e S (17)

It is clear that Wy — 1 when all the particles are far away from
each other *).

The integral Q, can now be written in the same form as U r-
s e1l’s development (10}). Observe namely that by integrating one
term of (17), corresponding to a definite permutation P, over ry,
r, ... 'y, one obtains a power of ¥V, which is equal to the number of
cycles into which this permutation can be decomposed. The sum (17)
is therefore analogous to the development (7) of W yin the S;. Suppose
that the permutation P can be decomposed into , cycles of one
particle, #, cycles of two particles and so on. The m, will then again
fulfill the condition (11). To a definite set of values of m, there will
correspond many terms in (17), each of which gives the same con-
tribution to the integral Q. The number of these terms will be:

ol 1
N! 191 T (18)

This is different from (13) because only the / cyclic permutations
of the particles in one cycle will not give rise to new terms. To
obtain Qy in exactly the same form as in (10) we must write Vb,
for the integral over the coordinates of the particles of a cycle of
length . Therefore:

Vib, = f o fdr, dr, ... dr, =TI Pttt 1Y) (19)
V V

wherer; = | r; —r; |. The contribution of a term of (17) correspond-
ing to a definite set of values of m, will then be:

N -

IT(Vib)™ (20)

=1

*) W becomes larger than one in all regions of configuration space where some parti-
cles are near together. One may say therefore that there is an apparent attraction between
the particles of an ideal Bose gas. For a pair of particles this was already previously
noted ¢). One should point out however, that this attraction can not be represented by a
potential which has the property of additivity.
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By multiplying (18) and (20) and by summing over the m, one
gets again (10) .

The integral (19) *) can be performed straightforwardly by
integrating successively over the coordinates of the I particles. One
finds then for b, the result (16), and we saw already that with this
value of b, the equations (I) and (II) of Mayer become the
equations (Iz) and (Ilz) of Einstein.

§ 5. The condensation phenomenon. The reasoning by which E in-
stein derived the condensation phenomenon for and ideal Bose
gas from Egs. (Ia) and (IIa) is as follows. For small values of the
density the corresponding value of A will be small. By increasing
the density 4 will increase monotonically. This goes on until for a
finite value of the density 4 reaches the value one. Then:

N_1_ 131 26l

Ve, W0

kT
p=?bs=—7\Tl=l Pl : 23

For A > 1 the series (Iaz) and (IIa) diverge. According to Ein-
stein 1/y, is the maximum density which can be ;‘eachéd. By
further compression of the gas the superfluous particles will , con-
dense” into the state of zero energy and will not contribute to the
pressure nor to the density so that the pressure will remain p,. We
have therefore indeed a kind of condensation phenomenon, which
has however some uncommon features, namely:

a. The volume of the condensed phase is zero.

b. There does not exist a critical temperature.

c. There is no discontinuity in (dp/0v)+ at the condensation point.

In fact one finds from (Iz) and (1Ia):

(61)) pr (B AR .
)T T g o =
1

and this becomes zero for A = 1, since X1/i': diverges. On the other
hand it can be easily verified that the thermodynamical requirements
(equality of the ¢ for the two phases. Clapeyron’s equation,
etc.) are fulfilled.

*) The same integral occurs in a paper of Kramers?) on ferromagnetism.
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The reasoning by which Ma yer first derived the condensation
phenomenon for a real gas is quite analogous to the argument of
- Einstein. It can be expressed as follows. Suppose that the series
(I) and (II) have a certain finite convergence radius z, and that they
are still convergent for z = z *). When in addition the b, are positive,
then by increasing the density the corresponding value of z will
increase monotonically till the maximum value z = z is reached. For
higher densities the series (I) and (II) cease to have significance.
Using a physical interpretation of the equations, Mayer tries to
show that by further compression of the vapour condensation will
occur, while the pressure remains constant and equal to the value:

ﬂ:krgﬁ@ (22)

These explanations of the condensation phenomenon are certainly
not yet complete. An instructive example is furnished by the ideal
Fermi-Dirac gas. One shows easily that for this case the equation of
state is determined by:

N 11 A
kTR, A
? —7\—1=1(— N~ (T18)

when 4 < 1. At first sight one might think that these equations will
also predict a condensation phenomenon. This however is ot
correct. Although the series (I5) and (IIb) are convergent only for
A < 1,theyrepresent analytic functions of 4, which can be continued
along the positive real axis for all values of A > 1, so that the pres-
sure will be given by one analytic function of » for all values of the
volume. This can also be seen directly from the usual derivation of
the equation of state by means of the Fermi-Dirac distribution law.
This is in contrast to the case of the ideal Bose gas, where the point
A =1 is a.singular point of the functions (Ia) and (ITa,. It can be
shown (see § 6) that also for the real gas an essential condition for
condensation is that the functions (I) and (II) have a singularity on
the positive real axis of z.

*) In fact, M a yer tries to prove that for large / the b; become asymptotically equal
to by#—1/I%/s, which would make the analogy with the ideal Bose gas still closer. This result
o Mayer seems to us incorrect (see § 7); it does not affect however his explanation of
the condensation phenomenon.
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Another objection against the reasoningof Einstein hasbeen
raised by one of us §). The Eqgs. (I2) and (1Ia) are derived namely by
neglecting the quantization of the translational motion of the
molecules *). This is justified for small values of 4, but it becomes
essential in the neighbourhood of A = 1. The strict calculation shows
that for every finite volume N/V approaches infinity for 4 — 1, so
that then the veasoning above fails. It remains true however that
for densities larger than 1/v, the isotherm will be almost horizontal
and that this will be the more pronounced the larger the volume is.
Only in the limit ¥V - co the isotherm will consist of two different
parts. When we understand the condensation phenomenon always in
the sense of such a limit property (comp. remark ¢ of § 1) then this
objection therefore loses its validity.

§ 6. The rigourous treatment. We shall, start from Ursells
development (10). Instead of making the approximations of § 3, we
shall now determine strictly for N - 00, V —> oo, V/N = v finite

On \I¥ .
Lim. ( % ,) (23)
which according to (3) and (4) is equal to A3 exp (— ¢/RT) **).

With the help of a generating function one can show in the usual
way that Ursell’s development can be written in the form:

Oy | it
N = 2w P (@4

where:
x®) = X b (25)
=1

and the integral has to be taken around the origin of the complex ¢-
plane, excluding the singularities of x(#). The function (¢} is the
fundamental function or the problem.

The first method which presents itself for treating the integral (24)
is the method of steepest descents {). We have found another

*) In the derivation of § 4 this corresponds to the neglect of the influence of the walls
of the vessel.

*#*) The QN are of course all positive, since they are integrals over the probabilities Wn.

1) Inapaper by Kramers?) onferromagnetism occurs an integral, which is identical
with (24) for the case of the ideal Bose gas, and which has been treated by him with
the method of steepest descents. Kramers was the first to show that for this case at
least, the limit (23) as a function of v consists of two analytically different parts. We
are greatly indebted to him for pointing out to us the bearing of his results on the problem
of condensation.
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method, however, more appropriate for thetdiscussion of the Limit
(23) *). :
Consider the power series:

F(x) = NEI %x” (26)
where the different Q have to be taken for the same value of V/N =
= v. According to the well known theorem of Cauchy the limit
(23) is now just equal to the inverse of the radius of convergence R
of F(x). On the other hand the series (26) defines an analytic function
of x, and we can therefore find the convergence radius R by deter-
mining the singularity of this function which is nearest to the origin.

Another expression of F(x) can be found as follows. Introduce
(24) into (26); then the summation and integration can be inter-
changed when x is so small that on the whole contour:

| xE(@) | <1
where:
g"X(t)
B)=— (27)

It is always possible to find such an x because | £(#) | is bounded on
the contour. The summation of the geometric series gives then:

1 dat  xE(t) :

Fo) =50 P 7 1T—%p (28)

The integral can be calculated by means of the theorem of residues.
The only poles of the integrand within the contour are £ = 0 and the
zero’s of the function 1 — x£(#). For sufficiently small x this function
has only one simple zeropoint. One sees this from Cauchy’s
integral. The excess of the number of zero’s over the number of poles

of 1 — xE(¢) within the contour is given by:

__ % ¢ F0
i SB Tk &

The integral has always a certain finite value, so that # — p can be
made as small as one pleases by taking x small enough. Therefore
n — p must be zero, since it can assume only integral values. Now
1 — x£(2) has one simple pole within the contour, namely ¢ = 0, and

*) The idea of this method is due to the junior author. We wish to thank Prof. J. Wolff
for his help in completing certain parts of the proof.
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therefore also one simple zero, say at { = #,. The evaluation of (28)
by means of the theorem of residues gives then:

_ ot ()
F(x) = Tm - (29)
where:
| —xE(t) = O (30)

If we start from the origin and move along a definite path in the
x-plane, the equation (30) will determine #; as an analytic function
of x. Along the corresponding path in the f,-plane ¥} y’ (¢)will be
again an analytic function of ¢, and therefore of x. In this way (29)
defines an analytic function of x, which for small x coincides with the
power series (26), and which therefore represents its analytical
continuation.

- We have now to determine the singularity of F(x) which is nearest
to the origin. One needs to consider only real positive values of x,
because of the fact that the series (26) has real and positive coeffi-
cients, so that the real positive point on its circle.of convergence will
be a singularity of F(x) ®). One sees from (29) and (30) that the
possible singularities of F(x) are the values of x which correspond to
the zero’s of the denominator 1 — v#,y'(¢o) and which correspond to
the singularities of x(f). Whether these values of x are actually
singularities of F(¥) and which of them is nearest to the origin
depends on the properties of the function ¥(f)) and on the value
of v. We know that for small values of £, ¥(t,) L4,. We will assume
further:

a. (%) has a fintte radius of convergence equal to 7.

. b. (%) hasa singularity z on the real positive axis; z may be greater
than or equal to 7. The latter case will occur for instance when all the
b, are positive.

¢. x(z) and y'(2) are finite; the point z will therefore be a branch
point of y(Zy).

d. The inverse function of x(#) is singular at the point correspond-
ing to £y = z.

e. toY'(t) is monotonically increasing on the real axis between
to =0 and ¢, = z 1); this will again be the case when the b, are
positive.

*) which also starts from the origin, since £, = 0 for x = 0.

1) One must also exclude the possibility that #,%’(fs) has a horizontal inflexion point in
this region.
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To find the singularities of F(x) we shall start from the origin and
move along the real positive axis in the x-plane. When v is large
enough one sees that the first singularity of F(x) which one meets will
be determined by the zeropoint of the denominator in (29). Let us call
this zero point ¢, = 2, so that: ‘

vzy'(z) =1 , (31)

The corresponding value of x, and therefore the radius of con-
vergence R, according to (30) will be:

R = ze—x

This is therefore the inverse of the limit (23), from which one
obtains immediately the expression for the pressure:

p = ETy(2) (32)

The equations (31) and (32) are identical with the Eqgs. (I) and (II)
which are now therefore proved rigorously when v is large enough.

It should be pointed out that for this proof none of the assump-
tions a—e are necessary. Because of assumption ¢ *) the equations
(31) and (32) will remain valid until:

1
V=1, EYE) | (33)

In the case that Z > », and for values of z between » and z, the
equations (31) and (32) are no longer identical with the series (I)
and (II), but represent their analytical continuations. For all these
values of v the pressure remains a smooth function of the volume.

Because of assumption ¢, v, has a finite value. Suppose now that v
is smaller than v,. When we again move along the real positive x-axis,
we shall reach the point corresponding to #;, = z before meeting a
zero of the denominator of (29). Because of assumption 4 this
value of x will be a singularity of F(x). In this case therefore:

R=12 g“"sz)
This corresponds to the constant pressure:
p = b, = kT (34)
When z = # this is identical with equation (22) of M ayer. The

*) When this assumption is not fulfilled, so that #y (%) has at least one maximum (say
at # = t), then one can show that for a value of v corresponding to z = ¢, dp/dv becomes
infinite. This has been pointed out by Born and Fuchs (comp. also Eq. (21)). It
gives the physical reason for the assumption e.
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pressure as a function of v consists therefore of two analytically dif-
ferent parts, namely the curve represented by (31) and (32) for
v > v, and the horizontal line (34) for v < v,.

§7. Further vemarks. 1. Born and Mayer have givén a
formal solution of the problem of eliminating z between the funda-
mental equations (I) and (II). Their result can be stated as follows.
Define a function:

(==}
9@ =% pE

by means of the equations:
1 g$)
2, l—
1%b, = 5 CJ; 43 2 (35)

_ This gives the b, expressed in terms of the 8,. One can solve these
equations successively for 8,, and thus exptess the B, uniquely in
terms of the &, Applying the theorem of Lagrange 1% one can
solve Eq. (I) for z. With the help of the function ¢(£) the result can
be written in the form:

2 = _1_ g—¢(‘/”)
v

By introducing this into (II), one obtains:

S_v B
pv =k:r(1 —El v 57) (36)

Mayer and B orn wereled to (35) by the consideration of the
integrals defining the b, in the case of classical statistical mechanics.
They showed that these integrals can be split up into the sums of
products of certain ,,irreducible’” integrals, which are immediately
related to the p,. We have not been able to generalize this physical
interpretation of the B, to the quantum theory.

2. Mayer and Born have tried to derive from (35) certain
general properties of the characteristic function y(z). In particular
Mayer has tried to make plausible that in a certain range of
temperatures below the critical temperature 4, behaves asymptotic-
ally for large ] as:

bt
Z"/t

by

IS

(37)

One would obtain this from (35) if it were permitted to apply the
method of steepest descents to this integral. A consequence of (37) is
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that 9p/0v becomes zero at the condensatiod point v = v, (comp.
Eq. (21)). _

These considerations seem to us very doubtful, since they are
based only on the formal expression (35) for the b, The physical
interpretation of the B, is nowhere used. It is clear that one can hope
to make a further advance only by going back to the physical mean-
ing of the b, or the f.. In particular it seems to us impossible to say
anything in general about the behaviour of 0p/0v near the condensa-
tion point. This will depend on the series:

3 1%,7

=1
which may be divergent or convergent. In the first case 0p/ov will
be zero for v = v,, while in the latter case it will have a finite value.

3. From the further investigation of the integrals representing &,
must follow especially the properties a—e (§ 6) of x(z), which are
necessary to explain the condensation phenomenon. An essential
difficulty seems to us to lie in the fact, that even with the assump-
tions a—e for x(2) it is impossible to obtain the ¢hird part of the iso-
therm, corresponding to the liquid statc. The reason is that for all
v < v, the singularity of F(x) which is nearest to the origin, is deter-
mined by the singularity z of x(z), which is independent of ». There-
fore the isotherm will remain horizontal for all v < v,.

It is clear that the origin of this difficulty has to be found in the
neglect of the dependance of the b, on the volume V. It is true of
course that for every finite / the quantity b, has a definite limit for
V — oco. We have assumed however more than this, since the
properties of y(z) depend on the behaviour of b, for large /. There is
clearly a double limiting process involved and it may be that the
solution of the difficulty will be found by a more cerrect treatment
of these limits.

Received March 28th, 1938.
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