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A b s t r a c t  

A d i scuss ion  is g iven  of M a y e r ' s  t h e o r y  of t he  c o n d e n s a t i o n  p h e n o m e -  
non .  I t  is s h o w n  t h a t  t h e  t h e o r y  is n o t  r e s t r i c t e d  to  c lass ical  s t a t i s t i c a l  
m e c h a n i c s ,  n o r  t h a t  i t  is n e c e s s a r y  to  a s s u m e  t h e  a d d i t i v i t y  p r o p e r t y  of 
t h e  i n t e r m o l e c u l a r  forces.  The  t h e o r y  is b a s e d  on Urse l l ' s  d e v e l o p m e n t  
of t h e  p a r t i t i o n  f u n c t i o n  in power s  of t h e  v o l u m e  (§ 2). T h e n  t h e  r e a s o n i n g  
of M a y e r is g iven  (§ 3), wh ich  leads  to  t he  f u n d a m e n t a l  e q u a t i o n s  (I) 
a n d  (II) ,  w h i c h  r e p r e s e n t  t h e  e q u a t i o n  of s t a t e  of a n o n - i d e a l  gas. In  § 4 
t h e  a n a l o g y  is s h o w n  b e t w e e n  t h e s e  e q u a t i o n s  a n d  t h e  e q u a t i o n s  of 
E i n s t e i n  for  t h e  ideal  Bose  gas. F o r  th i s  l a t t e r  case E i n s t e i n  
h a d  p r e d i c t e d  a l r e a d y  a c o n d e n s a t i o n  p h e n o m e n o n .  A t t e n t i o n  is d r a w n  
to  t h e  a n a l o g y  b e t w e e n  his a r g u m e n t  a n d  t h e  r eason ing ,  b y  w h i c h  
M a y e r exp l a in s  t h e  c o n d e n s a t i o n  of a v a p o u r  (§ 5). A s s u m i n g  c e r t a i n  
p r o p e r t i e s  ( a - - e ,  p. 19) of an  a n a l y t i c  f u n c t i o n  X(z), w h i c h  is c h a r a c t e r i s t i c  
for  t h e  b e h a v i o u r  of a real  gas, a r igorous  d e r i v a t i o n  of t h e  c o n d e n s a t i o n  
p h e n o m e n o n  is g iven  (§ 6). 

§ 1. Introduction. In a series of papers  M a y e r and collabora- 
tors 1) have recent ly  tr ied to explain the phenomenon  of condensa- 
tion on the basis of classical statist ical  mechanics.  The contr ibut ion  
which M a y e r has made  to this fundamenta l  problem, a l though 
quite  impor tan t ,  was far f rom convincing, especially f rom the  
ma themat i ca l  s tandpoint .  B o r n *) has succeeded in simplifying 
and improving the arguments  of M a y e r. We have been working 
on the same lines and have par t ia l ly  reached the same results. Our 
considera¢ions however  are somewhat  more general than  those of 
M a y e r  and B o r n ,  in so far tha t  they  are not  restr ic ted to 
classical statist ical  mechanics.  Fu r the rmore  we shall show a) the 

*) The first paper of B o r n  2) was presented at the V a n  d e r  W a a l s  Centenary 
Congress in Amsterdam. The discussions there with him and other members of the 
congress have been very clarifying for us. A second paper of B o r n and F u e h s will 
appear in the Proc. roy. Soc. We are greatly indebted to Prof. B o r n for showing us the 
manuscript of this paper. 

- -  3 9 9  - -  
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analogy which exists between the theory of M a y e r and the well 
known argument of E i n s t e i n 4), by which he predicted a con- 
densation phenomenon for an ideal Bose gas. These are the main 
reasons why we think it useful to publish our account of M a y e r's 
theory also. Moreover we believe tha t  we are more sceptical than 
B o r n. Because of the importance of the problem we think it worth 
while t o  point out as precisely as possible the assumptions implied 
in M a y e r's work and the difficulties which still remain. 

The problem can be stated as follows. Suppose one has N mono- 
atomic molecules of mass m in a vessel of volume V, then the free 
energy ~F(V, T) is determined by: 

e -~PIkT---- N . f  t2~h?------~-T)aNl2f . . . .  far, . . .  drNe -Ulhr (1) 

v v 

where U is the potential energy of the inte~molecular forces, and 
where the integral over each r~ has to be taken over the volume V. 
The pressure follows f rom ~F according to: .. 

P = - -  ~17 (2) 

The question now is whether one can prove from (1) that  at 
suffi¢ientl3~ low temperatures p as a function of V consists of at least 
three analytically di//erent parts, namely one representing the vapour, 
a second horizontal part representing the saturated vapour in equili- 
brium with the liquid, and a third one representing the liquid. 

The following remarks may'help to elucidate the problem. 
a. First one should perhaps point out that  the wellknown V a n 

d e r W a a 1 s theory does not give a solution of the problem. One 
may say that  V a n  d e r  W a a l s  calculates the integral (1) 
approximately. He then extrapolates in a certain way the result, 
which is valid only for small densities, to higher densities. The 
famous equation of state, which he obtains in this fashion, gives at 
constant T the pressure as a smooth function of the volume. Below 
the critical temperature one needs then a thermodynamical argu- 
ment (the rule of M a x w e 11) to fix the pressure of the saturated 
vapour. The real, stable isotherm is therefore" not derived from the 
integral (1). 

b. One might think perhaps that  this stable isotherm cannot be 
derived from the integral (1) without further assumptions. One argues 
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then that (1) gives the free energy for one  hor0ogeneous phase. One 
should make a separate calculation for the case when the system 
consists of two  phages'. For each volume one would obtain therefore 
two values for the free energy, corresponding to one or to two phases, 
and the real isotherm would be determined by  the lowest value of the 
free energy. In our opinion this argument is n o t  correct. The integral 
(1) contains all possible states of the system *) and the tiP, which one 
calculates from (1), will describe the most probable state, which is the 
state of equilibrium. 'The real stable isotherm should therefore follow 
automatically from (1) without further assumptions. 

c. On the other hand, from the mathematical standpoint, i t  is 
hard t'o imagine how it can follow from (1) that  ~F (and therefore p) 
as a function of V consists of three analytically different parts. It 
seems to us that  this is possible, because we are really only interested 
in a l i m i t  p r o p e r t y  of qP. The problem has only a physical sense when 
N is very large. One may expect then that for a fixed specific volume 

V 
N 

the free energy ~F will become proportional to N. Or in other words, 
the limit 

+(v, T) = Lim N ~(V,  N, T) (3) 

for V -+ co ,  N -+ co ,  V / N  - -  v fixed, will exist. Strictly speaking the 
property mentioned above has to be proved for ~b as a function of v. 
It is not surprising that this function can consist of analytically 
different parts. 

d. One' may remark that the stable isotherm does not represent all 
states of the system which are realizable. There is for instance the 
well known phenomenon of supersaturation, which is represented by  
the continuation of the vapour part of the isotherm beyond the point 
of condensation. These states however are n o t  states of stable equili- 
brium, except in vessels which are everywhere so narrow that capil- 
lary phenomena become of importance. Since we shall discuss the 
integral (1) only for the case that  the vessel will become large in all 
directions, it is clear that  we shall n o t  obtain the states corresponding 
to the supersaturated vapour. 

*) This  poin t  was especial ly emphas ized  b y  V a n d e r W a a 1 s J r .  in the discussion 

of M a y e r ' s t h e o r y  at the V a n  t i e r  W a a l s  Congress. 

Physica V 26 
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§ 2. The development o/Ursell. To include the quantum theory we 
will start  not from (1) but  from the more general expression: 

e_~elkr=. 1 1 
N !  " X 3N QN 

where (4) 
h 2 

X 2 -  2rc'-mkT 

(?N = f . . . . f a y ,  . . .  arN W(rt, r 2 . . .  rn) 
# v 

W.(ra . . .  r n ) =  WN represents the probability of position in 
configuration space for a canonical ensemble; it is defined by:  

Wn = X e-~-/kr ~* ~,, (5) 

where E ,  and ~% are the energy states and th$ eigenfunctions of the 
whole system, and where one has to sum over all possible eigen- 
functions. The ~, must be normalized in such a fashion that  WN ~ 1 
when all the particles are far away from each "other. WN has the 
following properties: 

a. WN is a symmetric function of rl, r2 • • • rN 
b. For high temperatures WN becomes asymptotically the 

B o 1 t z m a n n factor exp ( - -  U/kT). 
c. When we divide the N particles into different groups containing 

cq, ~2 . . . .  particles, then for configurations where particles o f  
different groups are so far away from each other that  their interac- 
tion vanishes, we have: 

w N  = wo ,  w o ,  . . . .  (6) 

This property is a consequence of the fact that  for these configura- 
tions the Hamiltonian is separable into the sum of the Hamiltonians 
of the different groups. In the classical theory (6) follows immediate- 
ly .from this fact. In quantum theory also the proof is quite straight- 
forward. It should be stressed that  it is not necessary to assume the 
additivity property of the intermolecular forces *). The Wu has 
not the property that  it can be split into factors, each containing 
only a pair of. molecules, as i s the  case in the classical theory when 
the forces are additive. 

*) The range of the forces must  of course be sufficiently shortr so tha t  a division into 
noninteract ing groups is possible. 
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U r s e 11 5) has shown that  it is possible to write the integral (1) 
as a polynomial of the N th degree in the volume. His procedure can 
easily be extended to (4). One introduces a set of functions S(rl, 
r2 . . .  rz) = S ,  which depend symmetrically on the coordinates of l 
molecules in the volume V. They are expressed in terms of the 
probabilities Wl, W2 . . . .  Wz by means of the relations: 

W(rl) = S(rl) = 1 

W(rl, r2) = S(rl, r2) + S(rl) S(r2) (y) 
W(rl, r2, r3) = S(rl, r2, r3) + S(rl, r2) S(r3) + S(r2, r3)S.(rl) + 

+ S(r3, rl) S(r2) + S(rl) S(r2) S(r3) 

and so on. The general rule is the following. We divide the l particles 
which occur in Wt into a number of groups, and form the product of 
the functions S, which depend on the particles of these groups. Then 
Wt will be the sum of these products for all possible ways of division 
of the particles. The St in terms of W1, W2 . . .  Wt are uniquely 
defined by these relations. 

One finds for instance: *) 

S(rl, r2) = W(r 1, r2) - -  W(rl)W(r2) 

S ( r l ,  r 2 ,  r3 )  = W ( F I ,  r 2 ,  r3 )  - -  W ( F  I, r 2 )  W(r3) - -  (8) 
- -  W(r2, r3) W(rz) - -  W(r2, r3) W(rl) + 2W(rl) W(r2) W(r3) 

The importance of the development (7) lies in the following funda- 
mental  property of the functions St. When we divide the l particles 
into different groups, containing ~l, ~2 . . . .  particles, then, for con- 
figurations where particles of different groups are so far way from 
each other that  their interaction vanishes, we have St = 0. Less 
exactly one may say that St is different from zero only when all the 
particles are near together **). 

The proof of this theorem follows from the product property (6) 
of the W.v.' For $3 for instance it can be verified immediately from 
the explicit expression (8). In this way one could give a general proof. 
It is simpler however to consider the configuration mentiofled in the 

*) The rule which expresses the S in the W is the same as the imle which expresses  the  
W in the S, except for a coefficient ( - -  l)k--I (k - -  1)[ when k is the n u m b e r  of the groups 
into which the l particles are divided. 

**) This does not  mean  however, tha t  each particle is interacting wi th  all others, bu t  
only tha t  all particles are linked together.  
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product property.of WN. Develop both sides of (6) according to (7). 
The right hand side will then contain no Sz referring to particles of 
different groups. The sum of those terms on the left hand side, which 
contain St of this kind, must therefore be zero for this configuration. 
By applying this argument successively to W2, W3 etc., one shows by 
induction that  each S, of this kind must be zero, as the theorem 
requires. 

A consequence of this theorem is that  the integral of S, over the 
coordinates of the / particles will become proportional to the volume 
V, when V is very large. To see this first perform the integration over 
the coordinates of / - -  1 particles, keeping the coordinates of the l th 
particle fixed. Because of the fundamental property of S,, the result 
will be independent of the volume and independent of the position 
of the 1 particle, provided that V is sufficiently large and S, goes 
sufficiently fast to zero when the l - -  1 particles are separated from 
the l th particle. The integration over the coordinates of the l th 
particle will then contribute a factor V to the integral. We shall 
write: 

.f . . .  f drl . . .  dr, S , =  Vl . t  br (9) 
V V 

I t  will be clear now that b y  integrating the development (7) for 
W~, one will obtain for QN a polynomial of degree N in V. The result 
can be written in the following form: 

N (Vbs),. l 
~,N = N~ S' II (1 O) 

,= 1 m ~  

The m, are positive integers or zero. The summation sign means 
that  one has to sum over all sets of values of the m ,  which fulfill the 
condition: 

u 
Z lm, = N (1 l) 

, = 1  

To prove this, consider a definite partition of N in m 1 groups of one 
particle, m2 groups of two particles, and so on. The ms will then 
dear ly  fulfill (11). To a definite set of values of m, correspond many 
terms in the development (7), due to the different ways of distribut- 
ing the N particles over the groups. All these terms will give the same 
result after integration, namely: 

N 

H ( V l / b , ) " ,  (12) 
t = l  
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The number of these terms will be: 

N 1 (13) N !  I=IH (l!)'I m /  

since the permutation of particles in one group and the permutation 
of groups of equal size will not give rise to new terms. By multiplying 
(I 2) and (I 3) and by  summing over the ml one obtains (I 0). 

§ 3. The equation o[ state /or the vapour phase. M a y e r  has 
shown how to derive from the development (10) of U r s e 11 a 
generM expression for the equation of state of the vapour phase. We 
shall give here essentially his first derivation, which, although not 
rigorous, is very simple and gives the correct result. In § 6 an exact 
proof will be given. 

Suppose that all bl are positive (which they probably are at suf- 
ficiently low temperatures), then for large N one may approximate 
the sum (10) by  its largest term. To find the set of ml which gives 
this maximum term, one proceeds in a way which is quite analogous 
to the usual derivation of the M a x w e 11-B o 1 t z m a n n distri- 
bution law in statistical mechanics. One then finds, using S t i r- 
1 i n g's approximation for m/,  that  this maximizing set of ml is given 
by" 

~-'1 -~ Vbl z I (14) 

where the parameter z has to be determined by  the condition (11), 
so that:  

N _ _  1 = ~ lblzl (I) 
V v I=I 

By introducing this set of ml one finds that  log QN is approximat- 
ed by:  

log Q~, -- log N~ - -  N log z + V ~ bl z 1 
1=1 

From (4) and (2) one obtains then for the pressure: 
oo 

p = k T  Z b~ z I (II) 
l=1 

In order to find an explicit expression for the equation of state, 
one has to eliminate z between the equations (1) and (II). One can 
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do this for instance by successive approximation. In this way one 
gets: 

[ Nb2 N2 ] 
p v =  N k T  1 V + - - ~  (--2b3 + 4b~) + . . . .  , (15) 

This is the well known expansion ill virial coefficients. All the 
other thermodynamics] quantities can easily be expressed in terms of 
z and b,. One fin'ds for instance for the energy: 

3 oo dbt zt 
¢ = ~ N k T  + k T 2 V  Z 

t = l  

and for the thermodynamic potential: 

= N k T  log (X 3 z) 

This equation shows the thermodynamic meaning of the para- 
meter z. 

§ 4. The ideal Bose gas. The equations (I) and (II) show a re- 
markable analogy to the equation of state of .an ideal Bose "gas as 
given by E-i n s t e i n 4). He obtained: 

A t N 1 1 ~ (Ia) 
I=1 

kT  oo A t 
p = - ~  ,_Z 1 ~ (IIa) 

from which again the equation of state results by elimination of A. 
Eqs. (I) and (II) become identical with (Ia) and (IIa) by putting: 

A ~3{l-1} 
.z = X-- ~ , bt = l,!----- 7 -  (16) 

This analogy is especially of interest, since E i n s t e i n has 
shown tha t  the equations (Ia) and (IIa) give rise to a condensation 
phenomenon. Furthermore the case of the ideal Bose gas furnishes an 
example where the b~, which are characteristic for the behaviour of a 
real gas, can be determined explicitly. 

An alternative derivation of Eqs. (Ia) and (IIa) will show more 
clearly the origin of their analogy with (I) and (II). We shall start 
again from (4) and (5). When one neglects the influence of the walls 
of the vessel, one may  write for the properly normalized eigenfunc- 
tions ~ :  

(Pn ~ ~k3NI2 ~ eil~ ~ (Pk • rPk) 
P 
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where one has to sum over all permutations P of the N indices k. The 
eigenvalues are: 

E = _ _  I 
" 2 m  ~P~ 

To find WN one has to sum over all possible eigenfunctions, which 
means that  one must integrate over all values of the momenta p~ 
and divide the result by  N/. One gets: 

W N = ~_a e --ar/~tt f Irk--rpklt ( 1 7 )  

P 

It is clear that  WN -+ 1 when all the particles are far away from 
each  other *). 

The integral Q~ can now be written in the same form as U r- 
s e 1 l's development (10). Observe namely that  by  integrating one 
term of (17), corresponding to a definite permutation P,  over rl,. 
r2 • • • FAr, One obtains a power of V, which is equal to the number of 
cycles into which this permutation can be decomposed. The sum (17) 
is therefore analogous to the development (7) of WNin the St. Suppose 
that  the permuta t ion/9  can be decomposed into ml cycles of one 
particle, m 2 cycles of two particles and so on. The mt will then. again 
fulfill the condition (11). To a definite set of values of ms there will 
correspond many terms in (17), each of which gives the same con- 
tribution to the integral QN. The number of these terms will be: 

N 1 
N! I I  - ( 1 8 )  

~=1 l"~ ms! 
This is different from (13) because only the l cyclic permutations 

of the particles in one cycle wiU not give rise to new terms. To 
obtain Q~ in exactly the same form as in (10) we must write Vlbl 

for the integral over the coordinates of the particles of a cycle of 
length l. Therefore: 

V t b ~ =  f . . . .  f drl  d r  2 . . .  d r ~ e - W ~ ' ( " l . + " ~ + " ' + " .  1 (19) 
V V 

where r~ i ,= I ri I ri I. The contribution of a term of (17) correspond- 
ing to a definite set of values of mt will then be: 

N 
H (Vlb,) m, (20) 

l = 1  

• ) WAr becomes  la rger  t h a n  one in al l  regions of conf igura t ion  space  where some par t i -  
cles are n e a r  together .  One m a y  s ay  therefore  t h a t  there  is an  a p p a r e n t  a t t r a c t i o n  be tween  
the  p a r t i c l e s  of an  ideal  Bose gas. For  a pa i r  of par t ic les  th is  was  a l r eady  p rev ious ly  
no ted  e). One should  po in t  out  however ,  t h a t  this  a t t r a c t i o n  can  *tot be represen ted  by  a 
p o t e n t i a l  which  has  the  p rope r ty  of add i t i v i t y .  
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By multiplying (18) and (20) and b y  summing over the m, one 
gets again (10) . 

The integral (19) *) can be performed straightforwardly by  
integrating Successively over the coordinates of the l particles. One 
finds then for b, the result (16), and we saw already that  with this 
value of bz the equations (I) and (II) of M a y e r become the 
equations (Ia) and (II=) of E i n s t e i n. 

§ 5. The condensation phenomenon. The reasoning by which E i n- 
s t e i n derived the condefisation phenomenon for and ideal Bose 
gas from Eqs. (Ia) and (IIa) is as follows. For small values of the 
density the corresponding value of A will be small. By  increasing 
the density A will increase monotonically. This goes on until for a 
finite value of the density A reaches the value one. Then" 

1 ~61 N 1 1 ~ l '/* _ )3 

k S kT ~ _~ = 1.24 X3 P = P * =  -~-L=i 

For A > 1 the series (la) and (IIa) diverge. According to E i n- 
s t e i n 1/v, is the maximum density which can be reached. By 
further compression of the gas the superfluous particles will , con- 
dense" into the state of zero energy and will not contribute to the 
pressure nor to the density so that the pressur~ will remain p,. We 
have therefore indeed a kind of condensation phenomenon, which 
has however some uncommon features, namely: 

a. The volume of the condensed phase is zero. 
b. There does not exist a critical temperature. 
c. There is no discontinuity in (~p/~v)~ at the condensation point. 
In fact one finds from (Ia) and (Iia)" 

c o  

( Y~ A l/l'l') 2 
/ ~p ) = k T  , (21) 

~ x 3v o~ A~/Vl. 
1 

and this becomes zero for A = 1, since X 1/l 'l, diverges. On the other 
hand it can be easily verified that the thermodynamical requirements 
(equality of the ~ for the two phases. C 1 a p e y r o n's equation, 
etc.) are fulfilled. 

*) T h e  s a m e  i n t e g r a J  o c c u r s  i n  a p a p e r  of  K r a rn e r s 7) o n  f e r r o m a g n e t i s m .  
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The reasoning by which M a y e r first derived the condensation 
phenomenon for a real gas is quite analogous to the argument of 
E i n s t e i n. It can be expressed as follows. Suppose that  the series 
(I) and (n) have a certain finite convergence radius }, and that  they 
are still convergent for z = ~ *). When in addition the bl are positive, 
then by increasing the density the corresponding value of z will 
increase monotonically till the maximum value z = } is reached. For 
higher densities the series (I) and (II) cease to have significance. 
Using a physical interpretation of the equations, M a y e r tries to 
show that  by further compression of the vapour condensation will 
occur, .while the pressure remains constant and equal to the value: 

o o  

p,  = k T  Z b~-z ~ (22) 
t=l  

These explanations of the condensation phenomenon are certainly 
not yet complete. An instructive example is furnished by the ideal 
Fermi-Dirac gas. One shows easily that  for this case the equation of 
state is determined by" 

N 1 1 oo 1 ) l_  1 At  
V - -  v -- X 3 Z ( - -  l'W; (Ib) 

l = l  

k T  c o  1) t - I  A l 
p = -~- X (--  l'/--; (llb~ 

when A ~ 1. At first sight one might think that  these equations will 
also predict a condensation phenomenon. This however is not  

correct. Although the series (Ib) and (Ilbl are convergent only for 
A ~ 1, they represent analytic functions of A, which can be continued 
along the positive real axis for all values of A > 1, so that  the pres- 
sure will be given by one analytic function of v for all values of the 
volume. This can also be seen directly from the usual derivation of 
the equation of state by means of the Fermi-Dirac distribution law. 
This is in contrast to the ease of the ideal Bose gas, where the point 
A -- 1 is a,singular point of the functions (In) and (Ila,. It can be 
shown (see § 6) that  also for the real gas an essential condition for 
condensation is that  the functions (I) and (II) have a singularity on 
the positive real axis of z. 

*) In  fac t ,  M a y e r t r ies  to  p r o v e  t h a t  for  l a rge  l t he  bl b e c o m e  a s y m p t o t i c a l l y  e q u a l  
to  bol--l/l~lJ, which  w o u l d  m a k e  the  a n a l o g y  wi th  the  idea l  Bose gas  stil l  closer.  Th i s  r e su l t  
o lVl a y e r seems to  us i nco r r ec t  (see § 7) ; i t  does  n o t  a f fec t  h o w e v e r  hi~ e x p l a n a t i o n  of 
the  c o n d e n s a t i o n  p h e n o m e n o n .  
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Another objection against the reasoning of E i n s t e i n has been 
raised by one of us s). The Eqs. (Ia) and (IIa) are derived namely by 
neglecting the quantization of the translational motion of the 
molecules *). This is justified for small values of A, but  it becomes 
essential in the neighbourhood of A = 1. The strict calculation shows 
that  for every finite volume N / V  approaches infinity for A -+ l, so 
that  then the reasoning above fails. It  remains true however that  
for densities larger than 1]vc the isotherm will be almost horizontal 
and that  this will be the more pronounced the larger the volume is. 
Only in the limit V ~ co the isotherm will consist of two different 
parts. When we understand the condensation phenomenon always in 
the sense of such a limit property (comp. remark c of § I) then this 
obiection therefore loses its validity. 

§ 6. The rigourous treatment. We shall, start from U r s e 1 l's 
developmeflt (10). Instead of making the approximations of § 3, we 
shall now determine strictly for N -+ co, V --> co, V / N  = v finite 

Lira. ( QN ~I/N (23) 

which according to (3) and (4) is equal to X 3 exp ( - -  ~/kT) **). 
With the help of a generating function one can show in the usual 

way that U r s e l l's development can be written in the form: 

l dt 
N !  = ~ ~r ~ eNvX(O (24) 

where: 

z(t) --  b,t' (251 
l = l  

and the integral has to be taken around the origin of the complex t- 
plane, excluding the singularities of Z(0. The function ;((t) is the 
fundamental  function or the problem. 

The first method which presents itself for treating the integral (24) 
is the method of steepest descents ]'). We have found another 

*) I n  the  d e r i v a t i o n  of § 4 th i s  c o r r e s p o n d s  to  t he  neg lec t  of t he  in f luence  of t he  wal ls  
of t he  vessel .  

**) T h e  QN are  of course  al l  posStive, s ince  t h e y  a re  i n t eg ra l s  ove r  t he  p r o b a b i l i t i e s  WN.  
t) I n  a p a p e r  b y  K r a m e r s ~) o n  f e r r o m a g n e t i s m  occu r s  a n  i n t eg ra l ,  w h i c h  is i den t i ca l  

w i t h  (24) fo r  t h e  case  of t he  idea l  Bose  gas ,  a n d  w h i c h  h a s  b e e n  t r e a t e d  b y  h i m  w i t h  
the m e t h o d  of s t e e p e s t  descen t s .  K r a m e r s w a s  the  f i rs t  to  s h o w  t h a t  fo r  th i s  case  a t  
l eas t ,  t he  l i m i t  (23) as a f u n c t i o n  of v cons is t s  of t w o  a n a l y t i c a l l y  d i f f e ren t  p a r t s .  W e  
are  g r e a t l y  i n d e b t e d  to  h i m  for  p o i n t i n g  o u t  to  us  t h e  b e a r i n g  of his  r e su l t s  o n  the  p r o b l e m  
of c o n d e n s a t i o n .  
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method,  however, more appropriate for the 'discussion of the limit 
(23) *). 

Consider the power series: 

f ( x )  = x x N (2S) 
N=l  • 

where the different Q~v have to be taken for the same value of V / N  = 
= v. According to the well known theorem of C a u c h y the limit 
(23) is now just  equal to the inverse of the radius of convergence R 
of F(x) .  On the other hand  the series (26) defines an analytic function 
of x, and we can therefore find the convergence radius R by  deter- 
mining the singulari ty of this funct ion which is nearest to the origin. 

Another  expression of F(x)  can be found as follows. Introduce 
(24) into (26); then  the summat ion  and  integrat ion can be inter- 
changed when x is so small t ha t  on the whole contour:  

I xS(O I < 1 
where: 

eVX(O 
~(t)-- t (27) 

I t  is always possible to find such an x because ~(t) [ is bounded on 
the contour. The summat ion  of the geometric series gives then:  

I ~ dt x~(t) 
F ( x )  = ~ _ ~ 1 - -  x ~ ( t )  (28) 

The integral can be calculated by  means of the theorem of residues. 
The only poles of the in tegrand within the contour are t = 0 and the 
zero's o£ the function 1 ~ x~(t). For  sufficiently small x this function 
has only one simple zeropoint. One sees this from C a u c h y ' s  
integral. The excess of the number  of zero's over the number  of poles 
of 1 - -x~( t )  within the contour is given by:  

x ~ ~'(0 dt n - - p =  ~ 1 .x~ ( t )  

The integral has always a certain finite value, so tha t  n - -  p can be 
made as small as one pleases by  taking x small enough. Therefore 
n - -  p must  be zero, since it can assume only integral values. Now 
1 - -  x~(t) has one simple pole within the contour, namely t = 0, and 

*) The idea of this method is due to the junior author. We wish to thank Prof. J. W o l f f  
for his help in completing certain parts of the proof. 
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therefore also one simple zero, say at t ---- to. The evaluat ion of (28) 
b y  means of the  theorem of residues gives then:  

Vtoz'(to) (29) 
F ( x ) -  1 --vtoX'(to) 

where:  
i - -  x~( to)  ----- 0 ( 3 0 )  

If we s tar t  from the origin and move along a definite pa th  in the  
x-plane, t h e  equat ion (30) will determine to as an analyt ic  funct ion 
of x. Along the cor respon~ng  pa th  in the  to-plane *) X' (to)will be 
again an analyt ic  funct ion of to and therefore of x. In this wa y  (29) 
defines an analyt ic  funct ion of x, which for small x coincides with the  
power  series (X6), and which therefore represents  its analyt ical  
continuation.  

• We have  now to determine the singulari ty of F(x) which is nearest  
to the  origin. One needs to consider only re~l positive values of x, 
because of the  fact  tha t  the  series (26) has real and positive coeffi- 
cients, so tha t  the  real posit ive point  on its circle .of convergence will 
be  a singulari ty of F(x) 9). One sees from (29) and (30) tha t  the  
possible singularities of F(x) are the values of x which correspond to 
the zero's of the  denominator  1 --Vto)((to) and which correspond to 
the  singularities of Z(to). Whe the r  these values of x are actual ly  
singularities of F(x) and which of them is nearest  to the origin 
depends on the propert ies  of the  function Z(to) and on the value 
of v. We know tha t  for small values of to, )t(to) ------- to. We will assfime 
further:  

a. Z(to) has a / in i t e  radius of convergence equal to r. 
b. X(t0) has a singularity ~ on the real positive axis; ~ m a y b e  greater  

than  or equal to r. The la t ter  case will occur for instance when all the 
b~ are positive. 

c. X(~) and X'(~) are finite; the point  ~ will therefore be a branch 
point  of Z(to). 

d. The inverse function of Z(to) is singular at  the point  correspond- 
ing to t o = ~. 

e. toX'(to) is monotonical ly  increasing on the real axis be tween  
to : 0 and to ~- ~ t) ; this will again be the case when the bt are 
positive. 

*) which  also s t a r t s  f rom the origin,  s ince to = 0 for x = 0. 
t )  One m u s t  also exc lude  the poss ib i l i ty  t h a t  toX'(to) has  a hor izonta l  in f lex ion  poin t  in 

th is  region.  



ON T H E  T H E O R Y  OF C O N D E N S A T I O N  413 

To find the singularities of F(x)  we shall stt~rt from the origin and 
move along the real positive axis in the x-plane. When v is large 
enough one sees t ha t  the first s ingulari ty of F(x) which one meets will 
be determined by the zeropoint of the denominator  in (29). Let  us call 
this zero point to = z, so t ha t :  

vzx'(z ) = 1 (31) 

The corresponding value of x, and therefore the radius of con- 
vergence R, according to (30) will be: 

R = ze -vx(~) 

This is therefore the inverse of the limit (23), from which one 
obtains immediately the expression for the pressure: 

p = k T z ( z  ) (32) 

The equations (31) and (32) are identical wi th  the Eqs. (I) and (I1) 
which are now therefore proved rigorously when v is large enough. 

It  should be pointed out  tha t  for this proof none of the assump- 
tions a- -e  are necessary. Because of assumption e *) the equations 
(3 I) and (32) will remain valid unti l :  

1 
v = vc -- ~X,(~ ) (33) 

In the case tha t  ~ > r, and for values of z between r and ~, the 
equations (31) and (32) are no longer identical with the series (1) 
and (II), bu t  represent their  analyt ical  continuations.  For  all these 
values of v the pressure remains a smooth function of the volume. 

Because of assumption c, vc has a finite value. Suppose now tha t  v 
is smaller than  vc. When we again move along the real positive x-axis, 
we shall reach the point corresponding to to = ~ before meeting a 
zero of the denominator  of (29). Because of assumption d this 
value of x will be a singulari ty of F(x) .  In this case therefore: 

R = ~ e -~x~) 

This corresponds to the constant pressure: 

p = p, = kTz(z- ) (34) 

When ~ = r this is identical with equation (22) of M a y e r. The 

*) W h e n  this a s sumpt ion  is not  fulfilled, so t ha t  t0X'(t~) has a t  least  one m a x i m u m  (say 

a t  to = t), then  one can  show t h a t  for a va lue  of v cor responding  to z = t, Op/av becomes  

infinite.  This  has been po in ted  out  by  B o r n and  F u c h s (comp. also Eq.  (21)). I t  

gives the physical reason for the a s sumpt ion  e. 
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pressure as a function of v consists therefore of two analytically dif- 
ferent parts, namely the curve represented b y  (31) and (32) for 
v > vc and the horizontal line (34) for v < vc. 

§7. Further remarks. 1. B o r n  a n d  M a y e r  have given a 
formal solution of the problem of eliminating z between the funda- 
mental equations (I) and (II). Their result can be stated as follows. 
Define a function: 

o ~  

~(~) = ~ ~v ~ 
v = l  

b y  means of the equations: 

1 ~ e~ (8 
12b, ---- - ~  d~ ~--7-- (35) 

This gives the bt expressed in terms of the ~. One can solve these 
equations successively for ~ ,  and thus expi~ess the ~ uniquely in 
terms of the b~. Applying the theorem of L a g r a n g e lo) one can 
solve Eq. (I) for z. With the help of the function ~0(~) the result can 
be written in the form: 

1 
Z ~-~ - -  e ---¢(lh ' )  

v 

By introducing this into (II), one obtains: 

p v = k r  1 - -  Z (36) 
v = l v + l  

M a y e r and B o r n were led to (35) by  the consideration of' the 
integrals defining the b~ in the case of classical statistical mechanics. 
They showed that  these integrals can be split up into the sums of 
products of certain ,,irreducible" integrals, which are immediately 
related to the ~.  We have not been able to generalize this physical 
interpretation of the ~ to the quantum theory, 

2. M a y e r and B o r n have tried to derive from (35) certain 
general properties of the characteristic function X(z). In particular 
M a y e r has tried to make plausible that  in a certain range of 
temperatures below the critical temperature bt behaves asymptotic- 
ally for large l as: 

Vo-I 
b~ ~ l,i- ~ -  (37) 

One would obtain this from (35) if it were permitted to apply lhe 
method of steepest descents to this integral. A consequence of (37) is 
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t 

tha t  OPlOv becomes zero at the condensatiofl point v = vc (comp. 
Eq. (21)). 

These considerations seem to us very doubtful, since they are 
based only on the formal expression (35) for the b~. The physical 
interpretation of the ~v is nowhere used. It is clear that  one can hope 
to make a further advance only by going back to the physical mean- 
ing of the b~ or the ~,. In particular it seems to us impossible to say 
anything in general about the behaviour of Op/Ov near the condensa- 
tion point. This will depend on the series: 

O O  

X 12blz ~ 
l=l  

which may be divergent or convergent. In the first case Op/Ov will 
be zero for v = vc, while in the latter case it will have a finite value. 

3. From the further investigation of the integrals representing b~ 
must follow especially the properties a--e (§ 6) of X(z), which are 
necessary to explain the  condensation phenomenon. An essential 
di//iculty seems to us to lie in the fact, that  even with the assump- 
tions a--e for X(z) it is impossible to obtain the third part of the iso- . 
therm, corresponding to the liquid statc. The reason is that  for all 
v < vc the singularity of F(x) which is nearest to the origin, is deter- 
mined by the singularity ~ of X(z), which is independent of v. There- 
fore the isotherm will remain horizontal for all v < v~. 

It is clear that  the origin of this difficulty has to be found in the 
neglect of the dependance of the b, on the volume V. It is true of 
course that  for every finite l the quanti ty b, has a definite limit for 
V-+ oo. We have assumed however more than this, since the 
properties of X(z) depend on the behaviour of b~ for large Ii There is 
clearly a double limiting process involved and it may be that  the 
solution of the difficulty will be found by a more correct treatment 
of these limits. 

Received March 28tb, 1938. 
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