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Abstract Discrete quantum walks are dynamical protocols for controlling a single
quantum particle. Despite of its simplicity, quantum walks display rich topological
phenomena and provide one of the simplest systems to study and understand topolog-
ical phases. In this article, we review the physics of discrete quantum walks in one and
two dimensions in light of topological phenomena and provide elementary explana-
tions of topological phases and their physical consequence, namely the existence of
boundary states. We demonstrate that quantum walks are versatile systems that simu-
late many topological phases whose classifications are known for static Hamiltonians.
Furthermore, topological phenomena appearing in quantum walks go beyond what has
been known in static systems; there are phenomena unique to quantum walks, being
an example of periodically driven systems, that do not exist in static systems. Thus
the quantum walks not only provide a powerful tool as a quantum simulator for static
topological phases but also give unique opportunity to study topological phenomena
in driven systems.

Keywords Quantum walk · Topological phases · Periodically driven systems ·
Floquet states · Non-equilibrium phenomena · Topological phenomena in driven
systems · Dynamically induced phase · Quantum simulator · Quantum Hall effect ·
Topological insulator · Zero energy state

1 Introduction

Discrete quantum walk, in its simplest form, is a dynamical protocol for control-
ling a single spin 1/2 particle in one dimensional lattice (see Fig. 1). It consists
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1108 T. Kitagawa

Fig. 1 The protocol of a
conventional discrete quantum
walk. A conventional quantum
walk is a dynamical protocol for
controlling a spin 1/2 quantum
particle in one dimensional
lattice. It consists of two
operations; 1 rotation around y
axis by angle θ , whose operator
is given by Ry(θ) = e−iθσy/2; 2
spin-dependent translation T
where spin up particle is move to
the right by one lattice site and
spin down particle is moved to
the left by one lattice site. One
step of the quantum walk is
given by U = T Ry(θ) and the
evolution of the particle after
many steps are studied.

Move spin down 
to the left

Repeat

Move spin up 
to the right

Rotate spin 

Discrete time quantum walk

of two operations given by a spin rotation and spin-dependent translation. The
evolution of quantum walk results from the repeated applications of these two
operations in alternate fashion. From the first introduction of the concept of quan-
tum walks by Aharonov [1], quantum walks attracted tremendous attentions due
to their implications in quantum information science [2]. One of the attractive fea-
tures of quantum walks is its simplicity which allows any student of physics who
has a basic understanding of quantum mechanics to grasp its definition. Yet, the
consequence of quantum walks is profound; on one hand, it provides a power-
ful tool for quantum algorithms [2,3] and on the other, it displays rich topologi-
cal phenomena revealing the deep relation between physics and the abstract field
of mathematics [4]. In this article, we review the topological phenomena appear-
ing in discrete quantum walks. While the concept of topological phases is often
challenging to understand because it tends to be intimately intertwined with the
physics of solid state materials, discrete quantum walks provide a rare opportunity
to explain the idea of topological phases in the most elementary form due to its
simplicity.

This review article is organized as follows. In Sect. 2, we study the physics
of a one dimensional quantum walk. First, in Sect. 2.1, we define the simplest
one dimensional quantum walk and give the description of quantum walks through
so-called effective Hamiltonians. This quantum walk possesses a symmetry that
is not apparent at a first sight but plays a crucial role for its topological prop-
erties, and we describe this symmetry in Sect. 2.2. The effective Hamiltonian
approach to quantum walks gives an intuition behind the behavior of quantum
walks, which we use to derive the analytic expression for their asymptotic dis-
tribution in Sect. 2.3. This conventional quantum walk and slight variations of
it has been realized in a numerous experiments with different physical settings,
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and we explain some of their realizations with cold atoms, photons and ions in
Sect. 2.4.

In Sect. 3, we first briefly review the main ideas of topological phases that will be
relevant to the study of quantum walks.

Starting from Sect. 4, we investigate the topological nature of the quantum
walks. In Sect. 4.1, we describe the concept of topological invariants in the
context of quantum walks. In order to fully explore the topological phases in quan-
tum walks, we extend the conventional quantum walks to so-called split-step quan-
tum walk in Sect. 4.2, which displays multiple topological phases in its phase dia-
gram. Using split-step quantum walks, we argue in Sect. 4.3 that physical man-
ifestations of topological nature of quantum walks are the appearance of bound
states across distinct topological phases. We demonstrate the existence of such
bound states in two physically distinct situations; one is inhomogeneous quan-
tum walks where rotation angles are varied in space (Sect. 4.3) and the other
is the quantum walks with reflecting boundary (Sect. 4.4). The unique nature
of these bound states lies in the robustness of their existence against small per-
turbations. We provide additional understandings of this robustness in Sect. 4.5,
which is based on the spectrum and topological invariants associated with the
bound states. These bound states in the quantum walk have the same topo-
logical origin as the bound states predicted to arise in polyacetylene described
by the Su–Schrieffer–Heeger model and Jackiw–Rebbi model in high energy
physics.

Remarkably, there are also phenomena in quantum walks that have not been
predicted before in static systems; the existence of two flavors of bound states
at quasi-energy E = 0 and E = π . This phenomenon is unique to periodi-
cally driven systems, and we illustrate the physics in Sect. 4.8. These one dimen-
sional topological phenomena in quantum walks have been experimentally verified
in [5].

From Sect. 5, we extend the idea of quantum walks to two dimension and
study their topological properties. In Sect. 5.1, we define the two dimensional
quantum walks that display non-zero Chern numbers, which is the topological
invariant responsible for integer quantum Hall effects. We explain in detail how
Chern number arises in quantum walks in this section and demonstrate that non-
trivial topology in this class results in unidirectionally propagating modes at the
edge of the systems. As is the case for one dimensional quantum walks, two
dimensional quantum walks display topological phenomena unique to periodi-
cally driven systems. In Sect. 5.2, we describe a simple quantum walk which
possesses unidirectionally propagating modes as a result of topological invari-
ants unique to driven systems, namely the non-trivial winding number in energy
direction. Due to its simplicity, this quantum walk has the advantage of being
easier to implement in experiments compared to the quantum walk introduced in
Sect. 5.1.

In Sect. 6, we briefly discuss the realization of other topological phases, using quan-
tum walks. In Sect. 7, we conclude with possible extensions of ideas reviewed in this
article.
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2 One dimensional quantum walk: general property

2.1 Effective Hamiltonian description of quantum walk

The simplest form of discrete quantum walks1 is defined as a protocol acting on a
single particle in one dimensional lattice with two internal degrees of freedom. Here
and throughout the paper, we consider the infinite one dimensional lattice, where the
lattice site ranges from j = −∞ to j = ∞. In an analogy with spin 1/2 particle, we
refer to the internal degrees of freedom as as “spin up” and “spin down.” This quantum
walk, which we call as a conventional quantum walk in this article, consists of two
operations (see Fig. 1);

1. Rotation of the spin around y axis by angle θ , corresponding to the operation
Ry(θ) = e−iθσy/2 where σy is a Pauli operator. The operator on the spatial degrees
of freedom is identity, and we suppress this in the following.

2. Spin-dependent translation T of the particle, where spin up particle is move to the
right by one lattice site and spin down particle is moved to the left by one lattice
site. Explicitly, T = ∑∞

j=−∞ | j + 1〉〈 j | ⊗ | ↑〉〈↑ | + | j − 1〉〈 j | ⊗ | ↓〉〈↓ |.
These two operations make up one step U = T Ry(θ) of the quantum walk, and the
evolution of the particle after many steps of the walk is studied. It is possible to define
more general quantum walks by replacing the first operation by any unitary operation
R(θ, ϕ), which can be written as the product of the rotation of the spin around some
axis n by angle θ and the phase accumulation ϕ i.e. R(θ, ϕ) = e−iθn·σ/2e−iϕ . How-
ever, many central concepts of topological phases in quantum walks can be illustrated
with the simple quantum walk defined above, so we focus on the conventional quantum
walk in this paper. The extensions to more general case is straightforward. Discrete
quantum walks have been realized in variety of experiments with ions, cold atoms and
photons [6–9]. In Sect. 2.4, we describe experimental realizations of quantum walks
in some of these systems in details.

Many properties of quantum walks, such as the distribution of the particle after
many steps, have been extensively studied from mathematical physics point of view
[10,11]. In this paper, we take the intuitive picture in which quantum walk is consid-
ered as a stroboscopic realization of static effective Hamiltonian, defined through the
evolution operator of one step quantum walk protocol U = T Ry(θ);

U = T Ry(θ) (1)

≡ e−i Heff�T (2)

Here, �T is the time it takes to carry out one step of the quantum walk. Because
n steps of quantum walk correspond to the evolution U n = e−i HeffnT , the evolution
under the quantum walk coincides with the evolution under the effective Hamiltonian
U = T Ry(θ) at integer multiple times of T . From this perspective, quantum walk
provides a unique quantum simulator for the static effective Hamiltonian Heff through

1 Throughout the paper, we consider discrete quantum walks, so we interchangeably use the word “discrete
quantum walk” and “quantum walk” when confusion does not arise.
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periodic drive of a quantum particle. In the following, we set �T = 1. While the
effective Hamiltonian Heff represents a static Hamiltonian, there is one important dif-
ference from the truly static Hamiltonian; the energy is only defined up to 2π/�T ,
as is clear from the definition Eq. (2). This periodic structure of the eigenvalues of
effective Hamiltonian, called quasi-energy, is the result of discrete time-translational
symmetry of the system. Just as momentum becomes quasi-momentum with peri-
odic structure when the system possesses only discrete spatial translational symmetry,
energy also becomes quasi-energy with periodic structure in this case. This distinc-
tion between energy and quasi-energy plays an important role in understanding the
topological phenomena unique to quantum walks, or periodically driven systems, as
we explain later.

For the quantum walk defined above, the evolution operator of one step U =
T Ry(θ) possesses spatial translational symmetry, and thus the evolution operator
becomes diagonal in quasi-momentum space. In particular, spin-dependent transla-
tion T can be written as

T =
∞∑

j=−∞
| j + 1〉〈 j | ⊗ | ↑〉〈↑ | + | j − 1〉〈 j | ⊗ | ↓〉〈↓ | (3)

=
π∫

−π
dk eikσz ⊗ |k〉〈k| (4)

In this expression, we see that the spin-dependent translation mixes the orbital degrees
of freedom represented by quasi-momentum k and spin encoded in σz . The presence
of such spin-orbit coupling is a key to realizing topological phases. We note that the
continuous quantum walk does not have such spin-orbit coupling and thus is distinct
from discrete quantum walks in the topological properties [2]

Now in quasi-momentum space, the effective Hamiltonian for the conventional
quantum walk takes the form

Heff =
π∫

−π
dk [E(k)n(k) · σ ] ⊗ |k〉〈k|, (5)

where σ = (σx , σy, σz) is the vector of Pauli matrices and the unit vector n(k) =
(nx , ny, nz) defines the quantization axis for the spinor eigenstates at each momen-
tum k. For θ 	= 0 or 2π , explicit expressions for E(k) is given by

cos E(k) = cos(θ/2) cos k (6)

Typical band structure of quasi-energies E(k) is plotted in Fig. 2a for θ = π/2. There
are two bands because the system has two internal degrees of freedom, and for generic
values of θ , the two bands are separated by a band gap.

On the other hand, at θ = 0, Ry(θ) = I , and therefore the effective Hamiltonian
is Heff = kσz . Thus the quasi-energy bands close the gap at quasi-momentum k = 0

123



1112 T. Kitagawa

k

(a) (c)

k

(b)

Fig. 2 a, b Quasi-energy spectrum of the effective Hamiltonian Eq. (5) for conventional quantum walks
with rotation angle θ = π/2 and θ = 0. The spectrum consists of two bands coming from two internal
degrees of freedom, and there is a finite gap between the two bands for general value of θ except for
θ 	= 0, 2π . For θ = 0, 2π , the spectrum closes the gap as is observed in b. Note that the gap is closing
in this case at quasi-energy E = 0 as well as at E = π . c The behavior of the eigenstates n(k) in Eq. (7)
represented on a Bloch sphere. For a given quasi-momentum k, the eigenstate is the superposition of spin
up and down, and therefore, can be represented as a point on a Bloch sphere given by n(k). For a con-
ventional quantum walk, n(k) traces a circle around the origin as k goes from −π to π . Note that n(k) is
perpendicular to a vector A = (cos(θ/2), 0, sin(θ/2)) for all k in our quantum walk. For gapless quantum
walk with θ = 0, 2π , n(k) becomes ill-defined at those k corresponding to the gap closing point

at quasi-energy E = 0. Moreover, due to the periodicity of energy, the spectrum also
closes the gap at quasi-momentum k = π at quasi-energy E = π . The spectrum for
θ = 0 is illustrated in Fig. 2b. Similar situation occurs at θ = 2π .

Interesting structure appears in n(k) of Eq. (5). For θ 	= 0, 2π , n(k) is given by

n(k) = (sin(θ/2) sin k, sin(θ/2) cos k, − cos(θ/2) sin k)

sin E(k)
. (7)

Note that the eigenstates of the effective Hamiltonian Heff(θ) are the superposition of
spin up and spin down, and therefore can be represented as a point on a Bloch sphere.
The unit vector n(k) is nothing but the unit vector that determines the direction of this
point. The behavior of n(k) on a Bloch sphere for θ = π/2 as k goes from −π to π is
plotted in Fig. 2c. We see that n(k) “winds” around the equator of the Bloch sphere.
This peculiar feature is in fact the origin of topological nature of quantum walks, as
we see in Sect. 4.

Note that at θ = 0, 2π , the states at quasi-momentum k = 0 and π become degen-
erate and thus any superposition of spin up and down becomes the eigenstates of the
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Hamiltonian at these quasi-momentum. Thus, eigenvector n(k) becomes indetermi-
nate at these points.

2.2 Hidden symmetry of quantum walks

The effective Hamiltonian of the quantum walk Heff as given in Eq. (5) has an
interesting symmetry. First, we note that n(k) is perpendicular to the vector A =
(cos(θ/2), 0, sin(θ/2)) as is easy to check from Eq. (7). The symmetry of the system
is then given by the rotation around the axis A by angle π which takes Heff to −Heff,
or

�−1 Heff� = −Heff � = e−iπA·σ/2 (8)

Indeed, as is clear from the picture of Fig. 2, such rotation takes n(k) to −n(k) for each
k, and thus takes Heff = ∫

dk E(k)n(k) · σ ⊗ |k〉〈k| to minus itself. This symmetry
given by a unitary operator is called sublattice or chiral symmetry.2

One interesting feature of quantum walks which results from the sublattice (chiral)
symmetry is the symmetric spectrum; states with energy E and −E always appear in
pairs. This is easy to demonstrate. Given a state |ψ〉 with eigenvalue E , one can check
that the state �|ψ〉 is an eigenstate of the Hamiltonian with energy −E ;

Heff|ψ〉 = E |ψ〉
→ Heff (�|ψ〉) = −E (�|ψ〉)

There are exceptions to this pairing of states. When E satisfies E = −E , the states
|ψ〉 and �|ψ〉 can represent the same state. Due to the periodicity of quasi-energy,
quantum walk has two special energies that satisfies the condition E = −E , given by
E = 0 and E = π . We will later see that this property of E = 0 and E = π leads
to the topological protection of E = 0 and E = π states. The existence of a single
E = 0 state is known in the non-driven systems with sublattice (chiral) symmetry
[12], but E = π energy state is the novel feature of periodically driven systems.

2.3 Asymptotic distribution: ballistic propagation

In this section, we provide an intuition behind the propagation of a particle under quan-
tum walks by considering their asymptotic distributions. Quantum walk was originally
conceived as quantum analogue of random walk [1]. In fact, it is easy to check that if

2 These two words are used interchangeably in the literature. The word, “sublattice symmetry” is intuitive.
When one has a Hamiltonian, for example, with sublattice structure with sublattice A and B such that the
Hamiltonian is only hopping from sites of A to sites of B, then Hamiltonian can be made minus of itself
by multiplying all the creation and annihilation operators of sublattice A. This operation is unitary, and
thus, the Hamiltonian possesses sublattice symmetry. The word, “chiral symmetry,” originates from the
high energy physics, where it relates the two handedness of Dirac fields. Because the word “chiral” has the
meaning of “handedness,” the word “chiral symmetry” is also used in solid state physics for some crystal
symmetries, and care has to be taken to use the word.
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one carries out a measurement of the particle after each step, quantum walk reduces to
a biased random walk. Thus, by varying the amount of decoherence in the system, one
can smoothly go from a quantum walk to classical a random walk [9]. However, the
behavior of a random walk is quite different from that of a quantum walk in the absence
of decoherence. We remind the reader that a (non-biased) random walk asymptotically
approaches the Gaussian distribution with the peak centered around the origin where
the mean squared travel distance is given by

〈
x2

〉 = Na2 where a is the step size
of one step. Thus, the particle propagates in a diffusive fashion under a classical
random walk.

On the other hand, a particle under quantum walks propagates in a ballistic fashion
[10,11]. This fact almost trivially results from the understanding of quantum walks
as simulations of static effective Hamiltonian of non-interacting particle as given by
Eqs. (2) and (5). If one prepares a particle in a state such that its quasi-momentum
is narrowly concentrated around k, then it is intuitively clear that the particle ballis-
tically propagates with the group velocity given by vk = ∂E(k)

∂k where E(k) is the
quasi-energy given in Eq. (6).

This intuition can be made rigorous by deriving the asymptotic distribution of quan-
tum walks. The argument above shows that the distribution of the variable X = x/N
in the asymptotic limit converges to a finite form. Here we consider the quantum walk
of a particle initially localized at the origin x = 0 with spin state given by |s〉. In
“Appendix A”, we show that the distribution function of X takes the following form

P(X) =
π∫

−π

dk

2π

1

2
(1 + 〈n(k) · σ 〉) δ(vk − X)

+1

2
(1 − 〈n(k) · σ 〉) δ(vk + X) (9)

where 〈n(k) · σ 〉 = 〈s|n(k) · σ |s〉, and vk = ∂E(k)
∂k . This result is quite intuitive; each

momentum state k propagates with velocity ±vk where + sign is for spin parallel to
n(k) and − sign is for spin anti-parallel to n(k). Because the initial state is localized
at a single site, it is the superposition of all quasi-momentum state k, and thus, the
asymptotic distribution is given by the sum of the contributions for each k.

The form of asymptotic distribution written above immediately leads to various
results known in quantum walks [10,11]. For example, symmetry of the asymptotic
distribution x ↔ −x exists whenever 〈n(k) · σ 〉 is an even function of k, which is the
case when the initial spin state is pointing in y direction. Otherwise, the distribution is
generically not symmetric around the origin. Numerical evaluation of asymptotic dis-
tribution is always possible, and in certain cases, the analytic result can be expressed
in a compact form. For example, for the asymptotic distribution of θ = π/2 quantum
walk with initial spin state pointing in z direction, the asymptotic distribution is
given by

P(X) = 1

π

1

1 + X

1√
1 − X2

− 1√
2

≤ X ≤ 1√
2

(10)
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Fig. 3 The asymptotic
distribution of a conventional
quantum walk with θ = π/2,
whose analytical solution is
obtained in Eqs. (9) and (10).
The result is expressed for
rescaled coordinate X = x/N
where N is the total number of
quantum walk steps. X takes a
finite value for N → ∞ limit
because a particle propagates in
a ballistic fashion

0

The distribution is plotted in Fig. 3. The derivation given here and “Appendix A” can
be easily extended to more general quantum walks with different unitary operations
or even to higher dimensions.

2.4 Experimental realizations of quantum walks

One dimensional quantum walks described in previous sections have been realized
in experiments. Since quantum walk is a general concept applicable to many differ-
ent physical systems, there are realizations with cold atoms, ions, and photons [6–9].
Such realizations in different physical settings allow different controls of the systems,
such as the ability to choose the rotation operations, to introduce known amount of
dephasing [9], or to create spatial boundary between regions with different rotation
operations [5]. Thus, study of quantum walks in experimental settings is versatile and
is not usually restricted by the technology of a specific field.

The realization of quantum walks takes a widely different forms for different sys-
tems. The realization with cold atom [7] is probably the simplest and most straight-
forward. In this experiment, Karski et al. realized the quantum walk, using the cesium
atoms (Cs). Here, two hyperfine states of cesium (Cs) atoms are used as spin degrees of
freedom. The spin rotation is implemented through the application of resonant micro-
wave radiation between these two hyperfine states. The spin-dependent translation, on
the other hand, is implemented by the adiabatic translation of spin dependent optical
lattices. This experiment implemented quantum walks up to 10 steps, and observed
the distributions of the particle. The experiment shows a good agreement, but quantum
walks were dephased after 10 or so steps.

On the other hand, in the case of photonic realization by Broome et al. [9], the ver-
tical and horizontal polarization of a photon is used as spin degrees of freedom. The
rotation operation is implemented through half wave plates, where the polarization
of a photon is rotated as a photon goes through the plate. The polarization-dependent
translation is implemented by birefringent calcite beam displacer. The optical axis of
the calcite prism was cut in such way to displace horizontally polarized light to the
perpendicular direction to the propagation direction and transmit the vertical polarized
light without displacement. Now these optical components are put in series in, say,
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z direction, so that the photon goes through them one by one as it propagates in z
direction. Thus, z direction plays the role of time direction, and the photon is evolved
according to the quantum walk as it propagates through these optical components.
This experiment implemented 6 steps. In the subsequent experiments, this experiment
was extended to create the boundary between regions with different rotation angles,
which was used to investigate the topological nature of quantum walks [5]. Yet another
implementations of quantum walks with photonic architecture is demonstrated in [8],
using a fiber network loop.

Lastly, we describe the quantum walk implemented with ions. In [6], Zhringer et
al. realized quantum walks in a phase space with ion 40Ca+ They used the internal
states |S1/2,m = 1/2〉 and |D5/2,m = 3/2〉 as spin degrees of freedom. For spatial
degrees of freedom, they used the excitation of the ions in the harmonic traps, where
the superposition of raising and lowering operators are identified as the coordinate
operator x̂ = a† + a and momentum operator p̂ = a†+a

2 . In this space, they imple-
mented the spin dependent translation by applying a bichromatic light that is resonant
with both the blue and red axial sideband. This shows the interesting fact that quan-
tum walks can be encoded in abstract space. The experiment demonstrates that the
quantum walk in this space can maintain the coherence up to even 23 steps.

While they are not an experimental demonstrations, there are two interesting pos-
sible realizations of quantum walks proposed in natural systems.

Oka et al. proposes in [13] that the evolution of electrons on a ring under the
application of DC electric field can be understood as quantum walks in energy level
space. When the electric field is understood as the time-dependent vector potential, the
problem represents a time-dependent problem, where the Landau–Zener transitions
of electrons among different levels can be mapped to quantum walks. In this work,
they proposed the existence of a localized state near the ground state of the system,
which is a manifestation of the topological nature of quantum walks explained in this
article [4] (see Sect. 4.4).

Another proposal by Rudner and Levitov [14] concerns an extension of quantum
walk to include the decaying sites at every other lattice sites, which can arise in the
problem of coupled electron and nuclear spins in quantum dots in the presence of com-
peting spin-orbit and hyperfine interactions. This quantum walk, intriguingly, displays
topological phenomena as well, where the mean walking distance of a particle before
it decays at one of the sites is quantized to be an integer.

3 Brief introduction to topological phases

Quantum walks described in Sect. 2 display rich topological phenomena. In this sec-
tion, we review the ideas of topological phases, and provide the background for under-
standing the topological phenomena in quantum walks.

The relation between quantum phases of matter and topology was first discovered
through the study of integer quantum Hall effect, which revealed the quantization of
Hall conductance for two dimensional electron gas in the presence of a strong magnetic
field [15,16]. The quantization of Hall conductance is very precise, and moreover is
robust against perturbations such as the impurity of the materials. The fundamental
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origin for such robustness is the topological nature of ground state wavefunction.
Ground state wavefunction of integer quantum Hall systems is associated with a topo-
logical number. A topological number is a global property of the shape of wavefunc-
tion, like “winding,” and thus cannot be changed by a continuous change. Because
Hall conductance is directly given by this topological number [17], its value does not
change under the small change of Hamiltonian or its ground state wavefunction.

In addition to the quantized Hall conductance, yet another direct physical conse-
quence of non-trivial topology of wavefunction is the existence of unidirectional edge
states at the boundary of the sample [18]. The two phenomena, the quantized Hall
conductance and unidirectional edge states, are closely related where the current for
the quantized Hall conductance is carried by the edge states. From this point of view,
the robustness of the Hall conductance against impurities results from the robustness
of unidirectional edge propagation against impurity scatterings. As we explain in this
article, while quantized Hall conductance is a unique phenomenon to the topological
class of integer quantum Hall systems, the existence of robust edge states is generic
feature of any topological class.

Because topology is a general property of ground state wavefunction, such idea
is extendable to other systems in other dimensions [19,20]. In one dimension, Su
Schrieffer and Heeger gave a simple model of conducting polyacetylene and found
the existence of topological solitons at edges [21]. This so-called Su–Schrieffer–
Heeger model of polyacetylene is an example of one dimensional topological phase
with sublattice (or chiral) symmetry. Independently, physics in the same topological
class was also studied in the context of high energy physics by Jackiw and Rebbi
[22,23]. In recent years, band insulators with time-reversal symmetry are predicted
to possess topological properties called quantum spin Hall effect [24,25], and these
so-called topological insulators were soon realized in experiments with HgTe [26].
One important conceptual advance of these topological phases compared to integer
quantum Hall phase is that these are new topological phases appearing in the presence
of symmetries such as sublattice and time-reversal symmetry, whereas the integer
quantum Hall effect originally discovered in the presence of strong magnetic field and
disorders is the phenomena that appear in the absence of these symmetries. The idea
has been further extended to three dimensional systems in the presence of time-reversal
symmetry [27–29].

Motivated by these findings, a several groups independently classified the non-
interacting systems in the presence of particle-hole, time-reversal, or sublattice (chi-
ral) symmetry, giving the “periodic table” of topological phases [30–32]. While the
possible existence of topological classes are known for the symmetry class within
these categories, their realizations are not easy in condensed mater materials and
consequently, some table entries have not yet found physical realizations. Moreover,
even when such topological phases are proposed to be realized in condensed matter
materials, it is usually hard to directly image the wavefunction of, say, topologically
protected bound states with current technology. Due to the outstanding controllability,
artificial systems are promising alternative candidates for studying these novel phases,
and there is a number of theoretical and experimental studies of topological phenom-
ena using cold atoms and photons [5,33–39]. Among them, quantum walks provide
unique platform where any topological phase classified in one and two dimensions
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is realizable with simple modifications of their protocols, as we will explain in this
paper [4]. In fact, one dimensional topological class predicted to arise in Su–Schrief-
fer–Heeger model and Jackiw–Rebbi model has been already realized in the photonic
architecture [5]. The key ingredient in the versatility of quantum walks is the control-
lability of the protocols. Because protocols are something experimentalists choose to
implement, it is possible to design the protocols in such a way to preserve or break cer-
tain kind of symmetries. From the following section, we study how such topological
structure appears in discrete quantum walks.

4 Topological phenomena in quantum walks

4.1 Topological characterization of quantum walks

In Sect. 2.1, we have seen that the eigenvectors of quantum walks n(k) illustrated in
Fig. 2 have non-zero winding as k goes from −π toπ . Such winding gives a topological
characterization of quantum walks in the presence of sublattice (chiral) symmetry.

As we noted in Sect. 2.1, the effective Hamiltonian of the quantum walk possesses
the sublattice (chiral) symmetry, which constrains the eigenvector of Hamiltonian for
each quasi-momentum n(k) to lie on the plane perpendicular to the vector A. Under
this sublattice (chiral) symmetry, n(k) represents a map from the first Brillouin zone,
which is a circle, to the equator of Bloch sphere, which is also a circle. Then quantum
walk described by Eq. (5) possesses non-trivial winding of this map, where n(k) goes
around once the equator of Bloch sphere as k goes from −π toπ . In the presence of the
symmetry, the winding observed in Fig. 2c is robust against small perturbations; one
cannot change the winding number by small change of the Hamiltonian Heff which
preserves the sublattice (chiral) symmetry. One can intuitively check this robustness by
trying to change the winding through the continuous deformations of n(k). We call this
winding number as topological number due to their robustness against perturbations,
and the topological number associated with Heff is 1 whenever θ 	= 0, 2π3 for our
quantum walks. More generally, the winding of n(k) around the equator can take any
integer value, and different topological phases in this topological class are associated
with different integers (winding numbers), and thus the topological classification is
given by Z (a set of integers).

It is important to note that this winding number is not topological in the absence of
any symmetry constraint, in the sense that the winding number can be made zero by
continuous change of n(k). For example, one can shrink the loop of n(k) into a point
on a Bloch sphere.

More generally, the concept of topological numbers (or topological invariants) are
defined for a collection of Hamiltonian that represent band insulators with certain
symmetries. A topological invariant is assigned to each band, and its value cannot
change under the continuous deformations of Hamiltonian which preserve the sym-
metry. There is one exception to this statement; when two bands mix with each other,
the topological invariants can be changed in these two bands. We can flip this argu-
ment and say that topological numbers can change their values only if two bands close

3 More concretely, the two bands of quantum walks both possess winding number 1.
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their band gaps in the process. We argue in Sect. 4.3 that this property of topological
numbers results in the creation of topologically protected bound states in the spatial
boundary between regions that belong to two distinct topological phases.

In the conventional quantum walk, the winding number associated with the effec-
tive Hamiltonian is always 1, and no other topological phase exist in this family of
quantum walks. In the next section, Sect. 4.2, we give yet another family of quantum
walks that display two distinct topological phases with winding number 0 and 1 in the
presence of sublattice (chiral) symmetry. We illustrate how topological numbers can
change as Hamiltonian is changed in this example.

4.2 Split step quantum walks

In this section, we extend the conventional quantum walk by modifying the proto-
cols and define so-called split-step quantum walks. This example illustrates how one
can engineer topological phases in quantum walks through the active design of the
protocols.

Split-step quantum walks is a simple extension of conventional quantum walks
which have one additional rotation and translation process (see Fig. 4a). The complete
protocol is as follows;

1. Rotation of the spin around y axis by angle θ1, corresponding to the operation
Ry(θ1) = e−iθ1σy/2.

2. Translation of spin up particle to the right, given by
T↑ = ∑

j | j + 1〉〈 j | ⊗ | ↑〉〈↑ | + 1 ⊗ | ↓〉〈↓ |. Spin down particle stays in the
original position.

3. Second rotation of the spin around y axis by angle θ2, corresponding to the oper-
ation Ry(θ2) = e−iθ1σy/2.

4. Translation of spin down particle to the left, given by
T↓= ∑

j | j−1〉〈 j |⊗| ↓〉〈↓ | + 1 ⊗ | ↑〉〈↑ |. Spin up particle stays in the original
position.

Thus, the evolution operator of one step is given by U (θ1, θ2)=T↓ Ry(θ2)T↑ Ry(θ1).
This split-step quantum walk is reduced to the conventional quantum walk defined
in Sect. 2.1 with θ2=0. As before, we can find the effective Hamiltonian through
U ≡ e−i Heff . The effective Hamiltonian again takes the form Eq. (5) where the quasi-
energy is

cos E(k) = cos(θ2/2) cos(θ1/2) cos k − sin(θ1/2) sin(θ2/2), (11)

and the eigenvector n(k) is

nx (k) = cos(θ2/2) sin(θ1/2) sin k

sin E(k)

ny(k) = sin(θ2/2) cos(θ1/2)+ cos(θ2/2) sin(θ1/2) cos k

sin E(k)

nz(k) = − cos(θ2/2) cos(θ1/2) sin k

sin E(k)
.
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(a) Split-step quantum walk (b) Topological phase diagram

Fig. 4 a Protocol for a split-step quantum walk. Split-step quantum walk is defined for spin 1/2 particle
in one dimensional lattice, and consists of four operations; 1 spin rotation around y axis by angle θ1, given
by Ry(θ1); 2 translation of spin up to the right by one lattice, T↑; 3 spin rotation around y axis by angle
θ2, given by Ry(θ2); 4 translation of spin down to the left by one lattice, T↓. The evolution operator of one
step is given by U = T↓ Ry(θ2)T↑ Ry(θ1). b The topological phase diagram of split-step quantum walk
for various rotation angles θ1 and θ2. The phase is characterized by the winding number W , and split-step
quantum walks realize either W = 0 or W = 1. Since winding number is a topological number, it can
change its value only when the band gap closes, and these gapless phases are denoted by solid black line
(band gap closes at quasi-energy E = 0) and by red dotted line (band gap closes at quasi-energy E = π )

It is straightforward to check that A(θ1) = (cos(θ1/2), 0, sin(θ1/2)) is perpendicular
to n(k) for all k. Therefore, the system possesses sublattice (chiral) symmetry with the
symmetry operator �(θ1) = e−iπA(θ1)·σ/2. Notice that this symmetry operation only
depends on the first rotation angle θ1.

The existence of sublattice (chiral) symmetry allows us to characterize the split-
step quantum walk by the winding number, denoted by W , of n(k) around the equator
of Bloch sphere. Using the explicit expression for n(k) in Eq. (12), we find W = 1
if | tan(θ2/2)/ tan(θ1/2)| < 1, and W = 0 if | tan(θ2/2)/ tan(θ1/2)| > 1. Thus the
split-step quantum walk can realize different winding number for different rotation
angles θ1 and θ2. We plot the phase diagram of split-step quantum walk in Fig. 4b.

For a given θ1, a set of Hamiltonian for varying values of second rotation θ2 has
the same sublattice (chiral) symmetry, and thus {Hθ1(θ2)} defines quantum walks in
the same topological class. Because the dependence of Hθ1(θ2) on θ2 is continuous,
topological nature of the winding number implies that the winding number is the same
for wide range of the rotation angle θ2 as phase diagram Fig. 4b shows.

However, the winding number can change its value when the two bands close
their gap. Such gapless points are given by the points | tan(θ2/2)/ tan(θ1/2)| = 1,
or θ2 = ±θ1, 2π ± θ1 denoted by solid and dotted lines in Fig. 4b. The mechanism
behind the change of winding numbers is the following. At the value of θ2 where
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two bands close the gap, for example, θ2 = θ1, eigenvector n(k) in Eq. (12) becomes
ill-defined at the quasi-momentum k corresponding to the degenerate points, because
any superposition of spin up and down is the eigenstate of the Hamiltonian at that
points. At this θ2 = θ1, the winding number cannot be defined, and winding numbers
of bands at Hθ1(θ1 − ε) and Hθ1(θ1 + ε) do not have to be the same.

Note that this argument can be used to find the phase diagram in Fig. 4b without
calculating the winding number at each point of the phase diagram. Since the winding
number can change only when the bands close their gap, the phase transition between
two topological phases is always gapless. Thus, in order to draw the phase diagram, it
is only necessary to identify the gap closing points in the parameter space, and find the
winding number of the region bounded by the gapless phase lines. In quantum walks,
the periodicity of quasi-energy allows the closing of the gap at either quasi-energy
E = 0 and E = π as we saw in Fig. 2b. These gap closing lines at quasi-energy
E = 0 and E = π are denoted in Fig. 4b as solid and dotted lines, respectively.

The topological structure of split-step quantum walk described above has a strong
asymmetry between θ1 and θ2, but this asymmetry is an artifact. One can shift the
starting time of the quantum walk by unitary transformation and define an equivalent
dynamics through U ′ = T↑ Ry(θ1)T↓ Ry(θ2). It is straightforward to show that this
quantum walk has sublattice (chiral) symmetry given by �(θ2) = e−iπA(θ2)·σ/2 with
A(θ1) = (cos(θ1/2), 0, sin(θ1/2)). In this case, the quantum walks with constant θ2
correspond to the Hamiltonians in the same topological classes.

4.3 Physical manifestations of topological band structure

The non-trivial winding, or topological number, of the bands in quantum walks gives
rise to a robust bound states at the boundary between two phases with different topo-
logical numbers. In the following, we first give an intuition behind the existence of
such robust edge states.

Here we consider the split-step quantum walks with inhomogeneous rotations in
space, in order to create a boundary between quantum walks with different winding
numbers. Here we take the first rotation θ1 to be homogeneous in space and make
the second rotation θ2 space dependent, see Fig. 5. The effective Hamiltonian of this
inhomogeneous quantum walk, having the homogeneous first rotation θ1, possesses
the sublatice (chiral) symmetry given by �(θ1) = e−iπA(θ1)·σ/2. While this statement
is intuitively clear, it is instructive to explicitly show the existence of sublattice (chiral)
symmetry, and we provide the proof in the “Appendix B”.

We take the second rotation angle to approach θ2− for x → −∞ and θ2+ for
x → ∞. We take the region in which the rotation angle changes from θ2− to θ2+ to
be finite region around x = 0. Now we take θ2−, θ2+ to be such that winding number
is 0 for the split-step quantum walk with the rotation angle θ1, θ2− and winding num-
ber is 1 for the walk with the rotation angle θ1, θ2+. Then the region near the origin
represents the phase boundary between two distinct topological phases.

In Fig. 5, we illustrate the local band structures in this inhomogeneous quantum
walk. Strictly speaking, the system is spatially inhomogeneous, so quasi-momentum
is no longer a good quantum number, and band structures cannot be drawn. Yet, it is
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Fig. 5 Illustration of the existence of bound states across the boundary of regions that belong to distinct
topological phases. Here, we consider the inhomogeneous split-step quantum walk where the second rota-
tion θ2(x) changes in space, and the winding number associated with the phase θ2− = θ2(x → −∞) is
different from the winding number associated with the phase θ2+ = θ2(x → ∞). In both limit of x → −∞
and x → ∞, the bands are gapped. However, the winding number cannot change its value unless band gap
closes, and thus it is expected that the band gap closes in the middle near the origin. States at E = 0 that
exist near x = 0 must be localized since there is no state at this energy far into the left or into the right of
the system

helpful to visualize band structures to understand what happens at the boundary. If
the variation of rotation angle θ2 is slow, then one can visualize the band structures at
point x0 to be the band structures of homogeneous quantum walk with rotation angles
θ1 and θ2(x0). Such description is certainly applicable in the limit x → −∞ and
x → ∞.

The band structures of both x → −∞ and x → ∞ represent band insulators where
two bands are separated by a band gap. By definition, the two bands are characterized
by winding number W = 0 in x → −∞ and W = 1 in x → ∞. However, since
the sublattice (chiral) symmetry exists throughout the space, the winding numbers can
only change by closing the gap across the boundary near x = 0. Therefore, the gap
must close near x = 0, as illustrated in Fig. 5.

This argument shows that there must be states in the gap (near E = 0) around the
origin. Now because there is no state near E = 0 in the limit x → ∞ and x → −∞
(this energy is in the gap of the bands), we can conclude these states near E = 0 around
the origin must be confined around the origin. Thus there is generically a bound state
near E = 0 at the boundary between two different topological phases.

This prediction can be confirmed by running a simple simulations of inhomoge-
neous quantum walks. The presence or absence of bound states can be confirmed
by initializing the particle near the origin and running the quantum walk protocols.
If there are bound states near the origin, there is generically an overlap between the
initial state and the bound state, and even after many steps of quantum walk, there
remains a non-zero probability to find the particle near the origin. On the other hand,
if there is no bound state, the particle quickly propagates away from the origin due to
the ballistic propagation of quantum walks as described in Sect. 2.3.

In Fig. 6, we present the result of two inhomogeneous quantum walks. In Fig. 6a,
the boundary between two topologically distinct phases is created near the origin
with winding number W = 0 as x → −∞ and W = 1 as x → ∞. Specifi-
cally, the uniform first rotation is θ1 = −π/2 and second rotation θ2− = 3π/4 and
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Fig. 6 Evolution of the spatially inhomogeneous split-step quantum walk. The initial spin of the particle is
spin up, and particle is initialized at x = 0. a The rotation angles of quantum walk are chosen such that the
quantum walk corresponds to trivial topological phase with winding number W = 0 as x → −∞ indicated
as a white dot in the phase diagram and non-trivial topological phase with W = 1 as x → ∞ indicated
as a blue dot. Here we took the uniform first rotation θ1 = −π/2 and second rotation θ2− = 3π/4 and
θ2+ = π/4 with θ2(x) = 1

2 (θ2− + θ2+)+ 1
2 (θ2+ − θ2−) tanh(x/3). After many steps of quantum walks,

a large probability of finding a particle near the origin remains, indicating the presence of bound states. b
In this quantum walk, the phase of the two sides of the origin has the same winding number. The phase as
x → −∞ is indicated by the white dot in the phase diagram and phase as x → ∞ is indicated by the red
dot. Here we took θ1 = −π/2 and θ2− = 3π/4 as before and θ2+ = 11π/8. In this case, the probability
to find the walker near x = 0 after many steps decays to 0, indicating the absence of a localized state at the
boundary

θ2+ = π/4. Here we considered a smooth variation of the second rotation given by
θ2(x) = 1

2 (θ2− + θ2+)+ 1
2 (θ2+ − θ2−) tanh(x/3), where the second rotation changes

from θ2− to θ2+ with the length scale of ∼6 sites. The phases of quantum walks in
the limit x → −∞ and x → ∞ are indicated on the phase diagram as the white and
blue dot, respectively. In the simulation, the initial spin of the particle is spin up, and
particle starts at x = 0. As we expect, a peak in the probability distribution appears
even after 60 steps of the simulation, indicating the existence of topological bound
states.

On the other hand, we studied the quantum walk in Fig. 6b, where the system is
characterized by W = 0 throughout the space. Here we took θ1 = −π/2, θ2− = 3π/4
and θ2+ = 11π/8 again with the same functional dependence on x , θ2(x) = 1

2 (θ2− +
θ2+)+ 1

2 (θ2+ − θ2−) tanh(x/3). The phases of quantum walks in the limit x → −∞
and x → ∞ are indicated on the phase diagram as the white and red dot, respectively.
With the same initial state of spin up, we implemented the quantum walk simulation,
and the resulting probability distribution shows a fast decay of probability near the
origin. After 60 steps, the probability near the origin decays close to zero, indicating
the absence of bound states.
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For further details of the simulation, the interactive demonstration of inhomoge-
neous quantum walks is available on the Mathematica demonstration website [40],4

where one can change the values of θ1 and θ2 and run the quantum walks.
The topological class realized by the conventional quantum walk and by the split-

step quantum walk is the same topological class as is proposed in Su–Schrieffer–
Heeger model of polyacetylene and Jackiw–Rebbi model. This is the topological class
in one dimension with sublattice (chiral) symmetry. In this respect, quantum walk acts
as a quantum simulator of the topological phase. Since quantum walks are realizable
with many different systems such as ions, photons and cold atoms, they allow the
study of topological phases in a manner that is not possible in traditional condensed
matter materials. The proposal to study topological phases and topologically protected
bound states in split-step quantum walk was first proposed in [4], and later realized
in experiments with photonic architecture [5]. The controllability of the experimen-
tal apparatus not only allow the direct imaging of the wavefunctions of topological
bound states, but also allow to confirm the robustness of the bound states with param-
eter changes, the signature of topological origin for the bound states. This topological
bound state in one dimensional system has not been directly observed in materials
such as polyacetylene, and this photonic architecture provided the first experimental
imaging of the bound states with topological origin in one dimension.

4.4 Quantum walks with a reflecting boundary

A special case of Hamiltonian with trivial topology is the vacuum, where the topolog-
ical number associated with the system is zero. Thus, we can make a phase boundary
by simply terminating the quantum walk with winding number W = 1. In this setup,
the boundary exists at the edge of the quantum walk, and it is expected that a bound
state exists at this edge according to the general argument in Sect. 4.3.

As we briefly mentioned in Sect. 2.4, such a setup is not unphysical, and intrigu-
ing realization of quantum walks with a reflecting edge has been suggested in [13]
through the understanding of a particle under the electric field in discrete energy
level structure as a quantum walk. The transition between different levels occurs as
Landau–Zener process in this system, which corresponds to the translation operation
in quantum walks. Thus, the ground state of the system acts as the reflecting boundary.
They predicted the existence of a bound state near the ground state, which we can now
understand as a topological bound state as a result of non-trivial topological number
of quantum walks.

Here we consider the conventional quantum walk described by U = T Ry(θ)which
extends from x = −∞ up to x = 0. The quantum walk is terminated at x = 0. In
order to conserve the particle number, we require the operation at the boundary to be
unitary, i.e. the spin ↑ particle needs to be reflected at the edge x = 0. Here we take
the following operation at the edge x = 0;

4 In the demonstration, the rotation angle θ2 is constant and the first rotation angle θ1 is varied in space.
As we have explained at the end of Sect. 4.2, such quantum walk also possess sublattice (chiral) symmetry
and thus the essential physics remains the same.
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1. Rotation of the spin around y axis by angle θ , as in other sites, given by Ry(θ) =
e−iθσy/2.

2. Translation of the spin ↓ to site x = −1. Spin ↑ stays at x = 0 and its spin is
flipped to spin ↓ with phase accumulation eiϕ

Explicitly, the operation at x = 0 is

U (x = 0) = Tedge Ry(θ)

Tedge = |−1〉〈0| ⊗ | ↓〉〈↓ | + eiϕ |0〉〈0| ⊗ | ↓〉〈↑ |

In order to have a quantum walk in a topological class, it is crucial to have the
sublattice (chiral) symmetry of the whole system. In particular, the sublattice (chiral)
symmetry needs to be present for the evolution operator including the edge. If we
denote the total evolution of the system with an edge as Ux≤0, then we require

�−1Ux≤0� = U †
x≤0 (12)

where �=e−iπA·σ/2 with A = [cos(θ/2), 0, sin(θ/2)]. This is a simple extension of
the definition of sublattice (chiral) symmetry in Eq. (8) to evolution operator. It is
straightforward to check that the necessary and sufficient condition for the existence
of sublattice (chiral) symmetry in Ux≤0 is ϕ = 0, π for the phase accumulated at the
reflecting boundary.

According to the general argument in Sect. 4.3, bound states exist near the boundary
of x = 0. For this simple quantum walk, it is not very difficult to obtain the analytical
solution of the bound state. The details of the derivation is given in the “Appendix C”.
We note that a straightforward extension of the derivation given in the appendix should
allow similar analytical solutions of bound states for the inhomogeneous split-step
quantum walks.

Here we describe the solution for the boundary condition of ϕ = 0 and rotation
angle θ = π/2. The analytical solution shows that the bound state is at quasi-energy
E = π and the wavefunction takes the form

|ψ E=0
b (− j)〉 = 1

N (−1) j e− j/λ ⊗
(

1 − √
2

1

)

0 ≤ j

(13)

λ = − 1

log(
√

2 − 1)

where N is the normalization factor. Since the localization length λ ≈ 1.1 is small,
this bound state is tightly localized around x = 0.

For the same boundary condition ϕ = 0 but different rotation angle θ = 5π/2,
the evolution operator U = T Ry(θ) is different from the one with the rotation angle
θ = π/2 by only a minus sign, i.e. T Ry(θ = 5π/2) = −T Ry(θ = π/2). Thus, the
same wavefunction in Eq. (13) is the bound state for this case as well, but now the
quasi-energy of the bound state is E = 0 due to the extra minus sign.
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On the other hand, for the reflecting boundary condition with phase accumulation
ϕ = π with θ = π/2, the bound state exists at quasi-energy E = 0 and wavefunction is

|ψ E=π
b (− j)〉 = 1

N e− j/λ ⊗
(

1 − √
2

1

)

0 ≤ j

λ = − 1

log(
√

2 − 1)

Generally, the quasi-energy of bound states for quantum walks with sublattice
(chiral) symmetry is at E = 0 or E = π . We will see in the next section, Sect. 4.5, that
these energies represent special points where sublattice (chiral) symmetry provides
the topological protection of the states at these energies.

For the special rotation angles of θ = π , it is possible to obtain the bound state
solution by following the quantum walk for a few steps. Since this calculation is ele-
mentary, the existence of a bound state can be easily understood. This rotation angle
corresponds to the rotation operation

Ry(θ = π) = −iσy

=
(

0 −1
1 0

)

Thus, the rotation turns | ↑〉 → | ↓〉 and | ↓〉 → −| ↑〉. Let us take the phase accu-
mulation upon reflection to be ϕ = 0. If we initialize the particle at x = 0 with spin
down, the quantum walk follows the following evolution.

|0〉 ⊗ | ↓〉 R→ |0〉 ⊗ (−| ↑〉) T→ |0〉 ⊗ (−| ↓〉)

Thus in this special case, |0〉⊗| ↓〉 is an eigenstate of quantum walk operator localized
at the edge. Since the state gains a minus sign after one step of the quantum walk,
the quasi-energy of the bound state is π , in accordance with the result obtained in the
general analytical solution.

4.5 Topological protection of the bound states: topological invariants

The bound states resulting from topology studied in Sects. 4.3 and 4.4 are protected in
a sense that they are robust against small changes in the quantum walk protocols or the
introduction of small static disorder potentials. The logic is the following; since the
bound states are the result of topological winding numbers, and topological winding
numbers cannot change their values unless the bands close their gaps, the bound states
cannot disappear for a small change of rotation angles unless they are changed by a
large amount such that the gap of the corresponding effective Hamiltonian closes.

There is a more direct way to confirm such robustness by simply looking at the
spectrum. In Sect. 4.4, we found that the energies of the topological bound states is
always either E = 0 or E = π . Because the spectrum of the bulk (or the spectrum of
the system without boundaries) is gapped, the total spectrum of the system studied in
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Fig. 7 General spectrum structure for inhomogeneous quantum walks with bound states. a, b in Sect. 4.4,
we analytically showed that there is a 0 or π energy bound state at the boundary of a conventional quantum
walk. In a similar fashion, these bound states also appear in the inhomogeneous split-step quantum walks.
These bound states energy are well separated from the extended, bulk states. Sublattice (chiral) symmetry
requires that states with energy E and −E appear in pairs, and thus, a single 0 and π energy bound state
cannot disappear unless bulk energy gap closes at 0 or π . c Inhomogeneous conventional quantum walks
can possess 0 and π energy bound states, even though the winding numbers associated with the both sides
of the boundary are zero. Such existence of two flavors of topologically protected bound states is a unique
feature of periodically driven systems and quantum walks. As is shown in Sect. 4.5, each bound state at 0
or π energy is associated with a topological number ±1. For a given system, a sum of these topological
numbers Q0 for E = 0 and Qπ for E = π is a conserved quantity that cannot change its value unless the
gap of the system closes

the previous section look as in Fig. 7a, b, where a single localized state sits at E = 0
or E = π and the bands of states away from E = 0 or E = π correspond to extended
states in the bulk.

Now we argue that the energy of the bound state sitting at the energy E = 0 or
E = π cannot be changed by a continuous change of Hamiltonian which preserves the
sublattice (chiral) symmetry. First of all, the presence of sublattice (chiral) symmetry
implies that the states with energy E and −E have to come in pairs. In order to shift
the energy of the bound state at E = 0 by a small amount ε, then, it is necessary to
create two states at energy ±ε. However, since a single state cannot be split into two,
this is impossible, and the energy of the single state initially at E = 0(π) is pinned
at E = 0(π). According to this argument, the only way to remove such a zero (or π )
energy bound state is to change the Hamiltonian until the bulk energy bands close the
gap so that bulk states mix with the the boundary state.

The structure of the spectrum illustrated in Fig. 7a, b is generic. All the topological
bound states exist at E = 0 or E = π . It is possible to assign topological numbers to
these bound states, which give yet another understanding of the topological protection
of the bound states. These topological numbers are different from the winding num-
bers we assigned to the quantum walk band structures. These topological numbers are
now assigned to the bound states themselves. The following consideration shows that
the topological classification of the quantum walks with sublattice (chiral) symmetry
is Z × Z , which means any integer numbers of E = 0 and E = π energy states are
topologically protected.

In the following, we consider general one dimensional systems with sublattice
(chiral) symmetry, as in the case of quantum walks. Here we consider the bound states
at energy 0. Analogous arguments can be applied to the bound states at π . Suppose
that there is N0 number of degenerate bound states with energy 0. We label these states
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by |ϕ0
α′ 〉 with α′ = 1 . . . N0. Let the sublattice (chiral) symmetry operator be given by

�. Sublattice (chiral) symmetry implies that we have the anti-commutation relation
between � and Hamiltonian, H , such that {�, H} = 0. As a consequence, �2 com-
mutes with H . When there is no conserved quantity associated with �2, it is possible
to choose the phase of � such that �2 = 1. For example, in the case of quantum walks,
we choose � = ieiA·σπ/2. Because of the sublattice (chiral) symmetry, we know that
�|ϕ0

α′ 〉 is also an eigenstate of H with E = 0, so � represents a rotation within the
subspace of zero energy states, {|ϕ0

α′ 〉}. Then we can choose the basis of zero energy
states such that they become eigenstates of �. We denote the zero energy states in this
basis as {|ψ0

α〉} and their eigenvalues under � as {Q0
α}. Since �2 = 1, Q0

α is either ±1.
We now show that the sum of eigenvalues, Q0 ≡ ∑

α Q0
α , represents the topologi-

cal invariant associated with zero energy bound states. We define the integer number
Q0 for zero energy bound states and Qπ for π energy bound states constructed in an
analogous fashion, as

Q0 =
∑

α

〈ψ0
α |�|ψ0

α〉 (14)

Qπ =
∑

α

〈ψπα |�|ψπα 〉 (15)

where {|ψπα 〉} are the π energy bound states.
In order to show that these quantities are indeed topological invariants, we show

that perturbations of the Hamiltonian which preserves the sublattice (chiral) symmetry
cannot mix two states both at the zero (π ) energy with the same eigenvalues of �. This
implies that such perturbations do not lift the energies of these states away from 0 or
π . Thus, Q0 (Qπ ) number of bound states at energy E = 0(E = π) cannot change
under small deformations of the Hamiltonian.

Let H ′ be a perturbation to the system such that {�, H ′} = 0. Now we evaluate the
matrix element of {�, H ′} = 0 in the 0(π ) energy states. The result is

0 = 〈ψ0
α |{�, H ′}|ψ0

β〉

=
{

2〈ψ0
α |H ′|ψ0

β〉 for Q0
α = Q0

β

〈ψ0
α |H ′|ψ0

β〉 − 〈ψ0
α |H ′|ψ0

β〉 = 0 for Q0
α 	= Q0

β

This calculation shows that bound states with the same eigenvalues Q0
α cannot mix.

On the other hand, the same calculation does not give any constraint on the mixing
of states with different eigenvalues Q0

α . Because one can break up any finite change
of the Hamiltonian into successive changes of small perturbations, one can repeat this
argument and show that the values Q0 and Qπ cannot change unless the bound states
at 0 and π energies mix with the bulk states.

4.6 Temporal disorder

While we argued the robustness of bound states against spatial disorders through the
general argument in the previous section, the bound state is not robust against tempo-
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ral disorders [5,41]. One way to understand this is to consider the wave functions of
bound states in each one step operations. As long as the effective Hamiltonian of each
one step operation is topologically non-trivial, the bound state exists at the boundary
at each step. However, if one step operation changes due to the temporal change of
operations, the bound state wave function changes after each step. Thus, after each
step, small portion of the bound state wave function in the previous step becomes
extended states and escape from the boundary. After sufficiently long evolution of the
quantum walks, a bound state eventually decays to zero. In a similar fashion, the bound
state is not robust against decoherence. Such effect of decoherence on the bound state
has been experimentally studied in Ref. [5].

4.7 Breaking of sublattice (chiral) symmetry

Here we briefly comment on the perturbations of the Hamiltonian that breaks sublattice
(chiral) symmetry. In the previous section, we give the argument that zero or π energy
bound states are protected as long as the bands in the spectrum do not close the gap.
Now one can ask what happens if we consider the perturbations of Hamiltonians that
break sublattice (chiral) symmetry. Since no topological structure can be defined in the
absence of sublattice (chiral) symmetry, there is no longer topological protection of
the bound states. Yet, the statement that bound states cannot disappear until they mix
with the bulk states remains true. Therefore, if we perturb the system that possesses
topological bound states by adding small perturbations that break sublattice (chiral)
symmetry, the existence of the bound states is still protected by the existence of the
gap. However, the bulk gap does not have to close to remove such a bound state; now
the energy of the bound state can take any value in the absence of sublattice (chiral)
symmetry and the state can be lifted away from 0 or π energy.

4.8 0 and π energy bound states: topological phenomena unique to periodically
driven systems

Zero-energy bound state in one dimensional system with sublattice (chiral) symmetry
has been known for almost 30 years, and their existence was first predicted by Su–
Schrieffer–Heeger model of polyacetylene and Jackiw–Rebbi model [21–23]. On the
other hand, we saw in previous sections that quantum walks have two topologically
protected bound states; 0 and π energy states. The appearance of π energy states is
the result of the periodicity of quasi-energy. In return, quasi-energy is a property of
periodically driven systems, and thus such appearance of two flavors of topologically
protected bound states is a unique phenomenon to driven systems, which cannot occur
in non-driven systems.

In previous examples, only one of these states, 0 andπ energy bound states, appears
in a single system. From the argument given in Sect. 4.3, which of E = 0 and E = π

bound states appears across the boundary of two topological phases is determined by
whether the band gap closes at quasi-energy E = 0 or E = π . For example, consider
the creation of a boundary between two different topological phases in the inhomo-
geneous split-step quantum walk, as we considered in Sect. 4.3. By choosing θ2− and
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θ2+ appropriately, one can either make the boundary between the two phases to be
gapless at either E = 0 or E = π , as one can see from the phase diagram in Fig. 4.
When the boundary closes the gap at E = 0(π), the bound state appears at E = 0(π)
as is depicted in Fig. 7a, b.

Now consider the creation of the boundary between the phases with the same
winding numbers by setting θ1 = 0. This quantum walk whose evolution operator is
given by U = T↓ Ry(θ2)T↑ is nothing but the conventional quantum walk described
in Sect. 2.1 with initial time shifted. This time-shifted quantum walk realizes only
a single phase with W = 0.5 If we set θ2− to be −2π < θ2− < 0 and θ2+ to be
0 < θ2+ < 2π , then the two phases corresponding to x → −∞ and x → both have
W = 0. From the point of view of the winding topological number defined on the
band structures, one expects no topologically protected bound states to be present.
However, this inhomogeneous quantum walk possesses two topological bound states
at quasi-energies E = 0 and E = π .

The existence of two bound states near the origin can be easily confirmed for the
simple case of θ2− = −π and θ2+ = π where the rotation θ2− is applied to all
the sites x ≤ 0 and the rotation θ2+ is applied to sites 0 < x . These rotations act on
the spins as

θ2− = −π : | ↑〉 → −| ↓〉, | ↓〉 → | ↑〉
θ2+ = π : | ↑〉 → | ↓〉, | ↓〉 → −| ↑〉

Now we consider the evolution of the particle after one step for a particle at site x = 1
with spin either up or down. This state evolves as

|0〉 ⊗ | ↑〉 T↑→ |1〉 ⊗ | ↑〉 R→ |1〉 ⊗ | ↓〉 T↓→ |0〉 ⊗ | ↓〉
|0〉 ⊗ | ↓〉 T↑→ |0〉 ⊗ | ↓〉 R→ |0〉 ⊗ | ↑〉 T↓→ |0〉 ⊗ | ↑〉

Thus it is clear that |ψE=0〉 = |0〉 ⊗ 1√
2
(| ↑〉 + | ↓〉) is an eigenstate of the one-step

evolution operator with quasi-energy 0 and |ψE=π 〉 = |0〉 ⊗ 1√
2
(| ↑〉 − | ↓〉) has

quasi-energy π . It is straightforward to check that any other states in this system has
energy E = ±π/2. Because this system possesses a single bound state at energy
E = 0 and E = π , these states cannot be removed from these states until the gap of
the bulk states closes, and thus these states must be present for any parameter values
−2π < θ2− < 0 and 0 < θ2+ < 2π . The general spectrum of such inhomogeneous
quantum walks is illustrated in Fig. 7c. As we noted in Sect. 4.5, these bound states are

5 The conventional quantum walk described in Sect. 2.1 realized a single phase with W = 1. The difference
in the winding number of two quantum walks related by unitary transformation arises because these two
walks are described by different sublattice (chiral) symmetry. The sublattice (chiral) symmetry of split-step
quantum walks with θ1 = 0 is given by the rotation of spin by π around the axis B = (1, 0, 0), which is
independent of the rotation angle θ2. On the other hand, the winding number of the conventional quantum
walks in Sect. 2.1 is given in terms of the rotation of spin by π around the axis A = (cos(θ/2), 0, sin(θ/2)).
Topology of the system crucially depends on the symmetry, and thus, winding numbers do not have to be
identical when symmetry operators are different.
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associated with topological numbers. In this walk, since θ1 = 0, the sublattice (chiral)
symmetry is given by the operator � = σx . Then the topological number associated
with the bound state |ψE=0〉 is nothing but the eigenvalue of �, so |ψE=0〉 has Q0 = 1
and |ψE=π 〉 has Qπ = −1.

Such coexistence of 0 and π energy bound state can also be observed in inhomo-
geneous split-step quantum walks, where the two phases on the left and on the right
are separated by two gapless phases where one closes the gap at E = 0 and the other
at E = π .

The winding number is the comprehensive topological description of static
Hamiltonians, but quantum walks are periodically driven systems. More completely,
periodically driven systems should be described by the evolution operator over one
period, and the topological numbers for such systems should be written in terms of
the evolution operator and not in terms of the static effective Hamiltonian. Thus the
topological classification of quantum walks is not given by Z as for the winding
numbers, but in fact given by Z × Z as we have seen in the topological invariants
of bound states in Sect. 4.5. More detailed analysis of the difference of topologi-
cal classification between static systems and periodically driven systems is given in
[34].

5 Quantum walks in two dimension

5.1 Effective Hamiltonian and Chern number

In the previous sections, we illustrated the ideas of quantum walks and topologi-
cal phases realized in these systems in the simplest setting, one dimensional quan-
tum walks with two internal degrees of freedom. However, the idea of topological
phases is much more general, and it is possible to extend the quantum walk pro-
tocols to study different topological phases in different dimensions. In this section,
we illustrate the idea by describing the two dimensional quantum walks and dem-
onstrating that this quantum walk realizes topological phases with Chern numbers,
the phases that are responsible for integer quantum Hall effects that we explained in
Sect. 3.

We consider the quantum walk of spin 1/2 particle on a square lattice. In the lit-
erature, quantum walks in dimensions larger than 1 are defined for larger number of
internal degrees of freedom, but the quantum walk defined here is simpler and eas-
ier to realize in experiments. The quantum walk consists of three rotations and three
translations, implemented in alternative fashion (see Fig. 8);

1. Rotation of the spin around y axis by angle θ1, given by Ry(θ1) = e−iθ1σy/2.
2. Translation of the spin ↑ one lattice to the right and up, and translation of the spin

↓ one lattice to the left and down. Explicitly,
T1 = ∑

x,y |x + 1, y + 1〉〈x, y| ⊗ | ↑〉〈↑ | + |x − 1, y − 1〉〈x, y| ⊗ | ↓〉〈↓ |.
3. Rotation of the spin around y axis by angle θ2, given by Ry(θ2) = e−iθ2σy/2.
4. Translation of the spin ↑ by one lattice to up, and translation of the spin ↓ by one

lattice to down. Explicitly,
T2 = ∑

x,y |x, y + 1〉〈x, y| ⊗ | ↑〉〈↑ | + |x, y − 1〉〈x, y| ⊗ | ↓〉〈↓ |.
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1. Rotate 1 2. Translate

3. Rotate 4. Translate2

5. Rotate 6. Translate1

Two dimensional quantum walk

Fig. 8 Protocol of two dimensional quantum walk considered in Sect. 5.1. The quantum walk is defined
for a single spin 1/2 particle in two dimensional lattice. The protocol consists of 6 operations. In the figure,
the spin-dependent translation is denoted by red arrows, where solid arrow is the movement for spin up and
dotted arrow is for spin down. The protocols are 1 spin rotation around y axis by angle θ1; 2 spin-dependent
translation where spin up is move to right and up by one lattice site, and spin down is moved to left and
down; 3 spin rotation around y axis by angle θ2; 4 spin-dependent translation where spin up is moved to
up, and spin down to down; 5 spin rotation around y axis by the same rotation angle as the first rotation θ1;
6 spin-dependent translation where spin up is move to right and down to left. Each step of quantum walk
takes a particle from even (odd) coordinate to even (odd) coordinate, so the lattice constant of the effective
Hamiltonian is 2. Thus, the first Brillouin zone is −π/2 ≤ kx ≤ π/2 and −π/2 ≤ ky ≤ π/2 (Color figure
online)

5. Rotation of the spin around y axis by the same angle as the first rotation θ1, given
by Ry(θ1) = e−iθ1σy/2.

6. Translation of the spin ↑ by one lattice to right, and translation of the spin ↓ by
one lattice to left. Explicitly,
T3 = ∑

x,y |x + 1, y〉〈x, y| ⊗ | ↑〉〈↑ | + |x − 1, y〉〈x, y| ⊗ | ↓〉〈↓ |.
Note that in this quantum walk, the particle after one step of quantum walk moves

from even (odd) coordinate sites to even (odd) coordinate sites as one can see from
Fig. 8. Thus the effective Hamiltonian of the quantum walk has the lattice constant
equal to 2. Therefore, for translationally invariant quantum walks, the first Brillouin
zone is given by −π/2 ≤ kx ≤ π/2 and −π/2 ≤ ky ≤ π/2. The evolution of the
particle distribution in this walk can be studied in a similar fashion as the one dimen-
sional analogue, and in particular, the asymptotic distribution is obtained through the
formalism developed in Sect. 2.3.
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In order to study the topological properties of this quantum walk, we consider
the effective Hamiltonian of the quantum walk. As we detail in “Appendix D”, the
effective Hamiltonian takes the form

Heff =
∑

k

E(k)n(k) · σ ⊗ |k〉〈k| (16)

The spectrum E(k)n(k) is determined by the equation

cos (E(k)) = cos(kx ) cos(kx + 2ky) cos(θ1) cos(θ2/2)

− sin(kx ) sin(kx + 2ky) cos(θ2/2)

− cos2(kx ) sin(θ1) sin(θ2/2) (17)

The topological structure of two dimensional system appears in n(k) as in the case
of one dimensional quantum walk. Since now we have two dimensional Brillouin zone,
the function n(k) is a map from two dimensional torus to Bloch sphere, see Fig. 9. A
small area on the torus is mapped to the small area on the Bloch sphere. If one maps
the total area of the torus onto the Bloch sphere, the map necessarily wraps around
the sphere an integer number of times due to the periodic boundary condition of the
torus. Thus, if one calculates the total area covered by the map n(k), the value is 4πn
where n is an integer. This integer is so-called Chern number, which is responsible
for integer quantum Hall effect in two dimensional electron gas. Explicitly, the Chern
number can be expressed in terms of n(k) as

C = 1

4π

∫

FBZ

dk n · (
∂kx n × ∂ky n

)
(18)

As opposed to the winding number of one dimensional quantum walk, this topo-
logical number does not rely on any symmetry of the system, and thus can exist in the
absence of any symmetry.

Conventionally, Chern number is associated with each band of Hamiltonian. The
definition of Chern number above gives the Chern number of “lower” band with quasi-
energy of −E(k) in Eq. (17), and the Chern number of upper band is given by simply
−C so that the Chern numbers of all the bands sum to zero. More generally, if the wave-
function of a band at a given quasi-momentum k is given by |ψ(k)〉 = eir·k|ϕ(k)〉,
where |ϕ(k)〉 is the periodic part of the Bloch wave function, then the Chern number
associated with the band is given by the famous TKNN formula [17];

C = 1

2π

∫

FBZ

dk
[
∂kx Aky − ∂ky Akx

]
(19)

(Akx , Aky ) = (i〈ϕ(k)|∂kx |ϕ(k)〉, i〈ϕ(k)|∂ky |ϕ(k)〉)

This TKNN formula calculates the Berry phase of an electron as it goes around the
first Brillouin zone. This expression of Chern number reduces to Eq. (18) in the case
of systems with two bands.
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First Brillouin zone Bloch sphere

Fig. 9 Illustration of Chern number of two dimensional systems with two bands. The eigenstate for each
quasi-momentum k is a superposition of spin up and down, and can be represented as a point on Bloch
sphere, given by n(k). Thus n(k) represents a map from the first Brillouin zone to Bloch sphere. In order to
obtain a topological number for this system, we consider the area mapped by n(k) from the first Brillouin
zone to Bloch sphere. Due to the periodic boundary condition of the first Brillouin zone, which is a torus,
such map has to wrap around the Bloch sphere by integer number of times. This integer is what is called a
Chern number, and represents the topological number associated with the system. The formal expression of
the Chern number is then obtained by calculating the area covered by the map n(k), which can be calculated
in the way illustrated in this picture and results in the expression Eq. (18)

One can calculate the Chern numbers for the two dimensional quantum walk
described above for various values of θ1 and θ2. The phase diagram is plotted in
Fig. 10a. A convenient way to obtain such phase diagram is to first obtain the lines of
gapless phases. Since the topological number can only change its value across gapless
phase, it is only necessary to compute the Chern number at a single point of the gapped
region and any gapped phase that is continuously connected with that point without
crossing gapless phase must have the same topological number as that point. We detail
the calculation to identify gapless phases for this two dimensional quantum walk in
the “Appendix E”.

A physical manifestation of topological phases with Chern number is, as is the case
for one dimensional quantum walk, boundary states across the regions in which two
different topological phases are realized. The existence of such bound states can be
understood according to the argument given in Sect. 4.3; the band structures away from
the boundary are gapped, but the band gap has to close near the boundary in order for
the topological number, Chern number, to change its value. Thus there is generically
states in the gap of the bulk systems and these states are necessarily localized near the
boundary.

These bound states that appear in systems with non-zero Chern number are known
to propagate in unidirectional fashion without any backscattering. It is possible to con-
firm the existence of such unidirectional edge states by considering inhomogeneous
quantum walk where the particle at sites with 0 ≤ y evolves according to the two
dimensional quantum walk with rotation angles θ1+ and θ2+, and the particle at sites
with y < 0 evolves according to the two dimensional quantum walk with rotation
angles θ1− and θ2−. Such inhomogeneous quantum walk is illustrated in Fig. 10b. If
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Fig. 10 a Phase diagram of the two dimensional quantum walk. Each phase is characterized by a Chern
number of a lower band with quasi-energy −E(k), which can take values 0,±1 in this quantum walk. The
Chern number can change only when the system crosses gapless phases, and the lines of gapless phases are
indicated by the red and blue line in the diagram. b physical manifestation of Chern numbers appears at
the boundary between regions that belong to phases with different Chern numbers. Here we illustrate the
inhomogeneous quantum walk, where the quantum walk in the central region (colored as red) corresponds
to θ1+ = 7π/6 and θ2+ = 7π/6 (red dot in a), whereas in the other half (colored as white), the quantum
walk corresponds to θ1− = 3π/2 and θ2− = 3π/2 (white dot in a). In the simulation, we took the periodic
boundary condition for both x and y direction, and the system size is 100 × 100. c Quasi-energy spectrum
of the inhomogeneous quantum walks illustrated in b. The states colored as red are bulk states, and the
states that go from the lower band to the upper band are the unidirectionally propagating edge states that
are localized near the boundary of the two phases. States colored as blue are the states that run along the
upper edge and those colored as green are the states that run along the lower edge, as illustrated in b (Color
figure online)

the Chern number of the phases corresponding to θ1+ and θ2+ and θ1− and θ2− are
different, unidirectional edge states are expected to appear along y = 0.

Since these edge states exist, just like 0 and π energy states of one dimensional
quantum walk, in the gap of the bulk states, it is easy to identify the existence of these
states by numerically solving for the quasi-energy spectrum. In Fig. 10c, we provided
the plot of quasi-energy spectrum for a torus geometry with periodic boundary con-
dition on both x and y direction. The system size is taken to be 100 × 100. In the
upper half of the system between 0 ≤ y < 50, we implemented the quantum walk
with θ1+ = 7π/6 and θ2+ = 7π/6, whereas in the lower half −50 ≤ y < 0, the
quantum walk corresponds to θ1− = 3π/2 and θ2− = 3π/2. Note that there are two
boundaries in this system, corresponding to the lower edge at y = 0 and upper edge
at y = 50. In the spectrum, there are clearly two edge states, colored as red and green,
which run along the upper and lower edge, respectively. These chiral edge modes are
the signature of Chern numbers in two dimensional quantum walk.

5.2 Unidirectionally propagating modes in quantum walks without Chern numbers

In the case of one dimensional quantum walk, we found the existence of two bound
states at quasi-energy 0 and π near the boundary of the phases with zero winding
number. This existence of two flavors of topologically protected bound states repre-
sented a phenomenon unique to periodically driven systems that do not exist in static
systems, and thus the existence is not captured by the winding number of the effective
Hamiltonian.
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1. Rotate 1 2. Translate

23. Rotate 4. Translate

Simple two dimensional quantum walk

Fig. 11 Protocol for the simple two dimensional quantum walk studied in Sect. 5.2. In this protocol, only
four operations are applied during one step of quantum wallk. As before, the spin-dependent translation is
indicated by red arrows, where solid arrow is for spin up and dotted arrow is for spin down. The explicit
protocol is; 1 spin rotation around y axis by angle θ1; 2 spin-dependent translation where spin up is move to
right, and spin down to left; 3 spin rotation around y axis by angle θ2; 4 spin-dependent translation where
spin up is moved to up, and spin down to down (Color figure online)

In a similar fashion, it is possible to have unidirectionally propagating modes across
the boundary of the regions where quantum walks in each region have no Chern num-
bers associated with the phases. In the following, we show that such chiral propagating
modes exist for even simpler version of two dimensional quantum walk protocols.

Here we consider the following simple two dimensional quantum walk with two
rotations and two spin dependent translations, see Fig. 11;

1. Rotation of the spin around y axis by angle θ1, given by Ry(θ1) = e−iθ1σy/2.
2. Translation of the spin ↑ one lattice to the right, and translation of the spin ↓ one

lattice to the left. Explicitly,
T1 = ∑

x,y |x + 1, y〉〈x, y| ⊗ | ↑〉〈↑ | + |x − 1, y〉〈x, y| ⊗ | ↓〉〈↓ |.
3. Rotation of the spin around y axis by angle θ2, given by Ry(θ2) = e−iθ2σy/2.
4. Translation of the spin ↑ one lattice to the up, and translation of the spin ↓ one

lattice to the down. Explicitly,
T2 = ∑

x,y |x, y + 1〉〈x, y| ⊗ | ↑〉〈↑ | + |x, y − 1〉〈x, y| ⊗ | ↓〉〈↓ |.
The effective Hamiltonian of this quantum walk is again given by the form Heff =∑
k E(k)n(k) · σ ⊗ |k〉〈k|. The spectrum of this quantum walk is given

cos(E(k)) = cos(kx + ky) cos(θ1/2) cos(θ2/2)

− cos(kx − ky) sin(θ1/2) sin(θ2/2)

This quantum walk is described by Chern number zero phase everywhere, and the
phase diagram is given in Fig. 12a. All the gapless phases close their gap at both 0 and
π energy. Now consider the inhomogeneous quantum walks in this protocol, where
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Gap closes at 0 and 

2

(a)                                                     (b)

Fig. 12 a Phase diagram of simple two dimensional quantum walk studied in Sect. 5.2. The Chern number
of the quantum walk is everywhere zero. Yet, there are topologically protected unidirectionally propagating
modes in the inhomogeneous quantum walk. The existence of such unidirectional edge states are shown
through analytical calculations for special values of quantum walks in the text. b Quasi-energy spectrum
of the inhomogeneous quantum walks, where the two quantum walk protocols corresponding to the two
regions are indicated as orange and blue dot in a. The bulk states are colored as blue, and unidirectionally
propagating states are colored as green and red. Green states propagate along the lower edge of the boundary
and red states along the upper edge. For a given edge, say, lower edge, the edge states have non-zero energy
winding as kx goes from −π to π , and thus, such edge states cannot be removed under the continuous
change of quantum walk protocols unless the bulk gap closes, where the upper edge and lower edge are
allowed to mix (Color figure online)

the particle is controlled by the quantum walk protocol with rotation angles θ1+ and
θ2+ at sites 0 ≤ y, and the protocol at sites with y < 0 is given by the rotation angles
θ1− and θ2−. If we choose the angles such that the two phases are separated by a
single gapless phase, there are in fact two unidirectionally propagating modes at the
boundary.

This can be most easily confirmed for the spacial rotation angles θ1+ = 0 and
θ2+ = π and θ1− = π and θ2− = 0 by simply considering the evolution for spin up
and down for a few steps. Near the boundary, the evolution is

| j, 0〉 ⊗ | ↑〉 R→ | j, 0〉 ⊗ | ↑〉 T1→ | j + 1, 0〉 ⊗ | ↑〉
R→ | j + 1, 0〉 ⊗ | ↓〉 T2→ | j + 1,−1〉 ⊗ | ↓〉
| j,−1〉 ⊗ | ↓〉 R→ −| j,−1〉 ⊗ | ↑〉 T1→ −| j + 1,−1〉 ⊗ | ↑〉
R→ −| j + 1,−1〉 ⊗ | ↑〉 T2→ −| j + 1, 0〉 ⊗ | ↓〉

Thus we see that spin up states at site y = 0 and spin down state at site y = −1 both
propagate to the right during the evolution.

By Fourier transform in x coordinate, it is clear that the walk takes |kx , y=0〉⊗| ↑〉
→ eikx |kx , y = −1〉 ⊗ | ↓〉 and |kx , y = −1〉 ⊗ | ↓〉 → −eikx |kx , y = 0〉 ⊗ | ↑〉.
Thus we conclude there are two unidirectionally propagating modes

|ψ1〉 = 1√
2
(|kx , y = 0〉 ⊗ | ↑〉 + i |kx , y = −1〉 ⊗ | ↓〉)
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E(kx ) = kx − π

2

|ψ2〉 = 1√
2
(|kx , y = 0〉 ⊗ | ↑〉 − i |kx , y = −1〉 ⊗ | ↓〉)

E(kx ) = kx + π

2

On the other hand, other states in the system evolve as, for l > 0

| j, l > 0〉 ⊗ | ↑〉 R→ | j, l〉 ⊗ | ↑〉 T1→ | j + 1, l〉 ⊗ | ↑〉
R→ | j + 1, l〉 ⊗ | ↓〉 T2→ | j + 1, l − 1〉 ⊗ | ↓〉
R→ | j + 1, l − 1〉 ⊗ | ↓〉 T1→ | j, l − 1〉 ⊗ | ↑〉
R→ −| j, l − 1〉 ⊗ | ↑〉 T2→ −| j, l〉 ⊗ | ↑〉

Thus we conclude that the states 1
2 (| j, l〉 ⊗ | ↑〉 + i | j + 1, l − 1〉 ⊗ | ↓〉) are

eigenstates of the system with the flat quasi-energy E= − π/2 and
1
2 (| j, l〉⊗| ↑〉 − i | j + 1, l − 1〉 ⊗ | ↓〉) are another set of eigenstates with quasi-
energy E = π/2. In a similar fashion, it is straightforward to show that the bulk states
in l < −1 have energies ±π/2.

Notice that the edge states obtained above has a non-zero winding in the energy
direction as kx goes from −π to π i.e. the states run from quasi-energy E = −π to
E = π as kx goes from −π to π . it is straightforward to convince oneself, by draw-
ing the spectrum, that such energy winding cannot be removed under the continuous
change of quantum walk protocols unless the bulk gap closes. Thus, the existence of
these states is guaranteed for the inhomogeneous quantum walk which has θ1+ and
θ2+ that are continuously connected with θ1+=0 and θ2+=π and θ1− and θ2− that are
continuously connected with θ1−=π and θ2−=0, without crossing the gapless phase.

As an example, we plot the quasi-energy spectrum of inhomogeneous quantum walk
with θ1+ = π/8 and θ2+ = 7π/8 from 0 ≤ y < 50, and θ1− = 7π/8 and θ2− = −π/4
from −50 ≤ y < 0, and we again take periodic boundary condition for both x and y
direction with system size 100 × 100. These two phases are connected with the limit
θ1+ = 0 and θ2+ = π , and θ1− = π and θ2− = 0 in a continuous fashion, as one can
check. The spectrum of this system is plotted in Fig. 12b, and one can see the exis-
tence of unidirectionally propagating modes on the two edges, colored as red and blue.
One observes these edge modes in fact winds in the energy direction with non-trivial
winding number. Such energy winding is in fact closely related to the phenomenon of
Thouless pump [42], and we refer the interested readers to the detailed analysis in [34].

6 Other topological phases

Different class of topological phases exist in various symmetries and dimensions, as
is classified for non-interacting static Hamiltonian [30–32]. Quantum walks as under-
stood through the effective Hamiltonian are nothing but the quantum simulator for
these static effective Hamiltonians and thus, a part of the classification scheme of
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quantum walks is the same as the classification of non-interacting static Hamiltonian
given in Ref. [30–32]. As we have illustrated the ideas through a few examples in
this review article, it is possible to realize any of the topological phases in 1 and 2
dimension through the variations of quantum walk protocols. We refer the interested
readers to the article Ref. [4] for more complete analysis.

However, the topological phases given in the classification scheme according to
the static effective Hamiltonian is not the only topological phases that can be realized
in quantum walks. In previous sections, we have given two examples of topological
phenomena that are unique to periodically driven systems; 0 and π energy bound
states in zero winding number phases and energy winding unidirectional edge states
in zero Chern number phases [5,34]. These phenomena can also be extended to other
classes of driven systems with other symmetries. Recently it has been proposed that
two flavors of Majorana Fermions can be realized at 0 and π energies in cold atoms
[35], in a similar fashion as 0 and π energy states of quantum walks.

The classification table of topological phenomena unique to driven systems in quan-
tum walks is expected to be the shift of the classification table of static systems by
one dimension, since periodical drives lead to a dimensional increase of static systems
[31,43]. The detailed study of such classification schemes is an interesting future work.
In particular, it is of great interests to study if other types of topological phenomena
unique to driven systems can be realized in quantum walks.

7 Conclusion and open questions

In this review article, we studied topological phases appearing in quantum walks. After
the introduction of quantum walks, we provided a thorough explanation of topolog-
ical nature of quantum walks. We first associated the quantum walks with winding
numbers, and gave an intuitive argument for the existence of bound states across
the boundary of the regions that belong to different topological phases. We argued
for the topological protection of bound states in two different point of view; one
from the spectrum (gap) in the system and another from topological invariant associ-
ated with the bound states. These physics are illustrated through the explicit example
of quantum walks in one and two dimensions. We also explicitly demonstrated the
existence of topological phenomena unique to periodically driven systems in one and
two dimensions.

There are many open questions that one can study in the field of quantum walks.
For example, there is not yet an example of three dimensional quantum walks that
realizes non-trivial topological phase. A simple example of such quantum walks are
of interests, considering the excitement in the field of three dimensional topological
insulators [19,20]. Moreover, three dimensional quantum walks with spin 1/2 has
the possibility to realize Hopf-insulator first proposed by Moore et al. [44]. Since the
realization of this topological phase is very difficult in condensed matter materials, it
is of great interests to explore the possibility of realizations in artificial systems such
as quantum walks.

Other open direction is provided by quantum walks in different geometries, such
as hexagonal lattice. Since hexagonal lattice has three neighbors, study of hexagonal
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lattice quantum walk with spin 1 might provide interesting platform to explore unique
quantum phenomena.

Less concretely, the study of quantum walks with a few to many particles with
strong correlation would be interesting to investigate. In particular, in the presence of
frustrated hopping, there may be unique quantum phenomena such as the formation
of spin-liquid phase.
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Appendix A: Asymptotic distribution of quantum walk

In this section, we derive the intuitive result Eq. (A2) which gives the asymptotic
distribution of quantum walks. Here we consider a quantum walk initially prepared
at site x = 0 with initial spin state |s〉 such that the total initial state is written as
|i〉 = |x = 0〉 ⊗ |s〉. The evolution of a particle after each step is dictated by the
effective Hamiltonian given by Heff = ∫

dk E(k)n(k) · σ ⊗ |k〉〈k| as in Eq. (5).
Since the particle is propagating under the non-interacting Hamiltonian Heff, it is

natural to expect that the particle propagates in a ballistic fashion. Thus, the parti-
cle distribution has a well-defined form in terms of the variable X = x/N in the
asymptotic limit. The distribution of X , P(X), can be computed through

P(X) = 〈
δ(x̂/N − X)

〉

=
〈 ∞∫

−∞
ds eis(X−x̂/N )

〉

=
∞∫

−∞
ds eis X

〈
e−is x̂/N

〉
(A1)

Here the expectation is taken with the state after evolving the initial state |i〉 for N th
steps under the quantum walk. Thus we aim to obtain the expectation of so-called
characteristic function e−is x̂/N after N th steps as N → ∞.

We first note that x̂ = ∑
j j | j〉〈 j |, and thus

e−is x̂/N = 1 +
∑

j

(−is)
j

N
| j〉〈 j | + (−is)2

( j/N )2

2! | j〉〈 j | + · · ·

= 1 +
∑

j

(
e−is j/N − 1

)
| j〉〈 j |
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=
∑

j

e−is j/N | j〉〈 j |

=
∫

dk |k + s/N 〉〈k|

Now we evaluate
〈
e−is x̂/N

〉
= 〈i |ei Heff N e−is x̂/N e−i Heff N |i〉. Since Heff is diagonal in

quasi-momentum space, the evaluation is straightforward. First of all,

ei Heff N e−is x̂/N e−i Heff N =
∫

dk |k + s/N 〉〈k| ⊗ ei N E(k+s/N )n(k+s/N )·σ

×e−i N E(k)n(k)·σ

=
∫

dk |k + s/N 〉〈k| ⊗ eisvk n(k)·σ

In the last line, we took the expression in the lowest order in s/N . This can be confirmed
through the expansion exp {N E(k + s/N )n(k + s/N ) · σ } = cos {N E(k + s/N )} +
i sin {N E(k + s/N )} n(k+s/N )·σ ≈ cos (N E(k)+ svk)+i sin (N E(k)+ svk)n(k)·
σ to the lowest order in s

N .
It is now straightforward to evaluate the expectation value of above expression in

the initial state |i〉 = ∫ π
−π

dk√
2π

|k〉 ⊗ |s〉. Using the expression Eq. (A1), we obtain the
final expression

P(X) =
π∫

−π

dk

2π

1

2
(1 + 〈n(k) · σ 〉) δ(vk − X)

+1

2
(1 − 〈n(k) · σ 〉) δ(vk + X)

Appendix B: Sublattice (chiral) symmetry of inhomogeneous quantum walk

In this section, we give the explicit proof of sublattice (chiral) symmetry for inho-
mogeneous split-step quantum walks. In Eq. (8), we defined the sublattice (chiral)
symmetry in terms of Hamiltonian. This definition directly translates to the sublattice
(chiral) symmetry on the evolution operator after one period U as

�−1U� = U † (B1)

We have shown in Sect. 4.2 that the (homogeneous) split-step quantum walk, U =
T↓ Ry(θ2)T↑ Ry(θ1) possesses the symmetry with the operator �θ1=e−iπA·σ/2 where
A = (cos θ1/2, 0,− sin θ1/2). Here we write the subscript θ1 on the symmetry oper-
ator to emphasize the dependence on θ1.

Here�θ1 is a local operator and thus, we expect that the chiral symmetry is preserved
even if θ2 becomes inhomogeneous in space.
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In order to explicitly check this, we expand the evolution operator U =
T↓ Ry(θ2)T↑ Ry(θ1) in the position basis, where we take the general case that θ2
depends on space in an arbitrary fashion. For example, T↑= ∑

x (1+σz)/2|x +1〉〈x |+
(1 − σz)/2|x〉〈x |. After the expansion, one obtains

U =
∑

x

1 + σz

2
Ry(θ2(x + 1))

1 + σz

2
Ry(θ1)⊗ |x + 1〉〈x |

+1 − σz

2
Ry(θ2(x + 1))

1 − σz

2
Ry(θ1)⊗ |x〉〈x + 1|

+
(

1 − σz

2
Ry(θ2(x + 1))

1 + σz

2
Ry(θ1)

+1 + σz

2
Ry(θ2(x))

1 − σz

2
Ry(θ1)

)

|x〉〈x |

Now the sublattice (chiral) symmetry condition
(
�′
θ1

)−1
U�θ1 = U † can be checked

by comparing both sides of the equation for each position operators of the form
|x〉〈x + α| with α = −1, 0, 1. For example, comparing the both sides of the equation
for the coefficients of |x + 1〉〈x |, sublattice (chiral) symmetry requires that

(
�θ1

)−1 1 + σz

2
Ry(θ2(x + 1))

1 + σz

2
Ry(θ1)�θ1

?= R−1
y (θ1)

1 − σz

2
R−1

y (θ2(x + 1))
1 − σz

2

It is straightforward to check that this equality indeed holds for any rotation θ1 and
θ2(x + 1). Repeating such process for the coefficients of |x〉〈x + 1| and |x〉〈x |, one
confirms the existence of sublattice (chiral) symmetry for inhomogeneous quantum
walks.

Notice that the split step quantum walk with θ1 = 0 is effectively the conventional
quantum walk described in Sect. 2.1. The quantum walk becomes U = T↓ Ry(θ2)T↑,
which is unitarily related to the conventional quantum walk Ucon = T Ry(θ2) =
T↑T↓ Ry(θ2) by the shift of time. Therefore, the explanation above also provides the
proof that the disordered conventional quantum walk where the rotation angle at each
site is random possesses sublattice (chiral) symmetry.

Appendix C: Analytic solution of the bound state for quantum walks
with reflecting boundary condition

In this section, we give the analytical solution of bound states for quantum walks
with reflecting boundary condition studied in Sect. 4.4. Given the quantum walk with
reflecting boundary condition whose evolution operator is Ux≤0 in Sect. 4.4, we look
for the bound states near x = 0. Generally, such bound state can be written as
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|ψb〉 =
∑

j≤0

(
c j,↓| ↓〉 + c j,↑| ↑〉) | j〉 (C1)

The approach we take is to directly solve the eigenvalue problem

Ux≤0|ψb〉 = e−i Eb |ψb〉 (C2)

where Eb is the quasi-energy of the bound state. Comparison of the two sides of
the equation above together with the normalizability of the bound state wavefunction
allows the solution of the problem.

The left-hand side of the equation gives

Ux≤0|ψb〉 =
∑

j≤0

c̃ j,↓| j − 1,↓〉 +
∑

j≤−1

c̃ j,↑| j + 1,↑〉 + eiϕ c̃0,↑|0,↓〉

=
∑

j≤−1

c̃ j+1,↓| j,↓〉 +
∑

j≤0

c̃ j−1,↑| j,↑〉 + eiϕ c̃0,↑|0,↓〉

where the tilde coefficients c̃ j,↑,↓ are related to the original coefficients c j,↑,↓ through
the rotation Ry(θ) as

(
c̃ j,↑
c̃ j,↓

)

= Ry(θ)

(
c j,↑
c j,↓

)

=
(

cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)(
c j,↑
c j,↓

)

Comparison of the equation above with the right hand side of Eq. (C1) immediately
gives

e−i Eb c j,↓ = c̃ j+1,↓ j ≤ −1

e−i Eb c j,↑ = c̃ j−1,↑ j ≤ 0

e−i Eb c0,↓ = eiϕ c̃0,↑ (C3)

In matrix form, the first two equations can be rewritten as

(
0 e−i Eb

cos(θ/2) − sin(θ/2)

) (
c j,↑
c j,↓

)

=
(

sin(θ/2) cos(θ/2)
e−i Eb 0

)(
c j+1,↑
c j+1,↓

)

for j ≤ −1

→
(

c j,↑
c j,↓

)

= ei Eb

(
sin2(θ/2)
cos(θ/2) + 1

cos(θ/2)e
−2i Eb sin(θ/2)

sin(θ/2) cos(θ/2)

) (
c j+1,↑
c j+1,↓

)

for j ≤ −1

(C4)

This last equation is a recursive equation that relates the coefficients at site j + 1 to
site j . We denote the matrix that relates them as K, which is a matrix that appears on
the right hand side of Eq. (C4).

123



1144 T. Kitagawa

The behavior of wavefunction in the limit of x → −∞ is determined by the eigen-
values of the matrix K. They are given by

K = (
v+ v−

)
(
λ+ 0
0 λ−

) (
vT+
vT−

)

v± = 1

N±

(
e−2i Eb −cos(θ)±e−i Eb

√
e−2i Eb +e2i Eb −2 cos(θ)

sin(θ)
1

)

λ± = cos(Eb)± √
cos2(Eb)− cos2(θ/2)

cos(θ/2)

where N± in the expression of v± are the normalization factors.
Then, the amplitude of bound states wavefunction at site − j is given by

(
c− j,↑
c− j,↓

)

= Q

(
λ

j
+ 0

0 λ
j
−

)

Q−1
(

c0,↑
c0,↓

)

j ≤ −1

where Q = (
v+ v−

)
. One crucial observation is λ+λ− = 1, and therefore |λ+| ≤ 1

when cos(Eb) ≤ 0 and |λ−| ≤ 1 when cos(Eb) ≥ 0. The normalizability of the bound
state wavefunction requires that the amplitude (c0,↑, c0,↓)T is proportional to v+(v−)
when cos(Eb) ≤ 0(cos(Eb) ≥ 0). No normalizable bound state wavefunction exists
when |λ+| = |λ−| = 1, or cos2(Eb)− cos2(θ/2) < 0.

Additional constraint on the amplitudes c0,↑, c0,↓ comes from the Eq. (C3), namely,
e−i Eb c0,↓ = eiϕ c̃0,↑. Solving these two conditions give us

sin(θ/2)e−iϕ = −i sin(Eb)∓
√

cos2(Eb)− cos2(θ/2)

where minus sign is for v− or when cos(Eb) ≥ 0 and plus sign is for v+ or when
cos(Eb) ≤ 0.

When ϕ = 0 and 0 < θ < 2π , the solution exists at energy Eb = π with
(c0,↑, c0,↓)T ∝ v+. For ϕ = 0 and 2π < θ < 4π , the bound state energy is Eb = 0
and (c0,↑, c0,↓)T ∝ v−.

On the other hand, when ϕ = π and 0 < θ < 2π , the bound state energy is Eb = 0
with (c0,↑, c0,↓)T ∝ v− , whereas when ϕ = π and 2π < θ < 4π , the bound state
energy is Eb = π with (c0,↑, c0,↓)T ∝ v+.

The bound state wave function found above decays on the length scale of
∼1/| log(λ−)| = 1

| log(1−| sin(θ/2)|)−log(cos(θ/2))| . Thus the extent of bound state
approaches ∞ as θ → 0, 2π . On the other hand, the bound state becomes most
localized when θ = π .
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Appendix D: Spectrum of two dimensional quantum walk

Here we give the details of how to compute the spectrum of two dimensional quantum
walk introduced in Sect. 5.1. The method introduced here is general and can be easily
extended to other protocols of quantum walks in, say, higher dimensions.

The evolution operator of one step for the two dimensional quantum walk can be
written, in the quasi-momentum space, as

U (kx , ky) = eikxσz e−iθ1σy/2eikyσz e−iθ2σy/2

×ei(kx +ky)σz e−iθ1σy/2

Most general form of the effective Hamiltonian resulting from spin 1/2 system is
given by

Heff(k) = E0(k)+ E(k)n(k) · σ (D1)

This is true because a generator of two by two unitary matrix is 1 and Pauli
matrices σ .

Then the spectrum can be identified by considering the trace of evolution operator
because

Tr(U (kx , ky)) ≡ Tr (exp(−i Heff(k)))

= Tr
{

e−i E0(k) (cos (E(k))− i sin (E(k))n(k) · σ)
}

= 2e−i E0(k) cos (E(k))

The explicit evaluation of the trace of U (kx , ky) shows that E0(k) = 0 for all k
and

cos (E(k)) = cos(kx ) cos(kx + 2ky) cos(θ1) cos(θ2/2)

− sin(kx ) sin(kx + 2ky) cos(θ2/2)

− cos2(kx ) sin(θ1) sin(θ2/2)

Appendix E: Gapless phase of two dimensional quantum walk

In this section, we detail the calculation to obtain the line of gapless phase in the
phase diagram of Fig. 10a. The two bands of the system closes the gap when the two
eigenvalues of Hamiltonian

Heff(k) = E(k)n(k) · σ (E1)

becomes degenerate. Since the eigenvalues of n(k) · σ is ±1, the quasi-energy of the
states become degenerate if E(k) = −E(k), which happens if E(k) = 0 or π due to
the periodicity of the quasi-energy.
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The gapless phase occurs at the values of θ1 and θ2 such that the Eq. (17) has a
solution of E(k) = 0 or π for some value of kx and ky . On the other hand, at E(k) = 0
or π , the evolution operator U (kx , ky) takes the value 1 or −1, respectively.

A simple way to obtain such values of θ1 and θ2 is to look at (1, 1) component
of the evolution operator a11 = U (kx , ky)[1, 1]. First we study the lines of gapless
phases where the gap is closed at the quasi-energy 0. Then the equation 1 = a11 gives
the condition

1 = eikx
{
i sin(kx + 2ky) cos(θ2/2)

+ cos(kx + 2ky) cos θ1 cos(θ2/2)

− cos kx sin θ1 sin(θ2/2)} (E2)

Note that 1 is the maximum magnitude that RHS of the above equation attains for any
values of kx , ky, θ1 and θ2. Therefore, we can simply maximize the RHS in terms of
the variables kx and ky or alternatively the variables kx + 2ky and kx . The argument
separates few cases.

If sin θ1 sin(θ2/2) is non-zero, then cos kx = ±1. If we take the two orthogonal
variables k1 = kx + 2ky and k2 = 2kx − ky , then the first two terms of the RHS of
Eq. (E2) is only a function of k1. By differentiating the absolute square of RHS in
terms of k2, one can show that the extremum of this value is taken when cos kx = ±1.

Suppose cos kx = 1. Then eikx = 1 and the Eq. (E2) requires the first term sin(kx +
2ky) cos(θ2/2) to be zero. If we take sin(kx +2ky) to be zero, then cos(kx +2ky) = ±1,
and the condition is reduced to 1 = cos(θ1 + θ2/2) for plus sign and −1 = cos(θ1
− θ2/2) for minus sign. Thus the gapless phase exist whenever θ1 + θ2/2 = 2πn
and θ1 − θ2/2 = 2πn + π . If cos(θ2/2) = 0, then the equation is solved only at
discrete points of θ1 = π/2 + 2πn with θ2 = 3π + 4πn or θ1 = 3π/2 + 2πn with
θ2 = π + 4πn. These cases are already included in the condition above.

Similarly consider cos kx = −1. Then eikx = −1 and the Eq. (E2) again requires
the first term sin(kx + 2ky) cos(θ2/2) to be zero. If we take sin(kx + 2ky) to be zero,
then cos(kx + 2ky) = ±1, and the condition is reduced to −1 = cos(θ1 − θ2/2)
for plus sign and 1 = cos(θ1 + θ2/2) for minus sign. Thus the gapless phase exist
whenever θ1 − θ2/2 = π + 2πn and θ1 + θ2/2 = 2πn. Thus these conditions give
exactly the same gapless phases as for cos kx = 1.

Now suppose that sin θ1 sin(θ2/2) is zero. A new condition appears when
sin(θ2/2) = 0. Then cos(θ2/2) = ±1. But now, we can satisfy the condition Eq. (E2)
by setting cos(kx + 2ky) = 0. Since this does not require for θ1 to take any particular
value, we conclude that gap closes for the line of θ2 = nπ .

A similar consideration for quasi-energy E = π gives the condition that the gap
closes at E = π for θ1 + θ2/2 = 2πn + π , θ1 − θ2/2 = 2πn and θ2 = nπ . These
results lead to the gapless phases plotted in Fig. 10a.
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