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We show that under the influence of pure vacuum noise two entangled qubits become completely
disentangled in a finite-time, and in a specific example we find the time to be given by ln�2�

��
2

p

2 � times the
usual spontaneous lifetime.
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FIG. 1. Schematic illustration of a setup in which two atoms
are located inside two spatially separated cavities A and B. The
two atoms are initially entangled but have no direct interaction
afterwards.
Superposition and entanglement are two basic features
that distinguish the quantum world from the classical
world.While quantum coherence is recognized as a major
resource, decoherence due to the interaction with an
environment is a crucial issue that is of fundamental
interest [1–4]. When coherence exists among several dis-
tinct quantum subsystems the issue becomes more com-
plicated because, along with the local coherence of each
constituent particle, their entanglement brings a special
kind of distributed or nonlocal coherence. It is this dis-
tributed coherence that really matters in many important
applications of quantum information [5,6]. Consequently,
the fragility of nonlocal quantum coherence is recognized
as a main obstacle to realizing quantum computing and
quantum information processing (QIP) [7,8]. Apart from
the important link to QIP realizations, a deeper under-
standing of entanglement decoherence is also expected to
lead to new insights into quantum fundamentals, particu-
larly quantum measurement and the quantum-classical
transition [9–11]. Although quantum decoherence has
been extensively studied in recent years, it remains un-
clear how a local decoherence rate is related to a nonlocal
disentanglement rate when a multiparticle quantum state
is in contact with one or more noisy environments.

Therefore, a deep understanding of the decoherence
in any viable realization of qubits is desirable and it is
surprising that few if any fundamental treatments exist of
decoherence that include the dynamics of disentangle-
ment on better than an empirical or phenomenological
basis.

Here we consider two initially entangled qubits and
examine the dynamics of their disentanglement due to
spontaneous emission without phenomenological ap-
proximation. There is perhaps no simpler realistic bipar-
tite model in which all of the effects of quantum noise can
be considered fully analytically. We show that decoher-
ence caused by vacuum fluctuations can affect localized
and distributed coherences in very different ways. As one
surprising consequence, we show that spontaneous dis-
entanglement may take only a finite-time to be com-
pleted, while local decoherence (the normal single-atom
transverse and longitudinal decay) takes an infinite time.
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To make our model and results concrete, we restrict our
attention to two two-level atoms A and B coupled indi-
vidually to two cavities which are initially in their vac-
uum states (see Fig. 1). In the general framework of
system-plus-environment, the two two-level atoms are
identified as the system of interest, whereas the two
cavities serve as the environments. The interaction be-
tween each atom and its environment results in the loss of
both local coherence and quantum entanglement of the
two atoms. In its simplest form such a model may be
formulated with the following total Hamiltonian, which
is given by (we set �h � 1): Htot � Hat �Hint �Hcav,
where the Hamiltonian of the two atoms Hat, the two
cavities Hcav and the interaction Hint are given by
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1
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2
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where gk; fk are coupling constants and �z denotes the
usual diagonal Pauli matrix, and the standard two-qubit
product basis is given by:

j1iAB � j��iAB; j2iAB � j��iAB;

j3iAB � j��iAB; j4iAB � j��iAB;
(4)
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where j� �iAB � j�iA  j�iB denote the eigenstates of
the product Pauli spin operator �Az  �Bz with eigenvalues
�1. The total Hamiltonian, given by Eqs. (1)–(3), pro-
vides us an important solvable model of the atom-field
interaction in quantum optics.

Suppose that initially the atoms are entangled with
each other but not with the cavities, i.e., we assume that
at t � 0 the two atoms and the cavities are described by
the product state,

j�toti � j iAB  j0iAj0iB; (5)

where j iAB is the entangled initial state of the two atoms
and j0iAj0iB is the vacuum state of two cavities. For
simplicity, we will not take into account the spatial
degrees of freedom of the two atoms. The convolutionless
master equation of the system of two atoms can be ob-
tained as follows [12]:

d
dt
� � �i�H0

at�t�; �� � FR�t����A�; �t�A�� � ��A��t; �A���

�GR�t����B�; �t�B�� � ��B��t; �B��� (6)

where H0
at�t� is the system Hamiltonian modified to take

into account the Lamb shifts

H0
at�t� �

1

2
�!A � FI�t���Az �

1

2
�!B �GI�t���Bz (7)

and the coefficients FR;I and GR;I are the real and imagi-
nary parts of F�t� and G�t�, which are given by

F�t� �
1

b�t�

Z t

0
ds��t� s�b�s� (8)

G�t� �
1

c�t�

Z t

0
ds��t� s�c�s� (9)

Note that the cavity correlation functions are

��t� s� �
X
k

jgkj
2e�i!k�t�s� (10)

��t� s� �
X
k

jfkj2e�i	k�t�s� (11)

and the functions b�s� and c�s� are the fundamental
solutions of the equations of motion:

_b�s� � i!Ab�s� �
Z s

0
d���s� ��b��� � 0 (12)

_c�s� � i!Bc�s� �
Z s

0
d���s� ��c��� � 0 (13)

The master Eq. (6) is extremely useful for the study of
decoherence, and for the purpose of disentanglement
analysis it will be very convenient to find an explicit
expression for its solution. In the interaction picture,
where

~��t� � ei
R
t

0
H0

at�s�ds��t�e�i
R
t

0
H0

at�s�ds; (14)
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the general solutions of Eq. (6) can be described in terms
of a Kraus representation [5,6,13,14]. As can be seen
below, the Kraus representation allows a very elegant
analysis of the disentanglement time for arbitrary states.
Precisely, for any initial state ��0�, the density operator at
t can be expressed as [15]

~��t� �
X4
��1

K��t���0�K
y
��t�; (15)

where the Kraus operatorsK��t� satisfy
P
�K

y
�K� � I for

all t. The Kraus operators for this model are given by
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�
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�
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K2 �

�
 A 0
0 1

�


�
0 0
!B 0

�
; (17)
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�
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�
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�
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and the time-dependent Kraus matrix elements are

 A�t� � exp
�
�

Z t

0
dsFR�s�

	
; (20)

 B�t� � exp
�
�
Z t

0
dsGR�s�

	
; (21)

!A�t� �
��������������������
1�  2

A�t�
q

; !B�t� �
��������������������
1�  2

B�t�
q

(22)

With the preceding discussion, we are now in a position
to determine both the local decoherence rate and the
disentanglement rate. Multiple interpretations of the
term decoherence in the literature can lead to confusion,
so we will use global or nonlocal decoherence (or disen-
tanglement) here when we refer to loss of bipartite en-
tanglement. The terms local decoherence or local
relaxation will refer to longitudinal and transverse decay
of single-atom density matrix elements. In the present
example local and nonlocal decoherence both arise
from the effects of spontaneous emission and in that sense
are not independent.

We begin with the coherence decay of a single qubit
under the master Eq. (6). The local decoherence rates of
the qubits can be estimated from the reduced density
matrices �A � TrBf�g and �B � TrAf�g. The local de-
coherence rates are determined by the well-known Bloch
equations with general time-dependent functions
F�s�; G�s�. For example,

h _�A�i � ��F�t� � i!A�h�A�i (23)

and h _�A�i � h _�A�i
�, where �A� � ��  I. Similar equa-
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tions hold for �B�. Hence we have

jh�A��t�ij � jh�A��0�ije
�
R
t

0
dsFR�s�; (24)

jh�B��t�ij � jh�B��0�ije
�
R
t

0
dsGR�s�: (25)

Given these equations, local decoherence behaviors are
determined by the character of the functions FR�t� and
GR�t� which we always assume to be positive functions
asymptotically. In the familiar Born-Markov approxima-
tion one has purely exponential decay with rates given by
F�t� ! �A=2 and G�t� ! �B=2, where the �’s are the
Einstein A coefficients for the two-level atoms in the
cavities.

The comparison of interest is with the disentanglement
rate. Since entanglement decoherence processes are most
generally associated with mixed states, we will use
Wootters’s concurrence to quantify the degree of entan-
glement [16]. The concurrence is conveniently defined for
both pure and mixed states. Let � be a density matrix of
the pair of atoms expressed in the standard basis (4). The
concurrence may be calculated explicitly from the den-
sity matrix � for qubits A and B: C��� � max�0;

������
�1

p
�������

�2
p

�
������
�3

p
�

������
�4

p
�; where the quantities �i are the ei-

genvalues of the matrix #:

# � ���Ay  �By �����Ay  �By �; (26)

arranged in decreasing order. Here �� denotes the com-
plex conjugation of � in the standard basis (4) and �y is
the usual (pure imaginary) Pauli matrix expressed in the
same basis. It can be shown that the concurrence varies
from C � 0 for a disentangled state to C � 1 for a maxi-
mally entangled state.

We now show two categories of result for entanglement
decay. In the first more general category we show that, for
all entangled (possibly mixed) states, entanglement de-
cays not only more rapidly than the fastest decoherence
rate of an individual qubit, but at least as fast as the sum
of the separate rates. In the second category we present a
sharper result in a specific mixed state example, in which
the entanglement goes exactly to zero in a finite-time and
remains zero. Both categories of result are a consequence
of normal spontaneous emission.

For the first category of result, let us note that the
concurrence C��� is a convex function of � [16]. From
(15), one immediately has

C���t�� �
X4
��1

C�K���0�Ky
��; (27)

where K� are defined in Eqs. (16) to (19). Let us consider
a typical term C�K���0�Ky

�� in (27) and denote it by
�� � K���0�K

y
�: From the definition of concurrence, it

can be proved that

C��1� � e�
R
t

0
�FR�s��GR�s��dsC���0��; (28)
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C���� � 0; � � 2; 3; 4: (29)

Then the inequality (27) immediately leads to,

C���t�� � e�
R
t

0
�FR�s��GR�s��dsC���0��; (30)

which establishes the first result mentioned. It is not
difficult to show that the upper bound is the minimal
upper bound. To treat the disentanglement process in
general and more completely requires a discussion of
the asymptotic behavior of the functions FR�s� and
GR�s�, which is beyond the scope of the present paper.

In what follows we develop the second result men-
tioned above. We show that within the general result there
are very unusual and striking specific consequences. One
example shows that, within the general exponential char-
acter evident in (30), disentanglement can be completed
in a finite-time while the local decoherences need an
infinite time. Let us assume that the initial density matrix
is only partially coherent, but include an arbitrary degree
of nonlocal coherence of a familiar type (one of the
atoms is excited, but it is not certain which one). This is
easily expressed in the following form [17]

� �
1

3

0BBB@
a�t� 0 0 0
0 b�t� z�t� 0
0 z��t� c�t� 0
0 0 0 d�t�

1CCCA (31)

where the factor 1/3 is for notational convenience. The
concurrence for this density matrix is C � 2

3 maxf0; jzj �������
ad

p
g. For simplicity, we consider an important class of

mixed states with a single parameter a satisfying initially
a � 0; d � 1� a, and b � c � z � 1, so then initially
C���0�� � 2

3 �1�
������������������
a�1� a�

p
�. For t � 0 the matrix ele-

ments are given by

a�t� �  2
A 

2
Ba; (32)

b�t� �  2
A �  2

A!
2
Ba; (33)

c�t� �  2
B �!2

A 
2
Ba; (34)

d�t� � 1� a�!2
A �!2

B �!2
A!

2
Ba; (35)

z�t� �  A B: (36)

To simplify the calculations, we use the Markov limit
results and assume the cavities are similar so  A �  B �

 � exp���t=2�; and !A � !B � ! �
�����������������������������
1� exp���t�

p
:

The concurrence for the density matrix ��t� is given by

C���t�� �
2

3
maxf0;  2f�t�g (37)

where f�t� � 1�
������������������������������������������������
a�1� a� 2!2 �!4a�

p
: The suffi-

cient condition for the concurrence (37) to be zero is

1� a�1� a� 2!2 �!4a� � 0: (38)
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FIG. 2. The entanglement decay via spontaneous emission
starting from the initially entangled states (31) with a between
zero and 1, d � 1� a and b � c � z � 1. Finite-time com-
plete disentanglement takes place for a > 1=3, and when a �
1=3 disentanglement of the initial state is only completed
asymptotically.
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The simplest case is a � 1 and from this we can easily
show the surprising result that the density matrix (31) has
a finite disentanglement time. That is, C���t�� � 0 for all
t � td, where td is very finite:

td �
1

�
ln

"
2�

���
2

p

2

#
: (39)

In response to this surprising result, a natural question
will be: does spontaneous emission cause all initially
entangled two-qubit states to disentangle at some finite
critical time? The answer is no. To see this, we consider
the entire range of different a values, and plot the con-
currence decay in Fig. 2. The figure shows that for all a
values between 1=3 and 1 concurrence decay is com-
pleted in a finite-time, but for smaller a’s the time for
complete decay is infinite. The different behaviors exhib-
ited over the allowed range of a values in Fig. 2 show that
our two-level atom model behaves qualitatively differ-
ently from the continuous variable two-atom model dis-
cussed in [10] by Dodd and Halliwell. In that case all
initially entangled states become separable after a finite-
time (see also [18]).

To summarize, we have shown for the physically fun-
damental and unavoidable process of spontaneous emis-
sion that nonlocal disentanglement times are shorter than
local decoherence times for arbitrary entangled states
(pure or mixed). We based our results on perhaps the
simplest realistic decoherence scenario in which two en-
tangled qubits individually interact with vacuum noise.
The model allows an exact analysis and also shows,
remarkably, that complete disentanglement can be
reached after only a finite-time, whereas more familiar
local decoherence processes take an infinite time to be
complete. We believe our results are of generic nature.
Undoubtedly a deep understanding of the relation be-
tween decoherence and disentanglement will be of im-
portance for both the foundation of quantum mechanics
and practical quantum information applications.
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